Benelearn 2005

Annual Machine Learning Conference of
Belgium and the Netherlands

CTIT PROCEEDINGS OF THE FOURTEENTH
ANNUAL MACHINE LEARNING CONFERENCE
OF BELGIUM AND THE NETHERLANDS

Martijn van Otterlo, Mannes Poel and Anton Nijholt (eds.)

CIP GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Otterlo, van. M., Poel, M., Nijholt, A.

Benelearn 2005

Proceedings of the Fourteenth Annual Machine Learning Conference of Belgium and the Netherlands
M. van Otterlo, M. Poel, A. Nijholt (eds.)

Enschede, Universiteit Twente, Faculteit Elektrotechniek, Wiskunde en Informatica

ISSN 0929-0672
CTIT Workshop Proceedings Series WP05-03

trefwoorden: machine learning, neural networks, adaptive systems,
computational learning theory.

(© Copyright 2005; Universiteit Twente, Enschede

Book orders:

Ms. C. Bijron

University of Twente

Faculty of Electrical Engineering, Mathematics and Computer Science
Human Media Interaction

P.O. Box 217

NL 7500 AE Enschede

tel: 431 53 4893680

fax: +31 53 4893503

Email: bijron@cs.utwente.nl

Druk- en bindwerk: Reprografie U.T. Service Centrum, Enschede

mailto:bijron@cs.utwente.nl

Preface

It is a pleasure for the Human Media Interaction (HMI) Group of the University of Twente to welcome you in Enschede
for the Benelearn 2005 conference. We are very happy to be able to present to you a wide variety of work, from a wide
variety of researchers in machine learning. In personal communication, Professor Nicholas Findler suggested the name
“Beneluxlearn”, and although original and clever, given the wide variety of originating countries this year, this might not
even be general enough.

Benelearn 2005 is the fourteenth conference in a long tradition of events in which researchers from the Netherlands,
Belgium and other countries gather to present and discuss their recent work in machine learning. Given the prominent role
Benelux researchers play in the European and international area of machine learning, as well as the growing interest to
learn and mine in the context of increasing numbers of datasets and applications, we hope that Benelearn will continue to
function as a useful machine learning forum.

This year’s major themes are computational learning theory, reinforcement learning, evolution and datamining. Multiple
authors take a principled approach, grounded in theory and statistics. This is in line with recent trends in the machine learn-
ing community. Applications of machine learning that are addressed during the conference range from facial recognition
and microarrays analysis to speaker head orientations in meetings and forest fire control.

We are very pleased to have the opportunity to welcome two invited speakers this year. Kristian Kersting, from the
University of Freiburg in Germany, will talk about ”Probabilistic Logic Learning and Reasoning” in which a growing
direction in current machine learning — that of combining learning, probability and relational (or logical) representation
languages — will be addressed. Samy Bengio, from the IDIAP Research Institute in Martigny, Switzerland, will discuss
”Machine Learning Challenges for Multi-Modal Processing” identifying lots of machine learning challenges in areas such
as meeting modelling and other multi-modal interaction domains.

Benelearn 2005 has been made possible with financial support from NWO (Netherlands Organization for Scientific
Research), SIKS (Dutch Resarch School for Information and Knowledge Systems), IOP-MMI (Senter, Ministry of Eco-
nomic Affairs) and CTIT’s (Centre of Telematics and Information Technology) Special Research Objective NICE (Natural
Interaction in Computer-mediated Environments). We are grateful to all these supporting organizations.

At the University of Twente several people have been involved in the organization of this conference. Using their
experience gathered from the organization of many other workshops and events, Charlotte Bijron, Alice Vissers and Lynn
Packwood have done a terrific job in managing all organizational and financial matters. Hendri Hondorp has proved once
again capable of professionally managing and I&IEX-editing the proceedings, in addition to his efforts on creating a high-
quality web page. The research institute CTIT has given us permission to publish the proceedings in her CTIT Proceedings
series. The organizers of this conference would like to thank the programme committee members and reviewers, the authors
of the submitted papers and all those who have helped bringing about Benelearn 2005.

Martijn van Otterlo, Mannes Poel and Anton Nijholt February 2005

iii

Benelearn 2004
Benelearn 2002
Benelearn 2001
Benelearn 2000
Benelearn 1999
Benelearn 1998
Benelearn 1997
Benelearn 1996
Benelearn 1995
Benelearn 1994
Benelearn 1993
Benelearn 1991

Previous Benelearn conferences

Previous Benelearn conferences were:

Brussels, Belgium

Utrecht, The Netherlands
Antwerp, Belgium

Tilburg, The Netherlands
Leuven, Belgium
Wageningen, The Netherlands
Tilburg, The Netherlands
Maastricht, The Netherlands
Brussels, Belgium
Rotterdam, The Netherlands
Brussels, Belgium
Amsterdam, The Netherlands

Benelearn 1990 Leuven, Belgium

Programme Committee Benelearn 2005

H. Blockeel, (K.U. Leuven)

B. De Baets, (Universiteit Gent)

P. Dupont, (Université catholique de Louvain)
P. Flach, (University of Bristol)

T. Lenaerts, (Universite Libre de Bruxelles)
A. Nowe, (Vrije Universiteit Brussel)

E. Postma, (Universiteit Maastricht)

D. Thierens, (Universiteit Utrecht)

N. Vlassis, (Universiteit Amsterdam)

M. Wiering, (Universiteit Utrecht)

H. Bersini, (Université Libre de Bruxelles)

W. Daelemans, (Universiteit Antwerpen (UIA))

B. De Moor, (K.U. Leuven)

A. Feelders, (Universiteit Utrecht)

M. Hutter, (Istituto Dalle Molle di Studi
sull’Intelligenza Artificiale)

B. Naudts, (Universiteit Antwerpen (RUCA))

M. Pantic, (Universiteit Delft)

S. ten Hagen, (Universiteit Amsterdam)

M. Van Someren, (Universiteit Amsterdam)

Benelearn 2005 Programme Chairs

Martijn van Otterlo, Mannes Poel and Anton Nijholt

Benelearn 2005 Local Organization

Hendri Hondorp (Proceedings I&TEX Editor)
Lynn Packwood (Financial)

Charlotte Bijron and Alice Vissers
(Programme Committee Secretary)

Sponsors

Centre for Telematics and
Information Techmology

-I:TIT

"http://www.ctit.utwente.nl
2http://www.nwo.nl
3http://www.siks.nl
4http://www.iop.nl

iv

http://www.ctit.utwente.nl
http://www.nwo.nl
http://www.siks.nl
http://www.iop.nl

Contents

Invited Speakers

Multi-Channel Sequence ProCesSINgo e

Samy Bengio (IDIAP Research Institute, Martigny, Switzerland) and Hervé Bourlard (IDIAP Research
Institute and Swiss Federal Institute of Technology at Lausanne (EPFL), Switzerland)

Probabilistic Logic Learning and ReASONINGttt ettt eiaeas

Kristian Kersting (University of Freiburg, Institute for Computer Science, Machine Learning Lab, Freiburg,
Germany

Regular Speakers

Monotone Constraints in Frequent Tree MINING ittt

Jeroen De Knijf and Ad Feelders (Utrecht University, Institute of Information and Computing Sciences,
Utrecht, the Netherlands)

Amplifying the Block Matrix Structure for Spectral CIUSIEring ettt

Igor Fischer (Telecommunications Lab, Saarland University, Saarbriicken, Germany) and Jan Poland (ID-
SIA, Manno-Lugano, Switzerland)

Maximizing Expected Utility in Coevolutionary Searcho ue ittt

Edwin D. de Jong (Decision Support Systems Group, Institute of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands)

Assessment of SVM Reliability for Microarrays Data ARGLYSISo,

Andrea Malossini, Enrico Blanzieri (Department of Information and Communication Technology, Univer-
sity of Trento, Povo, Italy) and Raymond T. Ng (Department of Computer Science, University of British
Columbia, Vancouver, Canada)

Best-response Play in Partially Observable Card Games. i uiiiiniiiiiianneennn..

Frans Oliehoek, Matthijs T.J. Spaan and Nikos Vlassis (Informatics Institute, Faculty of Science, University
of Amsterdam, Amsterdam, the Netherlands)

Detecting Deviation in Multinomially Distributed Data uuuee et

Jan Peter Patist (Department of Artificial Intelligence, Mathematics and Computer Science, Vrije Univer-
siteit, Amsterdam, the Netherlands)

Master Algorithms for Active Experts Problems based on Increasing Loss Values
Jan Poland and Marcus Hutter (IDSTA, Manno-Lugano, Switzerland)

Strong Asymptotic Assertions for Discrete MDL in Regression and Classificationc.c.ccoueeunn..
Jan Poland and Marcus Hutter (IDSTA, Manno-Lugano, Switzerland)

Speaker Prediction based on Head OFIentAtiONS ettt ettt

Rutger Rienks, Ronald Poppe and Mannes Poel (Human Media Interaction Group, Department of Electrical
Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands)

A Modular Approach to Facial Expression ReCOGRITIONttt et

Michal Sindlar (Cognitive Artificial Intelligence, Utrecht University, Utrecht the Netherlands) and Marco
Wiering (Intelligent Systems Group, Utrecht University, Utrecht, the Netherlands)

Reliability yields Information GaAiN e e e et et 89

I.G. Sprinkhuizen-Kuyper, E.N. Smirnov (IKAT, Universiteit Maastricht, Maastricht, the Netherlands) and
G.I. Nalbantov (ERIM, Erasmus University Rotterdam, the Netherlands)

Reinforcement Learning using Optimistic Process Filtered Models i i, 97

Funlade T. Sunmola and Jeremy L. Wyatt (School of Computer Science, University of Birmingham, Birm-
ingham, UK)

Experiments with Relational Neural Networks ettt ettt 105

Werner Uwents and Hendrik Blockeel (Department of Computer Science, Katholieke Universiteit Leuven,
Leuven, Belgium)

Evolving Neural Networks for Forest Fire CORIrOl ettt 113

Marco Wiering (Intelligent Systems Group, Utrecht University, Utrecht, the Netherlands), Filippo Mignogna
(Presidio Siemens, 1.C.P., Milano, Italy) and Bernard Maassen (Computer Science Department, Utrecht
University, Utrecht, the Netherlands)

LiStOf QUIROTS . .« oo o e e e e e e e e e e e 121

vi

Multi-Channel Sequence Processing

Samy Bengio
IDIAP Research Institute, Martigny, Switzerland

Hervé Bourlard

BENGIOQIDIAP.CH

BOURLARDQIDIAP.CH

IDIAP Research Institute and Swiss Federal Institute of Technology at Lausanne (EPFL), Switzerland

Abstract

This paper summarizes some of the cur-
rent research challenges arising from multi-
channel sequence processing. Indeed, mul-
tiple real life applications involve simultane-
ous recording and analysis of multiple infor-
mation sources, which may be asynchronous,
have different frame rates, exhibit different
stationarity properties, and carry comple-
mentary (or correlated) information. Some of
these problems can already be tackled by one
of the many statistical approaches towards
sequence modeling. However, several chal-
lenging research issues are still open, such
as taking into account asynchrony and cor-
relation between several feature streams, or
handling the underlying growing complex-
ity. In this framework, we discuss here two
novel approaches, which recently started to
be investigated with success in the context
of large multimodal problems. These in-
clude the asynchronous HMM, providing a
principled approach towards the processing
of multiple feature streams, and the lay-
ered HMM approach, providing a good for-
malism for decomposing large and complex
(multi-stream) problems into layered archi-
tectures. As briefly reported here, combi-
nation of these two approaches yielded suc-
cessful results on several multi-channel tasks,
ranging from audio-visual speech recognition
to automatic meeting analysis.

1. Introduction

Given the proliferation of electronic recording devices
(cameras, microphones, EEGs, etc) with ever cheaper,
and ever increasing processing speed, storage, and
bandwidth, together with the advances in automat-
ically extracting and managing information recorded

from these devices (such as speech recognition, face
tracking, etc), it becomes more and more feasible
to simultaneously capture a same event (or multi-
ple events) with several devices, generating richer and
more robust sets of feature-streams.

Modeling such data coming from multiple channels
(thus resulting in multiple observation streams) is the
goal of multi-channel sequence processing. Examples
of practical applications of this field are numerous,
such as audio-visual speech recognition, which can be
more robust to ambient noise than only using an au-
dio stream. While several statistical models were pre-
sented recently in the literature to cope with this grow-
ing amount of data accessible in parallel, several open
research problems are still to be solved. The purpose
of this paper is thus to discuss some of these solutions,
and specifically addressing two important issues, i.e.,
asynchrony (when the feature streams are supposed to
be piecewise stationary, but with different stationary
properties) and complezity (when it is furthermore nec-
essary to split the problem into several multi-stream
sub-problems).

The outline of the paper is as follows. Section 2 justi-
fies the need for multi-channel sequence processing by
discussing some of the numerous applications that re-
quire such a framework. Section 3 reviews some of the
current models used in the literature. Section 4 shows
that despite all these models, there is still room for
several improvements. Section 5 proposes a model to
handle temporal asynchrony between channels, while
Section 6 proposes a principled approach to control
the complexity of multi-channel sequence processing
through “optimal” hierarchical processing.

2. Some Applications

Several tasks that are currently handled with only one
stream of information could in fact benefit from the
addition of other parallel streams. Furthermore, like

Multi-Channel Sequence Processing — Samy Bengio and Hervé Bourlard 2

in speech recognition (as well as video processing), it
becomes more and more usual to apply different fea-
ture extraction techniques to the same signal, resulting
in multiple feature streams

For instance, in audio-visual speech recognition, the
audio signal is typically complemented by the video
recording of the face (and thus the lips) of the per-
son. It has already been shown (Dupont & Luettin,
2000; Bengio, 2004) that if the resulting audio and
visual feature streams are properly modeled, such a
multi-channel approach will significantly help in rec-
ognizing the speech utterances under noise conditions.
Similar settings have also been used successfully for
audio-visual person authentication (Bengio, 2004). In
fact, even using only one raw source of information can
yield better results in a multi-channel setting, e.g., us-
ing multiple sampling rates (multi-rate) or feature ex-
traction (multi-stream) techniques, as already demon-
strated for the task of speech recognition (Morris et al.,
2001).

The field of multimedia analysis, which includes anal-
ysis of news, sports, home videos, meetings, etc, is
very rich and these events are often recorded with at
least two streams of information (audio and video)
and sometimes more (as for the meeting scenario de-
scribed later in this paper), and may contain com-
plex human human interactions (McCowan et al.,
2005). These multimedia documents also give rise
to other applications such as multimodal tracking of
objects/humans (Gatica-Perez et al., 2003). Further-
more, as the quantity of such archived documents
grows, it becomes important to develop multimedia
document retrieval systems (Renals et al., 2000; West-
erveld et al., 2003) to find relevant documents based
not only on their textual content but also on their joint
visual and audio content.

Finally, numerous multi-channel sequence processing
processing also appear in the context wearable comput-
ers (Mann, 1997), aiming at assisting people in various
everyday activities (e.g., life saving, security, health
monitoring, mobile web services) by using small de-
vices such as cameras, microphones (e.g., recording all
what you see and all what you hear), and multiple
extra sensors (e.g., recording diverse physiological sig-
nals), etc.

In all the above applications, multi-channel processing
presents several challenges. As already mentioned ear-
lier, we first have to develop new sequence recognition
strategies accommodating multiple frame rates, asyn-
chrony, correlation between stream, etc. One solution
to this problem, referred to as “Asynchronous HMM”
(AHMM) will be discussed in the paper (Section 5).

Furthermore, multi-channel processing may also im-
pact differently the different levels of information that
we aim at extracting from the observation streams.
While AHMM can be well suited to classify sequential
patterns into “low level” classes, they may not be ap-
propriate, or easily tractable (because of training data
and complexity issues), when one aims at extracting
higher level information, such as semantic classes. In
this case, it may be necessary to use a “hierarchical
HMM” approach, where each “HMM layer” will use
different types of multiple observation streams (possi-
bly resulting of the previous HMM layer). This layered
approach will be discussed in Section 6.

3. Notation and Models

Several models have already been proposed in the liter-
ature to handle multi-channel applications. We briefly
discuss here some of the most successful approaches,
using a unified notation. Let us denote an observation
sequence O of T feature vectors as

():(01,027...,071)7 (1)
where o; is the vector of all multimodal features avail-
able at time ¢. In general, such a set of features can be
broken down into multiple streams (associated with
channels, modalities, or different pre-processing) m.
We thus further define the feature vector

o € RN», 2)

where N,, is the number of features for stream m,
with 1 < m < M (the total number of observation
streams). Each observation sequence is typically as-
sociated with a corresponding sequence of high level
classes or “events”. For instance, in speech or hand-
writing recognition, this would correspond to a se-
quence of words. The most successful types of model
used to handle observation sequences are all based on a
statistical framework. In this context, the general idea
is to estimate, for each type of high level event v; € V,
the parameters ; of a distribution over corresponding
observation sequences p(0Ol6;), where O would corre-
spond to the event v;. The most well-known solution
to efficiently model such distributions is to use Hidden
Markov Models (HMMs).

HMMs have been used with success for numerous
sequence recognition tasks, including speech recog-
nition (Rabiner & Juang, 1993), video segmenta-
tion (Boreczky & Wilcox, 1998), sports event recog-
nition (Xie et al., 2002), and broadcast news segmen-
tation (Eickeler & Miiller, 1999). HMMs introduce
a state variable ¢; and factor the joint distribution

3 Multi-Channel Sequence Processing — Samy Bengio and Hervé Bourlard

of the observation sequence and the underlying (un-
observed) HMM state sequence into two simpler dis-
tributions, namely emission distributions p(o¢|q;) and
transition distributions p(g¢|q:—1). Such factorization
assumes an underlying piece-wise stationary process
(each stationary segment being associated with a spe-
cific HMM state), and yields efficient training algo-
rithms such as the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) which can be used
to select the set of parameters ¢ of the model corre-
sponding to event v; in order to maximize the likeli-
hood of L observation sequences:

L
0; = argmax | [p(0416)). (3)
=1

The success of HMMs applied to sequences of events
is based on a careful design of sub-models (topolo-
gies and distributions) corresponding to lexical units
(phonemes, words, letters, events), and possibly se-
mantic units (like the meeting group actions discussed
in Section 6.1). Given a training set of observation se-
quences for which we know the corresponding labeling
in terms of high level events (but not necessarily the
precise alignment), we create a new HMM for each se-
quence as the concatenation of sub-model HMMs cor-
responding to the sequence of high level events. This
HMM can then be trained using EM, thus adapting
each sub-model HMM accordingly.

During testing, when observing a new observation se-
quence, the objective is simply to find the optimal se-
quence of sub-model HMMs (representing high level
events) that could have generated the given observa-
tion sequence. Multiple algorithms have been devel-
oped to efficiently solve this problem, even in large
search spaces, including stack decoders (Jelinek, 1969),
or different approximations based on the well-known
Viterbi algorithm (Viterbi, 1967).

While HMMs can be used to model various kinds of ob-
servation sequences, several extensions have been pro-
posed to handle simultaneously multiple streams of ob-
servations, all corresponding to the same sequence of
events (Morris et al., 2001; Dupont & Luettin, 2000;
Oliver et al., 2002). The first and simplest solution is
to merge all observations related to all streams into a
single stream (frame by frame), and to model it using a
single HMM as explained above. This solution is often
called early integration. Note that in some cases, when
the streams represent information collected at different
frame rates (such as audio and video streams for in-
stance), up-sampling or down-sampling of the streams
is first necessary in order to align the streams to a
common frame rate.

