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Small-scale neuronal networks may impose widespread effects on
large network dynamics. To unravel this relationship, we analyzed
eight multiscale recordings of spontaneous seizures from four
patients with epilepsy. During seizures, multiunit spike activity
organizes into a submillimeter-sized wavefront, and this activity
correlates significantly with low-frequency rhythms from electro-
corticographic recordings across a 10-cm-sized neocortical network.
Notably, this correlation effect is specific to the ictal wavefront and
is absent interictally or from action potential activity outside the
wavefront territory. To examine the multiscale interactions, we
created a model using a multiscale, nonlinear system and found
evidence for a dual role for feedforward inhibition in seizures: while
inhibition at the wavefront fails, allowing seizure propagation,
feedforward inhibition of the surrounding centimeter-scale net-
works is activated via long-range excitatory connections. Bifurcation
analysis revealed that distinct dynamical pathways for seizure
termination depend on the surrounding inhibition strength. Using
our model, we found that the mesoscopic, local wavefront acts
as the forcing term of the ictal process, while the macroscopic,
centimeter-sized network modulates the oscillatory seizure activity.
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Functional interactions between single or small groups of nerve
cells and large cortical networks are a critical frontier in
neuroscience, especially in epilepsy research. For example, re-
cent work using multiscale neocortical recordings in patients with
epilepsy reports distinct activity patterns across scales (1-5), but
the long-range effects from local neuronal activity on the genesis
and evolution of seizures are still unknown.

In particular, ref. 2 presented evidence from microelectrode
arrays (MEAs) that, during seizures, a wavefront of multiunit
spike activity separates two territories with distinct neuronal
activity: the core and penumbra. The core is defined by spiking
activity that showed spatiotemporal organization related to the
low-frequency component of the local field potential (LLFP;
2-50 Hz). The LLFP corresponds approximately to the “Berger
bands” that compromise the clinically used EEG. In contrast,
penumbral activity showed a lack of both spatial organization
and correlation between spikes and local field potentials (LFPs)
(2, 6). The propagating wave of intense spiking activity that
separates the territories can be attributed to failed inhibitory
restraint in the core (7, 8), presumably from paroxysmal depo-
larizations in the smaller inhibitory neurons (9). Recent work has
shown evidence that epileptiform discharges take the form of
traveling waves that move across the cortical surface at 0.2—
0.3 m/s, similar to the velocity of unmyelinated axonal conduc-
tion, and originate from the ictal wavefront (1, 5, 10, 11). Given
that the mesoscopic ictal wavefront and the macroscopic LLFP
during seizure activity display a remarkable complex relation-
ship, we were motivated to investigate how a small territory, the
ictal core, exhibits long-range influences across a large network.

www.pnas.org/cgi/doi/10.1073/pnas.1702490114

Computational models have been successfully applied to fur-
ther our understanding of the dynamics during epileptiform ac-
tivity (12-22), ranging from small-scale, cellular processes (13,
14, 23, 24) to interactions at the network level (9, 25). However,
because of the multitude of nonlinear processes that govern
neuronal activity, scaling cellular dynamics up to the level of macro-
scopic observations is not trivial (26). For this reason, population
models (27, 28) are extremely useful for the analysis of both meso-
and macroscopic epileptiform network activity patterns (9, 29, 30).

