
ar
X

iv
:1

01
1.

23
14

v1
 [

cs
.L

O
]

 1
0

N
ov

 2
01

0

Confluence Reduction for Probabilistic Systems

(extended version)

Mark Timmer, Mariëlle Stoelinga, and Jaco van de Pol⋆

Formal Methods and Tools, Faculty of EEMCS
University of Twente, The Netherlands

{timmer, marielle, vdpol}@cs.utwente.nl

Abstract. This paper presents a novel technique for state space reduc-
tion of probabilistic specifications, based on a newly developed notion of
confluence for probabilistic automata. We prove that this reduction pre-
serves branching probabilistic bisimulation and can be applied on-the-fly.
To support the technique, we introduce a method for detecting confluent
transitions in the context of a probabilistic process algebra with data,
facilitated by an earlier defined linear format. A case study demonstrates
that significant reductions can be obtained.

1 Introduction

Model checking of probabilistic systems is getting more and more attention, but
there still is a large gap between the number of techniques supporting tradi-
tional model checking and those supporting probabilistic model checking. Espe-
cially methods aimed at reducing state spaces are greatly needed to battle the
omnipresent state space explosion.

In this paper, we generalise the notion of confluence [10] from labelled tran-
sition systems (LTSs) to probabilistic automata (PAs) [14]. Basically, we define
under which conditions unobservable transitions (often called τ -transitions) do
not influence a PA’s behaviour (i.e., they commute with all other transitions).
Using this new notion of probabilistic confluence, we introduce a symbolic tech-
nique that reduces PAs while preserving branching probabilistic bisimulation.

The non-probabilistic case. Our methodology follows the approach for LTSs
from [4]. It consists of the following steps: (i) a system is specified as the parallel
composition of several processes with data; (ii) the specification is linearised to
a canonical form that facilitates symbolic manipulations; (iii) first-order logic
formulas are generated to check symbolically which τ -transitions are confluent;
(iv) an LTS is generated in such a way that confluent τ -transitions are given
priority, leading to an on-the-fly (potentially exponential) state space reduc-
tion. Refinements by [12] make it even possible to perform confluence detection
on-the-fly by means of boolean equation systems.

The probabilistic case. After recalling some basic concepts from probability the-
ory and probabilistic automata, we introduce three novel notions of probabilistic

⋆ This research has been partially funded by NWO under grant 612.063.817 (SYRUP)
and grant Dn 63-257 (ROCKS), and by the European Union under FP7-ICT-2007-1
grant 214755 (QUASIMODO).

1

http://arxiv.org/abs/1011.2314v1

confluence. Inspired by [3], these are weak probabilistic confluence, probabilistic
confluence and strong probabilistic confluence (in decreasing order of reduction
power, but in increasing order of detection efficiency).

We prove that the stronger notions imply the weaker ones, and that τ -transi-
tions that are confluent according to any of these notions always connect branch-
ing probabilistically bisimilar states. Basically, this means that they can be given
priority without losing any behaviour. Based on this idea, we propose a reduc-
tion technique using weak probabilistic confluence, which merges all states that
can reach each other by traversing only confluent transitions. Additionally, we
propose a reduction technique that can be applied using the two stronger notions
of confluence. As opposed to the first technique it does not need to merge states;
rather, it chooses a representative state that has all relevant behaviour. We prove
that both reduction techniques yield a branching probabilistically bisimilar PA.
Therefore, they preserve virtually all interesting temporal properties.

As we want to analyse systems that would normally be too large, we need to
detect confluence symbolically and use it to reduce on-the-fly during state space
generation. That way, the unreduced PA never needs to be generated. Since we
have not found an efficient method for detecting (weak) probabilistic confluence,
we only provide a detection method for strong probabilistic confluence. Here, we
exploit a previously defined probabilistic process-algebraic linear format, which is
capable of modelling any system consisting of parallel components with data [9].
In this paper, we show how symbolic τ -transitions can be proven confluent by
solving formulas in first-order logic over this format. As a result, confluence can
be detected symbolically, and the reduced PA can be generated on-the-fly. We
present a case study of leader election protocols, showing significant reductions.

Related work. As mentioned before, we basically generalise the techniques pre-
sented in [4] to probabilistic automata.

In the probabilistic setting, several reduction techniques similar to ours exist.
Most of these are generalisations of the well-known concept of partial-order re-
duction (POR) [13]. In [2] and [5], the concept of POR was lifted to Markov
decision processes, providing reductions that preserve quantitative LTL\X. This
was refined in [1] to probabilistic CTL, a branching logic. Recently, a revision of
POR for distributed schedulers was introduced and implemented in PRISM [7].

Our confluence reduction differs from these techniques on several accounts.
First, POR is applicable on state-based systems, whereas our confluence reduc-
tion is the first technique that can be used for action-based systems. As the
transformation between action- and state-based blows up the state space [11],
having confluence reduction really provides new possibilities. Second, the defini-
tion of confluence is quite elegant, and (strong) confluence seems to be of a more
local nature (which makes the correctness proofs easier). Third, the detection
of POR requires language-specific heuristics, whereas confluence reduction acts
at a more semantic level and can be implemented by a generic theorem prover.
(Alternatively, decision procedures for a fixed set of data types could be devised.)

Our case study shows that the reductions obtained using probabilistic con-
fluence are comparable to the reductions obtained by POR [8].

2

2 Preliminaries

Given a set S, an element s ∈ S and an equivalence relation R ⊆ S × S, we
write [s]R for the equivalence class of s under R, i.e., [s]R = {s′ ∈ S | (s, s′) ∈ R}.
We write S/R = {[s]R | s ∈ S} for the set of all equivalence classes in S.

2.1 Probability theory and probabilistic automata

Definition 1 (Probability distributions). A probability distribution over a
countable set S is a function µ : S → [0, 1] such that

∑

s∈S µ(s) = 1. Given
S′ ⊆ S, we write µ(S′) to denote

∑

s′∈S′ µ(s′). We use Distr(S) to denote the
set of all probability distributions over S, and Distr*(S) for the set of all sub-
stochastic probability distributions over S, i.e., where 0 ≤

∑

s∈S µ(s) ≤ 1.
Given a probability distribution µ with µ(s1) = p1, µ(s2) = p2, . . . (pi 6= 0),

we write µ = {s1 7→ p1, s2 7→ p2, . . . } and let spt(µ) = {s1, s2, . . . } denote its
support. For the deterministic distribution µ determined by µ(t) = 1 we write 1t.

Given an equivalence relation R over S and two probability distributions µ, µ′

over S, we say that µ ≡R µ′ if and only if µ(C) = µ′(C) for all C ∈ S/R.

Probabilistic automata (PAs) are similar to labelled transition systems, ex-
cept that transitions do not have a fixed successor state anymore. Instead, the
state reached after taking a certain transition is determined by a probability
distribution [14]. The transitions themselves can be chosen nondeterministically.

Definition 2 (Probabilistic automata). A probabilistic automaton (PA) is
a tuple A = 〈S, s0, L,∆〉, where S is a countable set of states of which s0 ∈ S is
initial, L is a countable set of actions, and ∆ ⊆ S ×L×Distr(S) is a countable
transition relation. We assume that every PA contains an unobservable action
τ ∈ L. If (s, a, µ) ∈ ∆, we write s −a→ µ, meaning that state s enables action a,
after which the probability to go to s′ ∈ S is µ(s′). If µ = 1t, we write s −a→ t.

Definition 3 (Paths and traces). Given a PA A = 〈S, s0, L,∆〉, we define a

path of A to be either a finite sequence π = s0
a1,µ1
 s1

a2,µ2
 s2

a3,µ3
 . . .

an,µn
 sn,

or an infinite sequence π′ = s0
a1,µ1
 s1

a2,µ2
 s2

a3,µ3

For finite paths we require si ∈ S for all 0 ≤ i ≤ n, and si −
ai+1−−→ µi+1 as well

as µi+1(si+1) > 0 for all 0 ≤ i < n. For infinite paths these properties should hold

for all i ≥ 0. A fragment s
a,µ
 s′ denotes that the transition s −a→ µ was chosen

from state s, after which the successor s′ was selected by chance (so µ(s′) > 0).

– If π = s0
a,1s1
 s1

a,1s2
 . . .

a,1sn
 sn is a path of A (n ≥ 0), we write s0 −

a
։ sn.

If each transition is also allowed to be faced backwards, we write s0
a
և։ sn.

If there exists a state t such that s −a։ t and s′ −a։ t, we write s −a։ևa− s′.
– We use prefix(π, i) to denote s0

a1,µ1
 . . .

ai,µi
 si, and step(π, i) to denote the

transition (si−1, ai, µi). When π is finite we define |π| = n and last(π) = sn.
– We use finpathsA to denote the set of all finite paths of A, and finpathsA(s)

for all finite paths where s0 = s.
– A path’s trace is the sequence of actions obtained by omitting all its states,

distributions and τ-steps; given π = s0
a1,µ1
 s1

τ,µ2
 s2

a3,µ3
 . . .

an,µn
 sn, we de-

note the sequence a1a3 . . . an by trace(π).

3

2.2 Schedulers

To resolve the nondeterminism in probabilistic automata schedulers are used [16].
Basically, a scheduler is just a function defining for each finite path which transi-
tion to take next. The decisions of schedulers are allowed to be randomised, i.e.,
instead of choosing a single transition a scheduler might resolve a nondetermin-
istic choice by a probabilistic choice. Schedulers can be partial, i.e., they might
assign some probability to the decision of not choosing any next transition.

Definition 4 (Schedulers). A scheduler for a PA A = 〈S, s0, L,∆〉 is a func-
tion

S : finpathsA → Distr({⊥} ∪ ∆),

such that for every π ∈ finpathsA the transitions (s, a, µ) that are scheduled by S
after π (i.e., S(π)(s, a, µ) > 0) are indeed possible after π, i.e., s = last(π). The
decision of not choosing any transition is represented by ⊥.

We now define the notions of finite and maximal paths of a PA given a
scheduler.

Definition 5 (Paths and maximal paths). Let A be a PA and S a scheduler
for A. Then, the set of finite paths of A under S is given by

finpathsSA = {π ∈ finpathsA | ∀0 ≤ i < |π| . S(prefix(π, i))(step(π, i+ 1)) > 0}.

We define finpathsSA(s) ⊆ finpathsSA as the set of all such paths starting in s.
The set of maximal paths of A under S is given by

maxpathsSA = {π ∈ finpathsSA | S(π)(⊥) > 0}.

Similarly, maxpathsSA(s) is the set of maximal paths of A under S starting in s.

We now define the behaviour of a PA A under a scheduler S. As schedulers
resolve all nondeterministic choices, this behaviour is fully probabilistic. We can
therefore compute the probability that, starting from a given state s, the path
generated by S has some finite prefix π. This probability is denoted by PS

A,s(π).

