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Stability and interactions of solitons in two-component active systems
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We demonstrate that solitary pulses in linearly coupled nonlinear 8iciyer equations with gain in one
mode and losses in another one, which is a model of an asymmetric erbium-doped nonlinear optical coupler,
exist and are stable, as was recently predicted analytically. Next, we consider interactions between the pulses.
The in-phase pulses attract each other and merge into a single one. Numerical and analytical consideration of
the repulsive interaction betweem-out-of-phase pulses reveals the existence of their ropsstdobound
state, when a final separation between them takes an almost constant minimum value, as a function of the
initial separationT;,, in a certain interval of;,. In the case of the phase differeng&, the interaction is also
repulsive.[S1063-651X96)12210-9

PACS numbefs): 42.81.Dp; 42.81.Qb; 52.35.Sb; 03.40.Kf

Localized pulsessolitong play a central role in numerous The model put forward if5] is a system of two linearly
physical systems that have attracted a lot of intef&sl]. coupled perturbed NLS equations for amplitudes of electro-
Real systems must contain an active element providing for enagnetic waves in an asymmetric twin-core NOF, only one
loss-compensating gain. In nonlinear optical fib@OF's) core being active. Actually, one can have two identical
the losses can be compensated by the erbium-doped ampliioped cores, while the asymmetry is provided by pumping
ers[2]. However, if the active element is uniformly distrib- only one core using an external source of light. A coupler
uted in the system, it makes the zero solution unstable, thusith one active core was first proposed 6] to improve the
lending instability to the solitary pulse. A well-known model quality of pulses generated by the soliton laser.
with this property is the cubic Ginzburg-LandéBL) equa- We will write the equations in the same “optical” nota-
tion [3]. In the application to NOF's, it may be regarded as ation as Eq.(1):
perturbed nonlinear Schdnger (NLS) equation:

1
. 1 2 ; . ; 2 iu2+EUTT+|U|2u_i70u_i71u77+Kv:O’ @
iU+ Su+ulPu=iyou+iyu,—iylul®u, (1)
whereu(z, 7) is an envelope of the electromagnetic waves in v+ vt lv|%v+iTqv+ ku=0. ()

the fiber,z and 7 are the propagation distance and the so-
called reduced timey, is gain, andy, and vy, are coeffi-

cients of the dispersive and nonlinear losses. Equation Here, the variables andv are the amplitudes of electromag-

has an exact solitary-pulse solutig], which can form netic waves in the activg and Iosgy cores of.the couplgr,
bound stateg4]. However, aty,>0 the solutionu=0 is andvy; are the same as in E(l), « is the coupling constant,

unstable in this model, hence an isolated pulse is unstab@"d'o is the loss coefficient in the passive core.
t0o0. First of all, one should consider the stability of the solu-

A problem of fundamental interest is to find a tractabletion U=v=0. As was demonstrated [i5], a necessary and
physical model that can support stable pulses. Recently, gufficient condition for its stability is
was proposed if5] in the form of a dual-core NOFcou-
plen), in which one core is active while the other one is pure Yo<I' o< KZ/’)/O. (4)
lossy. The model gives rise to two solitons, one stable and

one unstable, the unstable one being a separatrix between

attraction domains of the stable soliton and the stable zer Ref.[5], the soliton in the model_based on E(®. an_d(3) .
solution. was treated perturbatively, assuming that the coupling, gain,

In Ref. [5], only analytical results were presented. It re- and losses were small perturbations, although different per-

mains necessary to check those results numerically, which fé”bat'ons Were given different orders of §mal|ness: the gain
the first objective of the present work. It will be demon- and losses in the active core were essentially weaker than the

strated that the pulses indeed exist and are stable. The sha %uphr]g between the cores, while the_ losses in the passive
ne might be comparable to the coupling.

of the numerically obtained pulses proves to be so close t In the zeroth-order approximation, the soliton is assumed
the analytically predicted form that one virtually cannot dis-t0 reside onlv in the firs?%ore' '

tinguish between them. The other objective of this work is to y :
consider collisions between the pulses. We will arrive at a

simple concept of a “pseudo-bound state” of two pulses. u= gseclipr)e'¢?, uv=0, (5

1063-651X/96/5¢4)/4371(4)/$10.00 54 4371 © 1996 The American Physical Society



4372 JAVID ATAI AND BORIS A. MALOMED 54

z z
400 400
—’4/;
0 //\ L J 0 I A 1
25 <15 -5 5 15 25 25 -15 -5 5 15 25
T T
FIG. 1. An example of the numerical solution to E(®.and(3) FIG. 2. The fusion of two in-phase pulses into a single pulse.

