
Flexible Sensor Network Reprogramming for Logistics

Leon Evers Paul Havinga Jan Kuper

July 30, 2007

Abstract

Besides the currently realized applications, Wireless
Sensor Networks can be put to use in logistics pro-
cesses. However, doing so requires a level of flexibility
and safety not provided by the current WSN software
platforms. This paper discusses a logistics scenario,
and presents SensorScheme, a runtime environment
used to realize this scenario, based on semantics of
the Scheme programming language. SensorScheme is
a general purpose WSN platform, providing dynamic
reprogramming, memory safety (sandboxing), block-
ing I/O, marshalled communication, compact code
transport. It improves on the state of the art by mak-
ing better use of the little available memory, thereby
providing greater capability in terms of program size
and complexity. We illustrate the use of our plat-
form with some application examples, and provide
experimental results to show its compactness, speed
of operation and energy efficiency.

1 Introduction

Recent technological advances in low power digital
RF, small scale sensors and low power silicon inte-
grated circuits have created a new domain of com-
puting: wireless sensor networks (WSNs) that sense
their environment, and collectively compute and rea-
son upon the perceived state of the world around
them. Already, WSNs have found applications in the
field of environmental monitoring [1], [2], and object
tracking [3].

In the foreseeable future wireless sensor networks
can also make a great impact in the supply chain
management business. WSN nodes can be attached

to crates, roll containers, pallets, and shipping con-
tainers to function as Active Transport Tracking De-
vices as we call them. These devices can be pro-
grammed to actively monitor the transportation pro-
cess, and verify proper handling conditions of goods
like temperature for fresh foods. Furthermore, they
can detect damage due to sudden shocks, or opening
of containers and other forms of contract breach. Ac-
tively monitoring every transported item in this way
can significantly reduce delivery delays and loss or
theft of goods, which cause a significant loss of rev-
enue. Furthermore, these devices can create a com-
plete overview of the entire logistical process, and im-
prove efficiency and quality of service resulting in re-
duced safety stocks and improved handling efficiency.

Active transport tracking devices require a level
of flexibility and security beyond what is currently
offered by WSN system software. In this paper
we present a platform called SensorScheme that is
able to deliver on the requirements posed by active
tracking logistics scenarios. SensorScheme is an in-
terpreter to execute dynamically loaded application
code for WSN platforms based on the Scheme pro-
gramming language.

In a nutshell, SensorScheme provides the following
features:

• Interpreter based on the Scheme language;

• Communication by automatic marshalling of
data items;

• Safe execution environment, in which malfunc-
tioning programs cannot crash nodes;

• Co-routines implement multiple threads of con-
trol, enabling blocking I/O calls;

1

• No limits on code size, application complexity
and memory use (except for available memory);

• Garbage collected memory pool, shared between
interpreter state and application data.

Besides tracking logistical processes, SensorScheme
is also beneficial to many other, more ‘traditional’
WSN applications. SensorScheme bears many simi-
larities with the Maté [4] virtual machine platform in
terms of functionality. But due to its different design,
SensorScheme can provide a wider range of capabili-
ties, and allow richer applications to be executed on
it.

The rest of the paper is organized as follows: Sec-
tion 2 gives a more thorough description of the lo-
gistics application scenario, followed by a review of
the state of the art for realizing this application in
section 3. Next, section 4 describes the design of
SensorScheme, followed by a discussion of implemen-
tation techniques for the scenario in section 5. Then
we evaluate SensorScheme’s performance in section
6, and conclude and give future directions (section
7).

2 Scenario

In the introduction we have already outlined how
the use of Mote-sized [5] active transport tracking
devices (ATTDs) attached to returnable transport
items (RTIs), such as crates, rolling containers, pal-
lets and shipping containers can be used to improve
the effectiveness of logistical processes.

To illustrate how ATTDs might be programmed
we will now discuss a small transportation scenario.
Consider a shipment of bananas as it travels from the
farm near Rio de Janeiro, Brazil to a supermarket
distribution center in Rotterdam. The bananas are
packed in boxes stacked onto pallets, each equipped
with a tracking device. From the farm, these pal-
lets travel in trucks to a loading dock at the harbor,
where they are loaded into shipping containers that
carry them all the way to the supermarket chain’s dis-
tribution center. During the whole trip, the bananas
need to be kept cool, between 10 and 15 degrees Cel-
sius, and away from sources of ethylene gas, such as

fresh coffee beans, that adversely influence the ripen-
ing process.

Figure 1 shows a state diagram of the stages and
transitions that these pallets will go through during
the transportation process from the farm to the dis-
tribution center, which we’ll call a journey.

While a pallet is waiting at the farm to be loaded
into the truck it tries to verify whether it is positioned
correctly, near other pallets that are to be loaded
into the same truck. It does this by comparing its
destination and contents with (the majority of) peer
nodes on other pallets nearby. When a pallet is not
positioned correctly or no peer nodes are found, it
should raise an alert.

Next, the pallets are loaded into the truck trans-
porting them to the harbor. Nodes can detect being
loaded by ‘hearing’ another device, placed inside the
truck, at which point they’ll make the transition to
stage 2. This device in the truck is programmed with
its own itinerary, containing data about its identity,
as well as the goods it is to be transporting. When in
the truck, each pallet device requests from the truck
device the company and truck IDs and records these
into the log file.

While in the truck, pallet nodes do not have to ver-
ify anything, since no change in state will take place
until they are taken out. They do have to detect be-
ing taken out of the truck, however, which can be
concluded from absence of the truck, and presence of
the wireless infrastructure (access point) of the har-
bor loading dock.