Definition 6 (Path probabilities). Let A be a PA, S a scheduler for A, and
s a state of A. Then, we define the function PS

A,s : finpathsA(s)→ [0, 1] by

PS
A,s(s) = 1; PS

A,s(π
a,µ
 t) = PS

A,s(π) · S(π)(last(π), a, µ) · µ(t).

Based on these probabilities we can compute the probability distribution
FS
A(s) over the states where a PAA under a scheduler S terminates when starting

in state s. Note that FS
A(s) is potentially substochastic (i.e., the probabilities do

not add up to 1) when S allows infinite behaviour.

Definition 7 (Final state probabilities). Let A be a PA and S a scheduler
for A. Then, we define the function FS

A : S → Distr*(S) by

FS
A(s) =

{

s′ 7→
∑

π∈maxpathsSA(s)

last(π)=s′

PS
A,s(π) · S(π)(⊥) | s

′ ∈ S
}

∀s ∈ S.

4

3 Branching probabilistic bisimulation

The notion of branching bisimulation for non-probabilistic systems was first in-
troduced in [17]. Basically, it relates states that have an identical branching
structure in the presence of τ -actions. Segala defined a generalisation of branch-
ing bisimulation for PAs [15], which we present here using the simplified defi-
nitions of [16]. First, we intuitively explain weak steps for PAs. Based on these
ideas, we then formally introduce branching probabilistic bisimulation.

3.1 Weak steps for probabilistic automata

As τ -steps cannot be observed, we want to abstract from them. Non-probabilis-
tically, this is done via the weak step. A state s can do a weak step to s′ under
an action a, denoted by s

a
=⇒ s′, if there exists a path s −τ→ s1 −

τ→ . . . −τ→ sn −
a→ s′

with n ≥ 0 (often, also τ -steps after the a-action are allowed, but this will
not concern us). Traditionally, s

a
=⇒ s′ is thus satisfied by an appropriate path.

In the probabilistic setting, s
a

=⇒ µ is satisfied by an appropriate scheduler.
A scheduler S is appropriate if for every maximal path π that is scheduled from s
with non-zero probability, trace(π) = a and the a-transition is the last transition
of the path. Also, the final state distribution FS

A(s) must be equal to µ.

Example 8. Consider the PA shown in Figure 1(a). We demonstrate that s
a

=⇒ µ,
with µ = {s1 7→

8
24 , s2 7→

7
24 , s3 7→

1
24 , s4 7→

4
24 , s5 7→

4
24}. Take the scheduler S:

S(s) = {(s, τ,1t2) 7→ 2/3, (s, τ,1t3) 7→ 1/3}

S(t2) = {(t2, a,1s1) 7→ 1/2, (t2, τ,1t4) 7→ 1/2}

S(t3) = {(t3, a, {s4 7→ 1/2, s5 7→ 1/2}) 7→ 1}

S(t4) = {(t4, a,1s2) 7→ 3/4, (t4, a, {s2 7→ 1/2, s3 7→ 1/2}) 7→ 1/4}

S(t1) = S(s1) = S(s2) = S(s3) = S(s4) = S(s5) = 1⊥

Here we used S(s) to denote the choice made for every possible path ending in s.
The scheduler is depicted in Figure 1(b). Where it chooses probabilistically

between two transitions with the same label, this is represented as a combined
transition. For instance, from t4 the transition (t4, a, {s2 7→ 1}) is selected with

s t2

t3

t1

τ

τ

b

t4

s1

s2

s4 s3

s5

τ

a

a

1

2

1

2

a

1

2

1

2

a

(a) A PA A.

s t2

t3

τ

2

3

1

3

t4

s1

s2

s4 s3

s5

1

2

1

2

τ

a

1

2

1

2

a

7

8

1

8

a

(b) Tree of s
a

=⇒ µ.

Fig. 1. Weak steps.

5

probability 3/4, and (t4, a, {s2 7→ 1/2, s3 7→ 1/2}) with probability 1/4. This
corresponds to the combined transition (t4, a, {s2 7→ 7/8, s3 7→ 1/8}).

Clearly, all maximal paths enabled from s have trace a and end directly after
their a-transition. The path probabilities can also be calculated. For instance,

PS
A,s(s

τ,{t2 7→1}
 t2

τ,{t4 7→1}
 t4

a,{s2 7→1}
 s2) =

(

2
3 · 1

)

·
(

1
2 · 1

)

·
(

3
4 · 1

)

= 6
24

PS
A,s(s

τ,{t2 7→1}
 t2

τ,{t4 7→1}
 t4

a,{s2 7→1/2,s3 7→1/2}
 s2) =

(

2
3 · 1

)

·
(

1
2 · 1

)

·
(

1
4 ·

1
2

)

= 1
24

As no other maximal paths from s go to s2, F
S
A(s)(s2) =

6
24 + 1

24 = 7
24 = µ(s2).

Similarly, it can be shown that FS
A(s)(si) = µ(si) for i ∈ {1, 3, 4, 5}, so indeed it

holds that FS
A(s) = µ. ⊓⊔

3.2 Branching probabilistic bisimulation

Before introducing branching probabilistic bisimulation, we need a restriction
on weak steps. Given an equivalence relation R, we let s

a
=⇒R µ denote that

(s, t) ∈ R for every state t before the a-step in the tree corresponding to s
a

=⇒ µ.

Definition 9 (Branching steps). Let A = 〈S, s0, L,∆〉 be a PA, s ∈ S, and R
an equivalence relation over S. Then, s

a
=⇒R µ if either (1) a = τ and µ = 1s,

or (2) there exists a scheduler S such that FS
A(s) = µ and for every maximal

path s
a1,µ1
 s1

a2,µ2
 s2

a3,µ3
 . . .

an,µn
 sn ∈ maxpathsSA(s) it holds that an = a, as

well as ai = τ and (s, si) ∈ R for all 1 ≤ i < n.

Definition 10 (Branching probabilistic bisimulation). Let A=〈S, s0, L,∆〉
be a PA, then an equivalence relation R ⊆ S × S is a branching probabilistic
bisimulation for A if for all (s, t) ∈ R

s −a→ µ implies ∃µ′ ∈ Distr(S) . t
a

=⇒R µ′ ∧ µ ≡R µ′.

We say that p, q ∈ S are branching probabilistically bisimilar, denoted p -bp q,
if there exists a branching probabilistic bisimulation R for A such that (p, q) ∈ R.

Two PAs are branching probabilistically bisimilar if their initial states are (in
the disjoint union of the two systems; see Remark 5.3.4 of [16] for the details).

This notion has some appealing properties. First, the definition is robust in the
sense that it can be adapted to using s

a
=⇒R µ instead of s −a→ µ in its condition.

Although this might seem to strengthen the concept, it does not. Second, the
relation -bp induced by the definition is an equivalence relation.

Proposition 11. Let A = 〈S, s0, L,∆〉 be a PA. Then, an equivalence relation
R ⊆ S × S is a branching probabilistic bisimulation for A iff for all (s, t) ∈ R

s
a

=⇒R µ implies ∃µ′ ∈ Distr(S) . t
a

=⇒R µ′ ∧ µ ≡R µ′.

Proposition 12. The relation -bp is an equivalence relation.

Moreover, Segala showed that branching bisimulation preserves all properties
that can be expressed in the probabilistic temporal logic WPCTL (provided that
no infinite path of τ -actions can be scheduled with non-zero probability) [15].

6

4 Confluence for probabilistic automata

The reductions we introduce are based on sets of confluent τ -transitions. Basi-
cally, such transitions do not influence a system’s behaviour, i.e., a confluent step
s −τ→ s′ implies that s -bp s′. Confluence therefore paves the way to state space
reductions modulo branching probabilistic bisimulation (e.g., by giving confluent
τ -transitions priority). Note that not all τ -transitions connect bisimilar states;
even though their actions are unobservable, τ -steps might disable behaviour. The
aim of our analysis is to underapproximate which τ -transitions are confluent.

For non-probabilistic systems, several notions of confluence already exist [3].
Basically, they all require that if an action a is enabled from a state that also en-
ables a confluent τ -transition, then (1) a will still be enabled after taking that τ -
transition (possibly requiring some additional confluent τ -transitions first), and
(2) we can always end up in the same state traversing only confluent τ -steps, no
matter whether we started by the a- or the τ -transition.

Figure 2 depicts the three notions of confluence we will generalise [3]. They
should be interpreted as follows: for any state from which the solid transitions
are enabled (universally quantified), there should be a matching for the dashed
transitions (existentially quantified). A double-headed arrow denotes a path of
zero of more transitions with the corresponding label, and an arrow with label a
denotes a step that is optional in case a = τ (i.e., its source and target state may
then coincide). The weaker the notion, the more reduction potentially can be
achieved (although detection is harder). Note that we first need to find a subset
of τ -transitions that we believe are confluence; then, the diagrams are checked.

For probabilistic systems, no similar notions of confluence have been defined
before. The situation is indeed more difficult, as transitions do not have a single
target state anymore. To still enable reductions based on confluence, only τ -
transitions with a unique target state might be considered confluent. The next
example shows what goes wrong without this precaution. For brevity, from now
on we use bisimilar as an abbreviation for branching probabilistically bisimilar.

Example 13. Consider two people each throwing a die. The PA in Figure 3(a)
models this behaviour given that it is unknown who throws first. The first charac-
ter of each state name indicates whether the first player has not thrown yet (X),
or threw heads (H) or tails (T), and the second character indicates the same for
the second player. For lay-out purposes, some states were drawn twice.

•

•

•

•

•

•

a

τc

τc

ā

τcτc

(a) Weak confluence.

•

•

•

•

•

a

τc

ā

τcτc

(b) Confluence.

•

•

•

•

a

τc

ā

τc

(c) Strong confluence.

Fig. 2. Three variants of confluence.

7

XX

XHTXHX XT

HH THTH TT HT TTHH HT

1

2
1

2τ
1

2

1

2

t2

1

2

1

2

t2

1

2

1

2

t2

1

2

1

2

τ

1

2

1

2

τ

(a) The original specification.

XX

TXHX

TH TTHH HT

1

2

1

2

τ

1

2

1

2

t2

1

2

1

2

t2

(b) A wrong reduction.

Fig. 3. Two people throwing dice.

We hid the first player’s throw action, and kept the other one visible. Now, it
might appear that the order in which the a- and the τ -transition occur does not
influence the behaviour. However, the τ -step does not connect bisimilar states
(assuming HH, HT, TH, and TT to be distinct). After all, from state XX it is
possible to reach a state (XH) from where HH is reached with probability 0.5 and
TH with probability 0.5. From HX and TX no such state is reachable anymore.
Giving the τ -transition priority, as depicted in Figure 3(b), therefore yields a
reduced system that is not bisimilar to the original system anymore. ⊓⊔

s t0 t

s1 s2

µ 1
2

1
2

a

τ τ

t2t1 t3

1
6

1
3

1
2 νa

Another difficulty arises when defining prob-
abilistic confluence. Although for LTSs it is
clear that a path aτ should reach the same state
as τa, for PAs this is more involved as the a-
step leads us to a distribution over states. So,
how should the model shown here be completed for the τ -steps to be confluent?

