
A Design Method For Modular
Energy-Aware Software

Technical Report

Steven te Brinke Somayeh Malakuti Christoph Bockisch
Lodewijk Bergmans Mehmet Akşit

University of Twente – Software Engineering group
Enschede, The Netherlands

{brinkes, malakutis, c.m.bockisch, bergmans, aksit}@cs.utwente.nl

November 2012

Nowadays achieving green software by reducing the overall energy con-
sumption of the software is becoming more and more important. A well-
known solution is to make the software energy-aware by extending its func-
tionality with energy optimizers, which monitor the energy consumption of
software and adapt it accordingly. Modular design of energy-aware software
is necessary to make the extensions manageable and to cope with the com-
plexity of the software. To this aim, we require suitable methods that guide
designers through the necessary design activities and the models that must
be prepared during each activity. Despite its importance, such a method is
not investigated in the literature. This paper proposes a dedicated design
method for energy-aware software, discusses a concrete realization of this
method, and—by means of a concrete example—illustrates the suitability of
this method in achieving modularity.

1 Introduction

Green computing emphasizes the need for reducing the environmental impacts of IT
solutions by reducing their energy consumption. Green computing can be achieved by
making software energy-aware by augmenting it with so-called energy optimizers, which
monitor the energy consumption of the software during its execution and optimize it
accordingly.

To reduce the energy consumption of software, it is necessary to identify the func-
tional components that directly or indirectly use energy, to identify the usage patterns
of these components, and finally to influence these usage patterns to reduce the energy

1

consumption. For this matter, energy optimizers need to interact with multiple com-
ponents of software, gather necessary information from them and optimize their energy
consumption. Note that the functionality of energy optimization can be embedded in
the functional components of software.

Today’s software is already facing the problem of complexity [10], and extending its
functionality with energy optimizers increases this problem further. For example, if a
functional component evolves such that functionalities are added or removed, its energy
consumption may change, and the energy optimizers must be changed accordingly to
consider the new amount of energy consumption of the component.

In the software engineering literature, modularization is commonly considered as means
to cope with the complexity of the software because the scope of focus can be reduced
to individual modules [9]. In the literature, a module is defined as a reusable software
unit with well-defined interfaces and an implementation. Modules are communicating
with each other through their interfaces, which implies that depending on the kind of
communication, the interfaces must convey sufficient information to facilitate the com-
munication.

To cope with the complexity of energy-aware software, we claim that energy optimizers
must be modularized from the rest of software. This can easily be understood as the
separation of the functional concerns and optimization concerns. To this aim, functional
and optimizer components must provide suitable interfaces to each other, so that neces-
sary information for performing the optimization can be exchanged among them. Along
this line, a dedicated notation for modeling such components has been proposed [8].

However, the presence of a modeling notation is not sufficient to achieve modularity in
the design of energy-aware software. We need to guide designers through the activities
that must be performed to identify and modularly design (1) necessary components, (2)
the models that must be prepared during each activity, and (3) the necessary analysis
that must be performed on the models.

This paper proposes a dedicated design method for energy-aware software. The design
method helps designers to identify the kinds of components that are typically needed to
be taken into account, the energy-specific interfaces of these components, their interaction
with each other and the analyses that must be performed on them. This paper explains
a concrete realization of this method by means of the Uppaal tool [2], and illustrates
the suitability of Uppaal to analyze the design models. An application of this design
method to modularly design a real-life media-player software is illustrated.

This paper is organized as follows. As the background, Section 2 explains the notation
that is adopted in this paper for modeling the components of energy-aware software.
Section 3 explains our design method; Section 4 explains the realization of the method
in Uppaal and Section 5 shows the application of the method to the media-player appli-
cation. Section 6 outlines the lessons that we learnt from applying this design method;
Section 7 explains the related work and Section 8 outlines the future work and conclusion.

2

Figure 1: Notation for Resource-Aware Components

2 Notation for Energy-Aware Components

Figure 1 depicts a notation [8] for modeling resource-aware components1. The provided
services, required services, provided or required resources are specified in terms of a name
and signature of a single attribute.

