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Abstract

We study a problem faced by a service provider, who is responsible for the repair of a group of assets

subject to random failures. In case of a failure, both an engineer and a spare part of the right kind need to

be available to carry out the repair. A limited number of engineers are employed while also stocks of the

various spare parts are limited. In case any resource (engineer or spare part) is not immediately available,

the service provider may follow a full backlogging policy. Alternatively, in case of spare parts stock

out, he has the option to revert to an emergency supplier with ample capacity of resources. We present

an original model to analyze the problem dynamics between this service provider and the emergency

supplier. Especially, we determine the optimal emergency shipment cost and the optimal multi-resource

level of the service provider. To this end, we propose a computationally efficient algorithm to find the

Stackelberg equilibrium. Furthermore, we design revenue and cost-sharing cooperative contracts between

these players which always result in coordination. Finally, we examine the risk of uncertainties in these

contracts and find the optimal contract parameters by considering the utility functions of the players.
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1 Introduction

After-sales service logistics have received much attention in the operations research literature in recent

years as the service oriented sector has grown significantly world wide. After-sales and maintenance services

constitute a significant part in many industries, often generating twice as much profit as do sales of original

products and equipment (Cohen et al., 2006). Original equipment manufacturers (OEMs) often dedicate

local service providers to serve customers in different regions. These local service providers are either part

of the organization or operate independently. Service providers often have local spare parts inventory and
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employ a team of service engineers to serve the asset owners and repair the failures. Spare parts are generally

replenished by the central depot after they are used locally. The replenishment of spare parts usually

takes a long time, especially for companies with geographically dispersed customers (Tovia et al., 2010).

For companies (customers) operating with capital intensive equipment and products, such as advanced

manufacturing equipment, defense systems and airplanes, downtime is very undesirable, therefore, they

require very high service levels. Furthermore, the resources required in maintenance services of these assets

are usually expensive and require high investment of the service providers. Therefore, to meet a high

target service level, it is often cost inefficient for a local service provider to fully rely on himself in serving

all repair calls and providing all required resources (by following the standard backordering policy). In this

case, the service providers need an emergency channel for cases the demanded resources are not available

sufficiently fast. An interesting problem arises when this emergency channel is operated by a different

organization, which in our study we denote as emergency supplier. In such a case, clear agreements are

necessary between the first-line (local) service provider and the emergency supplier. In the following, we

refer to the emergency supplier as ”she” and the local service provider (LSP) as ”he”.

The majority of studies in after-sales service supply chains and spare parts inventory management takes

a centralized point of view of a single player controlling the entire chain (see for a review, Hu et al., 2017).

In studies where contracts between multiple stakeholders are involved, they typically concern the interaction

between the asset owner (customer) and the service provider (Kim et al., 2007). Despite the increasing trend

of activities outsourcing in the service industry, it is surprising that the literature on upstream echelons of the

service supply chains is very limited. To the best of our knowledge, the model that we present in this paper

is the first that analyzes the upstream contracting in after-sales service logistics with multiple resources.

In this paper, we consider a single local service provider maintaining a group of assets based on a service

level agreement with the customer (asset owner). These assets are subject to random failures and the

service provider is responsible to carry out the repair of the failures. The corrective maintenance is often

done by replacement of the failed part with a ready-to-use spare part, to limit the system downtime. At

the same time, the failed part is typically sent to a repair shop and returned to the central depot stock after

repair completion. The replacement process needs to be carried out by specialist service engineers. Since the

demand for repairs is not known in advance, and the replenishment of the ready-to-use spare parts through

an external channel usually takes a long time, the service provider needs to stock a sufficient number

of spare parts to meet the target service level. He also needs to have a team of service engineers available

to replace the malfunctioning parts. As an alternative, the service provider can keep less local resources

and occasionally revert to an emergency supplier with ample capacity of spare parts and service engineers
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Figure 1: An example of a service logistic network, relevant to the studied problem in this paper.

to respond to a repair call. We study the situation where the external emergency supplier is interested

in maximizing her own profit and the local service provider needs to make a contract with her. Figure 1

illustrates an example of the entire service logistics network of this problem. In this figure, the scope of the

network that we study in this paper is highlighted. Often, the original equipment manufacturers (OEMs)

act as the emergency supplier in such a setting. Alternatively, in a service logistics network consisting of

different local service providers each responsible for a different region, some of the larger service providers

in the network can act as emergency suppliers for the smaller ones. Recently, a new stream of studies

is looking at the impact of 3D printing on after-sales service logistics and spare parts supply chain (see e.g.,

Khajavi et al., 2014). The model in this paper fits in this literature as well, by assuming that the emergency

supplier manufactures the requested spare parts on demand using additive manufacturing (3D printing).

Due to various uncertainties in the equipment failures and the spare parts replenishment, drafting a

satisfactory contract between the service provider and the emergency supplier can be quite complex. When

looking at the problem from a game theoretic perspective, we observe a nonzero-sum game with two players,

namely, the emergency supplier and the local service provider (LSP), in a principal-agent framework. For

a review of studies in two-players nonzero-sum games in supply chains in general, we refer to Leng and Zhu

(2009). We study different types of contracts between these two players. In the first type of contract, we

consider a Stackelberg game with price-only contract in which no negotiation or cooperation between the

players takes place. In this contract, the emergency supplier is the principal and she first decides on the

contract terms (here, the charge for an incidental emergency shipment). Given the contract parameter, the
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LSP jointly chooses his spare parts stock levels and the size of his service engineers team, if he accepts the

contract. Both players are interested in their individual profit and determine their decision variables such

that their own profit is maximized. This contract is used when the supplier possesses a relative power over the

local service provider and is not interested in any negotiation. Nevertheless, there is a limit on incidental cost

for the emergency supplier above which the LSP rejects the contract and reverts to a full backlogging policy.

We show that the Stackelberg equilibrium (price-only contract) does not always result in the highest profit

that players can achieve. The best that can happen, namely the centralized solution, is when the two players

act as a single entity and jointly aim to maximize the profit of the entire system. As a substitute for price-

only contracts, revenue and cost-sharing contracts for coordination in manufacturer-retailer channel in supply

chains are proposed in the literature, see for example, Kunter (2012) and van der Rhee et al. (2010). We

investigate revenue-sharing and cost-sharing contracts in which the emergency supplier and the local service

provider cooperate to earn more and reach the centralized optimal solution. We show that these cooperative

games can always coordinate the service chain. For each contract, we define the feasible range of each

contract parameter such that both players have an incentive to accept the contract. Furthermore, we study

how the risk of uncertainties is shared between the LSP and the supplier and introduce the utility functions

with which players can involve their risks in their decision makings. A solution is proposed in which the

player that is more risk sensitive will give up a portion of his or her expected profit, in order to have less risk.

In summary, our contributions in this paper are as follows:

� We study a novel contracting model in the upstream echelon of an after-sales service networks.

� We combine the coordinated contracting in the after-sales service chains with the joint planning of

resources.

� We propose an original computationally efficient algorithm to find the equilibrium solution in a

Stackelberg game between the local service provider and the emergency supplier.

� We analyze the risk involved in this game and find a solution with which the players can incorporate

the risk in their decision makings.

This paper is structured as follows. After a literature review in Section 2, we present our model in

Section 3. The Stackelberg equilibrium game is studied in Section 4. We discuss the centralized solution in

Section 5 and present two types of contracts to coordinate the system. We examine the risk of uncertainties

in the cooperative contacts in Section 6. In Section 7, the potential benefit of coordination is presented

in a numerical study. We conclude in Section 8.
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2 Literature review

This paper belongs to the pricing research in the business-to-business (B2B) area. Pricing in B2B studies

concerns the profit sharing between two industrial parties facing each other in negotiations. Research in this

area mainly sees pricing as a profit distribution factor rather than an opportunity for collaboration between

parties. Nevertheless, a new approach in B2B pricing takes the supply chain management perspective into

account and studies how parties can alter the win-lose, zero-sum perspective, and adopt a win-win, mutually

beneficial approach. In our study, this is labeled as collaboration, which is defined in the literature as close

working relationships for creating mutual gains (Christopher and Gattorna, 2005). For an interdisciplinary

literature overview on supply chain collaboration in B2B pricing, we refer to Formentini and Romano (2016).