Since we want confluent τ -transitions to connect bisimilar states, we must
assure that s, t0, and t are bisimilar. Therefore, µ and ν must assign equal
probabilities to each class of bisimilar states. Given the assumption that the
other confluent τ -transitions already connect bisimilar states, this is the case if
µ ≡R ν for R = {(s, s′) | s −τ։ևτ− s′ using only confluent τ -steps}. The following
definition formalises these observations. Here we use the notation s −τc−→ s′, given
a set of τ -transitions c, to denote that s −τ→ s′ and (s, τ, s′) ∈ c.

We define three notions of probabilistic confluence, all requiring the target
state of a confluent step to be able to mimic the behaviour of its source state. In
the weak version, mimicking may be postponed and is based on joinability (Def-
inition 14a). In the default version, mimicking must happen immediately, but
is still based on joinability (Definition 14b). Finally, the strong version requires
immediate mimicking by directed steps (Definition 16).

Definition 14 ((Weak) probabilistic confluence). Let A = 〈S, s0, L,∆〉 be
a PA and c ⊆ {(s, a, µ) ∈ ∆ | a = τ, µ is deterministic} a set of τ-transitions.
(a) Then, c is weakly probabilistically confluent if R = {(s, s′) | s −τc−։ևτc−− s′} is
an equivalence relation, and for every path s −τc−։ t and all a ∈ L, µ ∈ Distr(S)

s −a→ µ =⇒ ∃t′ ∈ S . t −τc−։ t′ ∧
((

∃ν ∈ Distr(S) . t′ −a→ ν ∧ µ ≡R ν
)

∨ (a = τ ∧ µ ≡R 1t′)
)

.

8

s t0 t

s1 s2

µ 1

2

1

2

a

τc τc

t2t1 t3

1

6

1

3

1

2

νa

τc

τc

τc

τc

(a) Weak probabilistic confluence.

s t

s2s1 s3

µ 1

3

1

3

1

3

a

τc

t2 t1

2

3

1

3

νa

τc
τc

τc

(b) Strong probabilistic confluence.

Fig. 4. Weak versus strong confluence.

(b) If for every path s −τc−։ t and every transition s −a→ µ the above implication
can be satisfied by taking t′ = t, then we say that c is probabilistically confluent.

For the strongest variant of confluence, moreover, we require the target states
of µ to be connected by direct τc-transitions to the target states of ν.

Definition 15 (Equivalence up to τc-steps). Let µ, ν be two probability dis-
tributions, and let ν = {t1 7→ p1, t2 7→ p2, . . . }. Then, µ is equivalent to ν up

to τc-steps, denoted by µ
τc
 ν, if there exists a partition spt(µ) =

⊎n
i=1 Si such

that n = |spt(ν)| and ∀1 ≤ i ≤ n : µ(Si) = ν(ti) ∧ ∀s ∈ Si : s −
τc−→ ti.

Definition 16 (Strong probabilistic confluence). Let A = 〈S, s0, L,∆〉 be a
PA and c ⊆ {(s, a, µ) ∈ ∆ | a = τ, µ is deterministic} a set of τ-transitions, then
c is strongly probabilistically confluent if for all s −τc−→ t, a ∈ L, µ ∈ Distr(S)

s −a→ µ =⇒
((

∃ν ∈ Distr(S) . t −a→ ν ∧ µ
τc
 ν

)

∨ (a = τ ∧ µ = 1t)
)

.

Proposition 17. Strong probabilistic confluence implies probabilistic confluence,
and probabilistic confluence implies weak probabilistic confluence.

A transition s −τ→ t is called (weakly, strongly) probabilistically confluent if there
exists a (weakly, strongly) probabilistically confluent set c such that (s, τ, t) ∈ c.

Example 18. Observe the PAs in Figure 4. Assume that all transitions of s,
t0 and t are shown, and that all si, ti, are potentially distinct. We marked all
τ -transitions as being confluent, and will verify this for some of them.

In Figure 4(a), both the upper τc-steps are weakly probabilistically confluent,
most interestingly s −τc−→ t0. To verify this, first note that t0 −

τc−→ t is (as t0
has no other outgoing transitions), from where the a-transition of s can be
mimicked. To see that indeed µ ≡R ν (using R from Definition 14), observe
that R yields two equivalence classes: C1 = {s2, t1, t2} and C2 = {s1, t3}. As
required, µ(C1) = 1

2 = ν(C1) and µ(C2) = 1
2 = ν(C2). Clearly s −τc−→ t0 is not

probabilistically confluent, as t0 cannot immediately mimic the a-transition of s.
In Figure 4(b) the upper τc-transition is strongly probabilistically confluent

(and therefore also (weakly) probabilistically confluent). For this, t must be able
to directly mimic the a-transition from s. Indeed, it can do so by the transition
t −a→ ν. Moreover, µ

τc
 ν also holds, which is easily seen by taking the partition

S1 = {s1}, S2 = {s2, s3}. ⊓⊔

9

The following theorem shows that weakly probabilistically confluent τ -tran-
sitions indeed connect bisimilar states. With Proposition 17 in mind, this also
holds for (strong) probabilistic confluence. Additionally, we show that confluent
sets can be joined (so there is a unique maximal confluent set of τ -transitions).

Theorem 19. Let A = 〈S, s0, L,∆〉 be a PA, s, s′ ∈ S two of its states, and c
a weakly probabilistically confluent subset of its τ-transitions. Then,

s τc
և։ s′ implies s -bp s′.

Proposition 20. Let c, c′ be (weakly, strongly) probabilistically confluent sets of
τ-transitions. Then, c ∪ c′ is also (weakly, strongly) probabilistically confluent.

5 State space reduction using probabilistic confluence

As confluent τ -transitions lead from a state s to a state s′ such that s′ is equiv-
alent to s (with respect to branching probabilistic bisimulation), all states that
can reach each other via such transitions can be merged. That is, we can take
the original PA modulo the equivalence relation τc

և։ and obtain a reduced and
bisimilar system. The next definition and theorem formally state this.

Definition 21 (A/R). Let A = 〈S, s0, L,∆〉 be a PA and R an equivalence
relation over S, then we write A/R to denote the PA A modulo R. That is,

A/R = 〈S/R, [s0]R, L,∆R〉,

with ∆R ⊆ S/R × L × Distr(S/R) such that [s]R −
a→R µ if and only there exists

a state s′ ∈ [s]R such that s′ −a→ µ′ and ∀[t]R ∈ S/R . µ([t]R) =
∑

t′∈[t]R
µ′(t′).

Theorem 22. Let A be a PA and c a weakly probabilistically confluent subset
of its τ-transitions, then

(

A/ τc
և։

)

-bp A.

The downside of this method is that, in general, it is hard to compute the
equivalence classes according to τc

և։. Therefore, a slightly adapted reduction
technique was proposed in [3], and later used in [4]. There, for each equivalence
class a single representative state s was chosen in such a way that all transitions
leaving the equivalence class are directly enabled from s. This method relies on
(strong) probabilistic confluence, and does not work for the weak variant.

To find a valid representative, we first look at the directed (unlabeled) graph
G = (S,−τc−→). It contains all states of the original system, and denotes pre-
cisely which states can reach each other by taking only τc-transitions. Because
of the restrictions on τc-transitions, the subgraph of G corresponding to each
equivalence class [s] τc

և։

has exactly one terminal strongly connected component
(TSCC), from which the representative state for that equivalence class should be
chosen. Intuitively, this follows from the fact that τc-transitions always lead to
a state with at least the same observable transitions as the previous state, and
maybe more. (This is not the case for weak probabilistic confluence, therefore
the reduction using representatives does not work for that variant of confluence.)
The next definition formalises these observations.

10

Definition 23 (Representation maps). Let A be a PA and c a subset of
its τ-transitions. Then, a function φc : S → S is a representation map for A
under c if

– ∀s, s′ ∈ S . s −τc−→ s′ =⇒ φc(s) = φc(s
′);

– ∀s ∈ S . s −τc−։ φc(s).

The first condition ensures that equivalent states are mapped to the same rep-
resentative, and the second makes sure that every representative is in a TSCC.
If c is a probabilistically confluent set of τ -transitions, the second condition and
Theorem 19 immediately imply that s -bp φc(s) for every state s.

The next proposition states that for finite-state PAs and probabilistically
confluent sets c, there always exists a representation map. As τc-transitions are
required to always have a deterministic distribution, probabilities are not in-
volved and the proof is identical to the proof for the non-probabilistic case [3].

Proposition 24. Let A be a PA and c a probabilistically confluent subset of its
τ-transitions. Moreover, let SA be finite. Then, there exists a function φc : S → S
such that φc is a representation map for A under c.

We can now define a PA modulo a representation map φc. The set of states
of such a PA consists of all representatives. When originally s −a→ µ for some
state s, in the reduced system φc(s) −

a→ µ′ where µ′ assigns a probability to each
representative equal to the probability of reaching any state that maps to this
representative in the original system. The system will not have any τc-transitions.

Definition 25 (A/φc). Let A = 〈S, s0, L,∆〉 be a PA and c a set of τ-transi-
tions. Moreover, let φc be a representation map for A under c. Then, we write
A/φc to denote the PA A modulo φc. That is,

A/φc = 〈φc(S), φc(s
0), L,∆φc

〉,

where φc(S) = {φc(s) | s ∈ S}, and ∆φc
⊆ φc(S) × L × Distr(φc(S)) such that

s −a→φc
µ if and only if a 6= τc and there exists a transition t −a→ µ′ in A such that

φc(t) = s and ∀s′ ∈ φc(S) . µ(s
′) = µ′({s′′ ∈ S | φc(s

′′) = s′}).

From the construction of the representation map it follows that A/φc -bp A
if c is (strongly) probabilistically confluent.

Theorem 26. Let A be a PA and c a probabilistically confluent set of τ-transi-
tions. Also, let φc be a representation map for A under c. Then, (A/φc) -bp A.

Using this result, state space generation of PAs can be optimised in exactly the
same way as has been done for the non-probabilistic setting [4]. Basically, every
state visited during the generation is replaced on-the-fly by its representative. In
the absence of τ -loops this is easy; just repeatedly follow confluent τ -transitions
until none are enabled anymore. When τ -loops are present, a variant of Tarjan’s
algorithm for finding SCCs can be applied (see [3] for the details).