A better solution may be to use the multi-stream ap-
proach (Bourlard & Dupont, 1997). In this case, each
stream is modeled separately using its own HMM.
For instance, if we consider the modalities as sepa-
rate streams, we would create one model 67, . for each
event v; and stream m such that

L
an}j = arg %13pr(07‘|9,”&), (4)

md

where O}" is the IR observation sequence of stream m.
When a new sequence of events needs to be analyzed, a
special HMM is then created, recombining all the sin-
gle stream HMM likelihoods at various specific tempo-
ral (“anchor”) points automatically determined during
training and decoding. Depending on these recom-
bination points, various solutions appear. When the
models are recombined after each state, the underly-
ing system is equivalent to making the hypothesis that
all streams are state-synchronous and independent of
each other given a specific HMM state. This solution
can be implemented efficiently and has shown robust-
ness to various stream-dependent noises. The emission
probability of the combined observations of M streams
in a given state of the model corresponding to event
v; at time ¢ is estimated as:

M
plodar) = T »(of"lar. bm.y)- (5)

m=1

One can see this solution as searching the best path
into an HMM where each state ¢ would be a combina-
tion of all states i of the single stream HMMs'. A more
powerful recombination strategy enables some form of
asynchrony between the states of each stream: one
could consider an HMM in which states would include
all possible combinations of the single stream HMM
states. Unfortunately, the total number of states of
this model would be exponential in the number of
streams, hence quickly intractable. An intermediate
solution, which we call composite HMM, considers all
combinations of states in the same event only (Potami-
anos et al., 2004). Hence, in this model, each event
HMM j now contains all possible combinations of
states of the corresponding event v, ; of each stream
HMM m. The total number of states remains ex-
ponential but is more tractable, when the number of
states of each stream remains low as well as the num-
ber of streams. The underlying hypothesis of this in-
termediate solution is that all streams are now event-
synchronous instead of state-synchronous.

'Note that this solution forces the topology of each sin-
gle stream to be the same.

Multi-Channel Sequence Processing — Samy Bengio and Hervé Bourlard 4

Several other approaches to combine multiple streams
of information have been proposed in the literature,
but generally suffer from an underlying training or de-
coding algorithm complexity which is exponential in
the number of streams. For instance, Coupled Hidden
Markov Models (CHMMSs) (Brand, 1996) can model
two concurrent streams (such as one audio and one
video stream) with two concurrent HMMs where the
transition probability distribution of the state vari-
able of each stream depends also on the value of the
state variable of the other stream at the previous time
step. More formally, let ¢ and r be respectively the
state variables of both streams, then CHMMs model
transitions according to p(g:=i|g:—1=74,7:—1=k) and
p(rs=i|ri—1=j, q¢t—1=k). While the exact training al-
gorithm for such a model quickly becomes intractable
when extended to more than 2 streams, an approxi-
mate algorithm which relaxes the requirement to visit
every transition (termed the N-heads algorithm) was
proposed in (Brand, 1996), and can be tractable for a
small number of streams.

Two additional approaches have been proposed re-
cently, and will be the focus of Sections 5 and 6. These
are the Asynchronous HMM (Bengio, 2003), that can
handle asynchrony between streams, and the Layered
HMM (Zhang et al., 2004; Bourlard et al., 2004) than
can help in constraining the model according to levels
of prior knowledge.

4. Challenges

While there are already several models proposed in
the literature to cope with multi channel sequence pro-
cessing, we believe that there are still several research
challenges that have not been adequately addressed
yet, including:

1. How to handle more than two streams?
Most solutions that model the joint probability of
the streams need in general exponential resources
with respect to the number of streams, the num-
ber of states of each underlying Markov chain, or
the size of each stream. This practically means
that handling more than two streams is already a
challenge. One possible alternative is to limit the
search space through the use of reasonable heuris-
tics, which should depend on a priori knowledge
on the interdependencies of the streams.

2. How to handle learning in high dimensional
spaces? The observation space (the total num-
ber of observed features per time step) grows
naturally with the number of streams. Further-
more, it is often the case that the total number

of parameters of the model grows linearly or more
with the number of observations (for instance if
the conditional observation distributions are mod-
eled with Gaussian Mixture Models). Hence, one
has to fight the well-known curse of dimensional-
ity (Bishop, 1995).

. How to handle long term temporal depen-

dencies? This problem deals with sequential
data where one needs to relate information ob-
served at time ¢ with information observed at
time t 4+ k where k is rather large. It has been
shown (Bengio et al., 1994) that this becomes
exponentially difficult with & when no structural
knowledge is built a priori in the model. Hence,
in order for multi channel processing to be suc-
cessful, an appropriate structure is necessary.

. Joint feature extraction and heterogeneity

of sources. In current systems involving multiple
streams of information, features used to represent
each stream are extracted independently. On the
other hand, if one agrees that there may be some
correlation between the streams, one should there-
fore devise joint feature extraction techniques,
which should then yield more robust performance.
However, what should we then do with streams
of different nature (such as the slides of a pre-
sentation, together with the video of the person
performing the same presentation)?

. How to handle different levels of a priori

knowledge constraints? It has been known
for decades that in order to obtain good speech
recognition performance, one has to constrain the
recognition model with a good language model,
that only permits valid and probable sequences
of words to be recognized. The same idea should
thus be applied to other domains, such as videos,
which contain rich high level information that
should be constrained somehow. Several levels
of description should thus be used in such lan-
guage model; for instance, a visual scene could
be described by the pixels of the image, the per-
sons present in the image, the action taking place,
the body language, etc. For each of these levels, a
probabilistic model of what is possible and what is
not should therefore be trained. Furthermore, one
should devise multi channel language models
in order to take into account information coming
from several streams at the same time.

. Asynchrony between streams. Let us con-

sider the simplest multi-channel case, with 2
streams, and let us assume that these 2 streams
describe the same sequence of 3 “events” (classes)

5 Multi-Channel Sequence Processing — Samy Bengio and Hervé Bourlard

A, B and C. Furthermore, let us assume, as il-
lustrated in Figure 1, that the best piecewise sta-
tionary alignment of each stream to the sequence
A-B-C would not coincide temporally with each
other (which we refer to “stream asynchrony”). In
such a case (which is discussed in more details in
Section 5), a naive solution to try to model the
joint probability of the two streams (e.g., apply-
ing early integration) would need an exponential
number of states (with respect to the number of
streams), as depicted in the third line of Figure 1.
A better solution, depicted in the fourth line of
Figure 1, would stretch or compress the streams
along a single HMM model with the goal to re-
align them during training and decoding. Such a
model is described in Section 5.

Stream 1 [A | B | C | 3di-dimstates
Stream 2)

[A T B [[$] 3 d2-dim states
Naive LA 1A [B | € |5(d1+d2)-dim
Integration [A [BT B lcl ¢ | states
o/ A | B | C |30adn
Asynchronous [A B [C |

Figure 1. Complexity issue with asynchronous streams.

7. Available benchmark datasets for evalua-
tion. One of the reasons of the steady progress
of speech recognition has been the ever increasing
availability of larger and larger realistic labeled
datasets, and the yearly organization of interna-
tional competitions. It is well known that this
is a key point for progress in any scientific re-
search field. However, to date, very little mate-
rial has been recorded and properly annotated for
multi channel sequence processing. Audio-visual
speech recognition and person authentication are
probably the fields where most available databases
can be found. What about other scenarios, such
as multimedia analysis, multimodal surveillance,
etc? In Section 6, we describe a first initiative
of such a benchmark database available for the
meeting scenario.

5. Handling Asynchrony

Properly modeling asynchrony and correlation be-
tween multiple observation streams is thus a challeng-
ing problem. However, as a matter of fact, there are
multiple evidences of real life applications involving
several asynchronous streams. For instance, audio-

visual speech recognition usually exhibits asynchrony.
Indeed, the lips of a person often start moving earlier
than any sound is uttered, mainly because the per-
son is preparing to utter the sound. Another example
is the speaking and pointing scenario, where a person
complement the speech signal with a pointing gesture
(to a point of interest). In this case, of course, al-
though the two streams are related to the same high-
level event, the pointing event will usually never oc-
cur exactly at the same time as the vocal event. One
last example of asynchrony: in a news video, there
is almost always a variable delay between the moment
when the newscaster says the name of a public person-
ality and the moment when the personality’s picture
actually appears on the screen.

One can think of several other instances involving
asynchrony between streams, and there is thus a need
to model this phenomenon in a principled way. As
described below, such a solution, referred to as Asyn-
chronous HMM was recently proposed.

5.1. The Asynchronous HMM

Let us consider the case where one is interested in
modeling the joint probability of two asynchronous
streams, denoted here O of length 7 and O? of length
Ty with Tp < Ty without loss of generality?. We are
thus interested in modeling p(O!, O?). Following the
ideas introduced for HMMs, we represent this distri-
bution using a hidden variable Q which represents the
(discrete) state of the generating system, which in our
case is synchronized with the longest sequence O'.

Moreover, since we know that O? is smaller than O?,
let the system always emit o} at time ¢ but only some-
times emit 03 at time ¢, with s < ¢. Let us define 7;=s
as the fact that of is emitted at the same time as 0?;
7 can thus be seen as the alignment between O! and
O2. Hence, an Asynchronous HMM (AHMM) (Ben-
gio, 2003) models p(O', 0%, Q, 7).

Using these hidden variables, and using several rea-
sonable independence assumptions, we can factor the
joint likelihood of the data and the hidden variables
into several simple conditional distributions:

e P(q:=i|g:—1=j), the probability to go from state
7 to state ¢ at time ¢,

e p(o},0%|q;=i), the joint emission distribution of
o; and o2, while in state i at time t,

2Since all the reasoning below can easily be generalized
to sequences (even of the same length) where the warp-
ing (stretching and compressing) can occur at different in-
stances in the different streams.

Multi-Channel Sequence Processing — Samy Bengio and Hervé Bourlard 6

e p(o}|g:=i), the emission distribution of o} only,
while in state ¢ at time ¢,

o P(ry=s|ry_1=s — 1,q;=i,01,,0%.,), the probabil-
ity to emit on both sequences while in state i at
time ¢.

We showed in (Bengio, 2003) that using these simple
distributions, new algorithms could be developed to
(1) estimate the joint likelihood of the two streams, (2)
train a model to maximize the joint likelihood of pairs
of streams, and (3) jointly estimate the best sequence
of states () and the best alignment between pairs of
streams.

Furthermore, one can still constrain the model to
consider only reasonable alignments, e.g., integrating
some minimum and maximum asynchrony between the
streams. Using this constraint and denoting NN, the
number of states of the model, the training and de-
coding complexity become O(N, 3 -Ty - k), which is only
k times the usual HMM complexity.

5.2. Audio-Visual Speech Recognition

The proposed AHMM model was applied to several
tasks, including audio-visual speech recognition and
speaker verification (Bengio, 2004), as well multi-
channel meeting analysis (Zhang et al., 2004). We re-
port here results on the M2VTS database (Pigeon &
Vandendorpe, 1997) for the task of audio-visual speech
recognition, where the speech features where standard
Mel-Frequency Cepstral Coefficients (MFCCs), while
the visual features where shapes and intensities around
the mouth region, obtained by lip tracking. In order to
evaluate the robustness of audio-visual speech recog-
nition, various levels of noise were injected into the
audio stream during decoding, while training was al-
ways done using clean audio only. The noise was taken
from the Noisex® database (Varga et al., 1992), and
added to the speech signal injected to reach segmental
signal-to-noise ratios (SNR) of 10dB, 5dB and 0dB.

Asynchronous HMMs were compared to classical
HMMs using only the audio stream, only the video
stream, or both streams combined using the early inte-
gration scheme. Figure 2 presents the results in terms
of Word Error Rate (WER), a commonly used mea-
sure in the field of speech recognition, which takes into
account the number of insertions, deletions and sub-
stitutions®. As observed from Figure 2, the AHMM
consistently yielded lower WER as soon as the noise

3We took the stationary speech noise.
4Basically, the edit (Levenshtein) distance between the
recognized and reference word sequences.

80 : :
audio HMM ——
audio+video HMM ——
R 70 audio+video AHMM —— |
o video HMM —=—
% 60 f -
0]
§ 50]
§ 40 L :\\ i
|
©
5 30 1
=
20 1
10 1 1
0db 5db 10db

Signal to Noise Ratio (SNR)

Figure 2. Word Error Rates (in percent, the lower the bet-
ter), of various systems under various noise conditions.

level was significant. Actually, it did not yield sig-
nificantly lower performance (using a 95% confidence
interval) than the video stream alone in case of very
low (0dB) SNR, while performing as well as the audio
stream alone in case of “clean” speech (10dB).

200
un
zefro
150
o
3
50 VIM| Alignment 1
HMM) Alignment
/ lignment Bounds
0 7 . | , Segmentation ——
0 100 200 300 400 500 600 700 800
Audio

Figure 3. Alignment obtained by the model between video
and audio streams on a typical sequence corrupted with a
10dB Noisex noise. The vertical lines show the obtained
segmentation between the words. The alignment bounds
represent the maximum allowed stretch between the audio
and the video streams.

An interesting side effect of the model is to provide
the “optimal” alignment between the audio and the
video streams, as a by-product of the decoding process.
This is illustrated in Figure 3 showing the audio-visual
stream alignment resulting from the AHMM decoding

7 Multi-Channel Sequence Processing — Samy Bengio and Hervé Bourlard

of a specific digit sequence corrupted with 10dB Noisex
noise. Asit can be seen, the alignment is far from being
linear. This shows that computing and maximizing the
joint stream probability using AHMM appears more
informative than using a naive alignment and a normal
HMM.

6. A Layered Approach
6.1. The Meeting Scenario

Automatic analysis of meetings (including, e.g., auto-
matic modeling of human interaction in meetings by
modeling the joint behavior of participants through
multiple audio and visual features) is a particularly
challenging application of multi-channel sequence pro-
cessing. It is multimodal by nature (meetings can be
recorded with several cameras and microphones, as
well as with other devices capturing information com-
ing from the white-board, the slide projector, etc) and
is also a rich case study of human interaction.

In (McCowan et al., 2005), a principled approach
to the automatic analysis of meetings was proposed,
defining meetings as continuous sequences of group
actions chosen from a predefined dictionary of ac-
tions (including, for instance, monologue, discussion,
white-board presentation, with or without note-taking,
agreement/disagreement, etc). This made the problem
well suited for supervised learning approaches. The
group actions should be mutually exclusive, exhaus-
tive, and as much as possible unambiguous to human
observers. To this end, we have collected a corpus of 60
short meetings of about 5 minutes each (30 for train-
ing, and 30 for test purposes) in a room equipped with
synchronized multi-channel audio and video recorders.
The resulting corpus, including annotation, is now
publicly available at http://mmm.idiap.ch®. Each
meeting consisted of four participants seated at a ta-
ble in a typical workplace setting. Three cameras cap-
tured the participants, the projector screen and white-
board. Audio was recorded using one lapel microphone
per participant and an eight-microphone array located
in the center of the table. The overall goal was to
minimize the Action Error Rate (AER), similarly to
what is done in speech recognition with Word Error
Rate (WER), but over sequences of high level group
actions. To this end, several extensions of HMMs, in-
cluding AHMMs, were tested and results are reported
in (McCowan et al., 2005).

More recently, we proposed a multi-layered solu-

5In the framework of the AMI European Integrated
Project (http://www.amiproject.org) this corpus is now
extended to about 100 hours of multimodal meeting data.

tion (Zhang et al., 2004; Bourlard et al., 2004) in-
tended at simplifying the complexity of the task, based
on an approach presented in (Oliver et al., 2002).

6.2. A Two-Layer Approach

Let us define two sets of actions, whether they are spe-
cific to individual participants or to the group. While
the overall goal is at the level of group actions, we be-
lieve that individual actions could act as a bridge be-
tween high level complex group actions and low level
features, thus decomposing the problem into stages, or
layers.

To this end, we defined the group action vocabulary
set with the following 8 actions: discussion, mono-
logue, monologue+note-taking, note-taking, presen-
tation, presentation+mnote-taking, white-board, white-
board+mnote-taking. Furthermore, we defined the indi-
vidual action vocabulary with the following 3 actions:
speaking, writing, idle.

Obviously, individual actions should be easier to anno-
tate in the corpus (as being less ambiguous) and should
also be easier to learn with some training data, as they
are obviously more related to low level features that
can be extracted from the raw multiple channels. Fur-
thermore, knowing the sequence of individual actions
of each participant, one should easily be able to infer
the underlying sequence of group actions. Thus con-
sidering every meeting participant as a “multi-stream
generator”, each of the participant’s streams should
be processed by a first layer of HMMs, and the result-
ing HMM’s outputs (likelihoods/posteriors) will then
be combined by a second HMM layer yielding, higher
level, group actions.

Person 1 AV Features ~ I-HMM 1

Person 2 AV Features — I-HMM 2

Cameras —>

Microphones —= | person N AV Features = I-HMM N

Group AV Features

Figure 4. A two-layer approach

Figure 4 illustrates the overall strategy. Audio-visual
features are first extracted for each of the meeting par-
ticipants (Zhang et al., 2004), complemented by more
general group-level features. An individual HMM (I-
HMM) is then trained for each participant, using the
individual action vocabulary. To have these I-HMMs
as much “participant independent” as possible, all pa-
rameters are shared among all models, yielding up to

Multi-Channel Sequence Processing — Samy Bengio and Hervé Bourlard 8

Table 1. Action error rates (AER) for various systems ap-
plied to the meeting scenario.

y Method | AER (%) |

Visual only 48.20

Audio only 36.70

Single-layer | Early Integration 23.74
Multi-Stream 23.13

Asynchronous 22.20

Visual only 42.45

Audio only 32.37

Two-layer | Early Integration 16.55
Multi-Stream 15.83

Asynchronous 15.11

4 times more data to train the -HMMSs. Several mod-
els were compared, including early integration, multi-

stream, and asynchronous HMMs (AHMM).

We then estimate for each participant ¢ the posterior
probability of each individual task v;; at each time
step ¢ given the individual observation sequence up to
time ¢, p(v; j|0}.,). These posterior probabilities, to-
gether with group-level features, are then used as ob-
servations for the second layer, the group HMM, (G-
HMM), which are trained on the group action vocabu-
lary. Again, this G-HMM was implemented in various
flavors, including early integration, multi-stream and
asynchronous HMMs. Section 6.3 below further dis-
cusses this aspect and shows how these (lower level)
posterior probabilities can be estimated to guarantee
some form of “optimality”, while preserving maximum
information (i.e., avoiding local decisions) across the
different layers.

Table 1 reports the AER performance achieved by the
different systems. It can be seen that (1) the two-layer
approach always outperforms the single-layer one, and
(2) the best I-HMM model is the Asynchronous HMM,
which probably means that some asynchrony exists in
this task, and is actually well captured by the model.

6.3. General Multi-Layered (Hierarchical)
HMM Approach

As illustrated from the above meeting scenario, the
complexity resulting from the processing of multiple
channels of information, in order to extract low-level
as well as high-level information (such as the analysis
of multimodal meetings in terms of high level meet-
ing actions), is often such that it will often be nec-
essary to break down the problem in terms of mul-
tiple layers of sub-problems, probably using different
constraints and prior knowledge information sources.

The layered approach is one possible and principled
solution to achieve this. Given a complex task, the
goal is then to break it down into several hierarchi-
cally embedded sub-tasks, for which one can devise
proper models (from enough training data), and use
adequate (level specific) constraints.