When unloaded on the dock, the ATTDs again
verify whether they are positioned correctly to be
reloaded into shipping containers. The dock is
equipped with advanced electronic infrastructure ca-
pable of tracking each pallet’s location, and based
on this, each pallet verifies whether it is at the cor-
rect position. When placed incorrectly, it can directly
send an alert message to the dock infrastructure that
will inform workers to correct it.

For the last stage of the transport, the pallets are
loaded into containers. These can be recognized by
a matching shipping ID programmed into each con-
tainer. Finally, when the container arrives in the dis-
tribution center, pallet ATTDs sense the distribution
center access point and make the state transition.

2

At the banana farm, each ATTD is programmed
with a small executable program, called an itinerary
that in effect tracks the bananas as they move
through the logistics process. The itinerary program
is listed in pseudo-code in figure 2. The program con-
sists of three task definitions that will be run in par-
allel. The first task in effect executes the states and
transitions of the state diagram of figure 1. It has
a similar structure: alternating the actions of each
state and checking for transition conditions.

Before going into the details of the individual state-
ments, it is important to note that the itinerary
makes use of a global dictionary, that can be stored
into and read from using resp. the appendDict() and
dict() procedures. The dictionary stores data items
tagged with a key that are relevant to the transporta-
tion process. As data is added to it, a transcript is
made to the device’s log, providing a complete record
of all relevant actions and events on the current jour-
ney. Furthermore, this dictionary is also used to store
information relevant to other nodes, and can thus be
queried remotely, as we will see in section 5. The
itinerary starts by adding general data specific to
this journey to the dictionary and log. (line 2). The
lowercase names are dictionary keys, and the xxxID
names the values, to be replaced by actual ID num-
bers.

Upon entry of each state the itinerary task
assigns an alerter function to global variable
alerter (lines 4, 9, 16, 21). When any of
the tasks detect an illegal situation, the alerter
function is called to report the error in a way
most appropriate to the current stage in the
journey (either BlinkAndBeepAlert, TruckAlert,
AccessPointAlert or ContainerAlert).

While still at the farm, (lines 5-7), as long as no
truck is found within wireless connection range, the
device keeps verifying matching destination and con-
tents with (the majority of) peer nodes on other
pallets nearby. If the device has unmatching con-
tent or destination it will raise an alert (currently
BlinkAndBeepAlert). Further on, in section 5 we
will more closely look at how this peer communica-
tion will take place.

Once in the truck, pallet ATTDs update their dic-
tionary (thereby also recording the state change), and

1. at farm

among peer nodes?

2. in truck

3. on harbor dock

at good position?

4. inside container

detect truck

Log company, truckNo

detect absence of truck

 and harbor access

detect container:

shippingID

detect distribution

center access point

5. at distribution center

Figure 1: State diagram of the transportation process

add truckCompany and truckNo data queried from
the truck device’s dictionary (lines 9-11).

The next state change occurs when the truck is
out of range and the expected access point is found
in range (lines 12, 13). Unlike trucks, access points
can be out of direct radio connectivity, only con-
nected through multiple hops, which is why a simple
inRangeNodes call cannot be used to detect it and
AccessPointInRange is used in stead.

The next two stages are similar in structure to
the first two, but use different verification and state
change detection code. At the harbor dock pallets
communicate with the access point to verify their
position by calling PositionVerify (ShippingID)
instead of peer communication as used while at the
farm. The Rotterdam distribution center access point
uses proprietary wireless protocols, and can be de-
tected using ProprietaryAccessPointInRange.

The rest of the itinerary program contains two
tasks, Logger and Guarder that are occupied with a
single task for the duration of the trip. The Logger
task (lines 28-30) calls timedLog to monitor ambient
temperature at 1 minute intervals, logs the sensed

3

1 task Itinerary () {
2 appendDict ({ loc : MyFarmID, dest : RioHarborID,
3 contents : BananasID });
4 // at farm
5 alerter = BlinkAndBeepAlert;
6 while not any(deviceType(inRangeNodes()) == TruckType) {
7 PeerVerify ({dest : dict(dest),
8 contents : dict(contents)})
9 };

10 alerter = TruckAlert;
11 appendDict ({truckCompany, truckNo :
12 TruckRequestProps([company, serial]) });
13 // in truck
14 until (not any (deviceType(inRangeNodes()) == TruckType)
15 and AccessPointInRange(RioAccessPointID)) {
16 wait;
17 };
18 // on harbor dock
19 alerter = AccessPointAlert;
20 appendDict ({ loc : RioHarborID });
21 while (not any (peerDict(inRangeNodes(),
22 {shipper = ShippingID}) {
23 PositionVerify (ShippingID);
24 };
25
26 // inside container
27 alerter = ContainerAlert;
28 appendDict ({ dest = RotterdamDistCentID });
29 until (
30 ProprietaryAccessPointInRange(RotterdamDistCentID)) {
31 wait;
32 };
33 // at distribution center
34 appendDict ({ loc = RotterdamDistCentID});
35 };
36
37 task Logger () {
38 timedLog(1 minute, (senseAndAlert (TempSensor(), 10 C, 15 C))
39 };
40
41 task Guarder () {
42 noProximity({contents : Coffee}, 10M);
43 };

Figure 2: Pseudo-code of itinerary program

values, and alerts if the temperature is outside of the
allowed range, using the alerter function currently as-
signed to the alert variable by the itinerary task.