with an initial state corresponding to a perturbed pu|s€r)| is
shown at different. state was taken in the form of a perturbed pulSg with

) ) ) different values ofz. In all the cases, we observed a rapid
where (¢)/(dz) =37, and 7 is the soliton’s amplitude. In  evolution of the initial pulse into a stable one whose shape
the next approximation, a component in the second core igid not depend on the initial value of. We will display
sought aw (z,7) =V(7)exfdi#(2)], where the function/(7)  results for a particular set of the values

is determined by the equation v0=0.01,y;=0.01T,=0.15x=0.125, which satisfy both
42V conditions(4) and(8) necessary for the existence and stabil-
— 2\ = — ity of the pulses. Substitution of these values into Eq).
a2 A 2kmsechinT), (6)

yields the stable fixed point aj~1.697, which is expected
to correspond to a stable pulse in E¢®.and(3). A typical
run of simulations is shown in Fig. 1. In order to test the
stability of the pulse, we took initial conditions containing
strong asymmetric disturbances. Measuring the amplitude of
dz 2 the established stable pulse in Fig. 1, we have found it to be
rEN 2vom— 3N 7°—Ck?Tyy 3, (7) ~1.657, which compares very well with the above analytical
prediction 1.697. We tried, for comparison, to juxtapose the
whereC= 72+ ¢(3)~2.845. The formal singularity of the established pulse in Fig. 1 and thg analyti(_:ally predipted one.
last term in Eq(7) at 7— 0 is fictitious, as this expression is fowever, they proved to be virtually indistinguishable.
irrelevant at very smalk. These and many other runs of the _S|mulat|ons of E2jsand
Equation(7) produces two physical2>0) fixed points _(3) produce cog_ent proof of the existence of the ;table pulse
provided that in thls_model, with a shape very close to that predicted by the
analytical perturbation theory.
7(3)>(3c/8),<2r07§, (8) Once stable solitary pulses have been found, the next step
is to consider interactions between them. Since our pulses
and no fixed point in the opposite case. Th(B), is the are close to the NLS solitons, one can expect that their in-
necessary and sufficient condition for the existence of stateraction will be similar to the interaction between the soli-
tionary solitons in the model. It is necessary to check if thistons. As is well known, the latter interaction strongly de-
condition is compatible with the other one, E¢), which is  pends on the relative phageof the solitons: it is attractive if
necessary for the stability of solitons in the model. Because/=0, and repulsive ify= .
Eq. (4) does not involve the parameteyf, one can secure the All the simulations to be displayed below were done for
compatibility, choosing small enougpy, . If condition (8) is  the same parameter values as above. We simulated the inter-
met, the solution with larger? is stable, and the one with action between two pulses &t=0, taking atz=0 a super-
smaller »? is unstable, as solutions to E(f). The unstable position of two identical solitons with a certain initial sepa-
solution is a separatrix between the stable soliton and zeration T;,. Two different outcomes were observed,
solution. depending upor;,: fusion of the two pulses into a single
In order to check the analytical predictions, we solvedone(Fig. 2), if the initial separation was not too large, and no
Egs.(2) and(3) numerically by means of the split-step Fou- interaction at all in the opposite case.
rier method 7]. In the first runs of the simulations, the initial In the case where the fusion takes place, it produces a

which can be solved by the Fourier transform. Finally, an
equation for slow evolution of the amplitudg was derived
in [5] by means of thévalance equatiorfor the energy:
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] ] FIG. 4. Repulsion between two pulses with the initial phase
FIG. 3. The final separation between twreout-of-phase pulses, jitference /2.

measured az=400, vs the initial separation between them.

. L , in [5]. They may exist because the linear terms accounting
stationary pulse which is identical to that generated by gqr the gain and dissipation render the solitons'’ tails oscilla-
soh_tary |n|t|§1l pulse, cf. Figs. 1 and 2. The_S|muIat|ons of thetory, which, in turn, gives rise to local minima in the effec-
fusion provide another strong argument in favor of robusty; e notential of the soliton-soliton interaction. In RES], it
ness of the stationary pulses in the model: as one can see s shown that the minimum separation between the solitons
Fig. 2, the final pulse is generated from an intermediat§, the true bound state i§~ m7/T,. Substitution of the
“lump” which is very different from the stationary soliton. 5 ocant parameter values yielfis- 36, which is much larger