Pricing of services is usually more challenging than pricing of physical products, and the interaction of

parties in a service supply chain has not necessarily the same characteristics and perspective as a traditional

supply chain. There is a broad literature on Service Supply Chain Management (SSCM) considering the

interaction and the contracting between different parties. For comprehensive recent reviews, we refer to

Wang et al. (2015) and Choi et al. (2016). In SSCM contracting, after-sales service has received less attention

so far. Game-theoretical approaches and service contracting have been incidentally studied in the after-sales

services and maintenance logistics literature especially in capital-intensive industries. In these industries, un-

certainties in cost and repair processes make it difficult to ensure a promised service level and to quote a price

for providing it. Performance-based contracting (PBC), a novel approach in this area, is replacing traditional

fixed-price and cost-plus contracts to improve product availability and to reduce the cost of ownership by

tying a service provider compensation to the output value of his performance. The basis of a PBC strategy is

to structure a proper relationship to reward performance instead of specifying the precise details of the under-

lying support services. For a review on performance-based contracting, see Selviaridis and Wynstra (2015).

PBC in the context of after-sales services in the aerospace industry is studied in Kim et al. (2007) and Gua-

jardo et al. (2012). Kim et al. (2007) focus on the trade-off between spare parts management and investment

in product reliability, by considering a variable failure rate. They find that the spare asset ownership plays

a key role in achieving a good balance between inventory and reliability levels. Mirzahosseinian and Piplani

(2011) examine supply chain performance in relation to repairable parts services under performance-based

contracts. They develop an inventory model for a repairable parts system by varying failure and repair

rates. Typically, the after-sale service is considered as the manufacturers warranty. If a product fails during

the warranty period, the customer makes a warranty claim, and the manufacturer provides the related

after-sales services including repair and replacement. The warranty contract design in different industries

has been extensively investigated in the literature using game theoretical approaches, see e.g., Balachandran
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and Radhakrishnan (2005), Esmaeili et al. (2014), Darghouth et al. (2017), and das Chagas Moura et al.

(2017). PBC is a fundamentally different concept in which the service provider is compensated based on the

realized performance outcome (e.g., asset availability) instead of the amount of resources utilized for repairs.

Most studies in after-sales services contracting aim at modeling the interaction of the asset owner

(customer) and the service provider. Studies on contracting in the upstream echelons of the service supply

chains are limited. In this paper, we address the contracting in the higher echelon of after-sales services by

studying a game between a service provider and his emergency supplier. To the best of our knowledge, the

model that we present in this paper is the first to analyze the upstream contracting in after-sales logistics with

joint resources. One closely related literature to this area is the make-or-buy decision. The make-or-buy trade-

off arises not only in the field of production but also in the processes of service companies. Li et al. (2014)

study the impacts of the make-or-buy service capacity decision in a decentralized supply chain comprising

a manufacturer and a retailer. The manufacturer supplies a product to the retailer, while the retailer

sells the product bundled with after-sales service to consumers in a fully competitive market. The retailer

can purchase service capacity from the spot market or build it in-house. They find that the manufacturer’s

sharing of the cost with the retailer to build service capacity improves the profits of both parties.

Some studies apply game theory models in the maintenance planning and execution, possibly with an inte-

gration with after-sales logistics. Jin et al. (2015) use a principal-agent framework to model the contract along

with jointly optimizing the maintenance, the spare parts inventory, and the repair capacity applying a game-

theoretical approach. They conclude that longer service contracts are preferred by suppliers because they

allow the supplier to save on the annualized inventory investment. Pascual et al. (2016) consider a mechanism

to reach channel coordination over a finite time period. They present a model to determine the optimal num-

ber of preventive maintenance interventions for a fixed term contract using net present value analysis for the

vendor, for the client, and jointly for both parties in an integrated chain. In their model, the client requires a

certain contract length and number of preventive maintenance interventions, and the vendor proposes a price

for that contract. Hamidi et al. (2014) present two game theory approaches for a joint decision-making con-

tract. In this study, the asset owner and the service agent need to establish a fair service contract by jointly

determining the preventive replacement and part ordering times considering uncertain equipment failures.

Other interesting papers in maintenance and after-sales services contracting are Murthy and Asgharizadeh

(1999), Jackson and Pascual (2008), Wang (2010), Karsten et al. (2012), and Godoy et al. (2014).

In this study, we extend the literature on multi-echelon after-sales service logistics and spare parts

inventory management from a centralized point of view to the situation in which echelons are governed by

independent parties. In after-sales service logistics, to maintain a widely dispersed installed base, service
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points are kept both at locations close to customers for fast supply times in case of failures and at central

stock locations where stock is pooled both for resupplying the local stock points and possibly for satisfying

customer demand through an emergency shipment if the local stock points are depleted. Such a structure

is referred to as a multi-echelon structure. The amount of literature on multi-echelon after-sales service

logistics is extensive and dates back to Sherbrooke (1968), who developed the METRIC (Multi-Echelon

Technique for Recoverable Item Control) model. This research concerns the inventory of spare parts

considering the replenishment, transshipment and emergency shipments between different echelon and

service points for which various models for different scenarios have been developed. As an extension, there

exist studies on the integration of other resources in the planning such as service engineers and tools. The

model developed in this paper is based on Rahimi-Ghahroodi et al. (2017) and Rahimi-Ghahroodi et al.

(2018) in which an integrated planning of spare parts and service engineers is investigated.

3 Model description

We consider a single local service provider maintaining a group of systems in a service region and an

emergency supplier to which the local provider may revert incidentally to serve a repair call. The local

service provider serves a repair call immediately when both the requested spare part and a service engineer

are available. Upon a failure, if the spare part is in stock but no service engineer is immediately available,

a backlogging policy for the service engineers with part reservation is followed. If, however, the requested

spare part is not in stock, irrespective of the service engineers utilization, both the spare part and the

service engineer are satisfied via an external emergency channel (outsourcing) at a high cost. We call

this policy the partial backlogging. A maximum accepted average waiting time is defined for the total

waiting time in the service region. Waiting times are caused by either the queueing for service engineers

or the lead time needed by an emergency shipment. There is no priority over different spare part types,

and the backorders in the service engineers queue are served according to the FCFS policy. For the case

in which the emergency shipment cost is given and the external emergency channel has an unlimited

supply capacity, this problem is studied in Rahimi-Ghahroodi et al. (2017). A related model under a full

backlogging policy is studied in Rahimi-Ghahroodi et al. (2018) in which the repair calls are backlogged

when the requested spare parts or the service engineers are not immediately available. Similar to the

model in Rahimi-Ghahroodi et al. (2017), in the case the part is available but all the service engineers

are busy, the part is reserved and the repair call is backlogged for service engineers (part reservation).

Different types of repair calls in this service region arrive randomly following a Poisson process with rate

λ. The assumption of Poisson failures is standard in the spare parts literature and follows from the technical
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nature of the systems under consideration. Each repair call requires a specific type of spare part. A repair

call is of type-k if it concerns the failure of a type-k spare part and hence a part of the same type is requested.

Let pk denote the probability that a repair call is of type k. The local service provider holds a local storage

in which K different types of spare parts can be kept. For each repair call, one service engineer is also

needed to accomplish the repair job (which basically consists of replacing the failed part by a ready-to-use

one). A team of service engineers is located in the region. In this model, we assume that the service time of

a repair call of type k (the time between the moment the repair job is assigned to a service engineer and the

moment the job will be finished) is exponentially distributed with rate µk. The inventory of type-k parts is

managed according to a base-stock policy with parameter Sk. That is, for each part consumed from stock,

a replenishment order is immediately issued. This is a typical policy used for expensive slow-movers in

spare parts inventory management. For each type-k spare part, the replenishment lead time is exponentially

distributed with rate νk. For each spare part, there is a holding cost per item per time unit. In addition,

hiring costs of service engineers is incurred. The local service provider outsources the repair call of type

k, when there is no spare part of that type available in stock. In that case, the emergency supplier fully

takes care of the repair call by providing the needed spare part and service engineer capacity. The local

service provider receives a fixed income U per period of time based on the service level agreement with

the asset owner (which is considered as given in this paper). A summary of notations is given in Table 1.
Suppose the emergency spare parts and service engineers are satisfied by an external emergency supplier

who is interested in maximizing her own profit and the local service provider needs to make a contract

with her. Suppose T is the transaction cost per time unit which the LSP needs to transfer to the supplier

based on the contract. This transaction cost can be a function of the emergency repair call (failure) rate

(for calls the LSP transfers to the supplier) or, in more complicated contracts, a function of both the spare

parts stock level and the size of the service engineers team (as we will see in Section 5). Obviously, both

the service provider and the emergency supplier prefer to make more profits by signing the individually

most favorable service contract. However, to obtain the best result for any player, the possible decision

of the counterpart needs to be considered.