Here, we quantify and model the relationship between the
ictal wavefront, the local LLFP, and the macroscopic electro-
corticogram (ECoG). We examine the spatiotemporal relation-
ship between spike trains and LLFP in simultaneous human
microelectrode and ECoG recordings from spontaneous sei-
zures. We show that the local wave of spike activity is correlated
with both local and long-range effects. We present evidence that
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We show how small-scale (less than millimeters?) neuronal
dynamics relates to network activity observed across wide
areas (greater than centimeters?) during certain network
states, such as seizures. Simulations show how macroscopic
network properties can affect frequency and amplitude of ictal
oscillations. Additionally, the seizure dynamic suggests that
one neuronal function, feedforward inhibition, plays different
roles across scales: (i) inhibition at the small-scale wavefront
fails, allowing seizure activity to propagate, but (/i) at macro-
scopic scales, inhibition of the surrounding territory is activated
via long-range intracortical connections and creates a distinct
pathway to a postictal state. Ultimately, our modeling frame-
work can be used to examine meso- and macroscopic perturba-
tions and evaluate strategies to promote transitions between
ictal and nonictal network states.
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Fig. 1. Spikes in the ictal core show a strong correlation with the LFP.
(A) Example schematic of the MEA (gray square) and ECoG grid (black circles)
placement for patient 1. Purple area denotes tissue that was later resected.
(B) Cartoon MEA. Spike raster from a microelectrode is shown in magenta.
Pseudo-ECoG signal (averaged LFP across the MEA) is shown in blue.
(C) Example STA from spiking in the ictal core (black) with the noise esti-
mates: with or without average (pink) and bootstrapped average (green).
STAs and bootstraps were found to be significantly different (P < 0.0001) for
all seizures recorded in the core (two patients, four seizures). (D) Example
STA from interictal spike times. (E) Example STA from penumbral spike train
(patient 4). Note that the noise estimate and bootstrap in C—E are slightly
shifted from their zero mean to make them visible.

the latter effect includes a feedforward inhibitory response in the
surrounding territory. Furthermore, we use our findings to model
the interactions between the mesoscopic, propagating wavefront
and the macroscopic, surrounding network, extending previous
work (9). We attribute ongoing seizure activity to a dual scale-
dependent role of feedforward inhibition and investigate the re-
lationship between the dominant seizure frequency and the intrinsic
connectivity parameters of the macroscopic model.

Results

Time Frequency and Spatiotemporal Analysis. A movie published in
ref. 2 shows that spiking at the wavefront and the LLFP appear
to act on two timescales (Movie S1). A snapshot from this movie
(Fig. S1) shows localized spike activity organized in a propa-
gating wavefront (Fig. S1, Left) and LLFP activity as a more
global distribution (Fig. S1, Right). The wavefront propagates at
a speed of <1 mm/s (SI Materials and Methods and Fig. S2), while
the individual epileptiform discharges of the LLFP possess a
more macroscopic organization and propagate at a much faster
speed (0.26 m/s) (1). Despite these differences, we found that the
global response is frequently delineated by the location of the
wavefront, revealing a direct spatiotemporal relationship be-
tween the wavefront and oscillatory LLFP signal (SI Materials
and Methods and Fig. S3). From these observations, we were
motivated to quantify this relationship.

Spike-Triggered Averages. We wished to quantify the spatial range
of the wavefront’s effect on the LLFP in the cross-scale relation-
ship throughout the duration of the seizure. To accomplish this,
we investigated the time-locked relationship between the spiking
in the core and macroscopic LLFP activity via spike-triggered
averages [STAs; ie., the cross-correlation between the meso-
scopic spike activity and the average LLFP across the MEA
(termed pseudo-ECoG)]. Noticing that spiking from the entire
seizure was comparable with spiking during the postrecruitment
period (1) (Fig. S4), we used spike activity in the core from across
the array. STAs have been previously used to examine the spa-
tiotemporal relationship of LFPs across MEAs under task-related
conditions (31), and our goal was to extend this method to include
long-range correlations associated with macroscopic networks
observed by ECoG during seizures. In Fig. 1, we show an example
of the local, spike time-locked component of the pseudo-ECoG.
The time-locked pseudo-ECoG signal can be clearly distinguished
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from the noise estimates, which were obtained both with plus—
minus averaging that removes consistent signal components to
estimate residual noise and with bootstrapping procedures that
randomize our sample times (Materials and Methods and Fig. 1C)
(bootstrapped difference: P < 0.0001, two patients, four seizures).
Importantly, this strong time-locked component of the STA was
not detected interictally or with penumbral spikes, confirming that
only spiking associated with the core and propagating wavefront
was correlated with the macroscopic LFP (Fig. 1 D and E). These
results were consistent across patients (Fig. S5).