We recently proposed such an approach for the task
of speech recognition (Bourlard et al., 2004), where a
general theoretical framework was proposed to com-
pute low-level (e.g., phoneme) class posteriors, based
on all the acoustic context, and to hierarchically com-
bine those posteriors to yield higher-level (e.g., sen-
tence) posteriors. In this approach, each layer is inte-
grating its own prior constraints.

More precisely, a first layer, which could be an HMM
or an AHMM, as in the meeting scenario, or any other
model such as an Artificial Neural Network (ANN), is
used to estimate posterior probabilities p(¢; = i|O)
of sub-classes i (such as phonemes, for the case of
speech recognition) at each time step ¢ given all the
available information (for instance, all the acoustic se-
quence O). In HMM, as well as in hybrid HMM/ANN
systems, this posterior probability estimate is given by
the so-called ~(i,t) = p(q: = #|O), which can be ob-
tained by running and combining the so-called o and
[recurrences through the appropriate HMM. Ideally,
this HMM should embed all known lexical constraints
about legal and probable sequences of phonemes. One
should then use the resulting posterior probabilities
(of every sub-class at every time step) as input to the
next layer model, which would then estimate the pos-
terior probabilities (again through new 4’s) of higher
level classes, such as words, constraining the underly-
ing HMM model with all known language constraints
that pertains to legal and probable sequences of words.
In theory, this operation could be repeated up to the
the level of sentences, and even to the level of summa-
rization, always using posterior probabilities resulting
from the previous layer as intermediate features.

Initial results on several speech tasks, as well as on
the meeting task discussed previously, resulted in sig-
nificant improvements. In (Bourlard et al., 2004),
speech recognition results where presented on Num-
bers’95 (speaker independent recognition of free for-
mat numbers spoken over the telephone) and on a re-
duced vocabulary version (1,000 words) of the DARPA
Conversational Telephone Speech-to-text (CTS) task,
and both resulted in significant improvements.

9 Multi-Channel Sequence Processing — Samy Bengio and Hervé Bourlard

7. Conclusion

This paper discussed several issues arising from the
processing of complex multi-channel data, including
large multimodal problems (meeting data). More
specifically, this paper focused on two important is-
sues, namely stream asynchrony and complexity of
high-level decision processes. The proposed Asyn-
chronous HMMs (AHMM) actually maximize the like-
lihood of the joint observation sequences through a
single HMM, while also automatically allowing for
stretching and/or compressing of the different streams.
However, in the case of very complex problems, using
AHMNDMs is often not enough, and the problem needs
to be broken down into simpler processing blocks.
A solution to this problem, referred to as “multi-
layered /hierarchical HMMs” (and where each layer can
integrate different levels of constraints and prior infor-
mation) was also proposed and shown to be effective
in modeling the joint behavior of participants in mul-
timodal meetings. A full theoretical motivation of this
approach is described in (Bourlard et al., 2004).

Acknowledgements

This work was partly funded (through OFES) by the
European PASCAL Network of Excellence and the
AMI Integrated Project. The results reported here
also benefited from financial support from the Swiss
National Science Foundation, through the National
Center of Competence in Research IM2 (Interactive
Multimodal Information Management).

References

Bengio, S. (2003). An asynchronous hidden markov
model for audio-visual speech recognition. Advances
in Neural Information Processing Systems 15.

Bengio, S. (2004). Multimodal speech processing using
asynchronous hidden markov models. Information
Fusion, 5, 81-89.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learn-
ing long-term dependencies with gradient descent is
difficult. IEEFE Transactions on Neural Networks, 5,
157-166.

Bishop, C. (1995). Neural networks for pattern recog-
nition. London, UK: Oxford University Press.

Boreczky, J. S., & Wilcox, L. D. (1998). A Hidden
Markov Model framework for video segmentation us-
ing audio and image features. Proc. of ICASSP.

Bourlard, H., Bengio, S., Doss, M. M., Zhu, Q., Mesot,
B., & Morgan, N. (2004). Towards using hierarchical

posteriors for flexible automatic speech recognition
systems. Proc. of DARPA EARS Rich Transcription
Workshop.

Bourlard, H., & Dupont, S. (1997). Subband-based
speech recognition. Proc. IEEE ICASSP.

Brand, M. (1996). Coupled hidden markov models
for modeling interacting processes (Technical Report

405). MIT Media Lab Vision and Modeling.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977).
Maximum-likelihood from incomplete data via the
EM algorithm. Journal of Royal Statistical Society
B, 39, 1-38.

Dupont, S., & Luettin, J. (2000). Audio-visual speech
modeling for continuous speech recognition. IEEFE
Transactions on Multimedia, 2, 141-151.

Eickeler, S., & Miiller, S. (1999). Content-based
video indexing of TV broadcast news using Hidden
Markov Models. Proc. of ICASSP.

Gatica-Perez, D., Lathoud, G., McCowan, 1., &
Odobez, J.-M. (2003). A mixed-state i-particle filter

for multi-camera speaker tracking. Proc. of WOM-
TEC.

Jelinek, F. (1969). A fast sequential decoding algo-
rithm using a stack. IBM Journal of Research and
Development, 13, 675-685.

Mann, S. (1997). Smart clothing: The wearable com-
puter and wearcam. Personal Technologies. Volume
1, Issue 1.

McCowan, I., Gatica-Perez, D., Bengio, S., Lathoud,
G., Barnard, M., & Zhang, D. (2005). Automatic
analysis of multimodal group actions in meetings.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 27, 305-317.

Morris, A., Hagen, A., Glotin, H., & Bourlard, H.
(2001). Multi-stream adaptive evidence combina-
tion for noise robust ASR. Speech Communication.

Oliver, N., Horvitz, E., & Garg, A. (2002). Layered
representations for learning and inferring office ac-
tivity from multiple sensory channels. Proc. of the
Int. Conf. on Multimodal Interfaces.

Pigeon, S., & Vandendorpe, L. (1997). The M2VTS
multimodal face database (release 1.00). Proc. of the
Conf. on AVBPA.

Potamianos, G., Neti, C., Luettin, J., & Matthews, I.
(2004). Audio-visual automatic speech recognition:
An overview. In G. Bailly, E. Vatikiotis-Bateson and

Multi-Channel Sequence Processing — Samy Bengio and Hervé Bourlard

10

P. Perrier (Eds.), Issues in visual and audio-visual
speech processing. MIT Press.

Rabiner, L. R., & Juang, B.-H. (1993). Fundamentals
of speech recognition. Prentice-Hall.

Renals, S., Abberley, D., Kirby, D., & Robinson, T.
(2000). Indexing and retrieval of broadcast news.
Speech Communication, 32, 5-20.

Varga, A., Steeneken, H., Tomlinson, M., & Jones, D.
(1992). The noisex-92 study on the effect of additive
noise on automatic speech recognition (Technical Re-
port). DRA Speech Research Unit.

Viterbi, A. (1967). Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. IEEE Transactions on Information The-
ory, 260-269.

Westerveld, T., de Vries, A. P., van Ballegooij, A.,
de Jong, F., & Hiemstra, D. (2003). A probabilis-
tic multimedia retrieval model and its evaluation.
EURASIP Journal on Applied Signal Processing, 2.

Xie, L., Chang, S.-F., Divakaran, A., & Sun, H.
(2002). Structure analysis of soccer video with Hid-
den Markov Models. ICASSP.

Zhang, D., Gatica-Perez, D., Bengio, S., McCowan,
I., & Lathoud, G. (2004). Modeling individual and
group actions in meetings: a two-layer hmm frame-

work. IEEE Workshop on Event Mining at CVPR.

Probabilistic Logic Learning and Reasoning

Kristian Kersting

KERSTING@QINFORMATIK.UNI-FREIBURG.DE

University of Freiburg, Institute for Computer Science, Machine Learning Lab, Georges-Koehler-Alle 079, 79110

Freiburg, Germany

Probabilistic logic learning which is sometimes also
called statistical relational learning addresses one of
the central questions of artificial intelligence: the inte-
gration of probabilistic reasoning with first order logic
representations and machine Learning. In the past
few years, this question has received a lot of atten-
tion. Various different approaches have been devel-
oped in several related, but different areas (including
machine learning, statistics, inductive logic program-
ming, databases, and reasoning under uncertainty).
Most researchers only have exposure to one or two of
the constituents underlying Probabilistic Logic Learn-
ing, cf. Figure 1.

In this talk, I shall start from a Bayesian network per-
spective and sketch how to incorporate logical concepts
of objects and relations among these objects. As time
and actions are not just other relations, I shall after-
wards outline probabilistic logic reasoning over time
and making complex decision in relational domains.

More specifically, I shall overview how to upgrade
Bayesian networks to Bayesian Logic Programs (Ker-
sting & De Raedt, 2001), hidden Markov models to
logical hidden Markov models (Kersting et al., 2003);
and Markov decision processes to Markov decision
programs (Kersting et al., 2004). I shall also show
that probabilistic logic learning approaches naturally
yield kernels for structured data (Kersting & Gértner,
2004). The resulting approaches will be illustrated us-

Probabilistic
Logic

Learning Learning

Figure 1. Probabilistic Logic Learning as the intersection
of Probability, Logic, and Learning.

ing examples from genetics, bio-informatics and clas-
sical planning domains.

This is joint work with Luc De Raedt, Thomas
Gaertner, Tapani Raiko, Martijn Van Otterlo and is
part of the EU projects APRIL I+II (Application
of Probabilistic Inductive Logic Programming I+11),
http://www.aprill.org.

The talk will also partly be based on (De Raedt &
Kersting, 2003; De Raedt & Kersting, 2004).

References

De Raedt, L., & Kersting, K. (2003). Probabilistic
Logic Learning. SIGKDD Ezplorations: Special is-
sue on Multi- Relational Data Mining, 5, 31-48.

De Raedt, L., & Kersting, K. (2004). Probabilistic In-
ductive Logic Programming. Proceedings of the 15th
International Conference on Algorithmic Learning
Theory (ALT-04) (pp. 19-36). Padova, Italy.

Kersting, K., & De Raedt, L. (2001). Towards Com-
bining Inductive Logic Programming and Bayesian
Networks. Proceedings of the Eleventh Conference
on Inductive Logic Programming (ILP-01) (pp. 118
—131). Strasbourg, France.

Kersting, K., & Gartner, T. (2004). Fisher kernels
for logical sequences. Proceedings of the 15th Eu-
ropean Conference on Machine Learning (ECML-
2004) (pp. 205 — 216). Pisa, Italy.

Kersting, K., Raiko, T., Kramer, S., & De Raedt, L.
(2003). Towards discovering structural signatures of
protein folds based on logical hidden markov mod-

els. Proceedings of the Pacific Symposium on Bio-
computing (PSB-03) (pp. 192 — 203). Hawaii, USA.

Kersting, K., Van Otterlo, M., & De Raedt, L. (2004).
Bellman goes Relational. Proceedings of the Twenty-
First International Conference on Machine Learn-
ing (ICML-04) (pp. 465 — 472). Banff, Canada.

Monotone Constraints in Frequent Tree Mining

Jeroen De Knijft
Ad Feelders

JKNIJFQCS.UU.NL
ADQCS.UU.NL

Utrecht University, Institute of Information and Computing Sciences, PO Box 80.089, 3508 TB Utrecht.

Abstract

Recent studies show that using constraints
that can be pushed into the mining pro-
cess, substantially improves the performance
of frequent pattern mining algorithms. How-
ever the constraints and algorithms have not
yet been explored for frequent structure min-
ing. In this paper we present monotone con-
straints for trees and develop an opportunis-
tic pruning algorithm that mines frequent
trees with monotone constraints. We illus-
trate the use of these constraints within the
application of web log mining. Finally, the
effect of applying these constraints on syn-
thetic data sets is evaluated. The opportunis-
tic pruning methods leads to a considerable
speedup and a reduction in the number of
candidates generated compared to the basic
algorithm.

1. Introduction

In frequent itemset mining the use of constraints is
well explored(Ng et al., 1998; Bayardo, 1998; Bayardo
et al., 1999; Pei & Han, 2000). Constraints that can
be pushed into the mining process — as opposed to
post pruning — allow the mining algorithm to reduce
the search space and hence result in a substantial effi-
ciency gain. Furthermore, constraints provide the end
user with a tool to focus his interest such that many
uninteresting rules don’t have to be examined. Since
the number of rules can be exponential in the size of
the input data, these tools are necessary in practical
data mining applications.

When structured data is taken into account several al-
gorithms (Asai et al., 2002; Zaki, 2002; Nijssen & Kok,
2003) are available — based upon the same principle
as the Apriori (Agrawal & Srikant, 1994) — that mine
for frequent structures in the database. A structure
may be a sequence, tree or graph, but in this paper

fsupported by the Netherlands Organisation for Scien-
tific Research (NWO) under grant no. 612.066.304

we limit the discussion to trees. In general, structured
data can be seen as an extension of unstructured data.
Structured data arise extensively in domains such as
computational biology, XML databases, and molecule
databases. Since the structure of an item encodes an
important part of its semantics, mining for structures
is an important extension of frequent itemset mining.

Because of the advantages of constraints in frequent
itemset mining, we extend and explore the scope of
constraints to trees. For monotone constraints an ex-
tension of (a slightly modified version of) FREQT
(Asal et al., 2002) is described that computes exactly
the frequent trees that satisfy these constraints. Be-
sides the optimisation based upon the Apriori prop-
erty, our algorithm also performs opportunistic prun-
ing on the monotone constraints. The pruning strat-
egy does not prune all trees that falsify the constraints,
but all pruned trees do falsify the constraints. In this
sense the pruning is opportunistic.

The web mining problem serves as an example for min-
ing frequent trees. In the rest of this paper we will use
this example to clarify constraints we introduce.

This paper is organised as follows. In section 2 we
give the basic concepts of tree mining and of FREQT
in particular. In section 3 constraints for trees are
explored and a pruning strategy for monotone con-
straints is described. We performed a number of exper-
iments on synthetic data sets, to evaluate the mono-
tone tree mining algorithm. The results of these ex-
periments are reported in section 4. In the last section
we give conclusions and further research directions.

2. Background

In this section we provide the basic concepts and no-
tation that is used in the remainder of this paper.

2.1. Basic Concepts

A labeled ordered tree T'= {V, E, ¥, L, vo, <} consists
of a vertex set V', an edge set E, an alphabet % for
vertex labels, a labeling function L : V — X that
assigns labels to vertices and a binary relation < C V2

Monotone Constraints in Frequent Tree Mining — Jeroen De Knijf and Ad Feelders 14

) ® ©
& ©® ® ®® ® ® &

® ®® ® ®

di d2 d3

Database

() ® x
®© ® © ® ®w ® O
®

Figure 1. Example database with frequent pattern A — B marked with bold lines (upper half). Below the candidate
patterns of size three extended from the frequent A — B pattern.

that represents a sibling relation among the children
of a node. The special node vg is called the root. If
(u,v) € E then u is the parent of v and v is the child
of u. For a node v, any node u on the path from the
root node to v is called an ancestor of v. If u is an
ancestor of v then v is called a descendent of u.

Given two labeled rooted ordered trees T7 and Th we
call T5 an induced subtree of T}, denoted as Ty < T}
if there exists a injective matching function ® of Tb
into 717, that satisfies the following conditions for any
v,v1,v2 € Vp, ¢

1. ® preserves the parent relation : (vq,v2) € Ep, if
(@(’Ul), <I>(v2)) S ET1 .

2. @ preserves the sibling relation :if v; <7, va then
(I)(Ul) STl (I)(UQ).

3. @ preserves the labels : Lp,(v) = Lq, (®(v)).

Let D denote a database where each transaction d € D
is a labeled rooted ordered tree. For a given pattern
tree t, which is also a labeled rooted ordered tree, we
say t occurs in a transaction d if ¢ is a subtree of d.
Let ¢4(t) denote the number of distinct occurrences of
tin d. Let ¥4(t) = 1 if ¢4(t) > 0 and 0 otherwise.
The support of a subtree t in the database D is then
defined as) ;. pa(t). A pattern tree t is called fre-
quent if the support of ¢ is greater or equal then a user
defined minimum support (minsup) value. The goal of
frequent tree mining is to find all frequent trees in a
given database. Frequent tree mining algorithms make

use of the apriori property: any subtree of a frequent
tree is also frequent and any supertree of an infrequent
tree is also infrequent.

2.2. The FREQT Algorithm

With the background given in section 2.1 we are now
able to describe the FREQT (Asai et al., 2002) al-
gorithm. Our work is based upon this algorithm, but
can be extended to any other frequent tree mining al-
gorithm that uses the induced subtree relation. The
algorithm described below is a slight modification of
FREQT: where FREQT uses as a database one data
tree, we use a set of trees. The support is defined in
FREQT as ¢4(t) with d the data tree and ¢ the pattern
tree. This notion is also known as weighted support.
The modification we made does not lead to conceptual
differences in the algorithm.

The key notion of FREQT is that frequent subtrees of
size k — 1, where the size of a tree is defined as the
number of nodes, are expanded by attaching a new
node only to a node on the rightmost branch of the
tree, to yield a larger tree of size k. The rightmost
branch of a tree is the unique path from the root to the
rightmost leaf. This procedure of extending pattern
trees ensures that each pattern tree is counted exactly
once. The algorithm in pseudo-code is given below:

k—1
F — set of frequent trees of size 1

RMO; « rightmost occurrences of trees in F}
While Fy, # (

15 Monotone Constraints in Frequent Tree Mining — Jeroen De Knijf and Ad Feelders

kE—k+1
Ck, RMO;, +— compute the candidate trees

and their occurrences from (Fj_1, RMOg_1)

Fy. — count Cy, RM Oy

Consider figure 1 which shows an example database
with three data trees. The pattern tree ¢ with nodes
A — B occurs twice in dy and ds and once in ds, hence
t has a support of 3. The candidate trees generated
from ¢ according to the rightmost extension technique
are shown in the lower half of figure 1. From d3 no
candidate trees could be generated.

3. Mining Trees with Monotone
Constraints

In this section we define monotone constraints for trees
and describe an opportunistic pruning method to com-
pute frequent trees.

3.1. Constraints for Trees

The different types of constraints defined for sets (Ng
et al., 1998) can also be applied in structured data min-
ing. The structure of the data can be ignored and the
constraints can be applied as a post-processing step of
the mining algorithm. This approach has not all ben-
efits of constraint based mining, because all frequent
trees have to be computed and afterward all trees that
falsify the constraints are thrown away. Efficient al-
gorithms that directly mine the trees that satisfy the
constraints (beside the frequency constraint) are how-
ever not available yet. We now give a brief outline
how the different classes of item set constraints can be
pushed deeply into the mining process of structured
data. For this we assume that each vertex has an at-
tribute which holds a measure of interest. This corre-
sponds with e.g. the price of items, or any other defined
measure in frequent itemset mining. When we define
an SQL based aggregate function over a tree ¢, such
as sum(t), avg(t), min(t), the function is applied on
the attributes of all the vertexes of t.

Anti-monotone constraints: A constraint C de-
fined over a tree t has the anti-monotonicity property
if
C(t) = true = Vt' <t : C(t') = true

Examples of anti-monotone constraints are: minimum
frequency, sum(t) < constant (for positive values of
the node attributes of t), size(t) < constant. The min-
imum frequency constraint is already incorporated in
structured data mining algorithms, hence other con-
straints which have the anti-monotonicity property
can be incorporated in the same way.