11

6 Symbolic detection of probabilistic confluence

Before any reductions can be obtained in practice, probabilistically confluent
τ -transitions need to be detected. As our goal is to prevent the generation of
large state spaces, this has to be done symbolically.

We propose to do so in the framework of prCRL and LPPEs [9], where
systems are modelled by a process algebra and every specification is linearised
to an intermediate format: the LPPE (linear probabilistic process equation).
Basically, an LPPE is a process X with a vector of global variables g of type G

and a set of summands. A summand is a symbolic transition that is chosen
nondeterministically, provided that its guard is enabled (similar to a guarded
command). Each summand i is of the form

∑

di:Di

ci(g,di)⇒ ai(g,di)
∑

•
ei:Ei

fi(g,di, ei) : X(ni(g,di, ei)).

Here, di is a (possibly empty) vector of local variables of type Di, which is
chosen nondeterministically such that the condition ci holds. Then, the action
ai(g,di) is taken and a vector ei of type Ei is chosen probabilistically (each ei
with probability fi(g,di, ei)). Then, the next state is set to ni(g,di, ei).

The semantics of an LPPE is given as a PA, whose states are precisely all
vectors g ∈ G. For all g ∈ G, there is a transition g −a→ µ if and only if for at
least one summand i there is a choice of local variables di ∈ Di such that

ci(g,di) ∧ ai(g,di) = a ∧ ∀ei ∈ Ei . µ(ni(g,di, ei)) =
∑

e′
i∈Ei

ni(g,di,ei)=ni(g,di,e
′
i)

fi(g,di, e
′
i).

Example 27. As an example of an LPPE, observe the following specification:

X(pc : {1, 2}) =
∑

n:{1,2,3}

pc = 1⇒ output(n)
∑

•
i:{1,2}

i
3 : X(i) (1)

+ pc = 2⇒ beep
∑

•
j:{1}

1: X(j) (2)

The system has one global variable pc (which can be either 1 or 2), and consists of
two summands. When pc = 1, the first summand is enabled and the system non-
deterministically chooses n to be 1, 2 or 3, and outputs the chosen number. Then,
the next state is chosen probabilistically; with probability 1

3 it will be X(1), and
with probability 2

3 it will be X(2). When pc = 2, the second summand is enabled,
making the system beep and deterministically returning to X(1).

In general, the conditions and actions may depend on both the global vari-
ables (in this case pc) and the local variables (in this case n for the first sum-
mand), and the probabilities and expressions for determining the next state may
additionally depend on the probabilistic variables (in this case i and j). ⊓⊔

Instead of designating individual τ -transitions to be probabilistically conflu-
ent, we designate summands to be so in case we are sure that all transitions they

12

might generate are probabilistically confluent. For a summand i to be confluent,
clearly ai(g,di) = τ should hold for all possible values of g and di. Also, the next
state of each of the transitions it generates should be unique: for every possible
valuation of g and di, there should be a single ei such that fi(g,di, ei) = 1.

Moreover, a confluence property should hold. For efficiency, we detect a strong
variant of strong probabilistic confluence. Basically, a confluent τ -summand i has
to commute properly with every summand j (including itself). More precisely,
when both are enabled, executing one should not disable the other and the order
of their execution should not influence the observable behaviour or the final state.
Additionally, i commutes with itself if it generates only one transition. Formally:

(

ci(g,di) ∧ cj(g,dj)
)

→
(

i = j ∧ ni(g,di) = nj(g,dj)
)

∨

cj(ni(g,di),dj) ∧ ci(nj(g,dj , ej),di)
∧ aj(g,dj) = aj(ni(g,di),dj)
∧ fj(g,dj , ej) = fj(ni(g,di),dj , ej)
∧ nj(ni(g,di),dj , ej) = ni(nj(g,dj , ej),di)

(1)

where g,di,dj and ej universally quantify overG,Di, Dj , and Ej , respectively.
We used ni(g,di) to denote the unique target state of summand i given global
state g and local state di (so ei does not need to appear).

As these formulas are quantifier-free and in practice often either trivially false
or true, they can easily be solved using an SMT solver for the data types involved.
Note that n2 formulas need to be solved (n being the number of summands); the
complexity of this depends on the data types. In our experiments, all formulas
could be checked with fairly simple heuristics (such as validating them vacuously
by finding contradictory conditions, or by detecting that two summands never
use or change the same variable).

Theorem 28. Let X be an LPPE and A its PA. Then, if for a summand i we
have ∀g ∈ G,di ∈ Di . ai(g,di) = τ ∧ ∃ei ∈ Ei . fi(g,di, ei) = 1 and for-
mula (1) holds, the set of transitions generated by i is probabilistically confluent.

7 Case study

To illustrate the power of probabilistic confluence reduction, we applied it on
the leader election protocol introduced in [9]. This protocol, between two nodes,
decides on a leader by having both parties throw a die and compare the results.
In case of a tie the nodes throw again, otherwise the one that threw highest will
be the leader. We hid all actions needed for rolling the dice and communication,
keeping only the declarations of leader and follower. The complete model in
LPPE format, consisting of twelve summands, can be found in Appendix B.

In [9] we showed the effect of dead-variable reduction on this system. Now,
we apply probabilistic confluence reduction both to the LPPE that was already
reduced in this way (leaderReduced) and to the original one (leader). To do

13

Table 1. Applying confluence reduction to two leader election protocols.

Original Reduced Visited Running time
Specification States Trans. States Trans. States Trans. Before After
leader 3763 6158 1399 1922 1471 4022 0.49 sec 0.35 sec
leaderReduced 1693 2438 589 722 661 1382 0.22 sec 0.13 sec
leader-2-6 535 710 199 212 271 512 0.15 sec 0.18 sec
leader-2-36 18325 23690 6589 6662 9181 17102 13.23 sec 7.38 sec
leader-3-12 161803 268515 56839 68919 84059 158403 70.31 sec 39.50 sec
leader-3-18 533170 880023 188287 226011 276692 518991 471.42 sec 343.92 sec
leader-3-19 out of memory 220996 264996 324544 608433 − 379.19 sec
leader-4-5 443840 939264 128553 200312 206569 418632 467.69 sec 93.36 sec

this automatically, we implemented a prototype tool in Haskell for confluence
detection and reduction using heuristics1, relying on Theorem 28.

We used confluence information when generating the state space, apply-
ing Theorem 26. As the specification does not contain loops of confluent τ -
summands, we could from each state repeatedly execute confluent τ -summands
until reaching a state that does not enable any confluent τ -summand anymore,
adding only this state to the state space (so no detection of TSCCs was needed).

The results, obtained on a 2.4 GHz, 2 GB Intel Core 2 Duo MacBook, are
shown in Table 1; we list the size of the original and reduced state space, as well
as the number of states and transitions that were visited during its generation
using confluence. Probabilistic confluence reduction clearly has quite an effect on
the size of the state space, as well as the number of visited states and therefore
the running time. Notice that it nicely works hand-in-hand with dead-variable
reduction. Applying both, we reduced by almost an order of magnitude.

We also modeled another leader election protocol that uses asynchronous
channels and allows for more parties (Algorithm B from [6]). We looked at ei-
ther 2, 3 or 4 parties, who throw either a normal die or one with more or less sides
(5, 12, 18, 19, 36). Confluence reduction reduces the state space by about 65%,
and the number of visited states (and therefore the running time) by about 50%.
With probabilistic POR, comparable results were obtained for similar proto-
cols [8]. As was to be expected, detecting confluence mostly pays off for the
larger state spaces. Still, confluence detection only took a fraction of a second
for each system; practically all the effort is in the state space generation. From
about 180000 states swapping occurs, explaining the excessive growth in running
time. Confluence reduction clearly allows us to do more before reaching this limit.

8 Conclusions

This paper introduced three new notions of confluence for probabilistic au-
tomata. We first established several facts about these notions, most importantly
that they identify branching probabilistically bisimilar states. Then, we showed
how probabilistic confluence can be used for state space reduction. As we used

1 The implementation, case studies and a test script can be downloaded from
http://fmt.cs.utwente.nl/~timmer/papers/tacas2011.html.

14

representatives in terminal strongly connected components, these reductions can
even be applied to systems containing τ -loops. We discussed how confluence can
be detected in the context of a probabilistic process algebra with data by prov-
ing formulas in first-order logic. This way, we enabled on-the-fly reductions when
generating the state space corresponding to a process-algebraic specification. A
case study illustrated the power of our methods.

References

[1] C. Baier, P.R. D’Argenio, and M. Größer. Partial order reduction for probabilistic
branching time. In Proceedings of the 3rd Workshop on Quantitative Aspects of
Programming Languages (QAPL), volume 153(2) of ENTCS, pages 97–116, 2006.

[2] C. Baier, M. Größer, and F. Ciesinski. Partial order reduction for probabilistic
systems. In Proc. of the 1st International Conference on Quantitative Evaluation
of Systems (QEST), pages 230–239. IEEE Computer Society, 2004.

[3] S.C.C. Blom. Partial τ -confluence for efficient state space generation. Technical
Report SEN-R0123, CWI, Amsterdam, 2001.

[4] S.C.C. Blom and J.C. van de Pol. State space reduction by proving confluence.
In Proc. of the 14th International Conference on Computer Aided Verification
(CAV), volume 2404 of LNCS, pages 596–609. Springer, 2002.

[5] P.R. D’Argenio and P. Niebert. Partial order reduction on concurrent probabilistic
programs. In Proc. of the 1st International Conference on Quantitative Evaluation
of Systems (QEST), pages 240–249. IEEE Computer Society, 2004.

[6] W. Fokkink and J. Pang. Simplifying Itai-Rodeh leader election for anonymous
rings. In Proc. of the 4th International Workshop on Automated Verification of
Critical Systems (AVoCS), volume 128(6) of ENTCS, pages 53–68, 2005.

[7] S. Giro, P.R. D’Argenio, and L. Maŕıa Ferrer Fioriti. Partial order reduction for
probabilistic systems: A revision for distributed schedulers. In Proc. of the 20th
International Conference on Concurrency Theory (CONCUR), volume 5710 of
LNCS, pages 338–353. Springer, 2009.

[8] M. Größer. Reduction Methods for Probabilistic Model Checking. PhD thesis,
Technische Universität Dresden, 2008.

[9] J.-P. Katoen, J.C. van de Pol, M.I.A. Stoelinga, and M. Timmer. A linear process-
algebraic format for probabilistic systems with data. In Proc. of the 10th Inter-
national Conference on Application of Concurrency to System Design (ACSD),
pages 213–222. IEEE Computer Society, 2010.

[10] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[11] R. De Nicola and F.W. Vaandrager. Action versus state based logics for transition

systems. In Semantics of Systems of Concurrent Processes, volume 469 of LNCS,
pages 407–419. Springer, 1990.