In contrast to the services and resources, the resource utilization model (RUM) of the
component is more complex because it represents the relations between all the services
and resources provided and required by the component. Since the RUM is too complex
to be represented as an annotation to a port, it is represented as the light gray box inside
the component and exposed through the octagonal port. This is also motivated by the
fact that there is only one, the RUM of the component. It has already been proposed to
express the RUM as a state chart in which states are annotated with resource behavior,
and invocations on the services of the component are modeled as transitions.

3 Design Method

This paper proposes a method to design energy-aware software systems such that mod-
ularity is achieved in the design of such systems.

Figure 2 is a UML activity diagram that depicts the activities that are performed in
our design method, along with the order and dependency of activities. The activities
are represented by boxes in the figure and each activity results in a model. The arrows

1In this paper, we consider energy as a special kind of resource; a component may consume various
resources, which eventually may lead to the consumption of energy. Therefore, these resources must
also be taken into account.

3

represent the order of activities; the activities between bars can be performed in any
order. The diamonds represent points in our method where the models are evaluated
and possibly are redesigned iteratively, e.g., by changing the decomposition, or adding
details. The activities result in a set of modeled components, which are represented in
the notation depicted in Figure 1.

In the next subsection, we will give an overview of the activities in our method. Those
specific to our method will be elaborated in the subsection thereafter.

3.1 Overview

At the top of the diagram are the activities for identifying the components of the software.
The design method distinguishes among three kinds of components: functional, user and
optimizer. The functional components refer to both software and hardware components
which form the target system; each component implements part of the functionality of
the system and interacts with other software and hardware components to accomplish
the overall functionality. Since there are already various guidelines for modularizing
functional aspects of software [9, 6], our method suggests to adopt an existing guideline
to identify functional components.

The way in which users interact with software plays a role in its energy-consumption [7].
To be able to analyze the effectiveness of an optimization strategy, our design method
considers user as a component of the system, which represents usage scenarios.

The optimizer components modularize the optimization strategies; for this matter they
interact with both functional and user components.

After identifying and modeling the components, their interface must be modeled. As
explained in the previous section, our notation considers both service and resource in-
terfaces for the components. The service ports represent the functionality provided and
required by a component. The resource ports represent the component’s state of resource
consumption, information which is required by optimizer components.

After modeling the components and their service/resource interfaces, we require to
model the resource behavior of the components. The resource behavior represents the
dynamic resource consumption and provision of components during their execution, and
we represent them via RUMs (see Figure 1).

Our design method considers dedicated checking activities after each modeling step.
Typical examples of checks are: checking whether any component is missing; checking
whether the required interfaces of components are bound to compatible provided inter-
faces of other components; checking the safety and liveness of the models, etc. If a
model is considered to have problems, the initial activities are performed again in a new
iteration to resolve the problems.

When at least an initial version of all models exists, the effectiveness of various op-
timizer components—in terms of the reduced energy consumption—can be analyzed.
When the models are sufficiently precise for this analysis to be performed, designers can
select an optimizer component based on the analysis’ results.

4

Model resource behavior

Model resource portsModel service ports

Identify
functional

components

Identify
optimizer

components

Identify
user

components

[consistent and complete]

[consistent and complete]

[consistent and complete]

[inconsistent or incomplete]

[inconsistent or incomplete]

[inconsistent or incomplete]

Analyze system resource behavior

[consistent and complete]
[inconsistent or incomplete]

Select most suitable optimizer components

Figure 2: Design method for energy-aware software

5

3.2 Design Activities in Detail

This subsection will explain those activities of the methodology outlined above in detail,
which are specific to our approach. We skip details about the design of functional compo-
nents and services, since this is an activity commonly carried out in all component-based
software development approaches. We start with the analysis performed throughout the
design process and motivate from there the other activities and related models.

3.2.1 Analysis

Specific to our method is the analysis of the system’s resource behavior using RUMs. This
can, for example, be used to analyze which optimization results in the least resource
consumption. Based on this analysis, designers can select a composition for the final
system design using the most suitable one among alternative optimizer components.