Subsequently, we analyzed the time-locked component be-
tween spikes from the core and macroscopic brain activity in the
surrounding regions from the ECoG recordings. Fig. 2 depicts
one set of example STAs and associated bootstrapped noise
estimates across cortex. While the STAs from the core spike
trains did show a distance-dependent decrease in amplitude,
described by the rms values, over the first four centimeters (P <
0.01, two patients, four seizures), we observed that a significant
component of the ECoG signal, well above the levels associated
with the bootstrapped signals, remained correlated with the
spike train at distances up to 10 cm (Figs. 2 and 34) (P < 0.0001,
two patients, four seizures). Contrarily, penumbral spike trains
showed no such synchronization between spikes and ECoG sig-
nals (Fig. S6). These results were consistent across patients: only
spiking from the core showed strong and statistically significant
long-range correlations (Fig. 3B) (four patients, eight seizures).

Decomposition of the STAs. STA signals obtained between the core
and ECoG could be decomposed into two parts: an oscillatory

STA
Bootstrap

1 mV
400 ms

Fig. 2. Example of STAs from the core (patient 1) with long-range corre-
lations between the spike train and ECoG. Each panel depicts the STA (black)
from the ECoG electrode at that position and a bootstrapped noise estimate
(green). Colored borders reference geodesic distance from MEA. Upper
shows the lateral view; Lower is the corresponding basal view. *Electrode
used for the core STA in Fig. S6.
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Fig. 3. Core shows strong long-range correlations. (A) rms Values of the
example STAs in Fig. 2 are plotted vs. their distance from the MEA. Each
point refers to an rms value from a single ECoG electrode. Colors of the
points correspond with approximate distances from the MEA shown in Fig. 2.
Zero distance refers to the STA at the MEA (pseudo-ECoG STA). The black
trace connects the mean and SEM for patient 1's STAs; the green trace shows
mean and SEM of the bootstrapped noise estimates. STAs and bootstraps
were significantly different (P < 0.0001) for all seizures recorded in the core.
The rms values for the first 4 cm also show a strong distance-dependent drop
off in amplitude (r = —0.53, P < 0.01 for seizure 1, patient 1). (B) Mean and
SEM rms are consistent across patients: the black traces are from the ictal
core (patients 1 and 2), and the red/pink traces are from the penumbra
(patients 3 and 4).

and nonoscillatory component (Fig. 4). The presence of the os-
cillatory component over a centimeter range extends previous
findings that spiking in the core is phase-locked to the local LFP
oscillation (1, 2, 4). The frequency of this oscillatory component
is the same as the principal frequency of the ongoing ECoG
seizure activity, ~6 Hz (Figs. S2, S4, and S7), and is consistent
across distances, as noted by the distinct peak in the amplitude
spectra of the STAs (Fig. 4, Lower). Occasionally, a small-
amplitude harmonic component was observed at 12 Hz (Fig. 4,
Lower), but given the minimal effect of the harmonics, we fit the
same sinusoidal base to all STAs from the same seizure. Since
the oscillations in the STAs were consistently observed across
distance and the MEA’s LLFP and ECoG signals showed power
in the same frequency range (Fig. 4 and Figs. S4 and S7), we inter-
preted our findings as follows. The (constant) oscillatory compo-
nent of the STA (green traces in Fig. 4) represents a global effect
that can be associated with periodic motion in the cortical dynamical
system. Likewise, the remainders of the STAs (magenta traces in
Fig. 4) represent the local effects of the wavefront.

As outlined in SI Materials and Methods, negative and positive
deflections in the extracellular potential can be interpreted as the
combined effects of excitatory or inhibitory network activity, re-
spectively. This interpretation hinges on the assumptions (i) that,
during seizure activity, neuronal activity occurs across all neo-
cortical layers; (ii) that the remotely located reference electrode
does not significantly contribute to the recorded activity (i.e., the
reference signal is close to zero); and (iii) that neuronal currents
contribute to the measured signals via volume conduction. Ac-
cordingly, we interpreted the STAs as follows: at the MEA, the
local spike contribution is represented by a downward deflection
that correlates with a strong excitatory response, a result that
corresponds well with previous evidence of failed inhibition at the
core (Fig. 4, black asterisks) (2). In contrast, remote from the
MEA, a positive peak is present and associated with intact local
inhibition (Fig. 4 B and C, black crosses). At 1 cm away, the
corresponding waveform is biphasic (Fig. 4B), and at 4 cm away, a
clear positive component dominates (Fig. 4C).