[12] G.J. Pace, F. Lang, and R. Mateescu. Calculating τ -confluence compositionally.
In Proc. of the 15th International Conference on Computer Aided Verification
(CAV), volume 2725 of LNCS, pages 446–459. Springer, 2003.

[13] D. Peled. All from one, one for all: on model checking using representatives. In
Proc. of the 5th International Conference on Computer Aided Verification (CAV),
volume 697 of LNCS, pages 409–423. Springer, 1993.

[14] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology, 1995.

15

[15] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computation, 2(2):250–273, 1995.

[16] M.I.A. Stoelinga. Alea jacta est: verification of probabilistic, real-time and para-
metric systems. PhD thesis, University of Nijmegen, 2002.

[17] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim-
ulation semantics. Journal of the ACM, 43(3):555–600, 1996.

A Proofs

A.1 Proof of Proposition 11

Proposition 11. Let A = 〈S, s0, L,∆〉 be a PA. Then, an equivalence relation
R ⊆ S × S is a branching probabilistic bisimulation for A iff for all (s, t) ∈ R

s
a

=⇒R µ implies ∃µ′ ∈ Distr(S) . t
a

=⇒R µ′ ∧ µ ≡R µ′.

Proof. If every weak step s
a

=⇒R µ can be mimicked, then also every step s −a→ µ
can be mimicked. After all, from s −a→ µ it follows that s

a
=⇒R µ for any R (by

taking a scheduler that chooses the transition (s, a, µ) with probability 1 from s,
and chooses ⊥ with probability 1 for all other histories). Therefore, the definition
given in this proposition is at least as restrictive as the original definition.

Conversely, we show that when every step s −a→ µ can be mimicked, then also
every weak step s

a
=⇒R µ can be mimicked. When a = τ and µ = 1s this weak

step can be mimicked trivially by t
τ

=⇒R 1t. Therefore, from now on we assume
that there exists a scheduler S such that FS

A(s) = µ, and for every maximal path

s
a1,µ1
 s1

a2,µ2
 s2

a3,µ3
 . . .

an,µn
 sn ∈ maxpathsA(s)

– ai = τ and (s, si) ∈ R for all 1 ≤ i < n;

– an = a.

As every single transition can be mimicked by t, we can define a scheduler S ′

that mimics every choice of S. So, when S chooses the transition (s, a1, µ1) with
probability p, we let S ′ schedule the transitions necessary for t

a1=⇒R µ′
1 (with

µ1 ≡R µ′
1) with probability p. That is, when for instance t −a1−→ t1 and t −a1−→ t2

should both be assigned probability 0.5 to yield t
a1=⇒R µ′

1, we let S ′ choose
them with probability 0.5p. This way, with probability p the tree starting from t
reaches a distribution over states that is R-equivalent to µ. As we can then again
mimic the transitions of S from there, and this can continue until the end of each
maximal path of S, we obtain a scheduler S ′ for which FS′

A (t) = µ′ with µ ≡R µ′.
Moreover, all the states visited before the a-actions in the tree starting from t
also remain in the same R equivalence class because of the restrictions of the
=⇒R relation and the fact that the mimicked steps should yield an R-equivalent
distribution. Therefore, indeed t

a
=⇒R µ′ ∧ µ ≡R µ′. ⊓⊔

16

A.2 Proof of Proposition 12

Before proving Proposition 12, we first provide a definition and two lemmas.

Definition 29 (Relation composition). Given two relations R1 and R2 over
a set S, we use R2 ◦ R1 to denote their composition: R2 ◦ R1 = {(x, z) ∈ S×S |
∃y ∈ S . (x, y) ∈ R1, (y, z) ∈ R2}.

Lemma 30. Let A = 〈S, s0, L,∆〉 be a PA, s ∈ S, and R an equivalence relation
over S. Let R′ ⊆ S × S such that R′ ⊇ R. Then

s
a

=⇒R µ implies s
a

=⇒R′ µ

Proof. Let s
a

=⇒R. If a = τ and µ = 1s then by definition s
a

=⇒R′ µ for any R′,
so from now on we assume the other case: there exists a scheduler S such that
FS
A(s) = µ, and for every path s

a1,µ1
 s1

a2,µ2
 s2

a3,µ3
 . . .

an,µn
 sn ∈ maxpathsA(s)

– ai = τ and (s, si) ∈ R for all 1 ≤ i < n;
– an = a.

Now it is easy to see that the same scheduler proofs the validity of s
a

=⇒R′ µ. Af-
ter all, the only thing that has to be checked when changing R is that (s, si) ∈ R′

still holds for all 1 ≤ i < n. However, as (s, si) ∈ R is assumed and R′ ⊇ R′, this
is immediate. ⊓⊔

Lemma 31. Let A = 〈S, s0, L,∆〉 be a PA. Let R ⊆ S × S be an equivalence
relation such that for all (s, t) ∈ R it holds that

s
a

=⇒R µ implies ∃µ′ ∈ Distr(S) . t
a

=⇒R µ′ ∧ µ ≡R µ′.

Then, for every equivalence relation R′ ⊆ S × S such that R′ ⊇ R, it holds that

s
a

=⇒R′ µ implies ∃µ′ ∈ Distr(S) . t
a

=⇒R′ µ′ ∧ µ ≡R′ µ′.

Proof. Let A = 〈S, s0, L,∆〉 be a PA, and let R ⊆ S × S be an equivalence
relation such that for all (s, t) ∈ R it holds that

s
a

=⇒R µ implies ∃µ′ ∈ Distr(S) . t
a

=⇒R µ′ ∧ µ ≡R µ′

By Proposition 11 it follows that for all (s, t) ∈ R it holds that

s −a→ µ implies ∃µ′ ∈ Distr(S) . t
a

=⇒R µ′ ∧ µ ≡R µ′

Let R′ ⊆ S×S be an equivalence relation such that R′ ⊇ R. Then, by Lemma 30
it also holds that

s −a→ µ implies ∃µ′ ∈ Distr(S) . t
a

=⇒R′ µ′ ∧ µ ≡R µ′

Using Proposition 5.2.1.1 and 5.2.1.5 from [16] we obtain that

s −a→ µ implies ∃µ′ ∈ Distr(S) . t
a

=⇒R′ µ′ ∧ µ ≡R′ µ′

Now, applying Proposition 11 again, this lemma follows. ⊓⊔

17

Proposition 12. The relation -bp is an equivalence relation.

Proof. Reflexivity of -bp trivially holds; the identity relation {(s, s) | s ∈ S}
can be used as the branching probabilistic bisimulation.

For symmetry, assume that p -bp q. Then, there must exist a branching
bisimulation R ⊆ S × S such that (p, q) ∈ S. As every branching bisimulation is
an equivalence relation, also (q, p) ∈ S, so also q -bp p.

For transitivity, let p -bp q and q -bp r. Then, using Proposition 11, there
exists an equivalence relation R1 ⊆ S × S such that (p, q) ∈ R1, and for all
(s, t) ∈ R1 it holds that

s
a

=⇒R1
µ implies ∃µ′ ∈ Distr(S) . t

a
=⇒R1

µ′ ∧ µ ≡R1
µ′.

Similarly, there exists an equivalence relation R2 ⊆ S × S such that (q, r) ∈ R2,
and for all (s, t) ∈ R2 it holds that

s
a

=⇒R2
µ implies ∃µ′ ∈ Distr(S) . t

a
=⇒R2

µ′ ∧ µ ≡R2
µ′.

We define R3 = (R2 ◦ R1) ∪ (R1 ◦ R2), and let R be the transitive closure
of R3. We first prove that R is an equivalence relation by showing (1) reflexivity,
(2) symmetry, and (3) transitivity.

(1) As R1 areR2 are equivalence relations, they are reflexive; thus, for every state
s ∈ S it holds that (s, s) ∈ R1 and (s, s) ∈ R2. Therefore, (s, s) ∈ R2 ◦ R1

and thus (s, s) ∈ R.
2) First observe that when (x, z) ∈ R2 ◦ R1, then there must be a y ∈ S such

that (x, y) ∈ R1 and (y, z) ∈ R2, and therefore by symmetry of R1 and R2

also (y, x) ∈ R1 and (z, y) ∈ R2, and thus (z, x) ∈ R1 ◦ R2.
Now let (s, t) ∈ R. Then there is an integer n ≥ 2 such that there exists
a sequence of states s1, s2, . . . , sn such that s1 = s and sn = t, and for all
1 ≤ i < n it holds that (si, si+1) ∈ (R2 ◦ R1) or (si, si+1) ∈ (R1 ◦ R2).
By the observation above we can reverse the order of the states, obtaining
the sequence sn, sn−1, . . . , s1 such that still sn = t and s1 = s, and for all
1 ≤ i < n it holds that (si, si+1) ∈ (R2 ◦ R1) or (si, si+1) ∈ (R1 ◦ R2). To be
precise, when (si, si+1) ∈ (R2 ◦ R1), then (si+1, si) ∈ (R1 ◦ R2), and when
(si, si+1) ∈ (R1 ◦ R2), then (si+1, si) ∈ (R2 ◦ R1). The sequence obtained
in this way proves that (t, s) ∈ R.

(3) By definition.

We now prove that p -bp r by showing that (p, r) ∈ R, and that for all (s, u) ∈ R
it holds that

s −a→ µ implies ∃µ′ ∈ Distr(S) . u
a

=⇒R µ′ ∧ µ ≡R µ′

As (p, q) ∈ R1 and (q, r) ∈ R2, it follows immediately that (p, r) ∈ R2 ◦ R1 and
therefore indeed (p, r) ∈ R.

We prove the second part with induction to the number of transitive steps
needed to include (s, u) in R.

18

Base case. Let (s, u) ∈ R because (s, u) ∈ R2 ◦ R1 (the case where (s, u) ∈ R
because (s, u) ∈ R1 ◦ R2 can be proven symmetrically). This implies that
there exists a state t such that (s, t) ∈ R1 and (t, u) ∈ R2. Let s −

a→ µ. Then
we know that there exists a µ′ ∈ Distr(S) such that t

a
=⇒R1

µ′ and µ ≡R1
µ′.

By Lemma 30 it follows that t
a

=⇒R µ′, and using Proposition 5.2.1.1 and
5.2.1.5 from [16] we see that µ ≡R µ′.

As R ⊇ R2, we know by Lemma 31 that for all (t, u) ∈ R2 it holds that

t
a

=⇒R µ′ implies ∃µ′′ ∈ Distr(S) . u
a

=⇒R µ′′ ∧ µ′ ≡R µ′′.

We thus showed that s −a→ µ implies t
a

=⇒R µ′ (with µ ≡R µ′), and that
t

a
=⇒R µ′ implies u

a
=⇒R µ′′ (with µ′ ≡R µ′′). Therefore, it follows that if

s −a→ µ, indeed there exists a µ′′ ∈ Distr(S) such that u
a

=⇒R µ′′. As ≡R is
an equivalence relation, µ ≡R µ′′ follows by transitivity.