Since a system is composed of multiple components, which are specifying a RUM, the
overall behavior of system is represented by a composition of multiple RUMs. Such a
composition of RUMs easily becomes complex, which makes the manual analysis of RUMs
difficult and error-prone. Therefore, we claim that the analysis must be automated
by means of suitable tools. While the choice of tools is not dictated by our method,
automated analysis implies that RUMs must be specified precise enough to perform
automated reasoning about some properties.

3.2.2 Model Resource Ports of Functional Components

Both software and hardware functional components can provide and consume resources;
the kind of resources may be different for hardware and software components. For ex-
ample, a hardware device consumes electric energy as resource; whereas a software com-
ponent may require a network connection or a buffer as a resource.

To be able to analyze resource consumption of components, the resources that are
provided and required by the components must be specified as the interface of the com-
ponents. In addition, the inter-connection among the components must be specified so
that a provided resource can be consumed by other components that are in need. For
this matter, in our design method we propose the following approach for modeling the
resource ports.

First, identify a resource with respect to which the software should be optimized and
the components that directly require this resource. Second, add the corresponding re-
quired resource ports to these components. For example, if the energy consumption
should be optimized, components that directly use hardware components receive energy
as a required resource port. Components that consume the resource of interest in general
also provide resources which relate to the resource of interest (e.g., because they consume
the initial resource in order to provide another resource at a higher abstraction level).
Such related resources must be added as provided resource ports to the components.
This activity must be applied recursively until all relevant resources are identified.

6

3.2.3 Model Resource Behavior of Functional Components

After modeling the service/resource ports of the components, we need to specify the
resource behavior of components, which represents the dynamic relation between the
service and resource ports. This dynamic relation can, for example, include the following
information: which resources are required or produced by each service port; the amount
of the resources; how the amount changes during the execution of a service; how switching
among the services influences the resource consumption and provision; etc.

RUM is an energy state chart and facilitates representing resource behavior of compo-
nents. RUMs can be added to components, for example, through the following activities.

Start by identifying states with distinct functional behavior of a component, for ex-
ample, by considering the functionality defined as service ports, or by referring to the
requirements or hardware specification. Define transitions between these states that can
happen at events related to service invocation and possibly other events such as time-
outs. Next, add the resource consumption to the model by annotating each state with
the amount of resources it consumes or produces; thereby you must refer to the required
and provided resource ports of the component.

States with multiple characteristics of resource usage must be split into multiple states.
Now, identify the possible transitions between these new states and the already existing
states, and events triggering these transitions. This step must be applied recursively
until all states have a single characteristic of resource consumption.

3.2.4 Model User Components

The overall energy consumption of a system and the effectiveness of an optimization
strategy can be largely influenced by the way how the system is used. In general, dif-
ferent kinds of users exist, ranging from human users to other systems; in this paper
we uniformly use the term user to refer to any kind of client actively using the system
under design. For example, if a media-player application adopts a caching mechanism
to reduce the amount of network connections, caching would not be effective if a user
disturbs the normal stream of video by seeking forward and backward. Therefore, to be
able to analyze the effectiveness of an optimization strategy, it is needed to model the
usage scenarios.

Since it is not possible to foresee all possible usage scenarios, it is desirable to at least
model most common scenarios. In our design method, we represent these scenarios as
user components. All functionality that is invoked during the scenario is modeled as
required service ports. Based on these services, a RUM is designed, describing how these
services are used, as discussed in Section 3.2.3.

The simplest specification is a user that might do anything non-deterministically. Then
the RUM is a non-deterministic state machine that has one state with self-loop transitions
for every service that can be invoked. Such a specification can be useful for analyzing
the correctness of the system, but—in general—is not useful for analyzing the resource
consumption.

On the contrary, to facilitate analysis of resource consumption, we propose to model

7

deterministic user behavior. It is possible to specify multiple different user behaviors
as alternative components. Then distinct analyses can be performed using each of the
available user components to identify the usage scenario under which a given optimization
performs best.