Multiscale Model. Using the scale differences of the spike wavefront
and LFP activity (Fig. S1 and Movie S1) and the two components
of the STA (Fig. 4), we were motivated to create a two-scale
model to study the coupling across scales. At the mesoscale, we
used a neural field to model the propagating spike wavefront. At
the macroscale, we used a single neural mass model to represent
the global activity from macroscopic cortical networks observed by
ECoG (Fig. 5 and SI Materials and Methods). In the neural mass
model, we removed the spatial information, because the frequency
of the STA’s oscillatory component was constant across distance
(Fig. 4, Lower). Our neural field model extended the 1D wave-
front model previously described by ref. 9 that includes a Gaussian
activation function to describe failure of inhibition caused by
paroxysmal depolarizations. The output of this wavefront connects
to the macroscopic network model to contribute to the overall
seizure activity. In response, the output of the macroscopic net-
work feeds into its environment, which includes feedback to the
propagating spike wavefront. To confirm our model’s validity, we
compared our simulation with the activity from the MEA. Similar
to the recorded dataset, the dominant frequency decreases as the
seizure develops, and there was a distinct spatial organization
correlating the LLFP with the wavefront (Fig. S3 D-F).

The Role of Feedforward Inhibition. While previous work (2, 7-9)
has focused on the effects of failed local feedforward inhibition
at the core, the positive deflections in our ECoG STAs suggest
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Fig.4. STAs are composed of a sinusoidal base and a remainder term. (A) Example pseudo-ECoG STA shows wavefront spiking effects that can be observed as
the difference (magenta) between the STA (black) and a sinusoidal base (green). Lower represents the amplitude spectrum of the STA. *Local minimum,
which we interpret as representing excitatory activity (S/ Materials and Methods). (B) Example as in A from an ECoG electrode 1 cm from the MEA. Cross
denotes local maximum, which we interpret as local inhibitory activity. (C) Example as in A from an ECoG electrode at a distance of 4 cm.
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Fig. 5. Schematic of the multiscale model (reinterpreted from figure 1B in
ref. 4). The model consists of a mesoscopic neural field model for the
propagating wavefront that is connected to a neural mass model repre-
senting the surrounding macroscopic network. Mutual excitatory effects
between the wavefront and neural mass model are represented by b and B,
respectively. The activation of the inhibitory populations’ response, feed-
forward inhibition, is governed by y €[0,1]. Additional details on the pa-
rameters can be found in S/ Materials and Methods.

that feedforward inhibition is functional in the macroscopic
surrounding territory (Fig. 4). Thus, we were interested in in-
vestigating the network dynamics associated with various levels
of inhibition at the macroscale. In our model, we define the level
of this functional, surrounding feedforward inhibition as the
quotient (y) between the external inputs from the propagating
wavefront (b) of the continuous neural field that projects onto
the inhibitory and excitatory populations of the macroscopic
neural mass (Fig. 5). To determine the role of this feedforward
inhibition on the seizure dynamics, we applied bifurcation analysis,
which allows us to quantify how the dynamics of the system will
respond as parameters change. Here, we quantified how the dy-
namic equilibria of the synaptic activity, ug, depend on the input
from the wavefront, b, and on different levels of feedforward in-
hibition (y) (Fig. 6). By investigating the dynamical changes asso-
ciated with the wavefront input and feedforward inhibition (Fig.
S8), we identified three distinct dynamical activity patterns that
corresponded with varying levels of inhibition (an example of each

is shown in Fig. 6): one scenario produces excessive oscillatory
activity (Fig. 64), one does not include seizure-like behavior (Fig.
6C), and one includes distinct pathways for seizure onset and
termination (Fig. 6B).

Fig. 6, Upper displays bifurcation diagrams (32) for three
specific levels of feedforward inhibition (y = 1/8, 1/2, and 3/4),
representing state changes in synaptic activity, ug, when the in-
put, b, is varied. Points on the solid blue curves in Fig. 6 indicate
that a state change exists at the corresponding value of b. At the
Hopf bifurcation points (H), the equilibrium loses stability, and a
periodic orbit emerges (orange traces in Fig. 6), which can be
observed as oscillations in the LFP. Here, the periodic orbit is
stable (a so-called supercritical Hopf bifurcation) (32), and we
can follow it as b is varied (Movies S2-S4). Fig. 6, Lower shows
the EEG band-filtered signals associated with the trajectories
that mimic seizure onset and offset.

