

ADVANCED PIEZOELECTRIC THIN-FILM MATERIALS FOR ACTUATOR AND SENSOR APPLICATIONS

Authors: Minh D. Nguyen^{1,2,*}, Matthijn Dekkers¹, Xin Wan¹, An T. Tran³, P. M. Sarro³, Hung N. Vu² and Guus Rijnders¹

Affiliations:

¹ Inorganic Materials Science (IMS), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands

² International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No. 1 Dai Co Viet road, Hanoi, Vietnam

³ Laboratory of Electronic Components, Technology & Materials (ECTM), DIMES, Delft University of Technology, Delft, The Netherlands

Abstract: Piezoelectric materials produce electric charges on their surfaces as a consequence of applying mechanical stress or vice versa. They are used in the fabrication of a growing range of devices such as transducers (such as ultrasonic acoustic wave), actuators (microfludic pump), pressure sensor devices (gyroscopes), mass sensor devices (biological detection, SAW), and increasingly as a way of producing energy (energy harvester). In this paper, piezoelectric thin films based on lead-compound (PZT, PMN-PT), lead-free materials (BTO, BFO, AlN) and their fabrication techniques (PLD, sputtering and sol-gel) will be presented. The fabrication techniques for the integration of these films for microactuator and microsensor applications, as well as their characterizations, have been also investigated.