The local service provider decides on his spare parts stock levels and the number of service engineers

he hires such that he maximizes his own profit. His decision depends on the transaction cost he needs

to transfer to the supplier for providing the emergency shipments. The contract transaction cost can be

a function of the number of spare parts and service engineers. Equation (1) defines the expected local

service provider (LSP) profit per time unit.

LP=U−
∑
k

SkHk−EO−T (S,E) (1)
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Table 1: Summary of notations

Input parameters:
Spare parts k :1, . . . ,K
λ Total failure rate of the system
pk Probability that the repair call needs a type-k spare part; λk=pkλ
νk Regular replenishment rate for type-k spare part
νemk Emergency replenishment rate for type-k spare part
µk Service rate for type-k repair job (i.e. the reciprocal of the expected repair time)
Hk Type-k spare part holding cost, per item per time unit (incurred for parts in stock and

in the pipeline)
O Cost of hiring a service engineer per time unit
U Local service provider fixed income per time unit
d Internal cost the supplier incurs for each emergency shipment
Decision variables:
Sk Type-k spare part stock level; S={S1,...,SK} is the vector of spare parts stock levels
E Number of service engineers hired
C Cost the local service provider needs to pay to the supplier per emergency shipment
β Fraction of the LSP internal revenue (cost) that is transfered to (paid by) the supplier in

a revenue-sharing (cost-sharing) contract
V A fixed amount the LSP pays to the supplier in a cost-sharing contract
Auxiliary variables:
γ(S) Total arrival rate of repair calls to the engineers queue (function of the spare parts stock levels)
WGγ/H/E Expected waiting time of calls in the LSP service engineers queue; a multi-server queue with

a generalized arrival process with a rate γ, E servers, and a hyper-exponential service time
W(S,E) Total expected waiting time of all repair calls (failures), which includes the expected waiting

time for service engineers and for emergency replenishments (function of the spare parts
stock level and the number of service engineers)

λL(S) Emergency (over-flow) failure rate: the arrival rate of repair calls that are satisfied by the
emergency supplier (function of the spare parts stock levels)

T (S,E) Transaction cost that the LSP needs to transfer to the supplier in a emergency supply
contract per time unit

There is a constraint on the average waiting time of repair calls that the LSP needs to satisfy when

deciding on S and E. The income of the LSP is fixed and independent of his decision variables. Therefore,

maximizing his profit is equivalent to minimizing his total cost. Hence, for a given transaction cost (agreed

with the supplier), the LSP problem gives

(PLSP) min
S,E

LC = min
S,E

∑
k

SkHk+EO+T (S,E),

subject to W(S,E)≤Wmax,

where

W(S,E) =
γ(S)

λ
WGγ/H/E+

∑
k

pkP
L
k (Sk)

νemk
, (2)

PLk (Sk) =
ρ
Sk
k /Sk!∑Sk
i=0

ρik/i!
, (3)

ρk =
λk
νk
, (4)

γ(S) =
∑
k

λk
(
1−PLk (Sk)

)
. (5)
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The number of parts in the replenishment pipeline for spare part type-k can be modeled as aM/M/Sk/Sk

queue. Then, it is easy to show that Equation (3) gives the loss probability (Erlang B formula) for type-k

spare parts. Equation (2) gives the total average waiting time of the repair calls. It is the summation of

the average waiting time for emergency shipments, which is basically equal to the loss probability times the

emergency shipment mean time, and the average waiting time of repair calls in the service engineers queue.

Finding the average waiting time in the service engineers queue is not straightforward. Different methods

for calculating the WGγ/H/E are proposed in Rahimi-Ghahroodi et al. (2017). Finally, γ(S) shows the

failure arrival rate to the service engineers queue. It is less than the total failure rate λ, since a fraction

of the repair calls is satisfied by the emergency supplier.

The incurred cost for the supplier for (occasionally) taking over the service from the local service provider

is a demand-dependent (per shipment) cost. It is assumed that the emergency supplier always has the

demanded spare parts and service engineers available immediately. There are different scenarios which make

this assumption justified. This problem can be a part of a bigger supply chain in which the emergency supplier

(OEM or larger service provider) serves many other service providers, and because of the pooling effect there

are always ample spare parts and service engineers available on her side. But there also exist situations in

which the emergency supplier is able to produce the spare parts on demand, e.g. using additive manufacturing

(see Song and Zhang, 2016). The emergency supplier is interested in her own profit which is formulated as:

SP=T (S,E)−dλL(S), (6)

where, λL(S) is the emergency repair call (failure) rate and is given by

λL(S)=
∑
k

λkP
L
k (Sk). (7)

Note that the emergency failure rate, λL(S) is a function of the LSP spare parts stock level.

The game between these two players can be modeled in different scenarios and with different types

of contracts and transaction costs. In the following sections, the different flavors of this game between

the LSP and the supplier are investigated. In Section 4, a Stackelberg game between the two players is

studied in a principal-agent framework with a price-only contract. The centralized solution is investigated

in Section 5 and two cooperative games, namely, revenue-sharing and cost-sharing contracts are introduced,

in which both players can earn more and achieve the centralized optimal solution.

4 Stackelberg game with price-only contract

In this section, we study the situation where the emergency supplier possesses certain power over the

LSP to design the contract parameters. The contract has only one parameter, which is the incidental
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emergency shipment cost the supplier charges LSP for each emergency call, i.e., the transaction cost gives

T (S,E)=CλL(S). (8)

In the economics literature, this framework is called a principal-agent model in which the principal

(emergency supplier in this paper) designs the contract and the agent (LSP in this paper) follows and

defines his decision variables based on the given contract terms. In this model, we assume that the local

service provider acts rationally, i.e. he uses an optimal setting of S and E for any emergency shipment

cost values, C. This problem can be modeled as a Stackelberg game (Stackelberg, 1934) between the

supplier and the LSP. To find an equilibrium of a Stackelberg game (Stackelberg equilibrium) we need

to solve a dynamic two-period problem via backwards induction. First, for a given emergency shipment

cost C, the local service provider decides on his (sub)optimal spare parts stock level and the number of

service engineers. Therefore, the LSP problem (total cost minimization) is defined as follows

(PPO
LSP) min

S,E
LC = min

S,E

∑
k

SkHk+EO+CλL(S), (9)

subject to W(S,E)≤Wmax. (10)

The emergency failure rate λL(S) is a decreasing function in the spare part stock levels. The objective

function (9) is a convex function in the spare part stock levels. Note that the average waiting time

(W (S,E)) is not a monotone function in the stock levels of spare parts. Yet, it is decreasing in the number

of service engineers, E. The problem (PPO
LSP) is studied in Rahimi-Ghahroodi et al. (2017) and can be

solved numerically with a greedy heuristic. Let S∗, E∗ and λ∗L be the (sub)optimal values for a given C:

S∗(C) (11)

E∗(C) (12)

λL(S∗(C)) = λ∗L(C) (13)

Then, knowing the LSP response to any value of the emergency shipment cost, the supplier chooses a

C value that maximizes his profit. The supplier expected profit given the price-only contract gives:

SP=(C−d)λ∗L(C) (14)

In a principal-agent platform game, the agent will accept the contract if the profit he earns is not less

than his outside opportunity (reserved) profit. In this problem, the outside opportunity or alternative for

the local service provider is switching to the full backlogging policy where the failures will be backlogged

in the case the spare parts or service engineers are not immediately available. The LSP problem with
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full backlogging policy is studied in Rahimi-Ghahroodi et al. (2018). Without loss of generality, we assume

that the emergency supplier reserved profit is 0. In Appendix B, it is shown that for any given maximum

average waiting time, Wmax, there is a threshold for the emergency shipment cost, Cth, such that for any

emergency shipment cost equal and greater than this threshold, the full backlogging policy outperforms

the partial backlogging policy. It means, in this Stackelberg game model, if the supplier decides to charge

an emergency shipment cost higher than this threshold, the LSP will switch to the full backlogging policy

and will decline the contract. Therefore, this threshold is the maximum value that the supplier can charge

for emergency shipment cost in the contract, otherwise she loses the business and earns nothing. Hence,

we add this as a constraint for the supplier maximization problem:

(PPO
S ): max

C
SP = max

C
(C−d)λ∗L(C)

C≤Cth,

where Cth is the emergency shipment cost threshold above which the full backlogging policy gives higher

profit (lower total cost) for the local service provider than the partial backlogging policy. To find the

threshold value, we need to find the emergency shipment cost value with which the partial backlogging

model gives the same optimal total cost value as the full backlogging policy. It is obvious that the optimal

total cost of the partial backlogging model is increasing in the emergency shipment cost, therefore, we

can use a bisection search to find the Cth. As discussed in Appendix B, for some cases the full backlogging

policy outperforms the partial backlogging policy even for C=0. In this case, the LSP is better off with

the full backlogging policy, and having any contract with the emergency supplier is not beneficial for him.