The Guarder task calls the noProximity function
that continuously verifies whether the device can find
any nearby pallets (within approx. 10 meters) that
contain coffee. If found, it writes a log entry and
signals an alert (again using the current alerter).

Note that the presented itinerary is somewhat sim-
plified, omitting corner cases and handling of error
conditions. Here it serves mainly as clarification of
our proposed solution. We also have not mentioned
how one would obtain an itinerary program. In sim-
ple cases these might be programmed by hand, but
we consider it more likely to be generated automati-
cally from a logistics management application.

The itinerary program calls a substantial number
of procedures. In section 5 we will more closely dis-
cuss an implementation for one of those, PeerVerify.
Some of these procedures, like AccessPointInRange
are standard, and are included on the ATTDs
as part of a standard library. Others, like
ProprietaryAccessPointInRange, are specific to a
particular journey, and will be programmed into the
device along with the itinerary. The possibility of
supplying custom procedures along with more stan-
dardized code creates a very flexible system. Since
an itinerary is expressed as an application program,
every time it is replaced, this effectively results in
reprogramming (a part of) the wireless device’s pro-
gram code, while it is deployed and in operation.

Safety must also be considered. Usually, pallets are
owned and managed by a pool organization. Only if
users (transporters) will not be able to ‘break’ the
devices (ie. modify their software operation) can this
scenario be a realistic one. Now all that’s needed
is a way to express these itinerary programs that is
expressive, compact, and safe.

3 Application requirements
and state of the art

Dynamically replacing or updating applications is a
crucial technology for the logistics scenario. Sev-

4

eral code update mechanisms have been developed
already for Wireless sensor network platforms. These
work by replacing the entire program image as a
whole. The TinyOS platform [6] for sensor networks
includes XNP [7] and Deluge [8] as two of such tech-
nologies. Unfortunately, this approach is not suitable
for our scenario for a number of reasons.

First, program images typically are a few tens of
kilobytes in size, and transporting this much data
takes time in the order of minutes (according to [8],
[9]). This can be improved somewhat by using one
of various compression and differential algorithms
(RSYNC [10], MOAP [11], FlexCup [9]).

Second, these code update mechanisms aim at re-
placing the entire binary with a new one, including
the operating system that controls task scheduling,
low level hardware access, network protocols, and
even the code update mechanism itself, which should
not be modifiable by the ATTD users. Several WSN
platforms provide runtime loadable modules (Contiki
[12], SOS [13]), but these still give unrestricted access
to the entire device.

A more suitable approach is the use of an inter-
preter or virtual machine. On the one hand, only
the application code needs to be transported to the
devices, which significantly reduces the size of trans-
ported code. Moreover, since code representation is
a design variable, rather than a hardware character-
istic, it can be engineered specifically to be compact
for the kinds of programs expected to be built for it.

Additionally, the interpreter or virtual machine
acts as what is usually called a ‘sand box’, shield-
ing off the operating system from the interpreted ap-
plications. Misbehaving or buggy applications are
thus prevented from modifying any state besides their
own, and cannot crash a device or damage the de-
vice’s critical functions.

The most well-known and frequently used virtual
machine architecture in mainstream computing is
Sun’s Java Virtual Machine. It has found use as a
sensor network platform already (Sun SPOTs [14]).
SensorWare [15] is another platform based on inter-
pretation and sandboxing for WSN’s. However, both
of these require more resource-rich platforms than
currently developed WSN’s that we consider for our
application scenario.

Maté / Bombilla [4] is a virtual machine designed
specifically for memory-constrained WSN devices.
Unfortunately, Maté can contain only truly tiny ap-
plications. Programs are organized in contexts asso-
ciated to event sources, containing a 128 byte instruc-
tion array that is run in response to triggered events.
Each context (6 in total) has its own operand stack,
set of 8 local (integer) variables and a packet buffer.
These severe complexity restrictions exclude our ap-
plication scenario from being implemented on top of
Maté because of the lack of VM-implemented proce-
dure libraries, container data types, and limited com-
munication capabilities. Furthermore, Matéś concur-
rency model does not support multiple independent
tasks running in parallel. More recently, other WSN-
specific VM architectures have been developed (VM*
[16], DaViM [17]) that somewhat alleviate some of
these issues, without solving them.

4 SensorScheme

We propose SensorScheme as a novel interpreted plat-
form for WSN’s that can be used to implement our
application scenario. Our platform uses execution se-
mantics of the programming language Scheme, hence
its name. It is, however, not an implementation of the
Scheme language, and creating SensorScheme pro-
grams does not require the use of the Scheme lan-
guage or syntax. For clarity, the code examples in
the following sections do use Scheme syntax.

4.1 Program representation and exe-
cution semantics

The heart of the SensorScheme platform is the ap-
proach it takes on representing program code, and the
execution semantics. This program representation is
not a novel concept introduced by SensorScheme, but
since it might be considered a somewhat unusual ap-
proach (at least in the WSN community), we will
briefly describe the basics of it here. For a more in-
depth description of the Scheme execution semantics,
we refer the reader to [18].

Program fragments take the shape of a specially
formatted linked list of memory cells, called s-

5

exp ::= sym
| (exp exp ...)
| (lambda (sym ...) exp)
| (define sym exp)
| (set! sym exp)
| (if exp exp exp)
| (quote exp)
| (prim exp ...)
| num | #t | #f | ()

prim ::= cons | car | cdr | set-car! | set-cdr! | ...
| null? | pair? | symbol? | number? | ...
| + | - | * | / | < | = | > | ...
| eval | apply | call/cc | ...
| call-at-time | bcast | sensor | ...