For low levels of feedforward inhibition (e.g., y = 1/8), the steady
state undergoes a supercritical Hopf bifurcation at b = 5.0 that
terminates at another Hopf bifurcation point at b = 16.6 (Fig. 64).
Therefore, for 5.0 < b < 16.6, stable periodic solutions exist that
model synchronized ictal behavior as oscillatory activity (Fig. 64,
Lower and Movie S2). Comparatively, for moderate values of
feedforward inhibition (e.g., y = 1/2), the behavior is qualitatively
the same for small values of b (Fig. 6B), with the fixed point losing
its stability and switching to periodic behavior at b = 6.2, and for
larger values of b, with a stable fixed point that represents strong
activation. However, in contrast to the former case, the periodic
solutions now terminate at a homoclinic bifurcation point at b =
9.1, where the periodic orbit collides with an equilibrium and the
period goes to infinity (32) (Movie S3). Finally, for high values of
feedforward inhibition (e.g., y = 3/4), there are no periodic solu-
tions (Fig. 6C), but the model does show saddle-node (SN) points,
in which two equilibria merge and disappear (Movie S4).

We then mimicked the effect of the ictal wavefront (i.e., input
b) by determining a trajectory across the diagrams in Fig. 6. Note
that, if b first increases and then decreases, the systems’ dynamics
critically depend on y. In the first scenario (y = 1/8), the system
must enter and exit the oscillatory state via the same path (i.e.,
the simulated LFP shows oscillatory activity with both increasing
and decreasing b) (Fig. 64, Lower and Movie S2). However, in
the second scenario (y = 1/2), the system enters the oscillatory
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Fig. 6. Bifurcation analysis evaluates the role of feedforward inhibition activated by the wavefront at the macroscale. Upper shows the input (b)-dependent
dynamics for the macroscopic activity ug as bifurcation plots. Lower shows corresponding LFP signals generated when the input b is increased and then
decreased. LFP signals were filtered with conventional EEG filters. (A) For y=1/8, the stationary state undergoes a Hopf bifurcation (H), described by a
periodic orbit (orange traces), for increasing input b. When the input is increased further, the ictal state is replaced by a strong depolarized state and SN
bifurcation. When the input decreases, the same trajectory is passed through but in reversed order as seen by the two sets of oscillations in the LFP signal of
Lower. (B) For y=1/2, ug undergoes a Hopf bifurcation into the ictal state, and the ictal state is replaced by a strong activated state via a homoclinic bi-
furcation for increasing values of the input. When the input decreases, the strong activated state falls back to the initial rest state via an SN bifurcation. The
LFP shows the distinct paths from seizure onset and offset in Lower. Note that input b is varied to produce the dynamics, and therefore, the interval between
simulated seizure onset and offset is arbitrary. (C) When y=3/4, only transients are present in the simulated trace.
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state as b increases but returns to its initial state via a second
distinct path with an SN bifurcation (Fig. 6B and Movie S3),
which agrees well with the clinically observed differences for
seizure onset and offset.

Because of the global nature of the seizure’s oscillatory com-
ponent, our model can also be used to determine how the mac-
roscopic network’s connectivity parameters affect the frequency of
the seizure dynamics (Fig. S9). While the wavefront propagates
across the neural field and activates the macroscopic neural mass,
the surrounding network’s feedback to the system influences the
frequency of the oscillatory discharges. This influence on the
spectral seizure dynamics can be attributed in part to the con-
nectivity associated with the neural mass. Just as previous work has
suggested that network size and connectivity can impact the res-
onance frequencies of a network (33), we found that stronger
excitatory—excitatory connections could lead to a decrease in the
dominant seizure frequency (Fig. S94), while stronger excitatory—
inhibitory and inhibitory—excitatory connectivity could increase the
dominant frequency (Fig. S9 B and C). Furthermore, the change in
frequency at the MEA can be described by the nonlinear dynamics
associated with intact inhibition in the macroscale model and the
corresponding homoclinic bifurcation.

