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We demonstrate that solitary pulses in linearly coupled nonlinear Schro¨dinger equations with gain in one
mode and losses in another one, which is a model of an asymmetric erbium-doped nonlinear optical coupler,
exist and are stable, as was recently predicted analytically. Next, we consider interactions between the pulses.
The in-phase pulses attract each other and merge into a single one. Numerical and analytical consideration of
the repulsive interaction betweenp-out-of-phase pulses reveals the existence of their robustpseudobound
state, when a final separation between them takes an almost constant minimum value, as a function of the
initial separation,Tin , in a certain interval ofTin . In the case of the phase differencep/2, the interaction is also
repulsive.@S1063-651X~96!12210-8#

PACS number~s!: 42.81.Dp; 42.81.Qb; 52.35.Sb; 03.40.Kf

Localized pulses~solitons! play a central role in numerous
physical systems that have attracted a lot of interest@1,2#.
Real systems must contain an active element providing for a
loss-compensating gain. In nonlinear optical fibers~NOF’s!
the losses can be compensated by the erbium-doped amplifi-
ers @2#. However, if the active element is uniformly distrib-
uted in the system, it makes the zero solution unstable, thus
lending instability to the solitary pulse. A well-known model
with this property is the cubic Ginzburg-Landau~GL! equa-
tion @3#. In the application to NOF’s, it may be regarded as a
perturbed nonlinear Schro¨dinger ~NLS! equation:

iuz1
1

2
utt1uuu2u5 ig0u1 ig1utt2 ig2uuu2u, ~1!

whereu(z,t) is an envelope of the electromagnetic waves in
the fiber,z and t are the propagation distance and the so-
called reduced time,g0 is gain, andg1 and g2 are coeffi-
cients of the dispersive and nonlinear losses. Equation~1!
has an exact solitary-pulse solution@3#, which can form
bound states@4#. However, atg0.0 the solutionu50 is
unstable in this model, hence an isolated pulse is unstable
too.

A problem of fundamental interest is to find a tractable
physical model that can support stable pulses. Recently, it
was proposed in@5# in the form of a dual-core NOF~cou-
pler!, in which one core is active while the other one is pure
lossy. The model gives rise to two solitons, one stable and
one unstable, the unstable one being a separatrix between
attraction domains of the stable soliton and the stable zero
solution.

In Ref. @5#, only analytical results were presented. It re-
mains necessary to check those results numerically, which is
the first objective of the present work. It will be demon-
strated that the pulses indeed exist and are stable. The shape
of the numerically obtained pulses proves to be so close to
the analytically predicted form that one virtually cannot dis-
tinguish between them. The other objective of this work is to
consider collisions between the pulses. We will arrive at a
simple concept of a ‘‘pseudo-bound state’’ of two pulses.

The model put forward in@5# is a system of two linearly
coupled perturbed NLS equations for amplitudes of electro-
magnetic waves in an asymmetric twin-core NOF, only one
core being active. Actually, one can have two identical
doped cores, while the asymmetry is provided by pumping
only one core using an external source of light. A coupler
with one active core was first proposed in@6# to improve the
quality of pulses generated by the soliton laser.

We will write the equations in the same ‘‘optical’’ nota-
tion as Eq.~1!:
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utt1uuu2u2 ig0u2 ig1utt1kv50, ~2!
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vtt1uvu2v1 iG0v1ku50. ~3!

Here, the variablesu andv are the amplitudes of electromag-
netic waves in the active and lossy cores of the coupler,g0
andg1 are the same as in Eq.~1!, k is the coupling constant,
andG0 is the loss coefficient in the passive core.

First of all, one should consider the stability of the solu-
tion u5v50. As was demonstrated in@5#, a necessary and
sufficient condition for its stability is

g0,G0,k2/g0 . ~4!

In Ref. @5#, the soliton in the model based on Eqs.~2! and~3!
was treated perturbatively, assuming that the coupling, gain,
and losses were small perturbations, although different per-
turbations were given different orders of smallness: the gain
and losses in the active core were essentially weaker than the
coupling between the cores, while the losses in the passive
one might be comparable to the coupling.