In the following analysis we assume that there always exists a positive emergency shipment threshold

value Cth. In addition, we assume Cth>d, otherwise, the emergency supplier can not offer any price-only

contract that results in a positive expected profit for her.

To find the Stackelberg equilibrium, i.e., the optimal emergency shipment cost, we need a numerical

procedure. Since the LSP problem does not have a solution in closed form, solving this problem analytically

is not possible. The first method that one may use is an exhaustive search on the emergency shipment

cost in the range of d to Cth to find the value that maximizes the supplier’s profit. However, it is obvious

that this approach becomes computationally intractable when the problem gets larger. To find a more

efficient way, we need to first analyze the problem.

For any given C, problem (PPO
LSP) yields the optimal spare parts stock levels and the optimal number

of service engineers. By increasing the emergency shipment cost, the solution may stay the same for a

while, until the change of spare parts inventory and service engineers hiring cost (internal cost) becomes

12



0 500 1000 2000 2500 30001500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

O
p
ti
m

a
l e

m
er

ge
n
cy

 r
at

e 
(6
* ) L

Emergency shipment cost (CL)

Figure 2: Optimal emergency (loss) rate as a function of emergency shipment cost for Example 1.

less costly than change in emergency shipment cost, i.e.,[
S(C+ε)−S(C)

]
H+

[
E(C+ε)−E(C)

]
O < CλL(S(C))−(C+ε)λL(S(C+ε)), (15)

where
λL(S(C))=λ∗L(C). (16)

S(C)H is the optimal inventory holding cost, E(C)O is the optimal hiring cost of the service engineers

given the emergency shipment cost C, and ε is a very small number. In this point, the solution changes

and the emergency failure rate decreases. This suggests that, the optimal emergency failure rate, λ∗L(C),

is a decreasing step function in emergency shipment cost. Figure 2 shows this behavior for the example

below with one type of spare part:

Example 1. λ = 1/day, ν = 0.2/day, µ = 0.5/day, νem = 3/day, O = e100/day, H = e110/day,

Wmax=0.15 day, d=e500, U=e2000.

This makes the supplier profit, given in Equation (6), a linear step-wise function of the emergency

shipment cost, see for example Figure 3. Hence, it is obvious that the optimal emergency shipment cost

that maximizes the supplier profit, will be either among the peak points in Figure 3 (or equivalently one

of the drop points in Figure 2) which is less than Cth, or the highest feasible C value, i.e., the Cth value.

It means, if we could find the drop points (the emergency cost values at which the optimal emergency

failure rate will drop), we only need to search among these points to find the optimal emergency shipment

cost. First, let us formally define the drop points:

Definition 1. In a given range of [0,Cth], there is finite set of emergency shipment cost values δi∈∆(Cth)

13
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Figure 3: Supplier profit as a function of emergency shipment cost for Example 1.

such that
λ∗L(δi+ε) 6=λ∗L(δi)

where λ∗L(C) is the optimal emergency failure rate the LSP sends to the supplier given the emergency

shipment cost C and ε is a small positive number. Such a δi value is called a drop point and ∆(Cth) is

the set of all drop points in the range of [0,Cth].

In Appendix A, we introduce an efficient way to find the drop points in a given range. In this method,

we only solve the greedy algorithm of the LSP problem twice, which means that this procedure is

computationally efficient. The supplier profit function (14) is a piece-wise linear function in the emergency

shipment cost which can be reformulated as follows

SP=



(C−d)l1 0≤C≤δ1,

(C−d)l2 δ1<C≤δ2,

...

(C−d)ln δn−1<C≤Cth,

(17)

where δis are the drop points which are introduced in Definition 1 and li, i=1,...,n is the emergency

failure rate given that the emergency shipment cost is between δi−1 and δi. Given this formulation, it

is easy to show that

Proposition 1. The optimal solution of the Problem PPO
S is either found at one of the drop points in

the sets ∆(Cth) or at the Cth value.

The proofs of propositions are given in Appendix D. In the next section, first we examine the optimal
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centralized solution as the benchmark. Later on, we introduce two cooperative contracts with which the

players are able to achieve the coordinated solution in this game.

5 Centralized solution and cooperative contracts

In this section, we are interested to see how much the two parties together can earn if the decisions are

made centrally. Furthermore, we investigate with what procedure, we can lead the parties to change

their decisions based on the solution of the Stackelberg game to the optimal centralized solution using

cooperation (Sections 5.1 and 5.2). First, we need to find the optimal solution in the case the decision

is made centrally. For that, the problem is to maximize the total profit in the system while satisfying

the maximum average waiting time constraint.

(PC) max
S,E

TP = max
S,E

U−
∑
k

SkHk−EO−dλL(S) (18)

W(S,E)≤Wmax (19)

A close to optimal solution of this problem can be found using the greedy heuristic procedure introduced

in Rahimi-Ghahroodi et al. (2017). The problem (PC) has the same structure as the local service provider

problem, (PPO
LSP), in the Stackelberg equilibrium setting. More precisely, the centralized solution can

be found by solving the local service provider’s total cost minimization problem where the emergency

cost is d (incidental emergency shipment cost the supplier incurs per shipment). Therefore, by definition,

the centralized solution always gives equal or higher total profit than the summation of the LSP and

the supplier profits in the price-only Stackelberg equilibrium. However, still a question is how to share

the total profit in the centralized solution. Therefore, a framework is needed to lead the players to the

centralized solution but at the same time, gives them a strategy to share the profits. If a contract is able

to align decision variables to accomplish the optimal centralized solution, we say it coordinates the system.

As we expected, numerical experiments show that the spare parts stock levels and the number of service

engineers in the centralized solution generally, but not always, differ from those of the Stackelberg solution.

We can test this for Example 1. In this example, the total profit in the centralized solution is equal to

e960.8 and the Cth is equal to e2855.2 (see Section 4). In the Stackelberg equilibrium, the optimal value

for the emergency shipment cost is e2179.5 (chosen by the supplier). This makes the LSP and the supplier

profits e567.3 and e202.4, respectively. Therefore, the total profit in the Stackelberg solution is e769.7

which is lower than the total centralized profit. This means the coordination between the supplier and the

LSP increases the total profit with 960.8−769.7=e191.1 (24.8%). By solving the centralized problem, we

find a different spare part stock level and number of service engineers than those of the Stackelberg solution.
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In the case that the centralized and the Stackelberg problems result in the same spare parts stock levels and

the number of service engineers, there will be no benefit from the coordination. We expect that obtaining

the same result in the centralized and the Stackelberg solutions becomes less likely in larger problems.

We are interested to design a contract in which players achieve all benefits of the coordination. In other

words, a framework which forces players to always act towards the centralized solution. That is possible,

if both players benefit from this contract. To achieve the coordination, we investigate cooperative games.

Players will agree on a cooperation contract in which both earn, and the benefit of this cooperation will be

divided among them fairly, but what is fair? In the next two sections, we propose two ways of cooperation

between the local service provider and the emergency supplier.

5.1 Revenue-sharing

Suppose the local service provider and the supplier agree on a revenue-sharing contract such that the

LSP transfers a fraction β of his internal revenue to the supplier; β∈ [0,1]. The LSP’s internal revenue

can be calculated by subtracting the spare parts holding and the service engineers hiring costs from his

income (U), i.e. his total revenue excluding the emergency shipment cost. With this contract, the LSP

and supplier profit functions, and the contract transaction cost are as follows:

LP = (1−β)

(
U−

∑
k

SkHk−EO
)
−CλL(S), (20)

SP = β

(
U−

∑
k

SkHk−EO
)

+(C−d)λL(S), (21)

T (S,E) = β

(
U−

∑
k

SkHk−EO
)

+CλL(S). (22)

With a simple condition, this revenue-sharing contract can coordinate the system:

Proposition 2. Suppose the LSP and the emergency supplier agree on a revenue-sharing contract in

which the LSP transfers a fraction β of his internal revenue to the supplier and in return, the supplier

agrees to set the incidental emergency shipment cost equal to

C=(1−β)d. (23)

In this case, any value of β∈ [0,1] will coordinate the system, i.e., it results in the same solution (spare

parts stock levels and the number of service engineers) as the optimal centralized solution.