Succinct constraints: A constraint C'is succinct if C'
is pre-counting prunable. Examples are: min(t) < ¢
and maz(t) < ¢. Succinct constraints are computed
in frequent itemset mining by first selecting the items
that satisfy the constraints and then generating the
candidates using these items. In frequent tree mining
the same approach could be used, but by applying the
rightmost expansion, or any other known method to
enumerate all trees that satisfy the constraints, a lot
of trees may be missed or enumerated twice. In order
to incorporate these constraints, another enumeration
technique would be needed.

Convertible constraints: A constraint C is con-
vertible (anti)monotone if there is an order among the
items, such that whenever the items are pushed in or-
der the constraint becomes (anti)monotone. Consider
as an example the constraint avg(t) > 10. This con-
straints becomes anti-monotone if the items are added
in descending order. To incorporate this class of con-
straint in structured data mining is probably hard, be-
cause the order in which the attributes must be pro-
cessed to become (anti)monotone will in general not
coincide with the order imposed by the structure of
the data.

Monotone constraints: A constraint C defined over
a tree t is monotone if:

C(t) =true =Vt' =t : C(t') = true

Examples of monotone constraints are sum(t) > ¢
(for positive values of the node attributes of t) and
size(t) > c. Monotone constraints can be mined with
a top down algorithm, which starts with the complete
set of items as in (Bayardo, 1998). The straightfor-
ward adoption of the top down approach does not work
for frequent tree mining, because we don’t have in gen-
eral one tree which is a supertree of all frequent trees.
Instead there is a set of supertrees, which is exactly
the database.

To illustrate the use of monotone constraints for trees
consider a weblog application. Suppose we have a
database of web access logs at a popular site, where
each record (transaction in frequent itemset terms) is
the entire forward accesses of a visitor. Suppose we are
interested in the most frequently accessed subtrees at
that site. Vertices in the tree correspond to webpages,
edges to visitor’s action going from one webpage to an-
other. To each webpage a value is assigned according
to some interest measure of the end user. For exam-
ple, we could associate with each vertex (webpage),
the number of images contained by the page. Another
constraint could be that the end user is only interested
in frequent accessed subtrees of size bigger than some
constant.

Monotone Constraints in Frequent Tree Mining — Jeroen De Knijf and Ad Feelders 16

Figure 2. A data tree is split up into two subtrees whenever a candidate pattern tree is infrequent (case one left and case

two right).

3.2. Algorithm

To mine trees with monotone constraints we need the
following basic property of trees:

each pair of vertices is connected by exactly
one path.

From this property it follows that: candidate pattern
trees which are infrequent split the data tree into two
or more (not necessarily disjoint) subtrees.

We distinguish two cases. In the first case the pat-
tern tree forms a chain of length n — i with ¢ < n,
t1 = (Vi Vig1,...,0n). In the second case there is ex-
actly one node of this chain that has two children,
say node v; with ¢ < j < n, hence we have two chains
(v, Vig1, ..., vy) and (vj,v51, ... ,Vjm). For more gen-
eral patterns the data tree is split into more than two
subtrees, but we will not further discuss these cases
because it is of no practical use for the pruning algo-
rithm. For the first case, suppose that the extension
of t; with a node vy,11 is infrequent. Then for all data
trees d € D in which ¢; occurs, any frequent pattern
in which v; or any ancestor of v; occurs can not be ex-
tended with v,,41, because the path from an ancestor
of v; to vp4+1 leads through v; and the pattern ¢; ex-
tended with v,,41, is infrequent so any of its supertrees
is also infrequent. The node labeled v,,11, and any of
its descendants, can not be extended with the node la-
beled v;, because any path from a descendant of v, 11
through node v; leads through v,,4+1, and hence the in-
frequent pattern (v;,vit1,-.-,Un, V1) must be part
of any such path. As an immediate result it follows

that for all data trees d € D in which t; occurs, d can
be split into two trees dy and d. Here dy = d\ t(vp+1)
and da = t(vi4+1), where t(vg) is the subtree of d start-
ing at node vy and d \ t(vg) is the tree d minus it’s
subtree starting at node v;. Note that both d; and d»
share the tree t(v;y1) \ t(vn+1). For the second case
the argumentation is similar, given that the pattern
tree consisting of the two chains is extended with a
node v,41 on the rightmost path (v;,vit1,...,v,) is
infrequent. Then for all data trees d € D in which the
pattern tree occurs, d is split into two trees d; and da,
with d1 = d \ t(vp41) and do = d \ t(v}.m)-

In figure 2 (left) an example is given of the first case,
where a frequent pattern A, B is extended with a node
C. In case that the extended pattern A, B, C' is infre-
quent, d; is split into dy.1 and dy.2. The second case
is displayed in figure 2(right), where the frequent pat-
tern A, B, C' is extended with D. The trees do; and
ds.o are the result of the split of ds.

Recall that monotone constraints have the following
property: if a tree ¢ satisfies a monotone constraint,
then all its supertrees also satisfy that constraint.
Likewise, if a tree t falsifies a monotone constraint then
all subtrees of ¢ falsify that constraint as well. The pro-
cedure for pruning with a monotone constraint C' is as
follows.

For all trees d € D that satisfy C(d), whenever a can-
didate tree is generated which is infrequent and of case
one or two, check the constraint on the two data trees
(obtained after splitting) for all occurrences of this in-
frequent pattern. Whenever a data tree d does not

17 Monotone Constraints in Frequent Tree Mining — Jeroen De Knijf and Ad Feelders

satisfy the monotone constraint, the occurrences of
a pattern tree t in d are not counted. Furthermore
the pattern ¢ is not extended in d; in fact d can be
deleted from the database. Suppose that in figure 2
the data tree di satisfies a monotone constraint. Be-
cause the pattern (A, B,C) is infrequent, d; is split
into dy.1,d;.2. If one of the data trees d; 1, d1.2 does not
satisfy the constraint, these data trees can be deleted.
Suppose d; 1 falsifies the constraint, then ¢4, (A, B) is
decreased (with one, in this case) which results in a
decreased support of the pattern (A, B).

4. Experiments

For the experiments we used a slightly modified syn-
thetic data generator provided by Mohamed Zaki.
This data generator (described in (Zaki, 2002)) mim-
ics website browsing behavior. Our experiments have
been performed on the same dataset, but with differ-
ent minimum support parameters. The dataset was
created by sampling 10000 trees of maximal depth 5
out of a master tree with 10000 nodes and 50 differ-
ent node labels. Figure 3 shows the distribution of
the frequent trees by length for the two minimum sup-
port parameters used. Note that in general there are
much more possible labeled subtrees of size n+ 1 then
of size n. The goal of the experiments is to examine
the use of monotone constraints, so we compared the
running time and the number of candidates generated
for our implementation of FREQT, with the extended
version that also performs monotone constraints prun-
ing. We compared the two versions with several values
for the constraints, expressed as selectivity. A selectiv-
ity of £% means that % of the frequent trees satisfies
the constraint. The running time and the number of
candidates generated is compared with the basic case
for different levels of selectivity, where the basic case
(indexed at 100 in figures 4 and 5) is the FREQT
algorithm without constraints pruning.

The effects of the opportunistic pruning are more vis-
ible for the experiments with a higher support. The
maximal speedup obtained with minimum support of
1% is 2.40 while the maximal speedup with minimum
support 0.5% is 1.80. The same difference holds for the
number of candidate trees generated, for the runs with
the lowest percentage of selectivity. With a minimum
support of 1% the algorithm generated about 41% of
the candidate trees generated without constraint prun-
ing, while for a minimum support of 0.5% the algo-
rithm generated about 60% of the candidate trees. The
most likely explanation is that the pruning method we
use depends on the occurrence of infrequent patterns.
When the number of infrequent patterns generated is

decreased (by using a lower minsup value), the effect
of pruning with monotone constraints flattens.

5. Conclusion

In this paper we described types of constraints used
in frequent itemset mining, and ways of incorporating
these constraints in frequent tree mining. We have de-
scribed an opportunistic pruning method for tree min-
ing that uses monotone constraints. The opportunis-
tic pruning methods leads to a considerable speedup
and a reduction in the number of candidates gener-
ated compared to the basic algorithm. In future work,
we will explore the development of algorithms that di-
rectly compute frequent trees that satisfy succinct and
convertible constraints. Besides the constraints inher-
ited from frequent item set mining, it makes sense to
define constraints on the structure of the data, and de-
velop algorithms that compute the frequent structures
that satisfy these constraints. Extending constraints
to embedded subtrees, free trees and graphs is another
challenge for future work.

Monotone Constraints in Frequent Tree Mining — Jeroen De Knijf and Ad Feelders 18

40000
L

200000

30000
L

150000
L

Number of Frequent Trees
100000

Number of Frequent Trees
20000
I

10000
L
50000
L

r—r T T r T rr 1T r T Tt 1T 1 T T T 171
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Length Length

LIS I B B B B B O B B S B B B E E E B B R N
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

-

Figure 3. Distributions of frequent trees by their size. The distribution on the left is with a minimum support parameter
of 1% on the right minsup = 0.5%.

100
L
100
L

80 90
I L
90

% of candidate trees generated
70

% of candidate trees generated
80
I

60
L
70
L

50
L

60
L

T T T T
20 40 60 80 100

selectivity % selectivity %

T T T T T T
20 40 60 80 100

o
o

Figure 4. The number of candidate trees generated (as a percentage of the number of candidates generated without
constraint pruning) for different levels of selectivity. Left of minsup 1% and right with misup 0.5 %

j=3 o
ER R
o |
3
s |
3
24
8
o
£ £ 84
z e]
= R =
5 5
] E
o |
= R
3
e
0 [=3
=
o |
< T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
selectivity % selectivity %

Figure 5. The run time for different levels of selectivity for minsup 1 % left and minsup 0.5 % right.The runtime is here
also displayed as a percentage of the runtime without constraint pruning.

19 Monotone Constraints in Frequent Tree Mining — Jeroen De Knijf and Ad Feelders

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for
mining association rules. Proc. 20th Int. Conf. Very
Large Data Bases, VLDB (pp. 487-499).

Asai, T., Abe, K., Kawasoe, S., Arimura, H.,
Sakamoto, H., & Arikawa, S. (2002). Efficient sub-
structure discovery from large semi-structured data.
Proceedings of the Second SIAM International Con-
ference on Data Mining.

Bayardo, R. (1998). Efficiently mining long patterns
from databases. SIGMOD 1998, Proceedings ACM
SIGMOD International Conference on Management
of Data, June 2-4, 1998, Seattle, Washington, USA
(pp. 85-93).

Bayardo, R., Agrawal, R., & Gunopulos, D. (1999).
Constraint-based rule mining in large, dense
databases. Proceedings of the 15th International
Conference on Data Engineering (p. 188).

Inokuchi, A., Washio, T., & Motoda, H. (2000). An
apriori-based algorithm for mining frequent sub-
structures from graph data. Principles of Data Min-
ing and Knowledge Discovery (pp. 13-23).

Ng, R. T., Lakshmanan, L. V. S., Han, J., & Pang,
A. (1998). Exploratory mining and pruning op-
timizations of constrained association rules. SIG-
MOD 1998, Proceedings ACM SIGMOD Interna-
tional Conference on Management of Data, June 2-
4, 1998, Seattle, Washington, USA (pp. 13-24).

Nijssen, S., & Kok, J. (2003). Efficient discovery of
frequent unordered trees. In Proceedings of the first
International Workshop on Mining Graphs, Trees
and Sequences (MGTS2003) (pp. 55-64).

Pei, J., & Han, J. (2000). Can we push more con-
straints into frequent pattern mining? Proceedings
of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining.

Wang, K., & Liu, H. (2000). Discovering structural
association of semistructured data. Knowledge and
Data Engineering, 12, 353-371.

Zaki, M. J. (2002). Efficiently mining frequent trees
in a forest. Proc. of the Int’l Conf. on Knowledge
Discovery and Data Mining (pp. 71-80).

Amplifying the Block Matrix Structure for Spectral Clustering

Igor Fischer

FISCHER@QNT.UNI-SAARLAND.DE

Telecommunications Lab, Saarland University 22.10, P.O. Box 151150, 66041 Saarbriicken, Germany

Jan Poland

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland

Abstract

Spectral clustering methods perform well in
cases where classical methods (K -means, sin-
gle linkage, etc.) fail. However, for very
non-compact clusters, they also tend to have
problems. In this paper, we propose three
improvements which we show that perform
better in such cases. We suggest that spec-
tral decomposition is merely a method for
determining the block structure of the affin-
ity matrix. Consequently, it is advantageous
for clustering techniques if the affinity ma-
trix has a clear block structure. We propose
two independent steps to achieve this goal.
In the first, which we term context-dependent
affinity, we compute point affinities by tak-
ing their neighborhoods into account. In the
second, the conductivity method, we aim at
amplifying the block structure of the affinity
matrix. Combining these two enables us to
achieve a clear block-diagonal structure, de-
spite starting with very weak affinities. For
the last step, clustering spectral images, K-
means is commonly used. Instead, as a third
improvement, we suggest using our K-lines
algorithm. When compared to other cluster-
ing algorithms, our methods display promis-
ing performance on both artificial and real-
world data sets.

1. Introduction

Consider the standard clustering problem. Let
Z1,...,xy be N data points in a metric space. Our
goal is to group them into K clusters, such that the
distance within the clusters is low whereas the distance
between clusters is high. Determining the number of
clusters K is itself a non-trivial problem. However, we
shall assume here that K is known. Recently, spectral
methods have become increasingly popular, together

JANQIDSIA.CH

with other kernel methods for machine learning. In
spectral clustering, one constructs an affinity or kernel
matrix A from the data points and performs a spec-
tral decomposition of A, possibly after normalization.
Then the dominant eigenvalues and the correspond-
ing eigenvectors are used for clustering the original
data. Spectral clustering may be applied in particular
in cases where simple algorithms such as K-means fail,
such as in Figure 1.

The affinity matrix A is usually interpreted as the ad-
jacency matrix of a graph. Thus spectral clustering al-
gorithms are decomposed into two distinct stages: (a)
build a good affinity graph and (b) find a good cluster-
ing of the graph. Significant theoretical progress has
been made addressing the latter, such as Alpert et al.,
1994; Spielman & Teng, 1996; Meila & Shi, 2001. An
optimal graph clustering may be achieved by fulfill-
ing some partitioning criterion (Kannan et al., 2000).
The optimization of this criterion is usually NP-hard.
A spectral algorithm may thus be regarded as a poly-
nomial time approximation. A recent approach (von
Luxburg et al., 2004) considers both sub-problems to-
gether and analyzes the properties of the spectral de-
composition directly. Our work focusses on the first
task of constructing a good affinity matrix. Most com-
monly the affinities are given by a Gaussian kernel
Ali,7) = exp (— i~ 2/(202)), where ;| de-
notes the Euclidean distance between x; and x; (Per-
ona & Freeman, 1998; Weiss, 1999; Shi & Malik, 2000;
Ng et al., 2002; Verma & Meild, 2003). Determining
the kernel parameter o is a pivotal issue and greatly
influences on the final clustering result. In some cases
the “right” o is “obvious”. However, generally it is
non-trivial to find a good ¢ value. A possible method is
trying different values for o and choosing the one which
optimizes some quality measure (Ng et al., 2002).

In contrast to many authors who focus their analysis
on spectral properties, we believe that the crucial is-
sue is the construction of a good affinity matrix which

Amplifying the Block Matrix Structure for Spectral Clustering — Igor Fischer and Jan Poland 22

-1

100 200 300 400 500 600 100 200 300 400 600

Figure 1. Two interlocked ring clusters: scatter plot of the data (left), affinity matrix A computed with the Gaussian

kernel (middle) and the conductivity matrix C.

is as block diagonal as possible. In that case spec-
tral decomposition is merely the most convenient way
to discover this block structure. In order to amplify
the block structure of an affinity matrix, we introduce
the conductivity method, which is described in Section
2. This allows us to start with a weak affinity matrix
where the affinities of many points might be close to
zero. A context dependent way of constructing such
weak affinity matrices is suggested in section 3. For
the final clustering of the spectral images, we propose
a novel algorithm, termed K-lines (Section 4). Section
5 compares our clustering method to other algorithms.
We conclude with a discussion on the scope and limi-
tations of the proposed methods (Section 6).

2. Block Structure Amplification

Consider a block-diagonal affinity matrix A = ((1) (1] ,

where each 1 denotes an arbitrary-sized block of ones.
The remaining zeros in the matrix are denoted by Os.
This block structure is easily discovered, e.g. by look-
ing at the two dominant eigenvectors, i.e. the eigenvec-
tors corresponding to the two dominant eigenvalues, of
A. If the blocks are of different sizes, then the space
spanned by eigenvectors is not rotation invariant. In
that case, even the first eigenvector is sufficient for
identifying the blocks. Furthermore, permutation of
points does not make an essential difference, this only
leads to a permutation of rows and columns of the ma-
trix. The eigenvectors will be permuted respectively
and the eigenvalues will remain unchanged. Therefore
we also consider matrices to be block-diagonal if they
are block-diagonal after a permutation of their rows
and columns.

An affinity matrix generated from real-world data is
virtually never block-diagonal. If the clusters are

nicely shaped (e.g. Gaussian) and well-separated, then
the affinity matrix may be approximately block diag-
onal. For brevity, we will also refer to such matrices
as block-diagonal. In contrast, consider the data set
in Figure 1. Although the two rings are interlocked
(like two links in a chain) and therefore not separated
in a Euclidean sense, we tend to regard them as two
distinct clusters. In this setting, the clustering intu-
ition relies on continuous concentration of data points,
a notion which was applied by (Ben-Hur et al., 2001).
Two points belong to a cluster if they are close to
each other, or if they are well connected by paths of
short “hops” over the other points. The more such
paths exist, the higher the chances are that the points
belong to the same cluster. However, it is not imme-
diately clear in this case how to obtain a good affinity
matrix for clustering. Suppose a Gaussian kernel is
used, then a large o merges the clusters, resulting in
an undesirable clustering. Choosing a small o leads
to a matrix which is approximately composed of two
band-diagonal matrices. We will denote such matrices
block-band.

According to theoretical results using matrix pertur-
bation theory (Ng et al., 2002) and empirical evidence
(Section 5), spectral clustering can produce satisfac-
tory results when the matrix is block-diagonal. For
block-band matrices, the case is less clear from the
theoretical point of view. The § of the eigengap condi-
tion presented in (Ng et al., 2002) tends to zero when
increasing the size of the sample, yet maintaining the
same fixed band structure. As a consequence, the the-
ory cannot guarantee a good solution. Simulations
suggest that in practice the spectral clustering of a
block-band matrix is good. However, the choice of
o in this case is significantly more difficult than for
block-diagonal matrices. We must set o small enough

23 Amplifying the Block Matrix Structure for Spectral Clustering — Igor Fischer and Jan Poland

to obtain a weak affinity matrix, i.e. where only the
affinities of directly neighboring points are high. On
the other hand, o must not be too small. Therefore,
in some cases, the range of admissible ¢’s can be very
Narrow.

These considerations motivate a change of the affinity
measure. Specifically, we want to amplify weak affini-
ties in matrix A. Instead of considering two points
similar if they are connected by a high-weight edge in
the graph, we assign them a high affinity if the overall
graph conductivity between them is high. We define
conductivity as for electrical networks, i.e. the con-
ductivity of two points depends on all paths between
them. This measure should not be confused with the
graph “conductance” by (Sinclair & Jerrum, 1989),
which is — up to a constant factor — equivalent to the
normalized cuts (Shi & Malik, 2000). In the normal-
ized cuts approach, the overall flow between two dis-
junct graph parts is considered. Our approach is, in a
sense, complementary: we consider the flow between
any two points, and construct a new graph based on
it.