Induction hypothesis. Let (s, t) ∈ R by k transitive steps. Then,

s −a→ µ implies ∃µ′ ∈ Distr(S) . t
a

=⇒R µ′ ∧ µ ≡R µ′.

Inductive step. Let (s, u) ∈ R by k + 1 transitive steps. That is, there exists
some t such that (s, t) ∈ R by means of k transitive steps, and either (t, u) ∈
R2 ◦ R1 or (t, u) ∈ R1 ◦ R2. We then need to show that

s −a→ µ implies ∃µ′′ ∈ Distr(S) . u
a

=⇒R µ′′ ∧ µ ≡R µ′′.

By the induction hypothesis we already know that s −a→ µ implies t
a

=⇒R µ′

for some µ′ ≡R µ. Moreover, using Proposition 11 and the same reasoning as
for the base case, we know that t

a
=⇒R µ′ implies that u

a
=⇒R µ′′ for some

µ′′ ≡R µ. Therefore, by transitivity of ≡R the statement holds. ⊓⊔

A.3 Proof of Proposition 17

Lemma 32. Let A be a PA, c ⊆ {(s, a, µ) ∈ ∆ | a = τ, µ is deterministic} a set
of weakly probabilistically confluent τ-transitions, and R = {(s, s′) | s −τc−։ևτc−− s′}.

Then, µ
τc
 ν implies µ ≡R µ.

Proof. Let A be a PA, c ⊆ {(s, a, µ) ∈ ∆ | a = τ, µ is deterministic} a set of
τ -transitions. Moreover, assume that µ

τc
 ν.

Thus, denoting ν by ν = {t1 7→ p1, t2 7→ p2, . . . }, there exists a partition
spt(µ) =

⊎n
i=1 Si such that n = |spt(ν)| and ∀1 ≤ i ≤ n : µ(Si) = ν(ti) ∧

∀s ∈ Si : s −
τc−→ ti.

Now let R′ be the smallest equivalence relation that relates the states of
every set Si to each other and to their corresponding ti. That is, for every Si

and for all s, s′ ∈ Si it holds that (s, s
′) ∈ R′ and (s, ti) ∈ R′.

19

By definition R′ is an equivalence relation, and clearly µ ≡R′ ν. After all, for
every ti it holds that

ν([ti]R′) = ν({tj | (ti, tj) ∈ R′}) =
∑

1≤j≤n
(ti,tj)∈R′

ν(tj) =
∑

1≤j≤n
(ti,tj)∈R′

µ(Sj)

=
∑

1≤j≤n
∀s∈Sj . (ti,s)∈R′

µ(Sj) = µ([ti]R′)

Now let R = {(s, s′) | s −τc−։ևτc−− s′}. A simple tiling argument shows that
R is transitive, and reflexivity and symmetry are trivial. Therefore, R is an
equivalence relation. Moreover, as s −τc−→ ti implies s −τc−։ևτc−− ti, and for every
s, s′ ∈ Si we have s −τc−։ևτc−− s′ since they can join at ti, clearly R also relates
the states of every set Si to each other and to their corresponding ti. Since R′

is the smallest equivalence relation having this property, it follows that R ⊇ R′.
Because of this, µ ≡R′ ν implies µ ≡R ν (using Proposition 5.2.1.1 and 5.2.1.5
from [16]), which is what we wanted to show. ⊓⊔

Proposition 17. Strong probabilistic confluence implies probabilistic conflu-
ence, and probabilistic confluence implies weak probabilistic confluence.

Proof. Let A be a PA and c ⊆ {(s, a, µ) ∈ ∆ | a = τ, µ is deterministic} a
strongly probabilistically confluent set of τ -transitions. Then, for every transition
s −τc−→ t and all a ∈ L, µ ∈ Distr(S) it holds that

s −a→ µ =⇒
((

∃ν ∈ Distr(S) . t −a→ ν ∧ µ
τc
 ν

)

∨ (a = τ ∧ µ = 1t)
)

.

Now let R = {(s, s′) | s −τc−։ևτc−− s′}. As stated in the proof of Lemma 32, R is an
equivalence relation.

We need to proof that for every path s −τc−։ t it holds that

s −a→ µ =⇒
((

∃ν ∈ Distr(S) . t −a→ ν ∧ µ ≡R ν
)

∨ (a = τ ∧ µ ≡R 1t)
)

.

So, let s −τc−→ t1 −
τc−→ . . . −τc−→ tn be such a path, and assume strong probabilistic

confluence. Let s −a→ µ, and first assume that a 6= τ . Then, by definition of
strong probabilistic confluence it must hold that t1 −

a→ µ1 such that µ
τc
 µ1,

and therefore t2 −
a→ µ2 such that µ1

τc
 µ2, and so on, until tn −

a→ µn such that
µn−1

τc
 µn. By Lemma 32 and transitivity of ≡R, it follows that µ ≡R µn.

So, the first disjunct of the formula we needed to prove holds (note that for the
empty path s it also holds by reflexivity of ≡R).

Now assume that a = τ . If µ 6= 1t1 , then the situation is the same as above.
If µ = 1t1 , then it follows that µ ≡R 1tn since t1 −

τc−։ tn and thus (t1, tn) ∈ R.
So, the second disjunct of the formula we needed to prove holds.

So, in both cases c is probabilistically confluent.

The fact the probabilistic confluence implies weak probabilistic confluence is
immediate from the definition, as the former is a restriction of the latter. ⊓⊔

20

A.4 Proof of Theorem 19

Before proving Theorem 19, we first provide an important lemma.

Lemma 33. Let A = 〈S, s0, L,∆〉 be a PA and s, t ∈ S. Moreover, let c be a
weakly probabilistically confluent set of τ-transitions of A. Then,

s −τc−։ևτc−− t if and only if s τc
և։ t.

Proof. Let s −τc−։ևτc−− t. Then, by definition there must exist a state s′ ∈ S such
that s −τc−։ s′ and t −τc−։ s′. Therefore, it immediately follows that s τc

և։ t.
Now let s τc

և։ t. Then, there must be path such as s −τc−→ s0 −
τc−→ s1 ←

τc−−
s2 ←

τc−− s3 −
τc−→ s4 ←

τc−− t. Potentially (as is the case here) the path contains a
fragment of the form si ←

τc−− si+1 −
τc−→ si+2. Clearly this violates the conditions for

the path to show that s −τc−։ևτc−− t, as the arrows point in the wrong direction.
Also, note that a path without such a fragment does prove that s −τc−։ևτc−− t.
Therefore, we will show that in any path that can be used to show s τc

և։ t we
can eliminate these kind of fragments, obtaining a path that proves s −τc−։ևτc−− t.
When si ←

τc−− si+1 −
τc−→ si+2, then by definition of weak probabilistic confluence

either (1) si = si+2, or (2) there exists a state t such that si+2 −
τc−։ t and

si −
τc−։ևτc−− t.
In case (1), the whole fragment can just be reduced to the state si, indeed

eliminating the bad fragment. In case (2), assume that si −
τc−։ևτc−− t is satisfied

by the path si −
τc−→ t0 −

τc−→ . . . −τc−→ tn −
τc−→ t′ ←τc−− t′1 ←

τc−− . . . ←τc−− t′n ←
τc−− t, and that

si+2 −
τc−։ t is satisfied by the path si+2 −

τc−→ t′n+1 −
τc−→ . . . −τc−→ t′m −

τc−→ t. Then, the

whole fragment can be reduced to si −
τc−→ t0 −

τc−→ . . . −τc−→ tn −
τc−→ t′ ←τc−− t′1 ←

τc−− . . .←τc−−
t′n ←

τc−− t←τc−− t′m ←
τc−− . . .←τc−− t′n+1 ←

τc−− si+2, which is of the correct form.

Repeating this for all bad fragments, a path proving s −τc−։ևτc−− t appears. ⊓⊔

Theorem 19. Let A = 〈S, s0, L,∆〉 be a PA, s, s′ ∈ S two of its states, and c a
weakly probabilistically confluent subset of its τ -transitions. Then,

s τc
և։ s′ implies s -bp s′.

Proof. Let A = 〈S, s0, L,∆〉 be a PA and c a weakly probabilistically confluent
set of τ -transitions. We prove that s −τc−։ևτc−− s′ implies s -bp s′. Clearly, when
this hold also s −τc−→ s′ implies that s -bp s′. Then, as -bp is an equivalence
relation, the theorem follows.

Let s, s′ ∈ S such that s −τc−։ևτc−− s′. To prove that indeed s -bp s′, we show
thatR = {(s, t) | s −τc−։ևτc−− t} is a branching probabilistic bisimulation. Obviously
(s, s′) ∈ R. Lemma 33 and the fact that τc

և։ is an equivalence relation imply
that R is an equivalence relation.

To show that R is a branching probabilistic bisimulation, let (s, t) ∈ R be an
arbitrary pair of states in R. We prove that

s −a→ µ implies ∃µ′ ∈ Distr(S) . t
a

=⇒R µ′ ∧ µ ≡R µ′.

Let u be the joining state of s and t, i.e., s −τc−։ u and t −τc−։ u. Let s −a→ µ. We
make a case distinction based on whether a 6= τ or a = τ .

21

– Assume that a 6= τ . From the definition of weak probabilistic bisimulation
it immediately follows that

∃u′ ∈ S . u −τc−։ u′ ∧ ∃ν ∈ Distr(S) . u′ −a→ ν ∧ µ ≡R ν

Now let S be a scheduler choosing with probability 1 the transitions from t
corresponding to the path t −τc−։ u′. Then, let S choose u′ −a→ ν with proba-
bility 1, followed by ⊥ with probability 1. Clearly the final state distribution
of S is ν, and indeed µ ≡R ν by definition of weak probabilistic conflu-
ence. Moreover, as the scheduler only follows τc-transitions before it selects
u′ −a→ ν, the branching condition is satisfied.

– Assume that a = τ . From the definition of weak probabilistic bisimulation
it then follows that

∃u′ ∈ S . u −τc−։ u′ ∧
((

∃ν ∈ Distr(S) . u′ −a→ ν ∧ µ ≡R ν
)

∨ (µ ≡R 1u′)
)

When the first disjunct is satisfied the above reasoning applies, so from now
on assume that ∃u′ ∈ S . u −τc−։ u′ ∧ µ ≡R 1u′ . If t = u′, then t

a
=⇒R µ

is satisfied by the first clause of the definition of branching probabilistic
bisimulation as a = τ and µ ≡R 1u′ = 1t. If t 6= u′, then the transition can be
mimicked by the scheduler choosing with probability 1 the transitions from t
corresponding to the path t −τc−։ u′ and then choosing ⊥ with probability 1.
Clearly the final state distribution of S is 1u′ , and indeed µ ≡R 1u′ by the
assumption we made. Moreover, as the scheduler only follows τc-transitions,
the branching condition is satisfied. ⊓⊔

A.5 Proof of Proposition 20

Proposition 20. Let c, c′ be (weakly, strongly) probabilistically confluent sets
of τ -transitions. Then, c ∪ c′ is also (weakly, strongly) probabilistically confluent.