Figure 3: A grammar for SensorScheme

expressions. Figure 3 summarizes the SensorScheme
s-expression grammar (using Scheme syntax). The
operational semantics of these rules is as in regular
Scheme.

The first rule, exp, describes the set of legal Sen-
sorScheme expressions. Its first three constructs rep-
resent SensorScheme’s lambda-calculus core: variable
reference, application and lambda abstraction. The
next four constructs are the special forms needed to
make a minimally complete Scheme implementation:
global variable definition, variable assignment, condi-
tional evaluation, and literal quotation. Then primi-
tive procedure invocation, and the last four rules rep-
resent constant reference (numbers, true, false, empty
list).

The set of defined primitives, some of which are
given by the second rule includes most of the common
Scheme primitives, and includes (line by line): cons-
cell manipulation, type predicates, arithmetic, flow-
control, and I/O.

Execution of SensorScheme programs proceeds
through tree-traversal of the s-expression. Operands
to primitives or procedures are s-expressions them-
selves, which are evaluated first, before application.
Scheme-defined functions (paired with local variable
bindings, called closures, obtained as the result of
lambda-abstraction) are first class objects, assignable

to variables, just like any other value. Defining func-
tions effectively amounts to defining a global variable
that carries as its value a closure.

Using the SensorScheme program representation
and execution model, programs are represented as
data structures that can be operated on. One of the
operations that can be performed on these programs-
as-data structures is to execute or evaluate them, us-
ing the eval primitive. SensorScheme relies on this
principle for loading new programs at runtime: When
a node receives a program-as-data from the wireless
network interface, it will invoke the eval primitive
on it, which executes the contents of the program.
This program then calls define to add new global
procedures and event handlers.

4.2 Memory

The biggest limitation of WSN platforms is the
very limited working memory (RAM). This is even
stronger for interpreted programs, since generally,
they require more memory than their compiled coun-
terparts.

It is general practice in WSN software to store all
program state in statically allocated memory and on
the stack. No dynamic memory allocation from a
runtime heap is used, because allocating all but the
smallest blocks of memory from a small heap very
quickly leads to internal fragmentation which will
fail subsequent memory allocation attempts. This is
clearly an undesirable situation for long-lived WSN
applications.

SensorScheme is designed specifically for the small
memory size of WSN platforms. All memory is allo-
cated from a single pool of small equally-sized cells.
These cells correspond to Scheme cons-cells, and each
contains two data members which can be a reference
to any other value, such as another cons-cell, a num-
ber, booleans (#t, #f) or the empty list (()). Cells
can be combined to form lists, trees, association lists,
and so on. Garbage collection is used to reclaim un-
used cells in the memory pool.

The global memory pool stores application data
as well as program code and interpreter state like
the call stack, local and global variable bindings and
scheduling queues. Each structure uses only as much

6

memory as is needed at the moment, and there is
no inherent limit to the maximum size any structure,
except the total available memory. Compared to VM
architectures like Maté this allows a wider variety of
applications to be executed.

4.3 Symbols

SensorScheme distinguishes only 3 data types, of
which symbols are one. As is common in any mem-
ber of the Lisp family of languages1, symbols are a
vital part of the SensorScheme semantic model, and
are used for tagging s-expressions (in the case of spe-
cial forms) and variable reference. Furthermore, sym-
bols are a useful data type in their own right, as im-
mutable, unique identifiers.

In SensorScheme symbols only have a numeric rep-
resentation, with no actual ‘name’. This allows for ef-
ficient communication and storage in memory. Fur-
thermore, no new symbols can be created by pro-
grams, only received through communication with
other devices.

In source code and in its presentation outside
the network of SensorScheme devices symbols typi-
cally have names, so a network manager, connecting
the SensorScheme devices to the outside world must
maintain association between the numeric and tex-
tual representations of symbols. We consider the de-
tails of this network management, to be outside the
scope of this paper, and will not discuss it any fur-
ther.

The availability of symbols as unique identifiers is
also of importance to the distributed nature of sensor
networks. Symbols remain semantically meaningful
across communication, and can be used as identifiers
of data (or code) on remote nodes: symbols are used
as protocol tags, identifying program code to be ex-
ecuted on arrival of the message. When used as dic-
tionary keys, symbols can be used to refer to data
stored on remote nodes, as the example in section 5

1in fact the focus of SensorScheme is as an execution plat-
form instead of a source language, but – as is the case for any
Lisp-like language – the two are so interrelated that it does
not usually make sense to separate them. For SensorScheme,
however, the program source and program execution reside on
different devices, which makes the separation more meaningful.

shows.

4.4 Event-based scheduling model

WSN nodes have an inherently reactive or event-
based nature. This is reflected in today’s WSN op-
erating systems like TinyOS [6] or Contiki [12]. Pro-
gram execution is organized in a number of short-
running tasks, which can be scheduled to execute
in response to some event. In general, tasks run
until completion, starting after the previous one
has ended.2 SensorScheme is designed to run on
these sensor network operating systems, and is imple-
mented as a single operating system task. The ‘OS-
level’ SensorScheme task defines its own scheduling
mechanism. When an event occurs, a SensorScheme
task (implemented as a thunk, a parameterless proce-
dure) is scheduled. These tasks are handled in FIFO
order. The kinds of events that can occur in Sen-
sorScheme are 1) reception of a network message and
2) firing a timer, and 3) hardware events originating
from sensors.