The conductivity for any two points x; and x; is com-
puted in the following way. We first solve the system
of linear equations:

G- p=mn; (1)

where G is a N x N matrix constructed from the orig-
inal affinity matrix A:

G(p,q) = fp=1: 0 else
ne else : Zk;ﬁp A(pa k) if p=q
. _A(p7 (J) else

(2)
and n;; is an indicator vector of length N. It represents
points x; and x; for which we want to compute the
conductivity, and is composed as follows:

—1 fork=dand?>1
1 fork=j (3)
0 otherwise

nij (k) =

Solving Equation 1 gives us vector ¢. The conductiv-
ity between x; and x;, ¢ < j is then given by

C(i,j) = 1/ le(h) — » ()] (4)

which, due to the fact that 7;; is extremely sparse, can
be simplified to

1/ [G71(6,4) + G71(j,§) — G1(i.5) — G71(j, i)%B)

so that n;; never explicitly appears. Due to the sym-
metry, it follows that C(i,j) = C(j,4). The diagonal
elements C(i,) can be set to max; j C(7,7). It there-
fore suffices to compute G~ only once, in O(N?) time,
and to compute the conductivity matrix C in O(N?)
time.

An intuitive motivation for the above method comes
from electrical engineering, where the method is known
as node analysis. We consider a resistor network,
where direct conductivities (i.e. inverse resistances)
between two nodes ¢ and j are denoted by Gj;. To
compute the overall conductivity between the nodes,
we measure the voltage U;; between them when we let
a known current I enter the network at node ¢ and
leave it at the node j. The overall conductivity is then
given by Ohm’s law: G;; = I/U;;. The voltage is
defined as the potential difference between the nodes:
Ui; = ¢j — @i, and the potentials can be computed
from Kirchhoff’s law, stating that all currents enter-
ing a node 7 must also leave it: Z#i I;; = 0. Applying
Ohm’s law again, the currents can be expressed over
voltages and conductivities, so that this Equation be-
comes: Zj# GijUi; = Zj# Gij(pj—pi) = 0. Group-
ing the direct conductivities by the corresponding po-
tentials and formulating the equation for all nodes,
we obtain the Equation (1). The vector i represents
the known current I, which we have transferred to the
right side of the equation.

As we know from graph theory, the adjacency matrix
of a connected graph with N nodes is of rank N — 1.
In our case that means that, if we would compose G
relying only on Kirchhoff’s and Ohm’s law, its rows
would sum to zero. In other words the system would be
undetermined. In a physical sense, currents entering
and leaving N — 1 nodes determine also the currents
in the N-th node, since they have nowhere else to go.
In order to obtain a determined system, we have to
choose a node and fix it to a known potential, so it
becomes the reference node. In our method we set the
potential of the first node to zero (¢(1) = 0), which
is reflected by the way the first rows of G and 7 are
defined in Equations (2) and (3).

The method here seems to require using a different
1;; and solving the equations anew for all (1;[) pairs
of nodes. That would be the computational analogy
of connecting the current source between every pair of
nodes and measuring the voltage. This, fortunately, is
not the case: First, since direct conductivities between
nodes do not change, it suffices to invert the matrix G
only once. And second, for computing the overall con-
ductivity between two nodes, we do not need all volt-
ages in the network; the voltage between these nodes

Amplifying the Block Matrix Structure for Spectral Clustering — Igor Fischer and Jan Poland 24

-1

Figure 2. Two interlocked ring clusters with o = 0.2

suffices. This allows us to observe only two rows in the
G~ ! matrix. Furthermore, the fact that for each vec-
tor n;;, all except two components are zeros (i.e. the
external current source is attached only to two nodes),
entails that we only need to consider two columns in
G~'. Consequently, the conductivity between any two
nodes can be computed from only four elements of the
matrix G~1, as Equation (5) shows.

The resulting conductivity matrix C' is obtained from
the matrix A, but displays a reinforced block struc-
ture. We may use C for the remainder of the spectral
clustering task. But, before we proceed with it, we
need to know how to construct A.

Observe that (2) almost is the Laplacian of A, except
for the first row. The first row may be regarded as a
“trick” to make the matrix invertible. Thus, we gave
a different motivation for using the Laplacian. In this
light, observe the high similarity of our algorithm to
that of Saerens et al. (2004). They consider a random
walk criterion on the graph. Thus they arrive at a
formula which is almost identical to (5), except for the
inverse which is replaced by the pseudo-inverse of the
Laplacian.

3. Constructing Affinity Matrices

In this section we consider the question of how to con-
struct affinity matrices A, in particular weak ones. We
restrict our discussion to the case that the affinities are
Gaussian: A(i,j) = exp (—|l@; — x;]|*/207;), where
|x; — ;|| denotes the Euclidean distance between x;
and ;. Often, o is set to a global value (0;; = o).
In this case the performance of spectral clustering de-
pends heavily on the selection of . A common se-
lection method is to try different values for o and use
the best one. This process can be automated in an
unsupervised way as suggested by (Ng et al., 2002),

3 1 2 °
K %? 000 X&%%ng&%] DD o o
& F 8 | Fee L o
¥+ %, b S T
%o B %< @0 | e o °
§ .
o%éf‘*& %"’é N "t
& doge®” o Ce D

Figure 3. Two rings with low dispersion and a Gaussian
cluster with large dispersion

since concentration of the spectral images may be an
indicator for the quality of the choice of 0. Another
possibility is to make use of the distance histogram. If
the data form clusters, then we expect the histogram
of their distances to be multi-modal. The first mode
would correspond to the average intra-cluster distance
and others to between-cluster distances. By choosing
o around the first mode, the affinity values of points
forming a cluster can be expected to be significantly
larger than others. Consequently, the affinity matrix
is likely to resemble a block diagonal matrix. For a
weaker affinity matrix, ¢ may and should be chosen
smaller, below the first histogram mode. This is the
case when using the conductivity method, which it-
self amplifies the weak affinities. We have found out
empirically that, for this method, a good choice is at
about half the position of the first peak in the distance
histogram, or somewhat below.

This distance histogram heuristic has the drawback
that it cannot be automated in a robust way. More-
over, for some data sets, finding a single value of o that
performs equally well over the whole data set might
not be even possible. Consider the two concentric rings
and a Gaussian cluster in Figure 3. The points in the
third, Gaussian cluster have a significantly larger dis-
persion than the points in the two rings. So each of the
points in the third cluster will be connected to almost
no other point than itself if o is chosen correctly for
the rings. However, a human would probably apply a
context-dependent affinity in this case. For example,
the affinity of the points labelled 1 and 2 should be
higher than the affinity of points 1 and 3, although
the latter distance is smaller.

We therefore propose to use a context-dependent
method for constructing the affinity matrix, rather
than using a single ¢ for all points. For each point
x; we suggest to choose a different o;. This results

25 Amplifying the Block Matrix Structure for Spectral Clustering — Igor Fischer and Jan Poland

in an asymmetric similarity matrix, which is given by
A(i, j) = exp (—||; — x;||?/202). In order to deter-
mine each o;, we enforce the following condition:

Z exp

for each 1 < ¢ < n, where 7 > 0 is a constant. That
is, we choose o; such that the row sum of A assumes
the fixed value 7. We may interpret 7 as the fixed
neighborhood size.

”xz - w]H2)

=T (6)

Choosing 7 is easier than choosing o, since 7 is scale
invariant. We will see in Section 5 that, in contrast
to o, the clustering result is not very sensitive to the
value of 7. In order to obtain weak affinities, 7 is set
to a small value, such that only immediately neigh-
boring points obtain a significant affinity. We suggest
the choice of 7 = 1 + 2D, where D is the dimension
of the data — there should be two neighbors for each
dimension, plus one because the point is neighbor of
itself. This value has been used for all simulations be-
low. Now we can determine o; which satisfies Equation
(6) by iterative bisection. Few iterations are sufficient,
since there is no great precision required.

In order to proceed with the conductivity matrix, we
need to obtain a symmetric matrix A from the asym-
metric matrix A. Again for a weak affinity matrix,
high values should only exist between immediately
neighboring points. Thus the affinity between x; and
x; should be the smaller of the respective values,
A(i,j) = min{A(i, j), A(j,i)}. This ensures that, for
example, the points 1 and 3 in Figure 3 obtain a lower
affinity value than the points 1 and 2. This is because
point 1, although being nearer to point 3, actually lies
in the relative neighborhood of point 2.

The idea to consider a context-dependent neighbor-
hood is not new. A very interesting parallel approach
is given by Rosales and Frey (2003). While they sug-
gest and motivate an EM-like repeated update of the
neighborhood size, our method is heuristic and com-
putationally cheaper. Compare also the row normal-
ization by Meila and Shi (2001). Very recently, Zelnik-
Manor and Perona (2004) have suggested another local
neighborhood approach which is very similar to ours.

4. Clustering the Spectral Images

Given the conductivity matrix C (or the affinity
matrix A, if conductivity is not applied), we com-
pute the matrix of the dominant eigenvectors V. =
['vl . ..UK] € RVXK that is the eigenvectors which
correspond to the K largest eigenvalues. Then we call
[y1 . yN] =Y = V' € REXN the spectral images of

the original data x1,...,xN.

There are different ways to compute the final cluster-
ing from the spectral images y1,...,yy. The images
of points belonging to the same cluster were experi-
mentaly observed to be distributed angularly around
straight lines — the more compact the cluster, the
better alignment of the spectral images. A simple,
off-the-shelf clustering algorithms like K-means can-
not be used, because it assumes approximately round
clusters. To circumvent the problem, (Ng et al.) sug-
gest projecting the points on the unit sphere and then
using K-means. However, this leads to a certain loss
of information (namely the radius), and the resulting
clusters are still not round. We propose a similar al-
gorithm here, which exploits the observed structure of
the clusters and which we have found to be slightly su-
perior in the simulations (compare a parallel approach,
the K-planes algorithm in (Bradley & Mangasarian,
2000)).

Algorithm K-lines

Each cluster is given by a line through the origin,
represented by a vector m; € RF of unit length,
1<i<k.

1 Initialize my...mg (e.g. by the canonical unit vec-
tors)

2 Foreach i € {1,...,k}, let S; be the set of points
containing all points y; that are closest to the line
defined by m;

3 For each i € {1,...,k}, let m; define the line
through the origin which has smallest sum square
distance to all points in S;

4 Repeat from 2 until convergence

Our final spectral clustering algorithm then reads as
follows.

Algorithm Context dependent clustering with block
amplification

1 Calculate the context dependent affinity matrices
A and A.

2 Construct the conductivity matrix C' according to
(5).

3 Determine K principal eigenvectors, e.g. by
Lanczo’s method, and compute the spectral im-

ages Yi, .-, Yn.
4 Cluster yi,...,y, by K-lines.

5. Simulations

We present simulation results and compare our pro-
posed method with three other clustering algorithms:
standard K-means, a more sophisticated, kernel-based
expectation-maximization method (Girolami, 2002),

Amplifying the Block Matrix Structure for Spectral Clustering — Igor Fischer and Jan Poland 26
[Name | N [K [D] K-means Girolami [Ng et al. [Our-o [Our-7 |
2R3D.1 [600 | 2 | 3 || 197 (197.9+1.0) | O (1622+864) | 0 (17.7+704) | 0 (0.0E0.0) 0
2R3D.2 | 600 | 2 3 195 (195.1 +£0.2) 68 (202.9 £ 54.6) 4 (7.5+£28.9) 6 (8.2+1.9) 93

2RG | 290 | 3 | 2 || 110 (125.3+2.4) | 66 (121.7+26.5) | 101 (102.2+3.8) | 2 (16.8+38.0) 0

28 | 220 | 2 | 2 || 26 (34.5+6.4) 25 (49.9 + 26.6) 0 (9.3+10.8) | 97 (101.8+4.8) 0
4G [200 | 4 | 3 || 24 (40.0+24.2) 2 (2.6+5.8) 18 (35.14222) | 2 (3.0+7.0) 1
5G| 250 | 5 | 4 || 41 (62.0+£27.8) | 13 (21.24+14.1) | 33 (40.1+14.6) | 13 (34.5 + 14.6) 11
2Spi | 386 | 2 | 2 || 191 (192.3+0.5) | 151 (178.5+10.7) | 0 (79.1+95.4) | 0 (39.4+55.5) 193
Iris | 150 | 3 4 16 (27.8 +22.2) 8 (10.3+2.2) 14 (14.8+3.6) 10 (12.3 £5.3) 7
Wine | 178 | 3 | 13 5 (8.7+10.5) 3 (3.940.9) 3 (3.3+0.5) 12 (18.9£6.6) 65
BC [683 | 2 | 9 || 26 (265+0.5) | 20 (21.5+1.0) 22 (22.840.6) |21 (25.142.0) 20

Table 1. Empirical comparison of the algorithms for different data sets. N denotes the number of points in the set, K the
number of clusters, and D the data dimensionality. For each algorithm we document the minimum number of incorrectly
clustered points and the mean and standard deviation (due to using a different o in each run) in brackets. The respective

best value is bold. We present two variants of our algorithm:

“Our-¢” denotes the algorithm with a global kernel width

determined from the distance histogram.

and the algorithm suggested by (Ng et al.). Whereas
K-means simply assumes K spherical clusters and
looks for their centers, the (Girolami) method projects
the data into a feature space and clusters them there
using a standard EM method. The (Ng et al.) al-
gorithm differs from ours in the way it computes and
scales the affinity matrix, and by using K-means in-
stead of K-lines in the final step.

All algorithms are evaluated on a number of bench-
mark and real-world data sets. Assessing the quality
of a clustering algorithm is not easy. First, clustering
is an ill-posed problem. We overcome this difficulty
by defining an “optimal” reference clustering: For the
artificial data sets, we know the probability distrib-
ution which generated the data, whereas for the real
world data sets labels are available which we use for
reference (but which are unknown to the clustering
algorithm). Another problem is that the outcome is
partly very sensitive to the choice of the kernel para-
meter o. In order to give a somewhat realistic evalua-
tion of the (Girolami) and the (Ng et al.) algorithms
which depend on this parameter, the experiments were
performed in two phases: First, for each data set we
systematically scanned a wide range of o’s (the range
was set manually to cover most of the distance his-
togram) and ran the clustering algorithms. We de-
note by ¢* the o which produced the best results. In
the second phase, we performed 100 runs, with o ran-
domly sampled form [0* +20%)]. The rationale for this
procedure is that the optimal ¢ cannot be known in
real-world application, but the experimenter will prob-
ably be able to guess it with some precision (which we
suppose to be somewhere around +20%) based on the
distance histogram. The automatic computation of
o, as suggested by (Ng et al., 2002), sometimes led
to suboptimal ¢ and, consequently, to poor results.
In most cases, the histogram method resulted to a o

“Our-7" denotes the algorithm with a point-specific o;, according to Eq. 6.

very close to the best value and led to very similar
results. We present the best result found as well as
the mean and standard deviation. In contrast, our
context-dependent algorithm produced deterministic
results, because K-lines was initialized deterministi-
cally, and the neighborhood size was set to 7 = 2D +1,
where D is the dimension of the data. Therefore, for
this algorithm we refrain from quoting the mean and
standard deviation. The experimental results are sum-
marized in Table 1.

The data set 2R3D.1 was presented in Figure 1 as
a motivation for conductivity. It is an artificial data
set, obtained by dispersing points around two inter-
locked rings in 3D. The dispersion is Gaussian, with
standard deviation equal to 0.1. This set is impossible
to cluster by K-means, but other algorithms have no
problem with it. Conductivity-based algorithm (Our-
o) is, however, more stable than competing algorithms.
2R3D.2 is similar, but with the double standard de-
viation of the points around the rings. Here, all al-
gorithms start having problems. Although Ng et al
algorithm is the best considering the number of false
assignments, it is less stable than the conductivity
method. The context-dependent approach is of no ad-
vantage here and is clearly outperformed, since the
dispersion of points in clusters is constant. The ring
segments passing through the center of the other ring
are incorrectly assigned to that ring. Our interpreta-
tion is that the context-sensitive kernel width acts as a
drawback in this situation, since it actually abolishes
the already weak gap between the clusters.

The next four data sets have varying data dispersions
and thus the context-dependent approach is clearly su-
perior. 2RG is the data set from Figure 3, 25 consists
of two S-shaped clusters with inhomogeneous disper-
sion in 2D, and 4G and 5G have four and five Gaussian

27 Amplifying the Block Matrix Structure for Spectral Clustering — Igor Fischer and Jan Poland

-1

x x
XX oxox x X

000000
00 %o
X XXX

eSS O
s K S
0 Oxxxxx XX O

o
9}

O, O
x ©0000000°" _ x
o) ><>< ><><
] XX xox x XX

[¢]
OOOO

-1

Figure 4. Data sets, left-to-right: 2S5, 4G, and 2Spi.

clusters with different dispersion in 3D and 4D, respec-
tively. Due to the different dispersions of clusters and,
in the case of 25 within clusters, no obvious global o
can be chosen. 2Spi is a variant of Wieland’s two
spirals (see Fahlman, 1988) with double point den-
sity (193 points per spiral). Contrary to our expec-
tations this is one of the examples where the context-
dependent approach fails; it is only successful on the
fourfold density problem.

The last three data sets are common benchmark sets
with real-world data (Murphy & Aha, 1994): the iris,
the wine and the breast cancer data set. Both our
methods perform very well on iris and breast cancer.
However, the wine data set is too sparse for context-
dependent method: only 178 points in 13 dimensions,
giving the conductivity too many degrees of freedom to
connect the points. If the context-dependent method
is used without the conductivity, then the algorithm
also achieves a good clustering, with only four false
assignments.

Our algorithm yields good results on most of the data
sets. In addition, it is very insensitive to the choice of
the neighborhood size 7. For example, all results re-
main the same if the constant value 7 = 10 is used
instead of 7 = 2D + 1. The Ng et al. algorithm
also produces very good experimental results, if o is
well chosen. However, the range of good values for
o may be very small. It this case, conductivity can
significantly improve robustness. For the data sets
2R3D.2 and 2S5pi for example, a symmetric algorithm
which uses conductivity displays a variance much lower
than for the Ng et al. algorithm (Table 1). The in-
creased robustness of the conductivity method can also
be observed in the computation time required for the
spectral decomposition (with the implementation of

Lanczo’s method coming with MATLAB). Computing
the spectrum of the conductivity matrix needs only
about 70% of the time which is needed for comput-
ing a block-band matrix. Finally, we note that our
context-dependent way of constructing affinities can
handle data which is inhomogeneously distributed. It
works well if data is sufficiently dense and tends to fail
if the data is too sparse.

6. Conclusions

Amplifying the block structure of the affinity matrix
can improve spectral clustering. This method allows
us to start with a weak affinity matrix, where only
immediately neighboring points have significant affini-
ties. The conductivity method yields a matrix which
is relatively close to block diagonal. Such matrix may
be used for clustering with spectral methods. For con-
structing a weak affinity matrix, we have proposed a
context-dependent method which is easily automated
and not sensitive to its parameter, the neighborhood
size 7. This affinity measure compares favorably with
the Gaussian kernel. For the clustering of the spec-
tral images, we have proposed the K-lines algorithm.
The resulting spectral clustering algorithm is fully au-
tomatic and very robust, and it displays good per-
formance in many cases. It tends to fail on sparse
data. All three methods we proposed — conductiv-
ity, context-dependent affinity, and K-lines — can be
used independently from each other as components in
(spectral) clustering algorithms.