3.2.5 Model Optimizer Components

The optimizer components implement the functionality to monitor and adapt the resource
consumption of functional components during execution. For this matter, they interact
with functional components. The optimizer components can be regarded as special kinds
of functional components, too. Nevertheless, our design method distinguishes them from
other functional components to emphasize that they must be modularized from the other
components so that various optimization strategies can be used interchangeably.

Before adding an optimizer component, the functional components interact directly.
There are two main kinds of components: high-level components are those directly con-
trolled by the user behavior and low-level components are those that directly consume
the resource to be optimized. An optimizer component must be inserted as an indirection
to the interaction between low-level and high-level components.

There can also be intermediary components through which the high and low-level com-
ponents interact. When an optimizer component is inserted between such intermediary
components, the components closest to the high-level components play the role of the
high-level components; this is analogous for the low-level components.

The optimizer component must have as provided interface the services and resources
that are required by the higher-level component; the required interface accordingly mir-
rors the provided services and resources of the lower-level component. The optimization
logic must be modeled as the component’s RUM following the guidelines in Section 3.2.3.

As for the user behavior, it is also possible to design multiple alternative optimizer
components. In the analysis phase, different combinations of user behavior and optimizer
components can be analyzed. That way, the designer can identify which of the optimizer
components is optimal for which expected user behavior.

4 Design Method using Uppaal

While the design method presented in the previous section can always be applied with
pen and paper, if automatic analyses are desired, a tool must be used. We could either
develop a dedicated tool to analyze resource consumption or use an existing tool. The
advantage of a dedicated tool is that the tool will support exactly our notation, the
disadvantage is that the development of a tool is error prone and time consuming. The
advantage of using an existing tool is that it can be used immediately, the disadvantage
is that we may need to adapt our models to the tool, which may have negative influence
on the modularity of the models.

Uppaal [2] is a robust tool to model, verify, and validate timed automata, which can
represent power state charts. Also, scenarios can be modeled as timed automata. In this

8

paper, we present our concrete experience with using Uppaal, however, other model
checking tools can be used as well.

The following subsection introduces the features of Uppaal we used. The subsection
thereafter explains in detail how Uppaal can be used as part of our approach.

4.1 Overview of Uppaal

Here we give a brief and simplified explanation of the concepts in Uppaal and map them
to the terminology used in this paper. In Uppaal, a system is modeled as several timed
automata in parallel. A timed automaton is a finite-state machine with numeric and
clock variables.

Transitions can have a so-called synchronization label, which can have one of two
meanings: First, it can be specified that the transition is triggered when the event
corresponding to the label occurs; second, it can be specified that the corresponding event
is emitted when the transition is taken. Transitions can be annotated with guards, which
are side-effect free expressions; a transition is only enabled when the guard evaluates to
true. And they can contain assignments that update variables.

States can be annotated with side-effect free expressions, called invariants. They re-
strict the time during which the system can be in a certain state. So-called committed
states can be used to represent actions that must occur immediately after each other. A
committed state cannot delay and the next transition must involve an outgoing transition
of at least one of the committed states in one of the parallel automata.

4.2 Design Activities using Uppaal

In this section we describe the design activities in which Uppaal is used.

4.2.1 Analysis

After designing a model, the designer can simulate behavior in Uppaal by stepping
through the diagram semi-automatically, which is the simplest form of analysis that
Uppaal facilitates and is mainly useful in the early stages of development. When the
state charts become larger, it becomes more useful to let Uppaal fully do the model
checking. Uppaal provides a subset of timed computation tree logic (TCTL), in which
many properties can be expressed, such as safety and liveness properties. For example,
we can check whether our model is free of deadlocks. Whenever a given property does not
hold, Uppaal provides a counterexample, that can be used by the designer to analyze
whether the model or the property specification is incorrect.

When we have specified a scenario of expected user behavior, Uppaal can analyze
the behavior of the system and output a trace of the expected behavior. Such a trace
contains the resource consumption over time. Thus, by analyzing different optimization
components, the optimization that consumes least resources can be identified.