We will defer discussion of communication events
to section 4.5 and continue with timer event handling
now. Timer events perform a computation scheduled
at a predetermined moment in time. SensorScheme
provides a primitive procedure call-at-time that
takes as parameters the scheduled time and the com-
putation as a zero-argument function. At the sched-
uled time, the computation is executed as an event
handler.

Use of timer events is best illustrated by an exam-
ple. In the code sample in figure 4(a) the time-loop
function repeatedly schedules itself at 5 second inter-
vals to broadcast a message.

4.5 Communication

Wireless network communication is one of the cru-
cial components to WSN platforms. In SensorScheme
communication is designed to be compact and easy
to use.

All SensorScheme data is contained in memory
cells of a small set of data types, tagged with a type

2With the exception for interrupt handlers or other high-
priority tasks, which can interrupt running tasks.

7

(a)
(define (time-loop)

(call-at-time (+ (now) 5) time-loop)

(bcast (list ’gossip 1 2 3)))

(b)
(define-handler (gossip a b c)

; react to the gossip message just received

; variable src is bound to ID of sender

...)

Figure 4: Example code snippets showing the use of
timer and communication events

code. Using this runtime type information devices
transform a data structure into a linear representa-
tion suitable for network communication. Upon re-
ception the receiver can recreate (a copy of) the same
data structure from the linear representation. This is
a familiar technique known as marshalling, also used
in other technologies like CORBA or Java RMI.

SensorScheme communication operates similar to
TinyOS’s Active Message paradigm. A message con-
sists of a header symbol and a number of data items.
The message header is a symbol that refers to the
global function that will handle the message, and
the data items in the message act as parameters to
the handler function. The primitive procedure bcast
simply sends a message to all nodes within trans-
mission range. It accepts a single parameter: a list
containing the message content. See figure 4 for a
code sample containing bcast. The bcast primitive
encodes the message content in linear form into one
or more physical packets, depending on the size of
the message content.

Receivers of this message decode the content of
each packet into the corresponding data items. Then
the message handler denoted by the header symbol
is looked up and scheduled to run as an event han-
dler. The code sample of figure 4 (which is loaded
at all nodes in a WSN) shows how communication
takes place. Nodes broadcast a message containing
header gossip and three data items, the values 1, 2
and 3. Receiving nodes schedule procedure gossip,
which takes the source ID of the sending node as an
implicit parameter bound to src, and bind the three
data items of the message to a, b, and c.

Communication of SensorScheme application code
is straightforward: the data structure describing the
code can be packed inside a SensorScheme message,
and on reception ‘eval’-ed to load and execute. There
is a primitive procedure called eval-handler, that
performs only that, making it possible to bootstrap
an ‘empty’ SensorScheme node. The eval-handler
primitive is defined as:

(define-handler (eval-handler sexpr)

(eval sexpr))

and can be used in the following way:

(bcast (list ’eval-handler

’(define sqr (lambda (x) (* x x)))))

Note that the SensorScheme communication in-
terface poses no restrictions on the number of data
items, or the size of each data item in a message.
Hence, the message contents can not be assumed to
fit inside a single packet used by the physical net-
work interface, and multiple packets must be used.
We will not discuss the details of encoding and pack-
ing of these messages and correct unpacking on the
receiver in this paper due to space constraints.

5 Discussion

We will now discuss an example implementation for
one of the helper procedures referenced in the pseudo-
code in figure 2, and show by example how Sen-
sorScheme can serve as an implementation platform
for those procedures. The example shows how Sen-
sorScheme enables easy construction of communi-
cation protocols and blocking call creation, espe-
cially useful for communication-oriented WSN appli-
cations.

The SensorScheme code presented in figure 5 con-
tains a number of procedure references defined in the
Scheme standard [19] or one of the srfi ’s [20], and we
will use them without further mention of their oper-
ation.

8

1 ; definition of PeerVerify from figure 2
2 ; (invoked like this:
3 ; PeerVerify ({dest = dict(dest), contents = dict(contents)})
4 (define (peer-verify alist)
5 (if (not (every (lambda (kv)
6 (every (lambda (v)
7 (eq? v (cdr kv)))
8 (peer-dict 5 (car kv)))) alist))
9 (alerter ’itinerary-error ’peer-verify)))

10
11 ; requests the value of given keys from all neighbors
12 (define (peer-dict timeout key)
13 (let ((reqid (rand)))
14 (bcast (list ’peer-dict-hdl reqid key))
15 (set! waiting-reqs (cons (cons reqid ()) waiting-reqs))
16 (call/cc (lambda (k)
17 (call-at-time (+ (now) timeout)
18 (lambda ()
19 (k (cdr (assoc-and-remove!
20 reqid waiting-reqs)))))
21 (exit)))))
22
23 ; handler invoked at neighbors
24 (define-handler (peer-dict-hdl reqid key)
25 (bcast (list ’peer-dict-rpl src reqid
26 (cdr (assoc key global-dict)))))
27
28 ; handler receiving values from neighbors
29 ; called at requesting node
30 (define-handler (peer-dict-rpl dst reqid val)
31 (when (= dst id)
32 (let ((req (assoc reqid waiting-reqs)))
33 (set-cdr! req (cons val (cdr req))))))

Figure 5: peer-dict source code

Figure 5 shows a SensorScheme implementation of
the PeerVerify procedure (now called peer-verify
to match Scheme naming conventions) referred to in
the pseudocode of figure 2. The procedure accepts
an association list3 of key-value pairs, and communi-
cates with all direct neighbors to find their dictionary
entries of given keys. If any of the neighbors’ values
are different from the given parameters, the current
alerter function is called (see lines 4-8).