When C=(1−β)d, the profits of the LSP and the supplier become a multiplier of the total profit in

the centralized model (TP), i.e.,
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LP = (1−β)TP, (24)

SP = βTP. (25)

It means the β value determines the profit sharing ratio between the LSP and the supplier. It is obvious that

this contract is acceptable for both players if it is more profitable than the Stackelberg game for each of them.

Therefore, a β value must be chosen that makes this revenue-sharing contract attractive for both players.

Proposition 3. In the revenue-sharing contract described in Proposition 2, the LSP and the emergency

supplier accept the contract iff ◦
SP
•

TP
≤β≤1−

◦
LP
•

TP
, (26)

where
•

TP is the optimal total profit in the centralized problem,
◦

LP is the optimal LSP profit and
◦
SP is

the optimal supplier profit in the Stackelberg problem.

The range

[ ◦
SP
•

TP
,1−

◦
LP
•

TP

]
is always non-empty, and there always exists a value for β in [0,1] which satisfies

the condition in (26).

A revenue-sharing contract with a sharing fraction (β) value within the range in (26) and C=(1−β)d will

coordinate the system and make the expected profits of both players higher than those of the Stackelberg

game. The supplier, however, has another motivation to sign this revenue-sharing contract. By setting

the emergency shipment cost value less than her own cost and in return receiving a fraction of the LSP

internal revenue, the supplier is actually exchanging some part of her stochastic profit with a certain

amount (a fraction of the LSP internal revenue). Therefore, she will have less risk in this contract. We

study the risk that each player bears in this contract in Section 6 in more detail.

The question that remains is what value of β in this feasible range should be chosen? The higher the

β value, the higher the supplier profit. In the cooperation, they together earn as much as
•

TP value in

total. Hence, the benefit of cooperation, BC is equal to

BC=
•

TP−(
◦
SP+

◦
LP). (27)

In the proposition below, one possible approach for sharing the benefit is described in which the benefit

of cooperation is divided evenly between the players.

Proposition 4. In a coordinated revenue-sharing contract, choosing the β value in (28) and C=(1−β)d

results in a solution in which the benefit of coordination is divided evenly between the LSP and the supplier:

β =

◦
SP+

•
TP−

◦
LP

2
•

TP
. (28)

This β value is always feasible, i.e. satisfies the condition in (26). Using this sharing fraction value makes
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the expected profits of the LSP and the supplier as follows:

LP=

◦
LP+

•
TP−

◦
SP

2
, (29)

SP=

◦
SP+

•
TP−

◦
LP

2
. (30)

It is easy to show that the β value in (28) is actually the middle point of the β feasible range defined in

(26), so the solution of this approach is in the core of the problem (i.e., it is a feasible solution). It is worth

noting that dividing the benefit of the cooperation evenly actually gives the same solution as the Shapley

value which is a well-known benefit sharing concept in cooperative game theory (see e.g. Shapley, 1953).

The revenue-sharing contract works when the supplier has full information about the LSP revenue. The

information which the supplier needs in order to learn the LSP revenue are: the failure rates, the service

level (maximum average waiting time), the LSP’s internal costs (spare parts holding cost and service

engineers hiring cost), and the LSP income U . If the supplier does not have full information on one of these

parameters, the contract should be redesigned. In the interesting case where the income of the LSP, U ,

is not revealed to the supplier, e.g. because either the LSP does not want to share his income information

or the supplier does not fully trust LSP’s information, a different contract should be considered. One

way to do that is to propose sharing cost instead of sharing revenue, as explained in the next section.

5.2 Cost-sharing

In case the income of the LSP, U , is unknown for the emergency supplier, having a revenue-sharing

contract is not possible. Alternatively, the players can use a cost-sharing contract form in which they

agree on sharing a fraction of the LSP internal cost. However, in order to satisfy the individual rationality

(IR) constraint for both players, they need to add a new parameter V , which is a fixed amount the LSP

pays to the supplier. Therefore, in a cost-sharing contract, the LSP asks the supplier to pay for a fraction

of the sum of his spare parts holding cost and service engineers hiring cost (internal cost) and in return he

pays a fixed amount to the supplier. Let β denote the fraction of the LSP internal cost that the supplier

must pay, and let V be a fixed amount that the LSP pays to the supplier. With this contract, the LSP

cost function, the supplier profit function and the contract transaction cost are as follows

LC = V +(1−β)

(∑
k

SkHk+EO

)
+CλL(S), (31)

SP = V −β
(∑

k

SkHk+EO

)
+(C−d)λL(S), (32)

T (S,E) = V −β
(∑

k

SkHk+EO

)
+CλL(S). (33)
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Similar to the previous section, the proposition below shows that, with a simple condition, this cost-sharing

contract always coordinates the system:

Proposition 5. Suppose the LSP and the emergency supplier agree on a cost-sharing contract in which

the LSP gets a fraction β of his internal cost from the supplier and in return, he pays a fixed amount,

V , to the supplier. If the supplier agrees to set the incidental emergency shipment cost equal to

C=(1−β)d, (34)

then, any values of β∈ [0,1] and V coordinate the system, i.e., they result in the same solution (spare

parts stock levels and the number of service engineers) as the optimal centralized solution.

By having the condition C=(1−β)d, the LSP expected cost, LC , and the supplier expected profit,

SP, become a multiplier of the total cost in the centralized problem plus a fixed term.

LC = V +(1−β)TC , (35)

SP = V −βTC . (36)

It means the β and V values determine the profit sharing ratio between the LSP and the supplier.

Nevertheless, β and V need to be chosen such that both players accept the contract. Both the LSP and

the supplier should earn at least the amount that each can earn in the Stackelberg game.

Proposition 6. In the cost-sharing contract described in Proposition 5, the LSP and the emergency

supplier accept the contract iff

β ∈ [0,1], (37)

◦
SP+β

•
TC≤ V ≤

◦
LC−(1−β)

•
TC , (38)

where
•

TC is the optimal total cost of the system in the centralized problem,
◦

LC is the optimal cost of

LSP and
◦
SP is the optimal profit of the supplier in the Stackelberg problem.

The range
[ ◦
SP+β

•
TC ,

◦
LC−(1−β)

•
TC
]
is always non-empty, and there always exists a value for V which

satisfies the condition in (38).

Similar to the revenue-sharing contract, a question here is that which value for V in this range should be

chosen. The higher the V value, the higher the supplier profit. The proposition below shows an approach

in which the players decide to share the benefit of the cooperation evenly:

Proposition 7. In a coordinated cost-sharing contract, choosing the V value in (39) and C=(1−β)d

results in a solution in which the benefit of coordination is divided evenly between the LSP and the supplier:
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V =

◦
SP+

◦
LC+(2β−1)

•
TC

2
. (39)

This V value is always feasible, i.e. satisfies the condition in (38). In this case, the LSP expected cost

and the supplier expected profit are as follows:

LC =

◦
SP+

◦
LC+

•
TC

2
, (40)

SP=

◦
SP+

◦
LC−

•
TC

2
. (41)

It is easy to show that the V value in (39) is the mid value of its feasible range which trivially satisfies

(38). This approach gives the same solution as the Shapley value.

One specific case of the cost-sharing contract is when β=0. In this case, the contract parameters are:

C = d, (42)

◦
SP ≤ V ≤

◦
LC−

•
TC . (43)

Since β=0, there is no sharing in cost. The LSP will pay a fixed amount V as specified above, and in

return, the supplier accepts to charge him d for each emergency shipment. The Shapley value for V in

this case is equal to
Vβ=0=

◦
SP+

◦
LC−

•
TC

2
. (44)

6 Risk and utility functions

In the revenue and the cost-sharing contracts, although the contract parameters are determined based

on nominal (expected) values, the amount which each player earns will depend on the realized number

of failures. For the LSP, it is obvious that if the realized number of failures becomes more than its

predetermined rate, he earns less. Moreover, in both contracts, since C<d, a number of failures larger

than its predetermined rate will have a negative effect on the supplier profit as well. Therefore, the risk

of having more failures will be shared, not necessarily equally, between the LSP and the supplier in the

revenue and the cost-sharing contracts.