We have motivated our methods by purely intuitive
and empirical means; a theoretical justification re-
mains open. Future issues to investigate would be: (a)
Study the properties of the conductivity matrix with

Amplifying the Block Matrix Structure for Spectral Clustering — Igor Fischer and Jan Poland 28

respect to graph partitioning criteria. (b) Give quan-
titative assertions on the spectrum of the conductivity
matrix. (¢) Find out more about the distribution of
the spectral images, thus giving a sound foundation of
K-lines or another method.

Authors generally agree that it is still incompletely un-
derstood how and why spectral clustering works. How-
ever, this might be the wrong question to pose. Spec-
tral decomposition might be only one convenient way
to discover the block structure of the affinity matrix,
there may be other ways to achieve this. In our opin-
ion, the central issue is constructing a “good” affinity
matrix from the data with a block structure as ex-
pressed as possible.

7. Acknowledgements

We would like to thank Efrat Egozi, Michael Fink, Yair
Weiss, and Andreas Zell, for helpful suggestions and
discussions. Igor Fischer is supported by a Minerva
fellowship, and Jan Poland by BMBF grant 01 1B 805
A/1 and by SNF grant 2100-6712.02.

References

Alpert, C., Kahng, A., & Yao, S. (1994). Spectral par-
titioning: The more eigenvectors, the better (Tech-
nical Report). UCLA CS Dept. Technical Report
#940036.

Ben-Hur, A., D. Horn, H. S., & Vapnik, V. (2001).
Support vector clustering. Journal of Machine
Learning Research, 2, 125-137.

Bradley, P. S., & Mangasarian, O. L. (2000). k-plane
clustering. Journal of Global Optimization, 16, 23—
32.

Fahlman, S. (1988). Faster-learning variations on
back-propagation: An empirical study. Proceedings
of the 1988 Connectionist Models Summer School
(pp. 38-51). San Mateo, CA, USA: Morgan Kauf-

manim.

Girolami, M. (2002). Mercer kernel-based clustering
in feature space. IEEE Transactions on Neural Net-
works, 13, 780-784.

Kannan, R., Vempala, S., & Vetta, A. (2000). On
clusterings: Good, bad and spectral. Proceedings
of the 41st Symposium on Foundations of Computer
Science.

Meila, M., & Shi, J. (2001). Learning segmentation
by random walks. Advances in Neural Information
Processing Systems 13 (pp. 873-879). MIT Press.

Murphy, P., & Aha, D. (1994). UCI repository of ma-
chine learning databases.

Ng, A., Jordan, M., & Weiss, Y. (2002). On spectral
clustering: Analysis and an algorithm. Advances in
Neural Information Processing Systems 14. Cam-
bridge, MA: MIT Press.

Perona, P., & Freeman, W. (1998). A factorization
approach to grouping. Lecture Notes in Computer
Science, 1406, 655-670.

Rosales, R., & Frey, B. (2003). Learning generative
models of affinity matrices. 19th Conference on Un-
certainty in Artificial Intelligence (UAI).

Saerens, M., Fouss, F., Yen, L., & Dupont, P. (2004).
The principal component analysis of a graph, and
its relationship to spectral clustering. Proceedings of
the 15th European Conference on Machine Learning

(ECML 2004) (pp. 371-383). Springer.

Shi, J., & Malik, J. (2000). Normalized cuts and im-
age segmentation. IEFE Transactions on Pattern
Analysis and Machine Intelligence, 22, 888-905.

Sinclair, A., & Jerrum, M. (1989). Approximate count-
ing, uniform generation and rapidly mixing markov
chains. Information and Computation, 82, 93-133.

Spielman, D. A., & Teng, S. (1996). Spectral partition-
ing works: Planar graphs and finite element meshes.
IEEE Symposium on Foundations of Computer Sci-
ence (pp. 96-105).

Verma, D., & Meila, M. (2003). A comparison of spec-
tral clustering algorithms (Technical Report). UW
CSE. Technical report 03-05-01.

von Luxburg, U., Boudquet, O., & Belkin, M. (2004).
Towards convergence of spectral clustering on ran-
dom samples. COLT (pp. 457-471).

Weiss, Y. (1999). Segmentation using eigenvectors: A
unifying view. ICCV (2) (pp. 975-982).

Zelnik-Manor, L., & Perona, P. (2004). Self-tuning
spectral clustering. NIPS 2004, to appear.

Maximizing Expected Utility in Coevolutionary Search

Edwin D. de Jong

DEJONGQCS.UU.NL

Decision Support Systems Group, Institute of Information and Computing Sciences
Utrecht University, PO Box 80.089, 3508 TB Utrecht, The Netherlands.

Abstract

Coevolution can be used to adaptively choose
the tests used for evaluating candidate solu-
tions. A long-standing question is how this
dynamic setup may be organized to yield re-
liable search methods. Recently, monotonic
coevolution algorithms have been proposed
for several solution concepts. Here, we intro-
duce a new algorithm that guarantees mono-
tonicity for the solution concept of maximiz-
ing the expected utility of a candidate solu-
tion. The method, called MaxSolve, is com-
pared to the IPCA algorithm and found to
perform more efficiently for a range of pa-
rameter values.

Introduction

Coevolution (Barricelli, 1962; Axelrod, 1987; Miller,
1989; Miller, 1996; Hillis, 1990; Koza, 1992; Lind-
gren, 1992; Kauffman & Johnsen, 1992) offers methods
for problems where the quality of individuals is deter-
mined by tests. For example, in two-player games,
the quality of a first-player strategy is somehow de-
termined by its outcome against all possible oppo-
nents. Other test-based problem domains include con-
cept learning and function approximation.

Since the number of tests in a test-based problem can
be very large, evaluating individuals on all possible
tests is typically infeasible. Another option is to define
a heuristic evaluation function, or to select a fixed set
of tests for evaluation purposes, but in both of these
approaches it is unclear to what extent the resulting
biased evaluation function suits its purpose.

Coevolution selects the tests used in evaluation adap-
tively; next to the population of candidate solutions,
a population of tests is maintained that are used to
evaluate the candidate solutions. It has been shown
that such a setup can in principle yield ideal evalua-
tion (De Jong & Pollack, 2004), equivalent with eval-
uating against all tests, using only a small set of tests.

This is possible because at every point in time, only
the relations between the current candidate solutions
need to be evaluated. Thus, a set of tests that reveal
all relations between the existing candidate solutions
is sufficient.

While the theoretical possibility of ideal evaluation is
interesting in itself, an important practical question is
to what extent this ideal can be achieved. The DEL-
PHI algorithm we presented in earlier work (De Jong &
Pollack, 2004) is designed to approximate ideal evalu-
ation, and is based on the idea of searching for an ideal
evaluation set as an inner loop inside the search algo-
rithm. Since it cannot always be known whether an
ideal evaluation set has already been reached, the DEL-
PHI algorithm can only approximate ideal evaluation.
Furthermore, the algorithm has a limited potential for
exploration.

A second approach to achieving reliable progress in
coevolution is the use of an archive that guarantees
monotonic progress, i.e. progress such that a dis-
tance function exists for which the distance to the
solution concept decreases with every change to the
archive. The IPCA algorithm (De Jong, 2004a; De
Jong, 2004b) guarantees monotonicity, meaning any
changes to the archive result in progress.

The IPCA algorithm is based on the solution concept
of the Pareto-Optimal Equivalence Set, and converges
to this set for any finite search space if the generator
of new individuals is sufficiently explorative. Specifi-
cally, it must be capable of generating all combinations
of individuals with some non-zero probability. The
Pareto-optimal set is the set of solutions that provide
a maximal trade-off between the different objectives,
so that a solution’s performance in an objective cannot
be improved without reducing its performance in other
objectives. Since every test is viewed as an objective in
this setup, the Pareto-optimal set may be very large.
An important question for the practice of coevolution
therefore is whether monotonic archives for different
solution concepts can be designed.

Maximizing Expected Utility in Coevolutionary Search — Edwin D. de Jong 30

In this paper, we first define several main solution
concepts that can be used in coevolution. Next, for
one of these solution concepts, we design an algorithm
that guarantees monotonicity. To test the degree to
which this new method addresses the above limitation
of IPCA, we compare the two methods in experiments.
The results show that the new method offers a trade-
off between archive size and performance, and for in-
termediate choices of the parameter that governs this
trade-off, the algorithm outperforms IPCA.

The paper is structured as follows Section 1 defines
several main solution concepts for coevolution. Sec-
tion 2 discusses related work. The MaxSolve algorithm
is presented in Section 3. Section 4 defines the dis-
cretized COMPARE-ON-ONE problem. Results are pre-
sented in Section 5, followed by conclusions.

1. Solution Concepts for Coevolution

In this section, we define several main solution con-
cepts that can be used in coevolution.

We use the following notation. The set of all possible
candidate solutions is denoted as C, and the set of all
possible tests as T. The outcome of a test T' for a
candidate C' may in principle come from any ordered
set. Without loss of generality, it will be assumed to
be a real number here. The interaction function used
to determine this outcome is written as G (for Game):

G(C,T) — R.

1.1. SO: Simultaneous Maximization of All
Outcomes

The first solution concept requires an optimal solu-
tion C' to maximize the outcome over all possible tests
simultaneously, as formalized in the following require-
ment:

S0 = {CeCNC' € C:VT € T:G(C,T) > G(C',T)}

This solution concept has a limited application scope,
as for many problems there does not exist a single
solution that simultaneously maximizes the outcome
of all possible tests.

1.2. S1: Maximization of Expected Utility

The second solution concept specifies as a solution the
individuals that maximize the expected score against
a randomly selected opponent:

S1 = {C € CVC' € C: E(G(C,T)) > E(G(C",T))

where F is the expectation operator and 7T is randomly

drawn from T. This solution concept is appropriate for
many problems, for example identifying the best chess
player. It is equivalent to maximizing the sum of an
individual’s outcomes over all tests, or to a uniform
linear weighting of the objectives. It thus implicitly
assumes that all tests are of equal importance; while
this may not be the case, it is a reasonable assump-
tion in the absence of knowledge about the relative
importance of the different tests.

For binary problems, this solution concept may equiva-
lently be defined as the set of candidate solutions that
solve the largest possible number of tests; the can-
didate solutions with the highest expected score are
those that solve the largest number of tests. Thus, an
alternative definition for S1 is:

S1 =
{T € T|solves(C,T)}| >

{CeCVC" eC:
{T € T|solves(C’,T)}|

Here, a candidate solution C' is said to solve a test T'
if it has a positive outcome on the test:

solves(C,T) = G(C,T) >0

1.3. S2: Nash Equilibrium

Game theory provides the solution concept of the Nash
equilibrium. A Nash equilibrium specifies a strategy
for each player such that no player can profitably de-
viate given the strategies of the other players.

Formally, let the n classes of individuals in a prob-
lem be written as Iy, Io, ... I,, where for a test-based
problem we could have for example I; = C and
I, = T. Let I = Xjenl; where N is the set of in-
dices: N = {1,2,...,n}. Given a set of individuals
I;, let A(I;) denote the set of probability distributions
over I;, and let Q = x;enA(I;). A mixed strategy
profile a € Q) specifies a probability distribution for
each class of individuals. The expected outcome for
the i*" class of individuals in a mixed strategy profile
is written as: E(G;(a)) = > jgNaj(aj)Gi(a), where
acl

G(a) returns the outcome for the i*” individual. Then
a mixed-strategy Nash-equilibrium is a mixed-strategy
as, such that:

S2 = {ax € QVi : Vo, € A(I;) :
E(Gi(ax)) > E(G;(ax1, .., %1, Qi %1, .., @%N))))

An attractive feature of the Nash equilibrium as a so-
lution concept is that, while being general, the set of

31 Maximizing Expected Utility in Coevolutionary Search — Edwin D. de Jong

individuals it represents can be relatively small; this is
a valuable property for coevolutionary search. A dis-
advantage is that there can be (infinitely) many Nash
equilibria, part of which may be dominated; thus, find-
ing a Nash equilibrium does not guarantee that the
highest possible outcomes are achieved.

1.4. S3: Pareto-Optimal Set

Evolutionary Multi-Objective Optimization extends
common evolutionary methods by facilitating the use
of multiple objectives. This may be viewed as the
use of a fitness function that is vector-valued rather
than scalar. In Pareto-Coevolution, every possible
test is viewed as an objective. A central concept in
Evolutionary Multi-Objective Optimization is that of
Pareto-dominance. Applied to the current context, a
candidate solution C is said to dominate another can-
didate solution C if the following holds:

dom(C1,C2) = VI'eT:G(C1,T) > G(Ce,T)
A\ HTET:G(Cl,T)>G(CQ,T)

The solution concept of the Pareto-Optimal Set con-
sists of all candidate solutions that are not dominated
by any other solutions:

S3 = {C e C[iC’ € C : dom(C",C)}

1.5. S4: Pareto-Optimal Equivalence Set

For each maximal combination of tests that can be
solved, the Pareto-Optimal set contains all candidate
solutions that solve it. Thus, the set may contain many
equivalent candidates that each solve the same com-
bination of tests. We define a variant of the Pareto-
Optimal set that does not contain such duplicate can-
didate solutions. This set is defined by the requirement
that for each maximal combination of tests that can
be solved, it contains at least one candidate solution
that solves it. Since multiple such sets may exist, we
define S4 as the collection of all such sets:

S4={SCCVTSCT: 3C € C : solves(C,TS)
= 3C" € S : solves(C',TS)

2. Related Work

A number of researchers have investigated the use of
coevolution as a problem solving technique (Reynolds,
1994; Miller & CIliff, 1994; Angeline & Pollack, 1994;

Schmidhuber, 1999; Pagie & Hogeweg, 1998; Paredis,
1996; Pollack & Blair, 1998; Funes, 2001; Rosin, 1997;
Lubberts & Miikkulainen, 2001; Werfel et al., 2000;
Moriarty & Miikkulainen, 1998; Potter & De Jong,
2000; Stanley & Miikkulainen, 2004).

While we focus on the application of coevolution to
test-based problems here, coevolution can also be used
to address problems where a fitness function is given;
this form of coevolution is called Cooperative or Com-
positional Coevolution (Potter & De Jong, 2000; Wat-
son & Pollack, 2003; Wiegand, 2003; Jansen & Wie-
gand, 2003)

Recent research in coevolution has benefited from an
increased understanding of the adaptive search pro-
cess, as expressed in the development of several re-
cent theoretical approaches. These include the use of
Evolutionary Multi-Objective Optimization concepts
to describe Pareto-coevolution (Ficici & Pollack, 2000;
Watson & Pollack, 2000; De Jong & Pollack, 2004), or-
der theory (Bucci & Pollack, 2002; Bucci & Pollack,
2003), and game theory (Ficici, 2004; Ficici & Pollack,
2000; Wiegand, 2003; Wiegand et al., 2002).

The focus of this work is on monotonicity. In the fol-
lowing, we therefore discuss existing coevolutionary al-
gorithms with a monotonicity guarantee. In his thesis,
Rosin (Rosin, 1997) presents the covering competitive
algorithm, which guarantees monotonicity for the S0
solution concept. Schmitt (Schmitt, 2003) presents a
convergence proof for a variant of SO involving more
than two types of individuals (’species’), but still re-
quiring the existence of individuals that simultane-
ously maximize the outcome over all individuals of
other types. Ficici has described an algorithm that
guarantees monotonicity for 52, the Nash equilibrium.
Finally, the IPCA algorithm guarantees monotonicity
for the solution concepts of the Pareto-Optimal Equiv-
alence Set.

3. The MaxSolve Algorithm

We now consider how an algorithm may be devised
that guarantees monotonicity for the solution concept
S1. The algorithm is called MaxSolve, since it searches
for candidate solutions that solve the maximum num-
ber of tests. Pseudocode for the algorithm is shown in
Figure 1.

In order to guarantee monotonic progress towards the
set of candidate solutions solving the largest number
of tests, the algorithm compares candidate solutions
based on how many of the tests seen by the candidate
solution so far they are able to solve. By ensuring
that this number can only increase, monotonicity for

Maximizing Expected Utility in Coevolutionary Search — Edwin D. de Jong 32

submit(CSnew, T Snew){
CA := CAUCSnew;
TA:=TAUTSnew;
vVC e CA
no_solved[C] = number_solved(C, T A);
vC e CA
VC' e CAC'#C
ifvIreTA:G(C,T)=G(C,T)
no_solved[C’] = 0;
end
sort(C A, no_solved]));
for i = 1: archive_size
if (no-solved[C' A[i]] > 0)
select(CAli])
end
end
VI'eTA
if 3C € CA : solves(C,T)
select(T);
end
VI'eTA
VI'"e TAT #T
ifvC e CA:G(C,T)=G(C,T")
deselect(T);
end

Figure 1. Pseudocode for the MaxSolve algorithm.

the solution concept of S1 is assured.

The algorithm receives a set of new candidate solu-
tions C'Snew and a set of new tests T'Snew that are
to be considered for placement in the archive. First,
it measures for each candidate how many of the tests
available so far it solves. Candidates with identical
outcomes for all tests are considered superfluous and
assigned a zero score, so that they will not be selected.

We note that a candidate discarded in this manner
could potentially solve more unseen tests than the can-
didates that are maintained. This does not violate the
monotonicity of the archive however, since progress is
measured with respect to the set of tests seen so far. If
the rejected candidate solution does indeed solve more
tests, this will eventually be discovered given sufficient
further search, at which point it will be included.

The next step in the algorithm is to sort the candidate
solutions. The sort function sorts candidates based on
the number of tests they solve. number_solved(C,T'S)
returns the number of tests in TS solved by a candi-
date solution C. Using the sorted ordering, the high-
est scoring individuals are selected to remain in the
archive, with the restriction that selected individuals

Standard compare-on-one game

o Candidate
o Test

o

Figure 2. The standard COMPARE-ON-ONE game. Candi-
dates are tested on the highest dimension of the test. Thus,
tests below the diagonal test the horizontal dimension of
candidates. Comparison of the tests solved by candidates
(see arrows) provides a gradient indicating the direction of
improvement.

must solve at least one test, and up to a maximum of
n individuals, where n is a parameter specifying the
maximum size of the archive.

To determine which tests to maintain, all tests solved
by one or more of the selected candidates are selected.
The algorithm described so far is monotonic. For ef-
ficiency, the following procedure is added: of multiple
tests with identical outcome vectors only one is main-
tained.

The following section describes the test problem that
will be used in the experiments.

4. The Discretized COMPARE-ON-ONE
Problem

One of the issues that complicates the design of re-
liable coevolution algorithms is the problem of over-
specialization (Watson & Pollack, 2001; De Jong &
Pollack, 2004). For any problem, there can be mul-
tiple underlying factors that determine the quality of
individuals, and it may well be the case that individu-
als only progress on one or more of these factors, but
fail to do so on others.

The COMPARE-ON-ONE problem (De Jong & Pollack,
2004) is a Numbers Game problem (Watson & Pol-
lack, 2001) that is designed to make over-specialization
likely. It does so by letting tests test on a single di-
mension only. Both candidate solutions and tests are
points in an n-dimensional space. A test tests whether
a candidate is at least as high as the test in the dimen-
sion in which the test is highest:

33 Maximizing Expected Utility in Coevolutionary Search — Edwin D. de Jong

m = arg max T;
K3

1 if G, >Th
G(GT) = { —1 otherwise
where C'is a candidate, T is a test, and x; denotes the
value of individual z in dimension 1.