Most of the actual work is done in procedure
peer-dict (lines 12-21). This is a blocking call that
takes a key and timeout value as parameters, and re-
turns after timeout seconds with the associated values
of all its neighbors.

SensorScheme provides continuations, that can be
3An association list is a list of pairs or cons-cells each con-

taining the key in the car and the value in the cdr of the cell.

used to implement a light-weight concurrency mech-
anism. It allows an arbitrary number of simultaneous
outstanding blocking I/O operations, without using
more memory than strictly needed to contain appli-
cation state. We will not discuss the semantics of
continuations and the call/cc primitive here; for
a thorough description of continuations we refer the
reader to [21].

Function peer-dict sends a request to all neigh-
bors (line 14) containing a unique request ID (created
at line 13) and the requested key, and stores the re-
quest ID in the waiting-reqs dictionary (line 15).
The call/cc invocation on line 16 creates a contin-
uation, used to return to the function’s caller after
the timeout. At line 17 a timer is set up to signal the
end of the timeout. Finally, a call to exit (line 21)
aborts the current task, allowing other events to be
processed while peer-dict is blocked.

The message broadcast at line 14 is handled by
the peer-dict-hdl handler at all receiving nodes
(lines 24-26). These nodes simply reply with a
peer-dict-rpl message containing the senders’ ID,
the original request ID and their global dictionary
value associated with the key.

Upon reception of peer-dict-rpl messages at the
requesting device (lines 30-33), it looks up the request
ID in the waiting-reqs dictionary, and extends the
value list with the value just received (line 33).

When after timeout seconds the timer expires (line
18-20), the request ID is once more looked up, and
removed from the dictionary. Then, with a call
to the continuation bound to variable k, procedure
peer-dict is returned, with the value list created in
subsequent invocations of peer-dict-rpl as return
value.

The absence of error checking code is intentional
and illustrates one of the consequences of the use of
SensorScheme. For example, in the peer-dict-hdl
handler, if the requested key entry does not occur in
the dictionary, assoc returns #f (false), and taking
the cdr of #f results in an error, which immediately
aborts the handler, without sending any message.
This is the expected behavior and can be achieved
without any explicit error detection or handling code.

9

SensorScheme runtime 7750 bytes Flash
– garbage collector 294 bytes
– cell allocator 122 bytes
– (un)marshaller 1640 bytes
– primitives 3728 bytes

MSP430 memory 10240 bytes RAM
OS and buffers 830 bytes
runtime state 10 bytes
memory pool (2350 cells) 9400 bytes

Table 1: Memory use of SensorScheme implementa-
tion

6 Evaluation

We have implemented SensorScheme on a sensor net-
work hardware platform and used it to measure exe-
cution speed performance. Next, we use the example
application of figure 5 to analyze memory use, inter-
pretation overhead and and energy cost.

6.1 Implementation

SensorScheme is implemented on a wireless sensor
network platform based on an MSP430 microcon-
troller, containing 10 KB of RAM and 48 KB pro-
gram flash. The device contains a Nordic nRF905
RF transceiver chip, communicating at 50 Kbps.

Cells take up 4 bytes each, and are aligned at 4 byte
addresses. The total address space of cells in RAM
is addressed using only 13 bits. SensorScheme values
are expressed in 15 bits, with the low 2 bits available
as type tags for the four possible SensorScheme data
types: symbols, short numbers, long numbers and
cons cells. The other 2 bits per cons cell are used for
memory allocation and garbage collection, which is a
simple mark and sweep algorithm.

Table 1 shows the memory use details of the imple-
mentation. The SensorScheme runtime environment,
including the primitive procedure implementations,
is very small, using only 7.7 KB of program mem-
ory. Most of the 10 KB of RAM is available for the
shared pool; the rest is allocated by the OS and net-
work buffers.

Code size program library all
Source code 963 1032 1991 chars
Net-encoded 176 186 362 bytes
In memory 181 194 375 cells
Available 1975 cells

Table 2: Code sizes of example program

cycles C cyc. slowdown
1 loop 2557 25 102
2 (+ n n) 837 8 105
3 (* n n) 944 64 14.8
4 (rand) 455 123 3.70
5 (list . . .) 2377 204 11.8
6 (func0) 370 13 28.5
7 (func3 1 2 3) 1072 26 41.2
8 (bcast . . .) 3565 267 13.4
9 (bcast . . .) + OS 23565 20267 1.16

Table 3: Results of interpretation overhead measure-
ments

6.2 Code size and memory use

Before we will discuss the performed evaluations, we
first consider the size of the program code, shown in
table 2. To enable running the program presented
in figure 5, some standard library functions are also
made available on the nodes, like every and assoc.
Table 2 shows that the library code is just slightly
larger than the application itself. Compared to the
source code, the compact network encoding used re-
duces it to less than a fifth during transmission across
the network. In memory, the program code size is
larger, since it is contained in memory cells, and con-
sumes a total of 1500 (375 × 4) bytes. That leaves
another 1975 cells available for additional program
code and for use during program execution, by the
call stack, global and local variables, scheduling and
timer queues and application data.

6.3 Interpretation overhead

The interpreted nature of SensorScheme imposes an
execution overhead in comparison to native code. To
quantify this overhead we have measured the compu-

10

tation time of a number of simple test cases in Sen-
sorScheme, by repeatedly executing them in a tight
loop, and compared it to native execution speed of
the same operations programmed in C. All tests were
performed using a processor emulator that accurately
counts the clock cycles per instruction. Table 3 shows
the results of these measurements.