9

4.2.2 Model Resource Ports

The structure of the application is modeled in Uppaal by creating an automaton for
every component. In Uppaal variables and labels can be local to an automaton or global
to all parallel automata. Everything that is on the interface of a component is globally
accessible. Therefore, we define global labels for all services and global variables for all
resources present in the interface. Variables that are written to correspond to provided
resource ports, read variables correspond to required resource ports.

4.2.3 Model Resource Behavior

The contents of the automaton—which was created to model the component—represent
the resource behavior. Such automaton can be designed using the steps presented in the
general approach; we only explain the Uppaal-specific details here.

Every transition which changes the consumption of a resource by the component is
annotated with an assignment that updates the value of the corresponding variable to
the current consumption. The resource behavior is linked to the functional interface by
adding synchronization labels to transitions. For example, when play is defined as a
service on the interface, the label play! represents requiring (invoking) the service and
play? represents providing the service.

4.2.4 Model User Components

The behavior of a user can also be modeled as an automaton. A non-deterministic user
can be modeled in Uppaal as elaborated in the general approach (cf. Section 3.2.4).
Scenarios where the user performs certain actions after a specified amount of time can be
modeled by adding timing constraints to transitions as guards and to states as invariants.

4.2.5 Model Optimizer Components

The definition of an automaton in Uppaal is actually a template: The automaton must
be instantiated before it can be used. This can be used to provide alternatives. When
alternative components are desired, multiple components with the same interface can
be defined. Then, replacing one component with another is as simple as replacing one
statement: the instantiation of the controller. Since templates can take parameters,
parameter-based adaptation is just as simple: Define a component that takes a parameter
and pass a value to it during instantiation.

5 Media Player Case Study

As a case study we use a media player that runs on a smart phone; thus reducing its
energy consumption is relevant. We started with the high-level structure model of the
relevant software components of the smart phone, including the media player. Figure 3
shows the part of the model representing the media player component. Gradually, we
formalized the resource behavior—shown informally in figure 3—until we ended at the

10

Figure 3: Media player high-level diagram

model shown in figure 4. Such a model can be created by starting with the states of
the high-level model and iteratively adding more detail. These details are additional
states and transitions that formally describe the resource behavior textually present in
the high-level model. Such details are added until all relevant resource behavior is added.

Because this formalization was done using Uppaal, it was possible to analyze the
consistency and completeness of our model using TCTL formulas. With the help of
this analysis, we gradually added more detail to the model. This was performed in the
following five steps, which are iterative because adding detail to one part of the model
might require adding detail to other parts as well.

Specifying the user: Verification requires all components to be specified. The high-
level structure diagram did contain most components already, except for the user. Thus,
we added a model of a simple, non-deterministic user that might do anything.

Splitting the state diagram into multiple diagrams, which are hierarchically composed:
The high-level state diagram (figure 3) that represents the resource behavior of the sys-
tem, contains various concerns, for example, buffering songs and playing songs. To
maintain the modularity of the media player at the detailed level, we need to identify the
various concerns and split the state diagram accordingly. To split the state diagram in
a player and buffer process, an interface to communicate between these processes must
be defined. For instance, we defined the events start buffering and stop buffering. The
player component can generate these events to influence the buffer process.

Adding detail to the state diagram: The high-level state chart did not contain enough
information to analyze the resource consumption. For example, it did not specify in

11

paused
buffer == max_buffer

stopped

paused_and_buffering
buffer <= max_buffer playing

time <= ms_per_media_kilobyte

resume_buffering!

stop_buffering!

consume!

stop?

time == ms_per_media_kilobyte

time = 0

buffer == max_buffer
stop_buffering!

start_buffering!
time = 0

play?
time = 0

play?
time = 0

pause?

stop?

play?

stop?