To calculate the risk of the LSP and the supplier profits, we need to find the variance of the emergency fail-

ure arrival process. Although the failure arrival process is assumed to be as a Poisson process, the emergency

failure arrivals do not form a Poisson process anymore (because of the spare parts stock impact), see Rahimi-

Ghahroodi et al. (2017). Finding the variance of the emergency failure arrivals needs some complex analysis.

In Appendix C, we show how to calculate the variance of the emergency failure arrival process. Suppose its

variance is given as V ar(AL). The proposition below gives the variance of the LSP and the supplier profits.
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Proposition 8. For the revenue and the cost-sharing contracts described in Propositions 2 and 5, given

a value of β, the variances V ar(LP) and V ar(SP) satisfy

V ar(LP) = (1−β)2d2 V ar(AL), (45)

V ar(SP) = β2d2 V ar(AL). (46)

Risk in revenue-sharing contract Suppose, in the revenue-sharing contract, the players are interested

to involve their risks in choosing the right sharing fraction, β. The feasible range of β is determined as

stated in (26). In this case, to see what value of β in this range should be chosen, players decide based

on their utility instead of their expected profit. The definition below gives the utility functions of the

LSP and the supplier in the revenue-sharing contract.

Definition 2. Suppose the risk aversion factors rL and rS determine the risk sensitivity of the LSP and

the supplier, respectively. Hence, the utility functions of the LSP and the supplier in a revenue-sharing

contract are as follows

UL = LP−rLV ar(LP)=(1−β)
( •
TP−(1−β) rL d

2 V ar(AL)
)
, (47)

US = SP−rSV ar(SP)=β
( •
TP−β rS d2 V ar(AL)

)
. (48)

This form of utility function has been widely used in recent literature, see Chiu and Choi (2016). Each

player is attempting to optimize his or her own utility. The proposition below gives us the β values that

optimize the LSP and the supplier utility functions, which are not necessarily equal.

Proposition 9. Given the utility functions in Definition 2, β∗L and β∗S give the optimal sharing fraction

values for the LSP and the supplier utility functions respectively:

β∗L =



◦
SP
•

TP
if 0<RL≤L1

2RL−
•

TP

2RL
if L1<RL≤L2

1−
◦

LP
•

TP
if RL>L2

(49)

β∗S =



1−
◦

LP
•

TP
if 0<RS≤ξ1

•
TP

2RS
if ξ1<RS≤ξ2

◦
SP
•

TP
if RS>ξ2

(50)
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where
RL = rLd

2V ar(AL), (51)

RS = rSd
2V ar(AL), (52)

L1 =

•
TP2

2(
•

TP−
◦
SP)

, (53)

L2 =

•
TP2

2
◦

LP
, (54)

ξ1 =

•
TP2

2(
•

TP−
◦

LP)
, (55)

ξ2 =

•
TP2

2
◦
SP

. (56)

As stated in Proposition 9, the LSP and the supplier have not always aligned objectives in their utility,

i.e., the β values that maximize the LSP and the supplier utility functions are not necessarily the same.

Nevertheless, the proposition below gives the optimal β value when there is a unique optimal solution

(the optimal solutions for the LSP and the supplier are the same) for the sharing fraction value β:

Proposition 10. Given the utility functions in Definition 2, there is a unique optimal solution for the

sharing fraction value β under the conditions specified. β∗ gives the solution that optimizes both the LSP

and the supplier utility function.

β∗ =



◦
SP
•

TP
if 0<RL≤L1 and RS>ξ2

1−
◦

LP
•

TP
if RL>L2 and 0<RS≤ξ1

•
TP

2RS
if L1<RL≤L2 and ξ1<RS≤ξ2 and

2RL−
•

TP

2RL
=

•
TP

2RS

(57)

where RL,RS,L1 ,L2 ,ξ1 and ξ2 are defined in Proposition 9.

If the LSP and the supplier have conflicting objectives, i.e. the optimal β value for the LSP and the supplier

utility functions are not the same, different approaches can be followed. One of the players may have more

power in negotiation, and he or she will determine a value for β in this conflicting situation based on his or her

utility function. Suppose, none of the players is dominant and the value of β should be chosen in a negotiation

with equal opportunity. One ”fair” solution is to pick a value for β such that the LSP and the supplier utility

functions have the same deviation from their optimum values. The proposition below gives this solution:

Proposition 11. In the case where the LSP and the supplier utility functions optimizers, β∗L and β∗S respec-

tively (given the utility functions in Definition 2), are not equal, βm gives the solution that guarantees equal de-

viation of the LSP and the supplier utility from their optimum values while the summation of their utility val-
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ues is maximum. βm is equal to β+ (58) if it is between β∗L and β∗S values, otherwise βm is equal to β− (59).

β+=

RL−
•

TP+

√
(RL−

•
TP)2+(RL−RS)

( •
TP(β∗L+β∗S)−RLβ∗L(2−β∗L)−RSβ∗S2

)
RL−RS

, (58)

β−=

RL−
•

TP−
√

(RL−
•

TP)2+(RL−RS)
( •
TP(β∗L+β∗S)−RLβ∗L(2−β∗L)−RSβ∗S2

)
RL−RS

, (59)

where RL and RS are defined in Proposition 9.

In summary, the player that is more risk sensitive will give up a portion of his or her expected profit

in order to have less risk. For both players, the expected profit and the risk are positively correlated. The

higher the β value, the higher the supplier’s expected profit and at the same time her risk, and the other

way around for the LSP. If the supplier is more sensitive to the risk than the LSP, they will choose a β value

which is less than the Shapley value. A higher β value will be chosen when the LSP is more sensitive.

Risk in the cost-sharing contract In the cost-sharing contract, since there are three contract pa-

rameters C, β and V , the expected profits of the LSP and the supplier are independent of the risks that

they take in this contract. Although any value of β will coordinate the system and give a feasible solution,

it determines which player takes more risk. For β=0, the supplier will earn the fixed amount V regardless

of the realized number of failures. However, the LSP profit turns out to be lower or higher if the realized

number of failures gets higher or lower than expected, respectively. For β=1, all risk will be taken by

the supplier and the LSP earns a definite fixed profit. Any value of β in between will define the fraction

of risk each player takes. In this case, if players are interested to involve the risk in their decision, they

do not need to make the decision based on their utilities. Since the risk and the expected profit of the

players are independent on each other, they can negotiate on them separately and use different strategies.

7 Numerical performances

In this section, we show numerical results for an example with 8 types of spare parts. The value of each

parameter is randomly generated in a reasonable range and is given in Table 2. We solve the Stackelberg

game and the centralized problem for different maximum average waiting time.

Suppose Wmax=1 day. In Figures 4 and 5, the optimal emergency failure rate and the supplier profit

are plotted as a function of the emergency shipment cost (in the range of [0,Cth]). With the method

explained in Appendix A, we are able to find the drop points in Figure 4, and then check these drop

points to determine which one gives the highest value of the supplier profit. This will be the solution

of the Stackelberg equilibrium (optimal emergency shipment cost for the supplier).

23



Table 2: Parameters value for an example with 8 types of spare parts.

Spare parts type 1 2 3 4 5 6 7 8

Failure rate PD1 (λk) 0.1 0.2 0.125 0.15 0.15 0.1 0.125 0.05
Repln. rate PD (νk) 0.035 0.180 0.139 0.029 0.174 0.048 0.020 0.024
Service rate PD (µ) 0.5
Emergency repln. rate PD (νem) 1
Holding cost e PD (H) 112 276 183 279 38 208 35 97
Engineers hiring cost e PD (O) 100
LSP fixed income e PD (U) 8000
Supplier cost e per shipment (d) 500
1per day
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Figure 4: Optimal emergency failure rate as a function of emergency shipment cost for an example with
8 types of spare parts (Wmax=1 day).

For each value of the service level (maximum average waiting time), we calculate the total benefit that

the players can obtain by following a coordinated cooperation contract (revenue or cost-sharing contract),

which is plotted in Figure 6. To calculate the benefit of coordination, BC, we use Equation (27). Assuming

that the coordination is obtained using revenue-sharing contract, and the benefit of the coordination is

divided evenly between the LSP and the supplier, the benefit of each player is plotted in Figure 7. As can

be seen in the figures, the benefit of coordination can become considerably high. In this example, there

is up to almost 50% increase in the total profit using a coordinated contract. Note the non-monotone

change of coordination benefit with respect to the service level, which to a large extent is caused by the

fact that the decision variables in this problem (stock levels and number of service engineers) are integers.