Due to the definition of the game, a test only evaluates
a candidate on a single dimension. Unless special at-
tention is paid to maintaining a diverse set of tests, it
is unlikely that the test population will maintain tests
for each dimension. This effect is enhanced by the
tendency of tests to increase only in the dimension on
which they test, thus moving away from the diagonal.
This makes it unlikely that a lost dimension will later
be regained. If a dimension is lost, individuals can
only progress on some of the underlying dimensions,
but will be likely to drift in others.

To further increase the difficulty of the problem, a neg-
ative mutation bias is used to model the property of
actual problems that a variation is more likely to cause
regress than progress. Thus, unless regress is avoided
for all underlying objectives of the problem, the values
of individuals are expected to actually decrease in the
lost dimensions rather than just drift. The need to de-
tect both progress and regress is further increased by
applying mutation to multiple dimensions at the same
time, as will be discussed.

The COMPARE-ON-ONE problem was developed to
induce over-specialization. In order to determine
whether overspecialization occurs, performance is
measured as the lowest value of an individual’s dimen-
sions, and not for example the average. Due to this,
the decreasing values in a dimension will at some point
result in a decreasing performance for the individ-
ual, so that over-specialization can be clearly detected.
The experiments will employ the 3-dimensional version
of the COMPARE-ON-ONE problem.

Since we expect exploration to be a necessary ingredi-
ent for real-world coevolutionary problems, a question
is how reliability can be combined with exploration. In
order to test the ability of coevolution algorithms to
perform exploration, we employ a discretized version
of the COMPARE-ON-ONE problem.

In the discretized COMPARE-ON-ONE problem (see Fig-
ures 2, 3), the value in each dimension of an individual
is rounded to the nearest multiple of a parameter ¢
below it. This discretization is applied to both candi-
dates and tests before evaluating the outcome of the
problem, without affecting the genotype.

Discretized compare-on-one game

o Candidate

Figure 3. The discretized COMPARE-ON-ONE game. All in-
dividuals are mapped to the lower-left corner of their
square in the discretization grid. Thus, the candidates
solve all tests in their square. As a result, much of the
gradient information is lost.

m = arg max d(T;) (1)

1 if d(Cp) > d(Thm)
—1 otherwise

G(C,T) = { 2)

where d(x) = 05|

As an example, using § = 0.25 as in the experiments,
the individual [0.23,0.30,0.47] would be mapped to
[0,0.25,0.25] before calculating the outcome of the
standard COMPARE-ON-ONE problem. The discretiza-
tion procedure greatly reduces the amount of gradient
present in the problem; individuals have no means to
determine whether a value of .45 is better than .25.
The mutation range is set such that improvements
can only be reached by making multiple subsequent
steps in the right direction. Addressing the discretized
COMPARE-ON-ONE problem therefore requires a sub-
stantial amount of random exploration in addition to
the difficulties posed by the standard COMPARE-ON-
ONE problem.

5. Results

We now investigate the behavior of IPCA and Max-
Solve on the discretized COMPARE-ON-ONE problem.
Figure 4 shows the performance of the two methods
measured as a function of the number of evaluations,
where each evaluation computes the outcome of a test
for a given candidate. All outcomes are cached, and
therefore computed and measured only once. For Max-
Solve, archive sizes of 1, 2, 5, 10, and 20 are used.

As the graph shows, the performance of MaxSolve
varies with the maximum archive size parameter. For
several parameters, it performs better than IPCA. The

Maximizing Expected Utility in Coevolutionary Search — Edwin D. de Jong 34

6 T
IPCA

MaxSolve 1 -------
MaxSolve 2 --------]
MaxSolve 5 -

4+ _

2 - -

f”éwf}
1
0 5e+06 le+07

Figure 4. Experimental comparison of IPCA and Maxsolve
with archive sizes 1, 2, 5, 10, and 20 on the discretized
COMPARE-ON-ONE problem with mutation bias. For several
parameter values, MaxSolve performs better than IPCA.

best performance is obtained using an archive size of
10; the performance in this case is substantially higher
than that of IPCA. Thus the MaxSolve algorithm is
seen to provide a useful extension to the small but
growing collection of reliable algorithms that are avail-
able for coevolution.

A first striking observation is that for an archive size
of 1, the performance measure at some point begins
to decline. This may at first sight seem at odds with
the claim that the algorithm guarantees monotonic-
ity. The reason this surprising phenomenon can occur
is that the test problem features multiple underlying
objectives (De Jong & Pollack, 2004), as will now be
discussed.

The underlying objectives for this problem correspond
precisely to the dimensions of the space in which the
individuals reside. Specifically, the performance of
each candidate solution is determined by the three co-
ordinates that make up its genotype. The performance
measure shown in the graph reflects the lowest value
for each individual, and shows the highest score for
this value over the individuals in the archive, averaged
over 30 runs.

While the individuals in the archive are selected so as
to solve an incremental number of the tests that have
been collected, and thus to improve in some under-
lying objective, this does not imply that the perfor-
mance level obtained in each underlying objective will
be maintained. This is seen when the three genotypic
values of the best archive member are tracked over
time; see Fig. 5. While each change in the archive im-
proves the performance of some objective, the value of

10 T T
dim 1
dim2 -~4---
dim 2 /~=------
5 - -
0 "/:, 1 1
500 1000

Figure 5. Performance of the best archive member in the
three underlying objectives. While each transition is guar-
anteed to yield improvement in at least one objective, the
value of the lowest objective may nonetheless decrease over
time.

the lowest objective may decrease. As a result of this,
the performance measure shown earlier can decrease,
as it reflects the performance of individuals in their
lowest dimension. If the problem space is finite how-
ever, the potential for improvement in each underlying
objective will at some point be exhausted, after which
progress in other underlying objectives is inevitable
given sufficient exploration.

While it is straightforward to achieve the theoretical
guarantee that progress will at some point occur, it
may take an impractical amount of time before such
progress occurs, and accordingly the occurrence of
over-specialization does pose a problem to search algo-
rithms in practice. Therefore, it is particularly inter-
esting to see that for larger archive sizes, the MaxSolve
algorithm s able to avoid over-specialization. Our ex-
planation for this observation is that given a larger
number of candidates, the tests solved by the candi-
date archive form a more diverse set, so that individu-
als progressing in multiple dimensions can be success-
fully distinguished from those focusing on a subset of
the objectives. While there is no explicit pressure to
avoid over-specialization, the maintenance of a more
diverse set of tests can apparently be sufficient to fa-
cilitate progress in all underlying objectives.

A further observation is that there appears to be a
trade-off between the archive size and performance;
the best results are obtained for an intermediate
archive size. To visualize this trade-off more clearly,
we have plotted the performance of MaxSolve after 107
function evaluations as a function of the maximum
archive size. Figure 6 shows the results, and clearly

35 Maximizing Expected Utility in Coevolutionary Search — Edwin D. de Jong

T
"lastvalues" u 1:2 —+—

Figure 6. The trade-off between archive size and perfor-
mance; the best performance is obtained for an intermedi-
ate archive size. See text.

shows the trade-off.

6. Conclusions

We have investigated the solution concept of maxi-
mizing the expected outcome against a random oppo-
nent. This solution concept may equivalently be seen
as maximizing the number of defeated opponents or
solved tests.

An algorithm that guarantees monotonicity for this so-
lution concept has been presented, named MaxSolve.
MaxSolve has been compared to IPCA, which guar-
antees monotonicity for the solution concept of the
Pareto-Optimal Equivalence set. In experiments with
a test problem likely to induce over-specialization,
MaxSolve was seen to outperform IPCA for interme-
diate archive sizes. MaxSolve furthermore avoids the
limitation of IPCA that the solution concept may in-
volve a large number of individuals, since the algo-
rithm maximizes the number of tests solved and avoids
the maintenance of equivalent individuals. Regarding
the choice of the archive size, a trade-off was observed,
and intermediate values were seen to yield the best re-
sults.

A last factor that may limit MaxSolve’s application
scope is that the test archive grows incrementally. For
problems where the number of tests is large but feasi-
ble however, the algorithm may in principle provide ef-
ficiency improvements compared to evaluating against
all tests. Thus, it may be worthwhile to begin apply-
ing this theoretically justified coevolution algorithm to
problems of practical interest.

References

Angeline, P. J., & Pollack, J. B. (1994). Coevolving
high-level representations. Artificial Life III (pp.
55-71). Redwood City, CA: Addison-Wesley.

Axelrod, R. (1987). The evolution of strategies in the
iterated prisoner’s dilemma. Genetic Algorithms and
Simulated Annealing (pp. 32—41). London: Pitman
Publishing.

Barricelli, N. A. (1962). Numerical testing of evolution
theories. Part I: Theoretical introduction and basic
tests. Acta Biotheoretica, 16, 69—98.

Bucci, A., & Pollack, J. B. (2002). Order-theoretic
analysis of coevolution problems: Coevolutionary
statics. Proceedings of the GECCO-02 Workshop
on Coevolution: Understanding Coevolution.

Bucci, A., & Pollack, J. B. (2003). A mathemati-
cal framework for the study of coevolution. Foun-
dations of Genetic Algorithms (FOGA-2002). San
Francisco, CA: Morgan Kaufmann.

De Jong, E. D. (2004a). Guaranteeing progress in
pareto-coevolution. Proceedings of the Annual Ma-
chine Learning Conference of Belgium and The
Netherlands, BeNeLearn-04 (pp. 22-29).

De Jong, E. D. (2004b). The Incremental Pareto-
Coevolution Archive. Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO-04.

De Jong, E. D., & Pollack, J. B. (2004). Ideal evalu-
ation from coevolution. Evolutionary Computation,
12, 159-192.

Ficici, S. G. (2004). Solution concepts in coevolution-
ary algorithms. Doctoral dissertation, Brandeis Uni-
versity.

Ficici, S. G., & Pollack, J. B. (2000). A game-theoretic
approach to the simple coevolutionary algorithm.
Parallel Problem Solving from Nature, PPSN-VI.
Berlin: Springer.

Funes, P. (2001). Evolution of complezity in real-world
domains. Doctoral dissertation, Brandeis Univer-
sity, Waltham, MA.

Hillis, D. W. (1990). Co-evolving parasites improve
simulated evolution in an optimization procedure.
Physica D, 42, 228-234.

Jansen, T., & Wiegand, R. P. (2003). Exploring the
explorative advantage of the cooperative coevolu-
tionary (1+1) EA. Genetic and Evolutionary Com-
putation — GECCO-2003 (pp. 310-321). Chicago:
Springer-Verlag.

Maximizing Expected Utility in Coevolutionary Search — Edwin D. de Jong 36

Kauffman, S. A., & Johnsen, S. (1992). Co-evolution
to the edge of chaos: Coupled fitness landscapes,
poised states, and co-evolutionary avalanches. In
C. Langton, C. Taylor, J. Farmer and S. Rasmussen
(Eds.), Artificial life II, vol. X of SFI Studies in
the Sciences of Complezity, 325-369. Redwood City,
CA: Addison-Wesley.

Koza, J. R. (1992). Genetic evolution and co-evolution
of computer programs. In C. Langton, C. Taylor,
J. Farmer and S. Rasmussen (Eds.), Artificial life II,
vol. X of SFI Studies in the Sciences of Complexity,
603-629. Redwood City, CA: Addison-Wesley.

Lindgren, K. (1992). Evolutionary phenomena in sim-
ple dynamics. In C. Langton, C. Taylor, J. Farmer
and S. Rasmussen (Eds.), Artificial life II, vol. X of
SFT Studies in the Sciences of Complexity, 295-312.
Redwood City, CA: Addison-Wesley.

Lubberts, A., & Miikkulainen, R. (2001). Co-evolving
a go-playing neural network. Proceedings of the
GECCO-01 Workshop on Coevolution: Turning
Adaptive Algorithms upon Themselves (pp. 14-19).

Miller, G., & CIliff, D. (1994). Protean behavior in
dynamic games: Arguments for the co-evolution of
pursuit-evasion tactics. From Animals to Animats
3: Proceedings of the Third International Confer-
ence on Simulation of Adaptive Behavior, SAB-9/
(pp- 411-420). Cambridge, MA: The MIT Press.

Miller, J. (1989). The coevolution of automata in
the repeated prisoner’s dilemma. Santa Fe Institute
working paper 89-003.

Miller, J. (1996). The coevolution of automata in the
repeated prisoner’s dilemma. Journal of Economic
Behavior and Organization, 29, 87-112.

Moriarty, D. E., & Miikkulainen, R. (1998). Form-
ing neural networks through efficient and adaptive
coevolution. Evolutionary Computation, 5, 373-399.

Pagie, L., & Hogeweg, P. (1998). Evolutionary con-
sequences of coevolving targets. Evolutionary Com-
putation, 5, 401-418.

Paredis, J. (1996). Coevolutionary computation. Ar-
tificial Life, 2.

Pollack, J. B., & Blair, A. D. (1998). Co-evolution
in the successful learning of backgammon strategy.
Machine Learning, 32, 225-240.

Potter, M. A., & De Jong, K. A. (2000). Cooperative
coevolution: An architecture for evolving coadapted
subcomponents. Fvolutionary Computation, 8, 1—
29.

Reynolds, C. W. (1994). Competition, coevolution and
the game of tag. Proceedings of the Fourth Interna-
tional Workshop on the Synthesis and Simulation of
Living Systems (pp. 59-69). Cambridge, MA: The
MIT Press.

Rosin, C. D. (1997). Coevolutionary Search among Ad-
versaries. Doctoral dissertation, University of Cali-
fornia, San Diego, CA.

Schmidhuber, J. (1999). Artificial curiosity based on
discovering novel algorithmic predictability through
coevolution. Proceedings of the Congress on Evolu-
tionary Computation, CEC-99 (pp. 1612-1618). Pis-
cataway, NJ: IEEE Press.

Schmitt, L. M. (2003). Theory of coevolutionary
genetic algorithms. Parallel and Distributed Pro-
cessing and Applications, International Symposium,
ISPA 2003 (pp. 285-293). Berlin: Springer.

Stanley, K. O., & Miikkulainen, R. (2004). Competi-
tive coevolution through evolutionary complexifica-
tion. Journal of Artificial Intelligence Research, 21,
63-100.

Watson, R. A., & Pollack, J. B. (2000). Symbiotic
combination as an alternative to sexual recombina-
tion in genetic algorithms. Parallel Problem Solving
from Nature, PPSN-VI. Berlin: Springer.

Watson, R. A., & Pollack, J. B. (2001). Coevolution-
ary dynamics in a minimal substrate. Proceedings
of the Genetic and FEvolutionary Computation Con-
ference, GECCO-01 (pp. 702-709). San Francisco,
CA: Morgan Kaufmann.

Watson, R. A., & Pollack, J. B. (2003). A computa-
tional model of symbiotic composition in evolution-
ary transitions. Biosystems, 69, 187-209. Special
Issue on Evolvability, ed. Nehaniv.

Werfel, J., Mitchell, M., & Crutchfield, J. P. (2000).
Resource sharing and coevolution in evolving cellu-
lar automata. IEEFE Transactions on Fvolutionary
Computation, 4, 388.

Wiegand, R. P. (2003). An analysis of cooperative
coevolutionary algorithms. Doctoral dissertation,
George Mason University, Fairfax, Virginia.

Wiegand, R. P., Liles, W., & De Jong, K. (2002).
Analyzing cooperative coevolution with evolution-
ary game theory. Proceedings of the 2002 Congress
on Evolutionary Computation CEC2002 (pp. 1600
1605). IEEE Press.

Assessment of SVM Reliability for Microarrays Data Analysis

Andrea Malossini
Enrico Blanzieri

MALOSSIN@DIT.UNITN.IT
BLANZIER@DIT.UNITN.IT

Department of Information and Communication Technology, University of Trento, via Sommarive 14, 38050

Povo, Ttaly
Raymond T. Ng

RNG@CS.UBC.CA

Department of Computer Science, University of British Columbia, Vancouver, B. C., V6T 1Z4, Canada

Abstract

The goal of our research is to provide tech-
niques that can assess and validate the re-
sults of SVM-based analysis of microarray
data. We present preliminary results of the
effect of mislabeled training samples. We
conducted several systematic experiments on
artificial and real medical data using SVMs.
We systematically flipped the labels of a frac-
tion of the training data. We show that a
relatively small number of mislabeled exam-
ples can dramatically decreases the accuracy
of the classifier. This phenomenon persists
even if the dimensionality of the input space
is drastically decreased, by using for exam-
ple feature selection. Moreover we show that
for SVM recursive feature elimination, even a
small fraction of mislabeled samples can com-
pletely change the resulting set of genes.

1. Introduction

Gene-expression microarrays make it possible to simul-
taneously measure the rate at which a cell or tissue
is expressing (translating into a protein) each of its
thousands of genes. One can use these comprehensive
snapshot of biological activity to infer regulatory path-
ways in cells, identify novel targets for drug design,
and improve the diagnosis, prognosis, and treatment
planning for those suffering from disease. The amount
of data this new technology produces is more than one
can manually analyze. Thus, applying data mining
techniques is necessary. However, while data mining
techniques are proved successful for business applica-
tions (where the number of samples is usually high),
gene expression data sets have usually characteristics
rather different from those of business data sets. We
observe three key issues: high dimensionality, small

sample size, and noise.

e The dimensionality of the data, p, can be very

high. In the human genome, there are at least
20,000 genes. And in the human body, there are
more than a million proteins. Thus, for one pa-
tient, there can quite easily be over 50,000 pieces
of data.

The number of samples, n, can be small (rela-
tive to typical business applications). For many
biomedical and pathology studies, 40-80 patients
are considered decent-sized. Sample sizes in the
order of hundreds are less common. There are a
number of reasons why this is the case. First, data
acquisition itself may be very expensive. While
microarray costs are decreasing, other costs (e.g.,
wet laboratory cost for micro-dissection of tissues)
remain high. For instance, the cost associated
with one patient can very easily exceed 10,000
Euros. Money aside, the second reason is that
for many diseases, there are simply not enough
patients available. One prime example is early
stage lung cancer (e.g., carcinoma-in-situ). Be-
cause early stage lung cancer is very hard to de-
tect by normal pathological means (e.g., x-rays),
we do not know of any medical research center in
the world which has a database of such patients
exceeding 100. Finally, the third reason is that
even if the patients are there, many of them or
their families may not want to participate in re-
search studies.

Biomedical data can be very noisy. One reason
is that data may be acquired in laboratory envi-
ronment, which sometimes can be hard to keep
unchanged. Another reason is that making di-
agnostic decisions (e.g., grading a biopsy) is not
completely objective or black-and-white. For the

Assessment of SVM Reliability for Microarrays Data Analysis — Andrea Malossini et al. 38

same medical condition, there may be different
gold-standards, which could lead to different de-
cisions. Thus, robust techniques are very impor-
tant.

Recently a state-of-the-art classification method, Sup-
port Vector Machine (Cortes & Vapnik, 1995) has been
used successfully in microarray data analysis (Golub &
et al., 1999; Furey & et al., 2000; Valentini, 2002; Lee
& Lee, 2003; Simek & et al., 2004). Unfortunately
microarray data sets are characterized by the huge di-
mensionality of the input space p (which comprises
thousands of genes) versus the extremely low number
n of training samples (usually of the order of tens) as
shown in Table 1. In such cases, a small error in the
training set could result in a really poor-performance
classifier.

The goal of our work is to assess the reliability of
the results obtained by SVM techniques on microarray
data. Here we present preliminary work that consid-
ers mislabeled training samples as a possible source of
unreliability.

2. Is the SVM reliable for microarray
data sets?

Initially, we started to investigate the problem of mis-
labeled samples on an artificial dataset and assess the
performance of the classifier.