In the zeroth-order approximation, the soliton is assumed
to reside only in the first core:

u5hsech~ht!eif~z!, v50, ~5!
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where (df)/(dz)5 1
2h

2, andh is the soliton’s amplitude. In
the next approximation, a component in the second core is
sought asv(z,t)5V(t)exp@if(z)#, where the functionV(t)
is determined by the equation

d2V

dt2
2h2V522khsech~ht!, ~6!

which can be solved by the Fourier transform. Finally, an
equation for slow evolution of the amplitudeh was derived
in @5# by means of thebalance equationfor the energy:

dh

dz
52g0h2

2

3
g1h

32Ck2G0h
23, ~7!

whereC[ 1
6p

21z(3)'2.845. The formal singularity of the
last term in Eq.~7! ath→0 is fictitious, as this expression is
irrelevant at very smallh.

Equation~7! produces two physical (h2.0) fixed points
provided that

g0
3.~3C/8!k2G0g1

2 , ~8!

and no fixed point in the opposite case. Thus,~8! is the
necessary and sufficient condition for the existence of sta-
tionary solitons in the model. It is necessary to check if this
condition is compatible with the other one, Eq.~4!, which is
necessary for the stability of solitons in the model. Because
Eq. ~4! does not involve the parameterg1, one can secure the
compatibility, choosing small enoughg1 . If condition ~8! is
met, the solution with largerh2 is stable, and the one with
smallerh2 is unstable, as solutions to Eq.~7!. The unstable
solution is a separatrix between the stable soliton and zero
solution.

In order to check the analytical predictions, we solved
Eqs.~2! and~3! numerically by means of the split-step Fou-
rier method@7#. In the first runs of the simulations, the initial

state was taken in the form of a perturbed pulse~5! with
different values ofh. In all the cases, we observed a rapid
evolution of the initial pulse into a stable one whose shape
did not depend on the initial value ofh. We will display
results for a particular set of the values
g050.01,g150.01,G050.15,k50.125, which satisfy both
conditions~4! and~8! necessary for the existence and stabil-
ity of the pulses. Substitution of these values into Eq.~7!
yields the stable fixed point ath'1.697, which is expected
to correspond to a stable pulse in Eqs.~2! and~3!. A typical
run of simulations is shown in Fig. 1. In order to test the
stability of the pulse, we took initial conditions containing
strong asymmetric disturbances. Measuring the amplitude of
the established stable pulse in Fig. 1, we have found it to be
'1.657, which compares very well with the above analytical
prediction 1.697. We tried, for comparison, to juxtapose the
established pulse in Fig. 1 and the analytically predicted one.
However, they proved to be virtually indistinguishable.
These and many other runs of the simulations of Eqs.~2! and
~3! produce cogent proof of the existence of the stable pulse
in this model, with a shape very close to that predicted by the
analytical perturbation theory.

Once stable solitary pulses have been found, the next step
is to consider interactions between them. Since our pulses
are close to the NLS solitons, one can expect that their in-
teraction will be similar to the interaction between the soli-
tons. As is well known, the latter interaction strongly de-
pends on the relative phasec of the solitons: it is attractive if
c50, and repulsive ifc5p.

All the simulations to be displayed below were done for
the same parameter values as above. We simulated the inter-
action between two pulses atc50, taking atz50 a super-
position of two identical solitons with a certain initial sepa-
ration Tin . Two different outcomes were observed,
depending uponTin : fusion of the two pulses into a single
one~Fig. 2!, if the initial separation was not too large, and no
interaction at all in the opposite case.

In the case where the fusion takes place, it produces a

FIG. 1. An example of the numerical solution to Eqs.~2! and~3!
with an initial state corresponding to a perturbed pulse:uu(t)u is
shown at differentz.

FIG. 2. The fusion of two in-phase pulses into a single pulse.
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stationary pulse which is identical to that generated by a
solitary initial pulse, cf. Figs. 1 and 2. The simulations of the
fusion provide another strong argument in favor of robust-
ness of the stationary pulses in the model: as one can see in
Fig. 2, the final pulse is generated from an intermediate
‘‘lump’’ which is very different from the stationary soliton.

One should expect repulsion between the pulses if the
phase difference between them isp. In this case, we indeed
observed repulsion. As a characteristic of this type of the
interaction, we have plotted in Fig. 3 the final separation
between the solitons,Tf , versus the initial separationTin .
This plot pertains to the same parameter values as above. As
can be seen, the strong repulsion between initially close
pulses pushes them far apart. Then,Tf decreases with the
increase of theTin due to the weakening repulsion. A mini-
mum ofTf is attained whenTin takes values between 6.0 and
7.0: in this interval,Tf remains practically constant, equal to
Tmin58.203. With further increase ofYin , Tf is increasing,
and atTin.9.5 the dependence becomes trivial,Tf'Tin ,
which simply implies the absence of any conspicuous inter-
action.