Proof. Let A be a PA and c ⊆ {(s, a, µ) ∈ ∆ | a = τ, µ is deterministic} a weakly
probabilistically confluent set of τ -transitions. Then, for every path s −τc−։ t and
all a ∈ L, µ ∈ Distr(S) it holds that

s −a→ µ =⇒ ∃t′ ∈ S . t −τc−։ t′ ∧
((

∃ν ∈ Distr(S) . t′ −a→ ν ∧ µ ≡R ν
)

∨ (a = τ ∧ µ ≡R 1t′)
)

where R = {(s, s′) | s −τc−։ևτc−− s′} (and R is an equivalence relation).
Let c′ be a different weakly probabilistically confluent set of τ -transitions.

Then, for every path s −
τc′−։ t and all a ∈ L, µ ∈ Distr(S) it holds that

s −a→ µ =⇒ ∃t′ ∈ S . t −
τc′−։ t′ ∧

((

∃ν ∈ Distr(S) . t′ −a→ ν ∧ µ ≡R′ ν
)

∨ (a = τ ∧ µ ≡R′ 1t′)
)

where R′ = {(s, s′) | s −
τc′−։և

τc′−− s′} (and R is an equivalence relation).

22

Now, taking c′′ = c ∪ c′, for every path s −
τc′′−−։ t and all a ∈ L, µ ∈ Distr(S)

it should hold that

s −a→ µ =⇒ ∃t′ ∈ S . t −
τc′′−−։ t′ ∧

((

∃ν ∈ Distr(S) . t′ −a→ ν ∧ µ ≡R′′ ν
)

∨ (a = τ ∧ µ ≡R′′ 1t′)
)

where R′′ = {(s, s′) | s −
τc′′−−։և

τc′′−−− s′}. The fact that R′′ is again an equivalence
relation follows easily from the restrictions on the τc- and τc′ -steps. Moreover,
the required implication follows from a common tiling argument.

A similar argument can be given for probabilistically confluent sets, and for
strongly probabilistically confluent sets. ⊓⊔

A.6 Proof of Theorem 22

Theorem 22. Let A be a PA and c a weakly probabilistically confluent subset
of its τ -transitions, then

(

A/ τc
և։

)

-bp A.

Proof. Theorem 19 already showed that all states that can reach each other via
τc-transitions are branching probabilistically bisimilar. It is well known that such
states can therefore be merged, preserving branching probabilistic bisimulation.

The equivalence relation R needed to show this relates the states of the
disjoint union of A and

(

A/ τc
և։

)

in such a way that every equivalence class

contains precisely one of the states [s] τc
և։

of
(

A/ τc
և։

)

and all the states s′ in A

such that s′ ∈ [s] τc
և։

. Clearly, (s0, [s0] τc
և։

) ∈ R. In the remainder of the proof
we omit the subscript of equivalence classes [s] τc

և։

, as they are always the same.
Now, let {s1, s2, . . . , sn, [s1]} be one of the equivalence classes ofR. Because of

Theorem 19 all the states s1, s2, . . . , sn are branching probabilistically bisimilar,
so we only still need to show that [s1] can mimic the behaviour of s1, s2, . . . , sn
and vice versa.

So, assume that for instance s2 −
a→ µ. Then, by definition [s1] −

a→ ν such that
ν([t]) =

∑

t′∈[t] µ(t
′) for every [t] ∈ S/ τc

և։. This implies that µ ≡R ν by the
construction of R.

Conversely, let [s1] −
a→ µ. Then, by definition there must exist a state si ∈ [s]

such that si −
a→ ν and ∀[t] ∈ S/ τc

և։ . µ([t]) =
∑

t′∈[t] ν(t
′). So, µ ≡R ν. Therefore,

si can mimic the behaviour of [s1]. As all the states s1, s2, . . . , sn are branching
probabilistically bisimilar, they can all mimic each other, so therefore all states
can mimic the behaviour of [s1]. ⊓⊔

A.7 Proof of Theorem 26

Theorem 26. Let A be a PA and c a probabilistically confluent set of τ -transi-
tions. Also, let φc be a representation map for A under c. Then, (A/φc) -bp A.

Proof. Theorem 22 already showed that
(

A/ τc
և։

)

-bp A if c is weakly proba-
bilistically confluent, and by Proposition 17 this also holds for probabilistically

23

confluent sets c. As -bp is an equivalence relation by Proposition 12, it there-
fore suffices to prove that

(

A/ τc
և։

)

-bp (A/φc). In this proof we will omit the
subscript of equivalence classes [s] τc

և։

, as they are always the same.

By definition every state of A/ τc
և։ is an equivalence class [s], and every state

of A/φc is a representative φc(s). We define the relation R to be the reflexive
and symmetric closure of

{([s], φc(s)) | s ∈ S},

and show that it is a branching probabilistic bisimulation. Clearly R is an equiva-
lence relation, and by definition ([s0], φc(s

0)) ∈ R. To show that R is a branching
probabilistic bisimulation we prove that [s] −a→ µ implies that there exists a µ′

such that φc(s)
a

=⇒ µ′ and µ ≡R µ′, and that φc(s) −
a→ µ implies that there

exists a µ′ such that [s]
a

=⇒ µ′ and µ ≡R µ′.

– Let [s] −a→ µ. We prove that the exists a µ′ such that φc(s)
a

=⇒ µ′ and
µ ≡R µ′ by showing that, assuming µ([t]) = p for an arbitrary state t, there
exists a µ′ such that φc(s)

a
=⇒ µ′ and µ′(φc(t)) = p.

By Definition 21, there must exist a state s′ ∈ [s] in A and a µ′′ such that
s′ −a→ µ′′ and ∀[t] ∈ S/ τc

և։ . µ([t]) =
∑

t′∈[t] µ
′′(t′). That is, µ′′ also assigns

probability p to the event of going to a state in the equivalence class [t].
Now, by definition of representatives s′ −τc−։ φc(s), and therefore, by definition
of probabilistic confluence it must be the case that

(

∃ν ∈ Distr(S) . φc(s) −
a→ ν ∧ µ′′ ≡R′ ν

)

∨
(

a = τ ∧ µ′′ ≡R′ 1φc(s)

)

,

where R′ = {(s, s′) | s −τc−։ևτc−− s′}. First assume that a 6= τ . Then, in A we
have φc(s) −

a→ ν with ν ≡R′ µ′′. Given the definition of R′ and Lemma 33,
this implies that ν([t]) = µ′′([t]) = p. As [t] is exactly the set of all states that
have φc(t) as their representative, by Definition 25 we also have φc(s) −

a→ ν′

with ν′(φc(t)) = p in A/φc. As the existence of a transition implies the
existence of a weak step, this finishes this part of the proof.
When a = τ , either the above holds, or µ′′ ≡R′ 1φc(s). In the latter case, as we
also already knew that µ′′ assigns probability p to the event of going to a state
in the equivalence class [t], apparently φc(s) ∈ [t] and p = 1. From φc(s) ∈ [t]
it follows by definition that φc(s) = φc(t). By definition of branching steps
φc(s)

τ
=⇒ 1φc(s), and given the above indeed 1φc(s)(φc(t)) = p.

– Let φc(s) −
a→ µ, and let µ(φc(t)) = p for some state t. We prove that there

exists a µ′ such that [s]
a

=⇒ µ′ and µ′([t]) = p. As φc(s) −
a→ µ, there must

exist a transition t′ −a→ µ′ in the original PA such that φc(t
′) = φc(s) and

∀s′ ∈ φc(S) . µ(s
′) = µ′({s′′ ∈ S | φc(s

′′) = s′}).

So, because we assumed µ(φc(t)) = p, it should hold that µ′({s′′ ∈ S |
φc(s

′′) = φc(t)} = p. Stated otherwise, and recognising that the set of states
with the same representative as t is precisely the set [t], we get µ′([t]) = p.
As t′ −a→ µ′ such that µ′([t]) = p, and because s and t′ have the same
representative, also [s] −a→ µ′′ such that µ′′([t]) = p. Observing that a normal
step implies a weak step, we’re done. ⊓⊔

24

A.8 Proof of Theorem 28

Theorem 28. Let X be an LPPE and A its PA. Then, if for a summand i we
have ∀g ∈ G,di ∈ Di . ai(g,di) = τ ∧ ∃ei ∈ Ei . fi(g,di, ei) = 1 and for-
mula (1) holds, the set of transitions generated by i is probabilistically confluent.

Proof. Let X be an LPPE and A its underlying PA. So, by the operational
semantics the state set S of this PA contains precisely all vectors g ∈ G.

Let i be a summand such that ∀g ∈ G,di ∈ Di . ai(g,di) = τ ∧ ∃ei ∈
Ei . fi(g,di, ei) = 1 and for every summand j it holds that

(

ci(g,di) ∧ cj(g,dj)
)

→
(

i = j ∧ ni(g,di) = nj(g,dj)
)

∨

cj(ni(g,di),dj) ∧ ci(nj(g,dj , ej),di)
∧ aj(g,dj) = aj(ni(g,di),dj)
∧ fj(g,dj , ej) = fj(ni(g,di),dj , ej)
∧ nj(ni(g,di),dj , ej) = ni(nj(g,dj , ej),di)

(2)

By the operational semantics, the transitions generated by i are those transitions
g −a→ µ such that there is a choice of local variables di ∈ Di such that

ci(g,di) ∧ ai(g,di) = a ∧ ∀ei ∈ Ei . µ(ni(g,di, ei)) =
∑

e′
i∈Ei

ni(g,di,ei)=ni(g,di,e
′
i)

fi(g,di, e
′
i).

Let c be the set containing these transitions. We prove that c is probabilistically
confluent by showing that it is strongly probabilistically confluent, relying on
Proposition 17. Note that the sets ci from all confluent summands i can be
combined into a single confluent set by Proposition 20.

Let g −a→ µ be an arbitrary transition in c, and let d′
i ∈ Di be the local

variables that had to be chosen for i to generate it. So,

ci(g,d
′
i) ∧ ai(g,d

′
i) = a ∧ ∀ei ∈ Ei . µ(ni(g,d

′
i, ei)) =

∑

e′
i∈Ei

ni(g,d
′
i,ei)=ni(g,d

′
i,e

′
i)

fi(g,d
′
i, e

′
i).