One ?hOUId expect repulsion_ betwc_een the pulges if th an the aboveT,,,. Actually, at such a large separation
phase difference between themas In this case, we indeed hore is no interaction between the solitons. A true bound

pbservgd repulsri10n. Asl a chgract.eristichof ft'hisl type of ,thestate can be observed at larger values of the perturbation
interaction, we have plotted in Flg._’o’_ the fina S_eparat'onparameters, but we will not consider this issue.

bereen the s_ohtonsTf, versus the initial separatiofy,. The pseudo-bound state can be explained by means of the
This plot pertains to the same parameter values as above. A3 rhation theory which treats interaction between the soli-
can be seen, the strong repulsion between initially clos ons as a small perturbatidit]. It is straightforward to de-

pulses pushes them far apart. Thap,decreases with the e 41 evolution equation for the separatidtz) between
increase of thel, due to the weakening repulsion. A mini- .. iqentical solitons:

mum of T; is attained whef;, takes values between 6.0 and

7.0: in this interval,T; remains practically constant, equal to

Tmin= 8.203. With further increase of,,, T; is increasing, . . 3.

and atT;,>9.5 the dependence becomes trividil~T;,, T=—8n°cogpe 7— 71T{27}2+ ETZ}, 9
which simply implies the absence of any conspicuous inter-

action.

The flat minimum afT;=T,,, in the dependence shown : . ;

- \ . the overdot standing fod/(dz). Consideration of Eq(9)

in Fig. 3 Iook_s I|k_e a bound state of the sqlltons. Indeeql, Quith cosf=—1 (repulsion shows that the dependence of the
bolund_ s(;ate |r(rj1plltes ft?ﬁt .th.?. f||nal Sep?é%m'_r" takes a f'xeﬂnal separation on the initial separation will indeed have a
value independent of the initial Separatigh]. HOWEver, in minimum, provided that the dissipative constantis small
the present case the flat minimumnst a true bound state. enough. Indeed, looking at E(9) as an equation of motion
This IS suggested by the fact_ tha_t the vallie-8.58 COITe- " tor a unit-mass particle with the coordinatéz) in the po-
sponding toT;,=T,,=38.203 is different fromT,, itself. tential U(T)=8 n2exp(~ 4T), one concludes that, neglecting

The final separationT; shown in Fig. 3 is measured at g : . I e .
7=400. We have checked that at 2000 the results are the fr_lctlon force, th? part|f:le”vv_|th the initial Fiosmmn will
acquire az—oo the “velocity” T,=4nexp(—37T;,). Now,

ractically the same. ) i 200
P We wiBI/I call the feature displayed in Fig a pseudo- we take into account that the moving particle is braked by
) the weak friction force according to the equation

bound state. Although this state is not truly bound, it ma ) : ) o .
play a significant role in applications, as it looks like a boundT = —2717°T, which yields the total “distance” traveled by

state, is robust, and is observed at moderate separations. Trlkg particle, T=T(z=%)=(2y;%°) 'T... Finally, insert-
bound states of solitons in the present model were considerddg T.. into the latter expression, one obtains
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1 tween the two solitongFig. 4). It is easy to understand this
T=2(y17) 'exp — EnTin)- (100 symmetry breaking. Indeed, if is O or 7, the initial con-
figuration at z=0 is the linear superpositionu(7—
1 1 P :
which is indeed a decreasing function of the initial separatiore in) = U(7+ 3Tin), whereu(r) is given by Eq.(5). Obvi-
T... On the other hand, at very larde, the particle will not ously, the solution generated by this initial configuration will
feel the exponentially weak interaction force, hence one Willkheep the sy_mn;zetryhprc_)p_e_rt?(— 7)== u(7) f‘_lt_ anyz>0. In
trivially have T=T,,. Thus, there must be a minimum of '€ casey=m/2, the initial state Isu(7—5Tip) iu(7+3
T, at some intermediate value @ Tin). This configuration possesses only the symmetry
. o S ;e : :

We have also considered the case with the initial phas 3() ;2] q :ISJ tr(]g)ré;g' :]e'cgr;skgr?tbco&]ga;b;?um? Eq¢2) and

difference= 7/2, when the formal perturbation theory pre- ™" y '

dicts zero interaction fordesee Eq(9)]. In this case, too, we We thank J. M. Soto-Crespo for useful discussions of nu-
have observed repulsion, but with a broken symmetry bemerical methods.
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