Media Player

requestedbuffer

downloaddisconnectconnectbufferrequested no music

stoppauseplay

stop buffering

downloaddisconnectconnectno music

stoppauseplaydownloaded

Player

Buffer

Download

max buffer

requesting

buffering
buffer + requested == max_buffer

idle

stop_buffering?

buffer + requested < max_buffer
download!
requested += 1

buffer + requested == max_buffer

resume_buffering?

connect!

disconnect!
requested = 0

stop_buffering?

buffer == 0
no_music!

consume?

buffer > 0
buffer -= 1

requested == 0
start_buffering?

buffer = 0

stop buffering

resume buffering

resume buffering

start buffering

start buffering

consume

requestedmax buffer buffer consume

max buffer buffer

downloaded?
requested -= 1,
buffer += 1

downloaded

Figure 4: Media player detailed diagram

detail when buffering was performed. Therefore, we added details to the state diagram
until we were able to analyze the resource consumption. Most importantly, we had to
check that the model was correct and complete. For example, to check that the player
actually stops playing when it cannot download music in time and to check that there
are no situations for which no possible behavior is defined, i.e., deadlocks.

Adding detail to the interface: You can see that we also augmented the interface
of the media player with two services: the required service no music and the provided
service downloaded. These two services do not correspond to the component’s functional
behavior; instead, they are required to express assumptions about the component’s in-
ternal behavior that are made by the RUM. Since the RUM is an essential part of the
component’s interface, it is legitimate and desirable to also promote these details to the
component interface in terms of provided and required ports.

12

The required service no music represents the occurrence of an error in the media player
component, namely that no music can be played because of the lack of data. This service
does not have to be connected to any other component. (Requiring an unconnected
service is an error, but since no music is an error state anyway, leaving it unconnected
does not change the behavior of the media player.) However, explicitly modeling no
music has the benefit that it provides us the possibility to reason about the situations in
which this error condition occurs. Thus, our model of no music is a pattern that can be
used for modeling error conditions: Model errors by explicitly communicating the error
through the interface as a required service.

The provided service downloaded is added to model that downloading music is asyn-
chronous. Thus, downloaded is the callback event that is fired when a download (started
using a download event) is finished. Since state machines always run in parallel in Up-
paal, the general pattern for an asynchronous request is to create a state machine that
handles this request, is started using a start? event, and communicates the result back
using a result! event.

Selecting the most suitable optimizer component: To test various configurations, we
created three different controllers. Such a controller is a mediator between the media
player and network manager, as can be seen in figure 5. The three controllers are:

1. Basic controller providing the unoptimized behavior.
2. Burst download controller that downloads as much music as possible at once and

then waits until the next burst of music is needed.
3. Fast Dormancy controller that downloads music in bursts and switches the network

manager to idle when such a burst download is finished.

These controllers were created in order. When we added the second controller, we only
had to replace the controller and connect the previously unconnected resource buffer,
since the controller uses the knowledge of the buffer size to perform its optimizations.
The third controller also did not require any changes to other components. This controller
uses the demote feature of the network, which was already present, but not yet connected.
Thus, adding the third controller also required adding a single connection only.

To test the behavior of the system, we created a scenario (partially shown in figure 6).
As adaptation we used the three different controllers described before, while running the
scenario. The energy consumption during these runs is shown in figure 7. We see that
the first controller consumes most and the third controller consumes least energy.

6 Lessons Learned

6.1 General Approach

One of the challenges, when carrying out the general approach, is how much detail should
be added to resource utilization models. Since these models are part of the interface of
a component, it is desired to hide some of the complexity of these models. Components
should hide their implementation details from other components. Therefore, resource
utilization models should also hide all implementation details that are not needed to

13

Media Player

User

downloaddisconnectconnectno music

stoppauseplaydownloaded

bandwidthpower receive

send cancel requests demote

downloaded cancel requests

downloaddisconnectconnect receive

send demote

play pause stop

Controller

Network Manager

buffer

buffer

Figure 5: Media Player Overview

14

t <= 120 * 1000

paused1

t <= 90 * 1000

playing1a

t <= 60 * 1000t <= 0
t == 20 * 1000

play!
t == 10 * 1000

pause!
t == 0

play! stopped2paused2

t <= 240 * 1000
t == 240 * 1000

stop!