For the LSP and the supplier, in addition to the expected benefit, the risk is shown as well. The error

bar shows the standard deviation of the benefit each player can acquire by following the revenue-sharing

contract. Note, all results are shown in percentages (compared to the Stackelberg equilibrium result).
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Figure 5: Supplier profit as a function of emergency shipment cost for an example with 8 types of spare
parts (Wmax=1 day).
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Figure 6: Total benefit of coordination for different maximum average waiting time.

In the case the players involve the risk in their decision making, using the approach discussed in Section 6,

we calculate the optimal β value with respect to different ratios of the supplier to the LSP risk sensitivity

factors (rS/rL). The result is illustrated in Figure 8. The feasible range of the β values (

[ ◦
SP
•

TP
,1−

◦
LP
•

TP

]
) as well

as the the β Shapley value are given in the figure. As we discussed before, a higher β means higher expected

profit and at the same time higher risk for the supplier and the other way around for the LSP. Therefore,

when the supplier becomes more sensitive to risk than the LSP (rS/rL increases), optimal β decreases. Note,

disregarding the risk is not the same as the situation that both players having the same risk sensitivity factors.

25



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Wmax

0

10

20

30

40

50

60

M
ea

n
 a

n
d

 s
ta

n
d
ar

d
 d

ev
at

io
n

 o
f t

h
e 

L
S
P

 a
n
d

 s
u
p
p
li
er

 
b
en

e-
ts

 in
 c

oo
p
er

at
io

n
 (
%

)

LSP
Supplier

Figure 7: The expected benefit of the LSP and the supplier in cooperation for different maximum average
waiting time. The error bar shows ± standard deviation of the benefit (risk).
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Figure 8: The optimal β value with respect to the ratios of the supplier to the LSP risk sensitivity factors
in the situation where the players involve risk in their decision makings (rL=1).

8 Conclusion

We study a Stackelberg game between a local service provider (LSP) and an emergency supplier. The LSP

has limited local resources and in the case of a spare part stock out, he uses an emergency shipment from the

supplier. In this framework, the supplier is the principal and offers a contract to the LSP. In a Stackelberg

game, the supplier offers an emergency shipment cost which maximizes her profit, while taking into account

the maximum price that the LSP may accept. The LSP declines the offered contract and switches to

the full backlogging policy if the supplier offers a price higher than this maximum value (threshold). We
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propose an original computationally efficient algorithm to find the equilibrium solution of the Stackelberg

game and illustrate that the optimal emergency shipment cost for the supplier is not necessarily the

maximum feasible (threshold) value. Furthermore, we show that the Stackelberg game may result in a

solution that is not the same as the optimal centralized solution. In a numerical example, we observe up to

50% difference of the total profits between the optimal centralized solution and the Stackelberg equilibrium.

To reach the system coordination (where a contract is set up that guarantees a total profit equal to

the centralized solution), for the case where the fixed income of the LSP is known to the supplier, a two

parameters (revenue-sharing), and for general cases, a three parameters (cost-sharing) coordinated contract

is introduced. Each contract results in a feasible set for the parameters in which the contract coordinates

the system and both players are better off. The parameters values in these feasible ranges define the share of

each player from the total benefit of the coordination. Furthermore, in the revenue-sharing contract, we show

which value of the sharing fraction parameter should be chosen if the players decide to involve their risks

in their decision makings and optimize their utilities instead of their expected profits. When the supplier is

more risk sensitive, a β value is chosen which is smaller than the fair (Shapley) solution of the situation where

they are risk-neutral. When the LSP is more risk sensitive, a larger value of β is chosen. In the cost-sharing

contract, the players are able to decide how to share the risk independent of their expected profits.

There are several directions for future research. Our model assumes that except for the fixed income value,

the supplier has full information on the service provider parameters. Although the lack of information about

the LSP fixed income can be compensated by switching from revenue-sharing to cost-sharing contract, for

other parameters such as the failure rate and the service level, more fundamental changes in the modeling are

needed. In the case of hidden information, the problem is obviously more complicated. Depending on which

party has the perfect information, the problem can be studied by following the literature on signaling or

screening games. Another possible research venue in the literature that considers imperfect information sce-

narios are multi-period games where the players have the opportunity to update their information over time.

Moreover, the emergency shipment cost is assumed to be paid per shipment (a simple linear function of the

number of emergency shipments). However, as an extension, other convex or concave transaction cost func-

tions can be considered which possibly change the dynamics of the problem. Furthermore, future studies may

consider the case with a network of multiple service providers and suppliers who compete to have the best con-

tracts between each other. Finally, another important study object is to include the contracting of the service

provider and the asset owner into the analysis, which leads to a 3-tier after-sales service logistics network.
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A Finding drop points

Suppose we are interested to find all the values for the emergency shipment cost in which a change in the

LSP optimal solution (spare parts stock levels and the number of service engineers) occurs (drop points)

in the range [0,Cth]. First, by solving the LSP optimization problem (greedy algorithm), we calculate the

(sub)optimal emergency failure rate, λ0L and λthL , given C=0 and C=Cth, respectively. Second, by under-

taking an exhaustive search, we find all spare parts stock levels combinations which results in an emergency

failure rate in the range
[
λ0L,λ

th
L

]
. Note that the evaluation of emergency failure rate for different spare parts

stock level values is fast. Therefore, performing an exhaustive search will not make the process too slow. Let

us call all these stock levels combinations ”candidates”. Then, we sort the candidates increasingly based on

TCnew−TC old

λoldL −λnewL

(60)

where TCnew and λnewL is the LSP total cost and the emergency failure rate of the candidate, and TC old and

λoldL is the LSP optimal total cost and the emergency failure rate of the last found drop point (and for the first

one the solution of C=0). Equation (60) actually calculates the value of next potential emergency shipment

cost for which cost of changing the solution becomes equal to change of emergency shipment cost, i.e.

TCnew−TC old=C
(
λoldL −λnewL

)
(61)

Each candidate counts as a drop point if its (LSP) total cost is higher than the total cost of the previous

drop point, its emergency failure rate is lower than the emergency failure rate of the previous drop point,

and its emergency shipment cost, which is equal to TCnew−TCold

λoldL −λnewL

, is higher than the previous drop point.

By checking these conditions for each candidate, we can find all the drop points. Note that we need to

resort the candidates again after a new drop point is found.

B Service policies comparison

In Rahimi-Ghahroodi et al. (2018) and Rahimi-Ghahroodi et al. (2017), an integrated spare parts inventory

and service engineers planning problem is studied but with different service policies. While in the first

paper the backlogging policy for both spare parts and service engineers is assumed, in Rahimi-Ghahroodi

et al. (2017), a full emergency shipment in the case of spare parts stock out, with a cost C per emergency

shipment is considered. We refer to the first policy as full backlogging and the latter as partial backlogging

policy. In this section, we investigate under which conditions each of these two service policies results
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in lower optimal total service cost for the same service level.

From the total cost definition, it is clear that the optimal total costs for the partial backlogging policy

increases in the emergency shipment cost, C, see Rahimi-Ghahroodi et al. (2017). The optimal total cost of

the full backlogging model is independent of the emergency shipment cost. Therefore, if the optimal total

cost of the partial backlogging model with C=0 is less than the optimal total cost of the full backlogging

model for the same service level, it is easy to show that:

Proposition B.1. For any given maximum average waiting time value, iff the optimal total costs of the

partial backlogging model with C=0 is less than the optimal total costs of the full backlogging model, there

exists a threshold for the emergency cost, Cth, such that for any emergency cost value below this threshold, the

partial backlogging model results in lower optimal total cost than the full backlogging model. For emergency

cost values above this threshold, the full backlogging model outperforms the partial backlogging model.

Note, given C=0, the optimal total costs of the partial backlogging model is not necessarily less than

the optimal total costs of the full backlogging model. If in the partial backlogging policy, the emergency

shipment is not fast enough (see Rahimi-Ghahroodi et al., 2017), the full backlogging policy outperforms

the partial backlogging policy even when the emergency shipment is free (C=0).