Discussion

We applied a combined data analysis and modeling approach to
show how cortical activities at different spatial scales can interact
and how these interactions affect the observed dynamics (Figs. 5
and 6). We find that, during a propagating seizure, the meso-
scopic ictal wavefront and macroscopic network must interact to
sustain the ictal state. The mesoscopic wavefront may function as
a mathematical forcing term in the equations that govern the
oscillatory seizure activity, while macroscopic connectivity prop-
erties have a strong impact on the dominant frequency of the
seizure activity seen on ECoG recordings (Fig. S9).

Time frequency analysis allowed us to identify the passing of the
ictal wavefront of spike activity at the mesoscale and determine
the dominant frequency over the course of the seizure (Fig. S2). In
conjunction with our modeling efforts, we were able to explore
some of the contributing factors to the dominant seizure fre-
quency. Previous work has identified the weakening of the ictal
wavefront as one contributing factor to the dominant frequency
(1). Our work presents evidence for additional factors, such as
macroscopic connectivity. While the seizure is initially activated by
the ictal wavefront that may weaken as the seizure develops, the
macroscopic network influences the global oscillations and has a
direct impact on the ictal wavefront’s progression (Figs. 4 and 6).
Our findings suggest, therefore, that sustained seizure activity is
critically dependent on a feedback loop between mesoscopic (the
ictal wavefront) and macroscopic networks.

To show that the correlations between spike activity and LLFP
may actually traverse scales under special circumstances, such as
focal seizure activity, we extended the approach of ref. 31. Using
STAs between micro- and macroelectrodes to experimentally probe
the cross-scale relationship, we were able to correlate spikes from a
small mesoscopic area of cortex with long-range macroscopic ac-
tivity. Although the presence of long-range correlations across
neural signals, including the ECoG, is well-known (3, 34, 35), we
show that, during seizures, a significant component of this corre-
lation can be related to the spike activity in the core (Figs. 2 and 3).
Previous studies indicate that the core is contained within the large
territory examined but occupies only a small percentage (<20%) of
the area as defined by the presence of phase-locked high gamma
activity on the electrodes (4). Despite its small size, core activity has
previously shown some cross-scale effects. For example, mesoscopic
failure of inhibition at the core is associated with neuronal parox-
ysmal depolarizations (9), high gamma activity corresponds with
small network activity that crosses scales through volume conduc-
tion (36), and ictal discharges have been shown to be composed of

Eissa et al.

traveling waves seeded from the ictal wavefront that spread both
outward into the penumbra and backward into the ictal core (1). In
addition, we show that the wavefront and subsequent spiking in the
core are correlated to the seizure state, since neither the spikes
during interictal periods nor penumbral spikes show a significant
time-locked component to the global signals (Fig. 1 and Fig. S6).

We hypothesize that the wavefront initiates a global pertur-
bation that is sustained by spikes in the core, as suggested by the
excitatory deflections (marked as local minima in Fig. 4 B and C;
SI Materials and Methods) in the STAs. Likewise, the ECoG
STAs can be interpreted to include a consistent inhibitory re-
sponse after excitation (local maxima in Fig. 4 B and C), corre-
sponding with our hypothesis that feedforward inhibition is both
activated in the surrounding territories and a critical determinant
of seizure dynamics (Fig. 6B). Work presented by ref. 1 has also
shown that the speed of the forward traveling waves was lower
than the backward waves, suggesting higher inhibitory tone in the
penumbra compared with the core. While other candidate
mechanisms may be put forward, our interpretation is (i) con-
sistent with previous analyses of these data (1, 2), (ii) agrees with
past (9) and current modeling results (Fig. 6B), and (iii) is sup-
ported by biophysical arguments and our measurement config-
uration (SI Materials and Methods and Fig. S10).