done = true
t == 230 * 1000

playing1b

t <= 120 * 1000

paused1

t <= 90 * 1000
t == 120 * 1000

stop!
t == 20 * 1000

play!

play pause stop

User Behavior

Figure 6: User behavior (partial scenario)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250

P
ow

er
 (

m
W

h)

Time (seconds)

Media Player Energy Consumption

Media Player
Media Player, Burst Downloads

Media Player, Burst Downloads and Fast Dormancy

Figure 7: Analysis of scenario

15

explain the resource consumption. However, in our examples, the resource utilization
models express quite some implementation details in order to specify the resource behav-
ior as precisely as possible. This increases the coupling: Controllers that depend on the
precise resource behavior given in the RUM, might not be applicable to implementations
that have different resource behavior. Therefore, it might be desired to add less detail to
the RUM, for example by specifying only which power states exist, not precisely when
these states are activated. In such a case, the activation of the states should be commu-
nicated to the controller at runtime in order to allow optimization. This way, different
components are more modular, which might be desired even though it could hinder some
optimization strategies. We will address the desired level of detail in RUMs in future
work.

6.2 Uppaal-based Approach

When performing the case study, we had a large benefit from Uppaal, but we also learned
some disadvantages of using Uppaal. Even though Uppaal provides a good interface
for inputting state charts, it does not match our notation perfectly, as described in the
following three paragraphs.

The models used by Uppaal are not as modular as desired: Models cannot be com-
posed hierarchically and interfaces cannot be visualized. In figure 4 we see that one
component (the Media Player) consists of three other components. This hierarchy, in-
cluding the interfaces of all four components, is drawn by hand. However, it would be
possible to automate the conversion from hierarchical models to Uppaal models: David
et al. [5] showed such a conversion using a subset of UML for the hierarchical models.

Uppaal does not provide an abstraction for resources. Instead, it provides variables,
which—among other uses—can represent the resource consumption of relevant resources.

Uppaal can analyze the quality of a certain composition, but cannot choose the best
composition. Analyzing alternative compositions and deciding which one is best, must
be done separately, either by hand or using another tool. We did not look into tools that
can facilitate this decision; this will be subject of future research.

7 Related Work

A wide range of techniques and mechanisms are being proposed for making software
green. These are usually dedicated solutions or frameworks for facilitating optimiza-
tions, for example, at the level of operating systems [14], at the level of compilers [4],
or at the system level [13]. Dedicated component models are also proposed [7] to enable
modularizing energy-aware software. However, there is a lack of methods and techniques
to augment (legacy) with energy-optimization functionality such that the target software
is modular. For example, to adopt the solution proposed by Gotz et al. [7] we require
to design and implement the software such that it complies with their proposed compo-
nent model. However, this might not be an effective solution; first because large-scale
commercial software might not be implemented in this component model; and second
there are already a large number of legacy software systems that must be extended with

16

energy optimization functionality, and re-implementing them according to a new com-
ponent model might not be considered suitable. In our proposed design model, however,
we reused the existing notation and activities to design modular software and extended
them with energy-specific notations and activities.

While this paper focuses on green computing, specifically optimization of energy us-
age, as an application area, our work can more generally be used to specify the software’s
usage of arbitrary resources. This relates to approaches for modeling the non-functional
properties of services. Service-level agreements (SLAs) specify the desired non-functional
properties of required services; for instance, Skene et al. [11] define an XML-based lan-
guage for specifying the SLA between a client and a provider, based on OCL constraints.
Zschaler [15] proposes a semantic framework for the specification of non-functional prop-
erties (using the Temporal Logic of Actions formalism) in a component-based software
development approach. As is the case for other related approaches, Zschaler’s framework
only supports the specification of non-functional properties for single services; this is suf-
ficient to analyze the non-functional properties of a given component-based architecture
as a whole. In contrast, our approach also models the relations and dependencies between
all services of a component and, thus, not only expresses its non-functional properties,
but also specifies how they can be influenced. This is necessary to enable the modular
implementation of optimizers.