Because ∀g ∈ G,di ∈ Di . ai(g,di) = τ ∧ ∃ei ∈ Ei . fi(g,di, ei) = 1, it follows
that a = τ . Moreover, µ is deterministic (as it assigns probability 1 to the next
state determined by ni(g,d

′
i, ei), where ei is the unique element of Ei such that

fi(g,d
′
i, ei) = 1). We use g′ to denote this unique target state. Thus, using the

notation ni(g,d
′
i) for the unique target state given the global state g and local

variables d′
i, we have g′ = ni(g,d

′
i).

So, we indeed can write g −a→ µ as g −τc−→ g′. To show that c is strongly
probabilistically confluent it remains to show that for every transition g −a→ µ

(

∃ν ∈ Distr(S) . g′ −a→ ν ∧ µ
τc
 ν

)

∨ (a = τ ∧ µ = 1g′) . (3)

Let g −a→ µ be such a transition for which this needs to be shown. Let j be
the summand from which it originates, and let d′

j be the local variables that had

25

to be chosen for j to generate it. So,

cj(g,d
′
j) ∧ aj(g,d

′
j) = a ∧ ∀ej ∈ Ej . µ(nj(g,d

′
j , ej)) =

∑

e′
j∈Ej

nj(g,d
′
j ,ej)=nj(g,d

′
j ,e

′
j)

fj(g,d
′
j , e

′
j)

Now, as we showed above that ci(g,d
′
i) and cj(g,d

′
j) hold, we can apply

Equation (2). Therefore, we know that either
(

i = j ∧ ni(g,d
′
i) = nj(g,d

′
j)
)

,
or for every ej ∈ Ej it holds that

cj(g
′,d′

j) ∧ ci(nj(g,d
′
j , ej),d

′
i)

∧ aj(g,d
′
j) = aj(g

′,d′
j)

∧ fj(g,d
′
j , ej) = fj(g

′,d′
j, ej)

∧ nj(g
′,d′

j, ej) = ni(nj(g,d
′
j , ej),d

′
i)

(where we already substituted g′ for ni(g,d
′
i).

In the first case, both g −τc−→ g′ and g −a→ µ result from the same summand.
Therefore, a = τ is immediate, and indeed µ = 1g′ because g′ = ni(g,d

′
i),

ni(g,d
′
i) = nj(g,d

′
j), and nj(g,d

′
j) denotes the unique target state of j given

the local variables d′
j . Therefore, the second disjunct of Equation 3 holds.

In the second case, we know several things. First of all, cj(g
′,d′

j), so j is still
enabled using the local variables d′

j in state g′. Moreover, aj(g,d
′
j) = aj(g

′,d′
j),

so since above we already showed that aj(g,d
′
j) = a, it follows that taking j

from g′ using the local variables d′
j also results in the action a. So, this shows

that there indeed exists a distribution ν ∈ Distr(S) such that g′ −a→ ν.
The final part of the proofs explains that µ

τc
 ν. For this, we need to show

that there exists a partition spt(µ) =
⊎n

k=1 Sk such that n = |spt(ν)| and ∀1 ≤
k ≤ n : µ(Sk) = ν(tk) ∧ ∀s ∈ Sk : s −

τc−→ tk.
To see this, assume that ν = {g′

 7→ p1, g
′
 7→ p2, . . . }. Now, let the partition

be given by Sk = {nj(g,d
′
j , e

′
j) | e

′
j ∈ Ej ,ni(nj(g,d

′
j , e

′
j),d

′
i) = g′

k}. Clearly,
by construction the partition contains precisely as many elements as spt(ν). It
is also indeed a valid partition: (1) there is no state in spt(µ) that is not present
in at least one of the Sk’s, since every such state can be written as nj(g,d

′
j , e

′
j)

and because of the requirement that ci(nj(g,d
′
j , ej),d

′
i) each of them goes to

at least one of the g′
k’s (which is also guaranteed to be in the support of ν if

it is in the support of µ, as follows from the computation below); (2) there is
no state in spt(µ) that occurs in more than one Sk, since any such state can be
written as nj(g,d

′
j , e

′
j) and therefore precisely occurs only in the Sk such that

ni(nj(g,d
′
j , e

′
j),d

′
i) = g′

k.
Furthermore, for any Sk:

µ(Sk) = µ({nj(g,d
′
j , e

′
j) | e

′
j ∈ Ej ,ni(nj(g,d

′
j , e

′
j),d

′
i) = g′

k})

=
∑

e′
j∈Ej

ni(nj(g,d
′
j ,e

′
j),d

′
i)=g′

k

fj(g,d
′
j , e

′
j)

=
∑

e′
j∈Ej

ni(nj(g,d
′
j ,e

′
j),d

′
i)=g′

k

fj(g
′,d′

j , e
′
j)

26

=
∑

e′
j∈Ej

nj(g
′,d′

j ,ej)=g′
k

fj(g
′,d′

j , e
′
j)

= ν(g′
k)

The first equality just unfolds the construction of Sk, the second applies the
operational semantics of summands, the third applied the requirement that
fj(g,d

′
j , ej) = fj(g

′,d′
j, ej) for every ej ∈ Ej , the fourth applies the require-

ment that nj(g
′,d′

j, ej) = ni(nj(g,d
′
j , ej),d

′
i) for every ej ∈ Ej , and the last

equality again uses the operational semantics.
The fact that every state s ∈ Sk has a τc-transition to g′

k follows directly from
the requirement that ci(nj(g,d

′
j , ej),d

′
i) for every ej ∈ Ej and the construction

that ni(nj(g,d
′
j , e

′
j),d

′
i) = g′

k. ⊓⊔

B Case study: a leader election protocol

The LPPE for the leader election protocol discussed in Section 7 is shown in
Figure 5. For readability, in every summand we only show the parameters that
are used or updated. As summations can use an existing parameter name for a
local variable, statements such as d 2 := d 2 occur. This means that, in the next
state, the global variable d 2 will have the value of the local variable d 2. We
use the notation reset(x) to denote that a variable x is reset to its initial value.

We will now give an idea of how confluence detection works for this LPPE. In
fact, for the case studies we implemented a tool that does this kind of reasoning
automatically.

As the summands 9, 10, 11, and 12 do not have a τ -action, and the target
states of the summands 1, 2, 7, and 8 are not determined by a deterministic
distribution, the only candidates for confluent summands are 3, 4, 5, and 6.
It turns out that all of these are indeed confluent. To show for instance the
confluence of summand 3, we need to prove that, for every summand j, and all
g,di,dj , and ej :

(

ci(g,di) ∧ cj(g,dj)
)

→
(

i = j ∧ ni(g,di) = nj(g,dj)
)

∨

cj(ni(g,di),dj) ∧ ci(nj(g,dj , ej),di)
∧ aj(g,dj) = aj(ni(g,di),dj)
∧ fj(g,dj , ej) = fj(ni(g,di),dj , ej)
∧ nj(ni(g,di),dj , ej) = ni(nj(g,dj , ej),di)

Note that summands 1, 5, 7, 9, and 11 can never be enabled at the same time
as summand 3, as summand 3 requires pc 2 = 2 and these summands all require
pc 2 to have another value. Also, 6 can never be enabled at the same time as 3
because of their contradictory requirements on set 3. Therefore, the formula we
need to prove holds vacuously for all these summands (as the left-hand side of
the implication can never be true).

So, we only still need to prove the formula for the summands 2, 4, 8, 10, and
12, and for 3 itself. Simple observation shows that summand 3 only deals with

27

the variables pc 2, set 3, e 2, val 3, and d 2, and that none of the summands 2,
4, 8, 10, and 12 either uses or updates any of these variables. This immediately
implies that summand 3 cannot disable any of these summands or the other way
around, that summand 3 cannot influence the actions or probabilities of these
summands, and that the state that is reached after first executing summand 3
and then one of these summands must be identical to the state that is reached
when doing this the other way around (given the same probabilistic choice).
Therefore, the formula holds for all possible valuations of its parameters (by
means of the second disjunct).

To see that summand 3 is confluent with itself, notice that it does not have
any local variables to choose from. Therefore, the first disjunct of the formula
holds trivially.

The same kind of reasoning can be applied to show that summands 4, 5, and
6 are confluent.

Z(val 1 : {1..6}, set 1 : Bool, pc 2 : {1..4}, d 2 : {1..6}, e 2 : {1..6},

val 3 : {1..6}, set 3 : Bool, pc 4 : {1..4}, d 4 : {1..6}, e 4 : {1..6}) =

pc 2 = 1 ⇒ τ
∑
•

d 2:{1..6}

1
6
: Z(pc 2 := 2, d 2 := d 2, reset(e 2)) (1)

+ pc 4 = 1 ⇒ τ
∑
•

d 4:{1..6}

1
6
: Z(pc 4 := 2, d 4 := d 4, reset(e 4)) (2)

+ pc 2 = 2 ∧ ¬set 3 ⇒ τ
∑
•

k:{1}

1.0 : Z(pc 2 := 3, reset(e 2), val 3 := d 2, set 3 := true) (3)

+ pc 4 = 2 ∧ ¬set 1 ⇒ τ
∑
•

k:{1}

1.0 : Z(val 1 := d 4, set 1 := true, pc 4 := 3, reset(e 4)) (4)

+ pc 2 = 3 ∧ set 1 ⇒ τ
∑
•

k:{1}

1.0 : Z(set 1 := false, pc 2 := 4, e 2 := val 1) (5)

+ pc 4 = 3 ∧ set 3 ⇒ τ
∑
•

k:{1}

1.0 : Z(set 3 := false, pc 4 := 4, e 4 := val 3) (6)

+ pc 2 = 4 ∧ d 2 = e 2 ⇒ τ
∑
•

d 2:{1..6}

1
6
: Z(pc 2 := 2, d 2 := d 2, reset(e 2)) (7)

+ pc 4 = 4 ∧ d 4 = e 4 ⇒ τ
∑
•

d 4:{1..6}

1
6
: Z(pc 4 := 2, d 4 := d 4, reset(e 4)) (8)

+ pc 2 = 4 ∧ d 2 > e 2 ⇒ leader(one)
∑
•

k:{1}

1.0 : Z(pc 2 := 1, reset(d 2), reset(e 2)) (9)

+ pc 4 = 4 ∧ d 4 > e 4 ⇒ leader(two)
∑
•

k:{1}

1.0 : Z(pc 4 := 1, reset(d 4), reset(e 4)) (10)

+ pc 2 = 4 ∧ d 2 < e 2 ⇒ follower(one)
∑
•

k:{1}

1.0 : Z(pc 2 := 1, reset(d 2), reset(e 2)) (11)

+ pc 4 = 4 ∧ d 4 < e 4 ⇒ follower(two)
∑
•

k:{1}

1.0 : Z(pc 4 := 1, reset(d 4), reset(e 4)) (12)

Fig. 5. The LPPE of a leader election protocol.

28