Because of our observations at the millimeter and centimeter
scales, we constructed a simple, tractable model based on the
neural population approach (27, 28). A critical aspect of our
model is the inclusion of a Gaussian activation function that
corresponds with depolarization block and can describe local
failure of inhibition (9) and interaction between local and global
networks (Fig. 5). In our model, y defines the level of feedfor-
ward inhibition at the macroscale. As illustrated in Fig. 6B, y = 1/
2 is associated with two distinct dynamical pathways: one path
that leads from preictal to ictal states and another that leads
from ictal to postictal states, as is observed on clinical recordings
of seizures as well. Such distinct pathways do not exist if feed-
forward inhibition fails at the macroscale (Fig. 64) or is strong
enough to prevent the network from oscillating (i.e., seizing)
(Fig. 6C). Based on the distinct dynamics observed for seizure
onset and offset, we find that our recordings are best represented
by the scenario in Fig. 6B. Nonetheless, we note that spreading
depolarizations, associated with saturation of neuronal activity,
do exhibit symmetry at onset and offset similar to that observed
in Fig. 64 (37). In short, our model allows for the potential study
of other related physiological states beyond sustained seizure
activity, such as spreading depolarizations mentioned above and
spreading depression associated with ictogenesis (23).

Although our multiscale model can explain the ongoing sei-
zure activity that we observe and presents dynamical pathways
for seizure onset and offset, it cannot explain the cause of the
transitions into and out of the seizure state. As in most modeling
approaches, we mimic seizure onset by providing a strong input
to a local network and stop the seizure by reducing the strength
of the ictal wavefront to the macroscopic network (Fig. 6,
Lower). Despite these limitations, our model describes how
neuronal function at meso- and macroscales interacts to sustain
the seizure. Clinically, these cross-scale interactions during sei-
zure activity lead to a “chicken and egg” scenario, where both the
mesoscopic and macroscopic networks interact to sustain the
oscillatory activity. Thus, the model created here allows for ex-
ploration of perturbations that abolish this interaction. For ex-
ample, given the strong cross-scale relationship, perturbations,
such as electrical stimulation, applied anywhere within the recruited
network may be enough to disrupt seizure activity. Ultimately,
one might use our approach to evaluate methods of terminating
ongoing seizure or to study the multiscale dynamics of seizures
for different anticonvulsant strategies.
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Materials and Methods

Patients. Study participants (Table S1) at Columbia University Medical Center
consisted of consented patients with pharmacoresistant focal epilepsy who
underwent chronic ECoG studies to help identify the epileptogenic zone for
subsequent removal. Procedures were approved by the internal review board
committees at Columbia University Medical Center and The University
of Chicago, Comer Children’s Hospital. Patients were implanted with a
96-channel, 4 x 4-mm MEA (Utah array; Blackrock Microsystems) along with
subdural electrodes (ECoG). The Utah array recordings used a skull peg (ped-
estal) reference selected based on daily assessment of recording quality. The
reference for ECoG recording was an epidural upside-down strip placed distant
to the coverage area. Seizure recordings were categorized as core or pen-
umbra using previously described methods (2) (S/ Materials and Methods).

Signal Processing. We consider the multiunit spike train of the MEA, from
either the core or the penumbra, composed of spiking from all microelec-
trodes without artifact. We defined the STA as the cross-correlation between
spike train and the ECoG (38). We calculate the STA for two types of LFPs:
(i) pseudo-ECoG activity determined by averaging activity across the MEA
and (ii) recordings from the ECoG (S/ Materials and Methods).

Control STAs were obtained in two ways. In the first method, a + average
estimated residual noise by removing consistent signal components by
inverting alternating trials before averaging (38-40). The second method
used a bootstrapping procedure with random time stamps to create a dis-
tribution of 100 control STAs.
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Amplitude was quantified by calculating the rms of the STAs. Distance was
described geodesically using the distance of 1 cm between ECoG electrodes.
Relative amplitude spectra are normalized by the sum of the amplitudes of
the whole spectrum.

Statistics. Distance-dependent drop off was quantified using Pearson’s cor-
relation coefficient. Difference between the bootstrapped data and ECoG
was determined using a z test.

Model. Our multiscale model consists of coupled mesoscopic and macroscopic
components. Given the nature of the MEA data, which represent multiunit
(population) activity, the macroscopic model is a neural mass, and the
mesoscopic component is a neural field, including an explicit spatial compo-
nent. The two model components are coupled via their excitatory connections
that provide both feedforward excitation and feedforward inhibition (S/
Materials and Methods).

Bifurcation Analysis. All bifurcation diagrams for the model were created with
MATCONT (41).
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