The first test case measures the running time of the
loop itself, representing a simple case of flow control.
The next two cases perform simple (addition) and
more complex (multiplication) arithmetic operations.
Subsequently native procedure call, dynamic memory
allocation, and function call without and with param-
eters.

The last two test cases measure the cost of com-
munication. We have not been able to accurately
measure the instruction cost of sending a message
once it has been handed over to the OS. Instead we
have measured the cost without OS overhead (case
8), and added an estimated 20000 instruction cycles
spent in the OS and MAC layer (case 9). Including
overhead, communication is only 16 percent slower
using SensorScheme compared to native code. Appli-
cations typically used in sensor networks will contain
a large fraction of communication, making the total
interpretation overhead relatively low.

The other tests show similar effects. More com-
plex operations that execute long sequences of native
code, like native calls and complex arithmetic opera-
tions (cases 3 and 4) impose less overhead than sim-
ple arithmetic operations and control flow (cases 1
and 2). Furthermore the results suggest that Sen-
sorScheme’s uniform memory lay-out results in com-
paratively cheap memory allocation (case 5) and that
function application is a relatively inexpensive oper-
ation compared to other flow control (cases 6 and 7).

6.4 Runtime performance and energy
use

Our second test measures memory use and the impact
of evaluation overhead and garbage collection on to-
tal computation time, which are in short supply on
WSN platforms. Energy use is a crucial performance
factor as well, so we have measured the energy used
by execution of SensorScheme programs.

(a)

cycles ms mJ
Execution time and energy 1245483 208 1.27
Fraction spent in allocation 25.2%
Fraction spent in GC 31.4%
– # collections 6.43
– execution time / collection 10.1 ms
– avg. used cells 395 cells
– max. used cells 429 cells

(b)

Comm. energy TX RX total
peer-dict-hdl 2 12.6 msgs
peer-dict-rpl 12.4 107 msgs
OS time 41.4 88.9 130 ms
OS energy 0.25 0.54 0.80 mJ
message size 160 153 bits / msg
air time 89 365 455 ms
radio energy 2.41 14.04 16.45 mJ

(c)

Total energy used
program execution 1.27 mJ 7%
OS communication 0.80 mJ 4%
radio TX / RX 16.45 mJ 89%
Total 18.52 mJ

Table 4: Execution statistics

11

Our tests are performed using our emulator in a
simulated network of 20 nodes, each periodically run-
ning the peer-verify function of figure 5. This rep-
resents a real-world situation, since only one itinerary
verification would be taking place at any given time.4

All energy calculations are based on the data sheets
of the hardware components of our implementation
platform.

Table 4 (a) lists some results of the running time
per invocation of the peer-verify function. For each
such a period, the SensorScheme code takes only 208
ms execution time. With a period duration of 10
seconds (the minimum with twice a timeout of 5 sec-
onds) this is just two percent of CPU time spent.

A large fraction (about 57%) of execution time is
spent on memory allocation and garbage collection.
This is a logical consequence of the design of Sen-
sorScheme; program data as well as stack frames are
allocated from the memory pool. This quickly con-
sumes all memory, after which a garbage collection
cycle is necessary. Garbage collection itself causes
application pauses of only 10 ms, an acceptable de-
lay for most WSN applications.

At the end of every garbage collection the aver-
age number of cells used is 395, and the maximum
is 429. Considering the 375 cells used to store the
program, between 20 and 54 cells are taken for pro-
gram data and runtime structures. Altogether, less
than one fifth of the total memory is needed by this
application, leaving ample space for other larger or
more complex applications.

Communication takes a significant fraction of the
total energy use on WSN nodes. Table 4 (b) shows
the number of messages sent and received per period,
and the energy spent on additional computation by
the OS, based on estimations, and the energy use of
the radio during sending and receiving. (Before send-
ing, the radio needs to power up taking an additional
3 ms, included in the air time.)

Finally, taking these three sources of energy use to-
gether, table 4 (c) shows the relative cost of each of
those. It shows that most energy is used by the radio
power during communication (89 %), while computa-

4Other verification tasks might also be active, each taking
roughly similar execution time.

tion time takes only 7 % of the total energy spent. We
have not taken into account other sources of energy
use like MAC protocol overhead (idle listening) and
sensor readouts, which only reduce the fraction of en-
ergy used by program interpretation. In conclusion,
the effect of interpretation overhead on the total en-
ergy budget is minimal, accounting for no more than
7 percent.

7 Conclusion and future direc-
tions

We discussed a logistics application example that re-
quires a safe execution environment to host possibly
insecure applications, which are changed frequently,
and require compact program representations. Vir-
tual machines have typically been used to meet sim-
ilar requirements. For wireless sensor networks, ex-
isting solutions have high resource requirements, or
provide too little functionality to satisfy the appli-
cation requirements, mainly due to memory-starved
WSN platforms. By making better use of the little
available memory, SensorScheme is able to provide a
wider range of functionality, unhindered by the fixed,
arbitrary size of any internal structure. The use of
Scheme semantics brings additional benefits, like au-
tomatic memory management, concurrency, and au-
tomatic encoding and decoding of messages, together
resulting in even smaller program sizes. The Sen-
sorScheme implementation is small and efficient, and
shows that advanced features like continuous pro-
gram update, a safe execution environment, garbage
collection, and concurrency and blocking I/O are
achievable targets even for mote-size WSN platforms.
SensorScheme causes only marginal additional energy
use and no significant delays due to program inter-
pretation and garbage collection.