Other related work which we will review in future are the works by Albertao [1],
Steigerwald et al. [12], and Capra et al. [3].

8 Conclusions and Future Work

This paper discussed the need for designing energy-aware software in a modular way, and
proposed a dedicated method for this matter. The paper illustrated a realization of this
method by means of Uppaal tool, and by means of an example showed that adopting
this method can lead to modularized energy-aware software.

As future work we will apply this method to large-scale systems such as industrial
printers. In addition, we will extend our notation to be able to model diverse kinds of
adaptation actions that energy optimizers can perform on functional components. We
will also investigate suitable programming mechanisms to implement and modularize the
software that is designed according to our method; aspect-oriented languages are among
our first candidates.

References

[1] F. Albertao. Sustainable software development. In Harnessing Green IT, pages
63–83. John Wiley & Sons, Ltd, 2012.

[2] G. Behrmann, A. David, and K. Larsen. A tutorial on Uppaal. In M. Bernardo and
F. Corradini, editors, Formal Methods for the Design of Real-Time Systems, volume
3185 of LNCS, pages 33–35. Springer Berlin / Heidelberg, 2004.

17

[3] E. Capra, C. Francalanci, and S. A. Slaughter. Is software "green"? Application
development environments and energy efficiency in open source applications. Inf.
Softw. Technol., 54(1):60–71, Jan. 2012.

[4] M. Cohen, H. S. Zhu, S. E. Emgin, and Y. D. Liu. Energy types. In Proc. OOPSLA
’12, 2012, to appear.

[5] A. David, M. Möller, and W. Yi. Formal verification of UML statecharts with real-
time extensions. In R.-D. Kutsche and H. Weber, editors, Fundam. Approaches to
Softw. Eng., volume 2306 of LNCS, pages 208–241. Springer Berlin / Heidelberg,
2002.

[6] J. Garland and R. Anthony. Large-Scale Software Architecture: A Practical Guide
using UML. Willey, 1st edition, 2003.

[7] S. Gotz, C. Wilke, S. Cech, and U. Assmann. Architecture and mechanisms for
energy auto tuning. In Proc. Sustainable ICTs and Management Systems for Green
Computing, 2012.

[8] S. Malakuti Khah Olun Abadi, S. te Brinke, L. M. J. Bergmans, and C. M. Bock-
isch. Towards modular resource-aware applications. In Proc. 3rd Int. Workshop on
Variability & Composition (VariComp 2012), pages 13–17, New York, March 2012.
ACM.

[9] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, Dec. 1972.

[10] W. Royce. Improving software economics-top 10 principles of achieving agility at
scale. White paper, IBM Rational, May 2009.

[11] J. Skene, D. D. Lamanna, and W. Emmerich. Precise service level agreements. In
Proc. 26th Int. Conf. on Software Engineering, ICSE ’04, pages 179–188, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[12] B. Steigerwald and A. Agrawal. Green software. In Harnessing Green IT, pages
39–62. John Wiley & Sons, Ltd, 2012.

[13] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W. Ye. Energy-driven
integrated hardware- software optimizations using SimplePower. In Proc. ISCA ’00,
2000.

[14] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem: managing energy
as a first class operating system resource. SIGOPS Oper. Syst. Rev., 36(5):123–132,
Oct. 2002.

[15] S. Zschaler. Formal specification of non-functional properties of component-based
software systems. Software and Systems Modelling (SoSyM), 9:161–201, 2009.

18

	Introduction
	Notation for Energy-Aware Components
	Design Method
	Overview
	Design Activities in Detail
	Analysis
	Model Resource Ports of Functional Components
	Model Resource Behavior of Functional Components
	Model User Components
	Model Optimizer Components

	Design Method using Uppaal
	Overview of Uppaal
	Design Activities using Uppaal
	Analysis
	Model Resource Ports
	Model Resource Behavior
	Model User Components
	Model Optimizer Components

	Media Player Case Study
	Lessons Learned
	General Approach
	Uppaal-based Approach

	Related Work
	Conclusions and Future Work