We compare these two models for different values of the maximum average waiting time (service level) and

emergency cost, C, in the case study considered in Rahimi-Ghahroodi et al. (2017) and Rahimi-Ghahroodi

et al. (2018). Figure 9 shows how much (in percentage) the optimal total service cost in partial backlogging

policy is higher (positive) or lower (negative) than the optimal total service cost of the full backlogging

policy for different emergency shipment costs and maximum total average waiting times. The blackish

area is where the partial backlogging policy gives lower total service cost and the whitish area is where

the full backlogging policy gives a better result. The threshold property can be seen in Figure 9. The

highest difference between these two policies occurs when the maximum average waiting time is high (low

service level) and the emergency shipment cost value is in its extremes.

In summary, these results suggest that none of these two service policies, full and partial backlogging,

is always superior in terms of the optimal total cost given the same constraint on the average waiting

time (same service level constraint). Depending on the service level and the emergency shipment cost,

one of them outperforms the other. For more expensive emergency shipment cost and lower service level,

the full backlogging policy becomes more preferable.
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C Variance of emergency failure arrivals

The emergency failure process that is sent to the supplier is a superposition of different arrival streams, each

originated from different spare part type inventory. The stream type k, k=1,...,K, is the overflow traffic

(loss process) of the spare part type-k inventory. Note, the inventory of spare part type-k can be modeled

as a M/M/Sk/Sk queue, see Rahimi-Ghahroodi et al. (2017). The variance of the emergency failure

process (overflow stream) type k can be calculated using Riordan formula as follows (Wilkinson, 1956):

V ar(ALk ) = λLk

(
1−ρkPLk +

ρk
1+Sk+ρkP

L
k −ρk

)
(62)

The variance to mean ratio (Peakedness) of the stream k, Zk is equal to

Zk =
V ar(ALk )

λLk
= 1−ρkPLk +

ρk
1+Sk+ρkP

L
k −ρk

(63)

It is possible to show that Zk≥1. It means the overflow stream is more bursty than a Poisson process

(with has the peakedness of 1). In other words, the variance of the number of arrivals in an interval is

higher than the mean number of arrivals in that interval.

The exact variance of the superposed process of all overflow streams (total emergency failure process)
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can be calculated using the integrated Markov chain of all spare parts inventory. We know from the

Palm-Khintchine theorem that the superposition of N independent renewal processes converges to a

Poisson process as N goes to infinity (cf. Heyman and Sobel, 2003, Chapter 5.8). Therefore, the variance

of the Poisson process, i.e., λL, can be used as a lower bound and for problems with high number of spare

parts as an accurate approximation for the exact variance of the total emergency failure process.

D Proofs of proportions

Proposition 1

Proof. As shown in Equation (17), the supplier profit function is a piece-wise linear function of emergency

shipment cost. Therefore, it is straightforward to show that the optimal emergency shipment cost is always

found at one of the drop points in the sets ∆(Cth) or at the Cth value.

Proposition 2

Proof. Setting C=(1−β)d means that the supplier should charge an emergency price to the LSP less

than his own cost, d. With this condition, the LSP profit function is

LP=(1−β)

(
U−

∑
k

SkHk−EO−dλL(S)

)
(64)

Hence, the profits of the LSP and the supplier become a multiplier of the total profit in the centralized

model, see the total profit function (18).

LP = (1−β)TP, (65)

SP = βTP. (66)

This means that the solution (
•
S,

•
E) that optimizes the total profit of the system, i.e. the optimal centralized

solution, is also an optimal solution for the LSP profit using this contract, regardless of the β value in

[0,1].

Proposition 3

Proof. Let (
◦
S,

◦
E,

◦
C,

◦
λL) denote the optimal solution of the price-only Stackelberg problem, and (

•
S,

•
E,

•
λL)
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the optimal centralized solution. We know that

•
TP = U−

∑
k

•
SkHk−

•
EO−d

•
λL,

◦
LP = U−

∑
k

◦
SkHk−

◦
EO−

◦
C

◦
λL,

◦
SP = (

◦
C−d)

◦
λL.

Both players will accept the contract, if two conditions below hold

LP=(1−β)
•

TP ≥
◦

LP (67)

SP=β
•

TP ≥
◦
SP. (68)

These two inequalities define the feasible range of β value in (26). Note that

•
TP≥

◦
SP+

◦
LP. (69)

Hence, the range

[ ◦
SP
•

TP
,1−

◦
LP
•

TP

]
is always nonempty and there always exists a β satisfying (26). Moreover,

it is obvious that
◦
SP and

◦
LP are smaller than

•
TP, hence

[ ◦
SP
•

TP
,1−

◦
LP
•

TP

]
⊆ [0,1]. (70)

Proposition 5

Proof. As it is shown in the equation below, by having the condition C=(1−β)d, the LSP expected

cost, LC , and the supplier expected profit, SP, become a multiplier of the total cost in the centralized

problem plus a fixed term.

LC =V +(1−β)

(∑
k

SkHk+EO+dλL(S)

)
= V +(1−β)TC , (71)

SP=V −β
(∑

k

SkHk+EO+dλL(S)

)
= V −βTC . (72)

This means the solution (
•
S,

•
E) that optimizes the total profit (minimizes the total cost) of the system, i.e.

the optimal centralized solution, is also an optimal solution for the LSP cost using this contract, regardless

of the β and V values.
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Proposition 6

Proof. Suppose (
◦
S,

◦
E,

◦
C,

◦
λL) is the solution of the price-only Stackelberg problem, and let (

•
S,

•
E,

•
λL) denote

the optimal centralized solution. We know:

•
TC =

∑
k

•
SkHk+

•
EO+d

•
λL,

◦
LC =

∑
k

◦
SkHk+

◦
EO+

◦
C

◦
λL,

◦
SP = (

◦
C−d)

◦
λL.

Both players accept the contract, if the two conditions below hold

LC =V +(1−β)
•

TC ≤
◦

LC , (73)

SP=V −β
•

TC ≥
◦
SP. (74)

The inequalities above give the feasible range for V in (38). Note

◦
SP+

◦
LP≤

•
TP. (75)

We then have (note that
•

TP=U−
•

TC and
◦

LP=U−
◦

LC )

◦
SP+U−

◦
LC ≤ U−

•
TC ,

◦
SP ≤

◦
LC−

•
TC .

By adding β
•

TC in both sides, we get

◦
SP+β

•
TC≤

◦
LC−(1−β)

•
TC . (76)

This means that for any value of β (by definition 0≤β≤1) in this cost-sharing contract, there is a feasible

value for V which coordinates the system and gives a solution that satisfies inequalities (73) and (74).

Proposition 9

Proof. The LSP and the supplier utility functions are a quadratic function in β in which the coefficients

of the second degree terms are negative. When taking derivatives of these utility functions and setting
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these derivatives equal to zero, we obtain

βrL =
2RL−

•
TP

2RL
, (77)

βrS =

•
TP

2RS
. (78)

Note that βrL and βrS are the optimizing values for the utility functions if they are in the feasible range

defined in (26). It is possible to show that βrL and βrS are in the range

[ ◦
SP
•

TP
,1−

◦
LP
•

TP

]
, if L1 <RL≤L2

and ξ1<RS≤ξ2 respectively. If βrL and βrS are smaller than
◦

SP
•

TP
, it is obvious that the optimal β value

is equal to
◦

SP
•

TP
, and if βrL and βrS are larger than 1−

◦
LP
•

TP
, then 1−

◦
LP
•

TP
is the optimal solution.

Proposition 10

Proof. Follows immediately from Proposition 9.

Proposition 11

Proof. We are interested to find the value for β such that

UL(β∗L)−UL(β)=US(β∗S)−US(β). (79)

The equation above gives

β2(RS−RL)+2β(RL−
•

TP)+
•

TPβ∗L−RLβ∗L(2−β∗L)+
•

TPβ∗S−RSβ∗S2=0. (80)

It is possible to show that

(RL−
•

TP)2+(RL−RS)
( •
TP(β∗L+β∗S)−RLβ∗L(2−β∗L)−RSβ∗S2

)
≥0. (81)

Equation (80) therefore has two solutions as given in (58) and (59). By definition, it is easy to show that

one of these two solutions is always between β∗L and β∗S, which is then obviously a feasible solution (it

is in the range

[ ◦
SP
•

TP
,1−

◦
LP
•

TP

]
). The other solution may be also feasible, however, it is farther from the

optimal points (β∗L and β∗S) and hence, the solution between β∗L and β∗S is always more preferable.
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