Still, research challenges remain. Dynamic mem-
ory allocation causes a degree of unpredictability,
possibly causing nodes to fail at arbitrary moments
when no more free memory remains. Methods to al-
leviate this issue will greatly increase usability of the
platform. Furthermore, our application scenario re-
lies on additional security, like tamper-proof opera-

12

tion and secrecy of itinerary and log data that should
also find their way into the SensorScheme platform.
The current implementation also leaves ample room
for improvement, by storing (semi-) constant data,
like program code, into the device’s flash memory, or
reducing the cell allocation rate to speed up compu-
tation.

References

[1] Werner-Allen, G., Welsh, M., Johnson, J., and-
Jonathan Lees, M.R.: Monitoring volcanic erup-
tions with a wireless sensor network. Technical
Report 27-04, Harvard University (2004)

[2] Mainwaring, A., Culler, D., Polastre, J., Ander-
son, R.S.J.: Wireless sensor networks for habi-
tat monitoring. In: Proceedings of the 1st ACM
international workshop on Wireless sensor net-
worksand applications, ACM Press (2002) 88–97

[3] The Ohio State University NEST team:
A Line in the Sand: A DARPA-NEST
Field Experiment. http://www.cse.
ohio-state.edu/siefast/nest/nest\
_webpage/ALineInTheSand.html (2003)

[4] Levis, P., Gay, D., Culler, D.: Bridging the gap:
Programming sensor networks with application
specificvirtual machines. Technical Report CSD-
04-1343, UC Berkeley (2004)

[5] Hill, J.L., Culler, D.E.: Mica: A wireless plat-
form for deeply embedded networks. IEEE Micro
22(6) (2002) 12–24

[6] Hill, J., Szewczyk, R., Woo, A., Hollar, S.,
E.Culler, D., Pister, K.S.J.: System architecture
directions for networked sensors. In: Architec-
tural Support for Programming Languages and
Operating Systems. (2000) 93–104

[7] Crossbow Technology: Mote in-network
programming user reference (2003)
http://www.tinyos.net/tinyos-1.x/doc/
NetworkReprogramming.pdf.

[8] Hui, J.W., Culler, D.: The dynamic behavior of
a data dissemination protocol for network pro-
grammingat scale. In: Proceedings of the 2nd in-
ternational conference on Embedded networked
sensorsystems, ACM Press (2004) 81–94

[9] Marrón, P.J., Gauger, M., Lachenmann, A.,
Minder, D., Saukh, O., Rothermel, K.: Flex-
cup: A flexible and efficient code update mecha-
nism for sensor networks. In: Proceedings of the
Third European Workshop on Wireless Sensor
Networks (EWSN2006). (2006) 212–227

[10] Jeong, J., Culler, D.: Incremental network pro-
gramming for wireless sensors. In: First IEEE
Comm. Soc. Conf. on Sensor and Ad Hoc Com-
munications and Networks. (2004)

[11] Stathopoulos, T., Heidemann, J., Estrin, D.: A
remote code update mechanism for wireless sen-
sor networks. Technical Report CENS-TR-30,
University of California, Los Angeles, Center for
Embedded Networked Computing (2003)

[12] Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a
lightweight and flexible operating system for tiny
networkedsensors. In: Proceedings of the First
IEEE Workshop on Embedded Networked Sen-
sors (Emnets-I), Tampa, Florida, USA (2004)

[13] Han, C.C., Kumar, R., Shea, R., Kohler, E., Sri-
vastava, M.: A dynamic operating system for
sensor nodes. In: MobiSys ’05: Proceedings of
the 3rd international conference on Mobile sys-
tems,applications, and services, New York, NY,
USA, ACM Press (2005) 163–176

[14] Sun SPOTs. (http://www.sunspotworld.
com/)

[15] Boulis, A., Han, C.C., Srivastava, M.B.: Design
and implementation of a framework for efficient
and programmablesensor networks. In: MobiSys
’03: Proceedings of the 1st international con-
ference on Mobile systems,applications and ser-
vices, New York, NY, USA, ACM Press (2003)
187–200

13

[16] Koshy, J., Pandey, R.: Vmstar: synthesizing
scalable runtime environments for sensor net-
works. In: SenSys ’05: Proceedings of the
3rd international conference on Embeddednet-
worked sensor systems, New York, NY, USA,
ACM Press (2005) 243–254

[17] Michiels, S., Horré, W., Joosen, W., Ver-
baeten, P.: Davim: a dynamically adaptable vir-
tual machine for sensor networks. In: MidSens
’06: Proceedings of the international workshop
on Middleware forsensor networks, New York,
NY, USA, ACM Press (2006) 7–12

[18] Dybvig, R.K.: The Scheme Programming Lan-
guage. The MIT Press (2003)

[19] Abelson, H., Dybvig, R.K., Haynes, C.T.,
Rozas, G.J., AdamsIv, N.I., Friedman, D.P.,
Kohlbecker, E., G. L. Steele, J., H.Bartley, D.,
Halstead, R., Oxley, D., Sussman, G.J., andC.
Hanson, G.B., Pitman, K.M., Wand, M.: Re-
vised report on the algorithmic language scheme.
Higher Order Symbol. Comput. 11(1) (1998) 7–
105

[20] SRFI: Scheme requests for implementation.
(http://srfi.schemers.org/)

[21] Ferguson, D., Deugo, D.: Call with current con-
tinuation patterns. In: 8th Conference on Pat-
tern Languages of Programs. (2001)

14