The flat minimum atTf5Tmin in the dependence shown
in Fig. 3 looks like a bound state of the solitons. Indeed, a
bound state implies that the final separation takes a fixed
value independent of the initial separation@4#. However, in
the present case the flat minimum isnot a true bound state.
This is suggested by the fact that the valueTf'8.58 corre-
sponding toTin5Tmin58.203 is different fromTmin itself.
The final separationTf shown in Fig. 3 is measured at
z5400. We have checked that atz52000 the results are
practically the same.

We will call the feature displayed in Fig. 3 a pseudo-
bound state. Although this state is not truly bound, it may
play a significant role in applications, as it looks like a bound
state, is robust, and is observed at moderate separations. True
bound states of solitons in the present model were considered

in @5#. They may exist because the linear terms accounting
for the gain and dissipation render the solitons’ tails oscilla-
tory, which, in turn, gives rise to local minima in the effec-
tive potential of the soliton-soliton interaction. In Ref.@5#, it
was shown that the minimum separation between the solitons
in the true bound state isT'ph/G0. Substitution of the
present parameter values yieldsT'36, which is much larger
than the aboveTmin . Actually, at such a large separation
there is no interaction between the solitons. A true bound
state can be observed at larger values of the perturbation
parameters, but we will not consider this issue.

The pseudo-bound state can be explained by means of the
perturbation theory which treats interaction between the soli-
tons as a small perturbation@1#. It is straightforward to de-
rive an evolution equation for the separationT(z) between
two identical solitons:

T̈528h3cosce2hT2g1ṪF2h21
3

2
Ṫ2G , ~9!

the overdot standing ford/(dz). Consideration of Eq.~9!
with cosc521 ~repulsion! shows that the dependence of the
final separation on the initial separation will indeed have a
minimum, provided that the dissipative constantg1 is small
enough. Indeed, looking at Eq.~9! as an equation of motion
for a unit-mass particle with the coordinateT(z) in the po-
tentialU(T)[8h2exp(2hT), one concludes that, neglecting
the friction force, the particle with the initial positionTin will
acquire atz→` the ‘‘velocity’’ Ṫ`54hexp(21

2hTin). Now,
we take into account that the moving particle is braked by
the weak friction force according to the equation
T̈522g1h

2Ṫ, which yields the total ‘‘distance’’ traveled by
the particle,Tf[T(z5`)5(2g1h

2)21Ṫ` . Finally, insert-
ing Ṫ` into the latter expression, one obtains

FIG. 3. The final separation between twop-out-of-phase pulses,
measured atz5400, vs the initial separation between them.

FIG. 4. Repulsion between two pulses with the initial phase
differencep/2.
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Tf52~g1h!21expS 2
1

2
hTinD , ~10!

which is indeed a decreasing function of the initial separation
Tin . On the other hand, at very largeTin the particle will not
feel the exponentially weak interaction force, hence one will
trivially have Tf'Tin . Thus, there must be a minimum of
Tf at some intermediate value ofTin .

We have also considered the case with the initial phase
differencec5p/2, when the formal perturbation theory pre-
dicts zero interaction force@see Eq.~9!#. In this case, too, we
have observed repulsion, but with a broken symmetry be-

tween the two solitons~Fig. 4!. It is easy to understand this
symmetry breaking. Indeed, ifc is 0 or p, the initial con-
figuration at z50 is the linear superpositionu(t2
1
2Tin)6u(t1 1

2Tin), whereu(t) is given by Eq.~5!. Obvi-
ously, the solution generated by this initial configuration will
keep the symmetry propertyu(2t)56u(t) at anyz.0. In
the casec5p/2, the initial state isu(t2 1

2Tin)1 iu(t1 1
2

Tin). This configuration possesses only the symmetry
u(2t)5 iu* (t), which is not compatible with Eqs.~2! and
~3!, and is therefore broken by the evolution.

We thank J. M. Soto-Crespo for useful discussions of nu-
merical methods.
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