We generated a two-class classification problem with
an input space of p = 2000 features. The first class,
labeled with “-17, is sampled from a multivariate nor-
mal distribution with g = 0 and ¥ = 3 - I, where I
id the identity matrix. The second class, labeled with
“4+17, is distributed as the first class except for 20
features where the component of the mean is p; = 3
and X = I. This procedure has been adopted in or-
der to simulate the differential expression of a limited
number of genes. Sampling from the distributions de-
scribed above, we generated a series of training sets
with n = 10, 20, 30, 40, 50, 100, 200 elements and a test
set of 100 elements. Each training set and test set
has half of the elements labeled as “+1” and half la-
beled as “-17, i.e. is balanced. For each training set
we trained 5 different SVM classifiers. One on the
unmodified training set, and the other 4 on the train-
ing set with different percentage of label flipping. We
trained the SVM on the training set and then we ran-
domly flipped the labels of a fraction of the training set
and trained other SVMs. We used the standard value
for the regularization parameter C' = 1, which mea-
sures the trade-off between error and complexity. We
performed the flipping on the original training set for

percentages of {5,10,15,20}% (the number of flipping
has been truncated to an integer). For each classifier
we calculated the accuracy on the test set. For each
experiment identified by a value of n and a flipping
percentage, the entire procedure has been repeated 20
times and mean and variance of each classifier’s accu-
racy has been calculated.

To visualize the performance of each classifier obtained
we used a boxplot. In Fig. 1 we show the results of the
simulation for different percentage of label flipping for
a training set of 20,30,40,50,100,200 elements respec-
tively. We can note that that with only 10% of flipping
the difference between the unflipped and flipped accu-
racy’s classifiers is about 0.1 (i.e. 10% difference in
accuracy). By incrementing the number of training
samples, the variance decreases but there is still a dif-
ference in accuracy. In Fig.2 we show two examples of
non-linear SVM classifiers, using a polynomial kernel
of degree 2 and a radial basis kernel. The effect of the
flipping is still there and in it is more accentuate.

The problem of overfitting which arises when the num-
ber of features is much greater than the number of
training samples can be lowered by reducing the num-
ber of features. Some wrapper techniques for fea-
ture selection involving SVM have been developed (e.g.
the Recursive Feature Elimination (RFE) (Vapnik &
et al., 2002), E-RFE (entropy-based feature elimina-
tion) (Furlanello & et al., 2003)), which have been used
to reduce the number of features as shown in Tab. 1.

In Fig. 3 we show the effect of reducing the number
of features from 2000 to 200, but including all the im-
portant features which permits to separate the two
classes. Notice that even if the number of features is
low, p = 200, given a low number of samples, the ef-
fect on the the accuracy of the mislabeled classifiers is
still present despite the classifiers generated have good
absolute accuracy.

Since a real dataset is far more complex than the syn-
thetic data we generated, we tested the procedure on a
real biological dataset, a human breast cancer dataset
from (West & et al., 2001), which included 49 samples,
24 marked as ER+ and 25 marked as ER-. We built
randomly two training sets of 20 and 30 elements and
test the SVM classifier on a disjoint random test set
of 19 samples. In Fig. 4 we show the results on the
Breast Cancer dataset using the SVM and randomly
flipping a percentage of the original labels. Again with
10 % of flipping the resulting classifier has an lower ac-
curacy (about 0.1) than the unflipped classifier. This
means that only 2 or 3 wrong labels suffice to have a
sensible degradation of the accuracy. Class prediction
is not the only purpose of SVM application in microar-

39 Assessment of SVM Reliability for Microarrays Data Analysis — Andrea Malossini et al.

Dataset: synthetic Dataset: synthetic

= °] ° —_
@ |
s g R
1 o ! 1 —_
‘ ; ==
o - - ' s
- | B3 ; — o
> 7 . > o | .
> o —_ 3 o | ! !
] i i —_ 8 - .)
5 L ! : s © ° ‘ -
o — ! —_ Q ! !
5] ' ' Q ' !
) E ‘ ‘ < | -
o ! !
© Q T
o N o '
' o !
8 - L
Lﬂ_ — R — —_ 8 R — R —
° T T T T T S T T T T T
0% 5% 10% 15% 20% 0% 5% 10% 15% 20%
Percentage of flipping Percentage of flipping
p = 2000 n = 20 kernel = linear p =2000 n = 30 kernel = linear
Dataset: synthetic Dataset: synthetic
(=]
—_ o —_
3 ‘ T ’ E :
5 ! «©]
© ‘ — S ‘ - -
> L : | - > ' ; | . | T
[3) ' ' [5) . ' '
3 © . X . ! 3 o 7]
Q (&} U
) N ;I) . -
[e] o '
©o O 1
S] ° ! : S 7 L
- o
0 | o [t) o
S] T T T T T o T T T T T
0% 5% 10% 15% 20% 0% 5% 10% 15% 20%
Percentage of flipping Percentage of flipping
p = 2000 n = 40 kernel = linear p = 2000 n =50 kernel = linear
Dataset: synthetic Dataset: synthetic
o
S
0 B - B
o A 1 1
S ‘ 3
o I — = El ;
o A ! ! !
: 5 | s~ B =
s 8] — = 5 ° B
8 © . e 8 I '
g o — 1 3 37 - e
=] o | ' Q '
< 2 : o <
I o
0 ' —_ o |
2 '
i -] g -
j = ;
R - i ° ‘
S - o -
T T T T T S T T T T T
0% 5% 10% 15% 20% 0% 5% 10% 15% 20%

Percentage of flipping
p = 2000 n = 200 kernel = linear

Percentage of flipping
p = 2000 n = 100 kernel = linear

Figure 1. Boxplots of the accuracy of the SVM classifiers. An incremental percentage of random flipping of the labels is
performed and the SVM tested on a 100-samples unflipped test set.

Assessment of SVM Reliability for Microarrays Data Analysis — Andrea Malossini et al. 40

Table 1. Number of features p and number of available samples n in microarray data analysis literature (

feature selection is performed in the paper).

3%}

means no

SOURCE n P P AFTER
FEATURE
SELECTION
WEST ET AL. (WEST & ET AL., 2001) 49 | 7129 -
GoOLUB ET AL. (GOLUB & ET AL., 1999) 38 | 6817 -
VAPNIK ET AL. (VAPNIK & ET AL., 2002) 38 | 6817 16
ALON ET AL. (ALON & ET AL., 1999) 62 | 2000 -
ALIZADEH ET AL. (ALIZADEH & ET AL., 2000) 96 | 4026 -
RAMASWAMY ET AL. (RAMASWAMY & ET AL., 2003) | 76 | 16063 -
FURLANELLO ET AL. (FURLANELLO & ET AL., 2003) | 76 | 16063 315

Table 2. Lists of genes selected by SVM-RFE from the Breast Cancer data set with growing percentage of flipping,
respectively 0%, 5% and 10%. The genes indicated with a e are present also in the list of genes selected from the

unflipped data set.

5% OF FLIPPING

10 % OF FLIPPING

RANK | 0% OF FLIPPING
1 X03635_AT

2 X55037_s_AT
3 U57650_AT

4 M23263_AT
5 M26311_S_AT
6 L43366_AT

7 X91220_AT

8 U39817_AT

9 U96113_AT
10 M62403_S_AT
11 U05340_AT
12 X58072_AT
13 L20860_AT
14 X57351_AT
15 D63485_AT
16 D45906_AT
17 U32907_AT
18 U46746_S_AT
19 D38550_AT
20 U61232_AT
21 U63455_AT
22 U21931_AT
23 M&3652_S_AT
24 U27193_AT
25 U62325_AT
26 U34044_AT
27 JO3910_RNA1_AT
28 729083 _AT
29 X16866_AT
30 L38932_AT
31 U68385_AT
32 X63578_RNAL1_AT

U81984_AT

e M23263_AT
U77665_AT
X65977_AT
MG61853_AT
U67963_AT

e M62403_S_AT
X03656_RNA1_AT
HGT742-HT742_AT
U41060_AT

e D63485_AT
749878 _AT
D26599_AT
X69636_AT

e X03635_AT
HG3105-HT3281_s_AT
U78180_AT
J04056_AT
X95677_AT

e U62325_AT

e U57650_AT

e U05340_AT
D16105_AT
M29877_AT
HG3543-HT3739_AT
U60319_AT
D78586_AT
L20591_AT
X90840_AT
JO3827_AT
J03242_s_AT

e U61232_AT

L38608_AT
U39840_AT
X59131_AT
M33493_s_AT
U09196_AT
M13699_AT
U68019_AT

e M23263_AT
e D38550_AT
X65977_AT

e 729083_AT
X86681_AT
L77864_AT
M60614_AT
o X58072_AT
123333 _s_AT
S38953_S_AT
X98260_AT
M35851_S_AT
D38500_AT
D79988_AT
U57093_AT
X95826_AT
M64347_AT
U81984_AT
D28124_AT
X74262_AT

e [L43366_AT
X06323_AT
U03886_AT
D79994 _AT
HG3123-HT3299_AT

41

Assessment of SVM Reliability for Microarrays Data Analysis — Andrea Malossini et al.

Dataset: synthetic

J—
g |
IS

T
. |
S |

2 o .

]

s

3

3 _

1=}

<
Q
Lo_f
IS
Q
Ln_7
IS

'
.

T
0%

T T T
5% 10% 15%

Percentage of flipping

T
20%

p = 2000 n = 30 kernel = polynomial

(a) A polynomial kernel of degree 2 is used

in the SVM classification.

Dataset: synthetic

p—
!
‘
‘
© ‘
S] 1
3
g S ‘
:!O '
(5] 1
> 1
< _
©
o
v
o

T
0%

classification

Figure 2. Boxplots of SVM classifiers for some non-linear
kernels. Artificial dataset of 2000 features and 20 training

samples.

T T T
5% 10% 15%

Percentage of flipping

p = 2000 n = 30 kernel = radial

(b) . A radial basis kernel is used in the SVM

20%

Dataset: synthetic

o
S
‘ s
i
.
o] \ !
[S) ' ' !
—_— ! ' —_
> 1 | 1
Q —_ ! 1
S o | !
§ ° : E :
< '
o -
~ | |
o o —_ :
|
° |
o | o
o
T T T T T
0% 5% 10% 15% 20%

Percentage of flipping
p =200 n = 20 kernel = linear

Dataset: synthetic

o
]
-~ [—_—
B
!
R — !
‘
(=]
| f
© o R —
5 —
[} ! '
g :
3 2 ‘ ;
UO 1 f
< ' |
' R —
.
- ‘
o | '
‘
!
!
‘
_

T T T T T
0% 5% 10% 15% 20%

Percentage of flipping
p =200 n = 30 kernel = linear

Figure 3. Boxplot of SVM classifiers. An incremental per-
centage of random flipping of the labels is performed and
the SVM tested on a 100-samples unflipped test set. Each
experiment is repeated 20 times.

Assessment of SVM Reliability for Microarrays Data Analysis — Andrea Malossini et al. 42

Dataset: breastcancer

1.0

>
)
@ '
3]
o M~ !
< © '
' j
T
' '
© o , , , '
> | I \ !
< L o ' !
'
! .
0 | '
3 '

—

T T T T T
0% 5% 10% 15% 20%

Percentage of flipping
p = 7129 n = 20 kernel = linear

Dataset: breastcancer

1.0

— o [e] —_

-m_

—

0.9

Accuracy

o

0.6

T T T T T
0% 5% 10% 15% 20%

Percentage of flipping
p =7129 n = 30 kernel = linear

Figure 4. Boxplot of SVM classifiers for the breast cancer
dataset. An incremental percentage of random flipping of
the labels is performed and the SVM obtained tested on a
19-samples unflipped test set. Each experiment is repeated
20 times.

ray data analysis. In fact SVM is used for discovering
of important genes by using feature selection (Golub &
et al., 1999; Vapnik & et al., 2002; Furlanello & et al.,
2003). In Fig. 3 we reduced the number of features
from 2000 to 200 but including all the relevant fea-
tures. In real data sets we do not know which are the
important features, hence mislabeling could also affect
the outcomes of a feature selection procedure. If in the
training set there are some mislabeled patterns, these
misleading information will propagate through the fea-
ture selection procedure so we expect, finally, to get a
different set of important features (genes). For investi-
gating this effect we tested the recursive feature elim-
ination (Vapnik & et al., 2002) on the Breast Cancer
dataset with percentage of flipping of 5% and 10 %.
As shown in Table 2, only 5 genes over 32 are common
to the final pool of genes in the unflipped and 10 %
flipped cases. Moreover the ranking is completely dif-
ferent. For a 5% of flipping (in our case about 3 misla-
beled samples over 49) there are only 8 common genes.
We repeated 20 times the recursive feature elimination
on Breast Cancer data by flipping randomly a 10 % of
the labels. In Table 3 is shown the genes with higher
frequency of presence in the final lists of 32 genes each
one. Only 4 genes are present in at least 10 of the
selected pools. The others are not in the selected list
in the majority of the repetitions. Hence the effect of
a 10% of label flipping on the RFE procedure is to
produce a very variable set of selected genes.

In real data set however, the situation is much more
complicated than the relative simple situation de-
scribed in the synthetic data set. Correlation between
genes and the much higher variability of the expression
values, surely play a crucial role for the sensitivity of
SVM to mislabeled samples.

3. Conclusion and future work

We presented the results of experiments on artificial
and medical data aimed to assess the sensitivity of
SVM classification and feature selection with respect
to mislabeled training samples. This is a preliminary
step toward the definition of new techniques devoted
to evaluate the reliability of the use of SVM for anal-
ysis of microarray data. Obviously, scientists should
guarantee the quality of the data they use for their re-
search, however, our results show that the robustness
of this approaches can be a critical issue. It seems
crucial now to take care of this source of error because
neither by increasing the number of training samples
or decreasing the number of features is a good recipe
to increase the performance of a SVM classifier. A sta-
tistical /computational method for detecting and solv-

43 Assessment of SVM Reliability for Microarrays Data Analysis — Andrea Malossini et al.

Table 3. Genes that appear with higher frequency in the
list of selected genes in 20 repetitions of SVM-RFE from
Breast Cancer data set with 10 % of flipping.

GENE FREQUENCY

X03635_AT 18
M23263_AT 16
X55037_S_AT 16
X58072_AT 10
U41060_AT 9
U32907_AT
L43366_AT
U79293_AT
U96113_AT
U62325_AT
729083_AT
D38550_AT
U57650_AT
X16866_AT
M65062_AT
U05340_AT
M26311_S_AT
M62403_s_AT
U21931_AT
D82343_AT
HG3400-HT3579_AT
D38437_F_AT
M26061_AT
U46746_S_AT
X65977_AT
AF000234_AT
D26135_AT
D50370_AT
D63485_AT
X91220_AT
X98834_RNA1_AT
(OTHER)

N R R R R OTOUIOEOTIUEO YO OY O =1 =1 =1 00 00 00 00 00 ©

W~
=

ing such problem should be developed because the mi-
croarray analysis based on SVMs is wide-spreading in
the scientific community.

References

Alizadeh, A., & et al. (2000). Distinct types of diffuse
large b-cell lymphoma identified by gene expression
profiling. Nature, 403, 503-511.

Alon, U., & et al. (1999). Broad patterns of gene ex-
pression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotides ar-
ray. PNAS, 96, 6745-6750.

Cortes, C., & Vapnik, V. (1995). Support vector net-
works. Machine Learning, 20, 273~ —~ 297.

Furey, T. S., & et al. (2000). Support vector machine
classification and validationof cancer tissue samples
using microarray expression data. Bioinformatics,
16, 906-914.

Furlanello, C., & et al. (2003). Entropy-based gene
ranking without selection bias for the predictive
classification of microarray data. BMC Bioinfor-
matics, 54—64.

Golub, T. R., & et al. (1999). Molecular classification
of cancer: class discovery and class prediction bye
gene expression monitoring. Science, 531-537.

Lee, Y., & Lee, C.-K. (2003). Classification of mul-
tiple cancer types by nulticategory support vector
machines using gene expression data. Bioinformat-
ics, 19, 1132-1139.

Ramaswamy, S., & et al. (2003). A molecular signa-
ture of metastasis in primary solid tumors. Nature
Genetics, 33, 1-6.

Simek, K., & et al. (2004). Using SVD and SVM meth-
ods for selection, classification, clustering and mod-
eling of DNA miscoarray data. Engineering applica-
tion of Artificial Intelligence, 17, 417-427.

Valentini, G. (2002). Gene expression data analysis
of human lymphoma using support vector machine
and output coding ensembles. Artifical intelligence
in medicine, 26, 281-304.

Vapnik, V., & et al. (2002). Gene selection for can-
cer classification using support vector machine. Ma-
chine Learning, 46, 389-422.

West, M., & et al. (2001). Predicting the clinical status
of human breast cancer by using gene expression
profiles. PNAS, 98, 11462-11467.

Best-response Play in Partially Observable Card Games

Frans Oliehoek
Matthijs T. J. Spaan
Nikos Vlassis

FAOLIEHO@QSCIENCE.UVA.NL
MTJSPAAN@SCIENCE.UVA.NL
VLASSISQSCIENCE.UVA.NL

Informatics Institute, Faculty of Science, University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

Abstract

We address the problem of how to play op-
timally against a fixed opponent in a two-
player card game with partial information
like poker. A game theoretic approach to this
problem would specify a pair of stochastic
policies that are best-responses to each other,
i.e., a Nash equilibrium. Although such
a Nash-optimal policy guarantees a lower
bound to the attainable payoff against any
opponent, it may not necessarily be optimal
against a fixed opponent. We show here that
if the opponent’s policy is fixed (either known
or estimated by repeated play), then we can
model the problem as a partially observable
Markov decision process (POMDP) from the
perspective of one agent, and solve it by dy-
namic programming. In particular, for a
large class of card games including poker, the
derived POMDP consists of a finite number
of belief states and it can be solved exactly.
The resulting policy is guaranteed to be opti-
mal even against a Nash-optimal policy. We
provide experimental results to support our
claims, using a simplified 8-card poker game
in which Nash-policies can be computed effi-
ciently.

1. Introduction

A partially observable stochastic game (POSG) is gen-
eral model that captures the sequential interaction of
two or more agents under conditions of uncertainty.
This model can be regarded as an extension of a
stochastic game (Shapley, 1953), with parts of the
state being hidden to at least one agent. It can also
be viewed as an extension of a partially observable
Markov decision process (POMDP) (Sondik, 1971),
with state transitions being influenced by the com-
bined actions of two or more agents. A POSG is also

very closely related to the model of an extensive game
with imperfect information (Kuhn, 1953).

The literature on POSGs is still relatively sparse. Hes-
panha and Prandini (2001) showed that a two-player
finite-horizon POSG always has a Nash equilibrium in
stochastic policies. Koller et al. (1994) demonstrated
how to efficiently compute such a Nash equilibrium in
the special case of a two-player zero-sum POSG with a
tree-like structure, like the card games (e.g., poker) we
consider here. Becker et al. (2003), Nair et al. (2003)
and Emery-Montemerlo et al. (2004) have developed
similar algorithms for computing solutions in the spe-
cial case of common-interest POSGs. Only recently an
algorithm for solving general (albeit still small) POSGs
has been proposed (Hansen et al., 2004).

In this paper we consider the class of two-player zero-
sum finite-horizon POSGs with a tree-like state struc-
ture, that includes many card games like poker. We
depart from the game theoretic approach of comput-
ing Nash equilibria for these games, and instead deal
with the problem of how to compute optimal policies
(best-responses) against a fixed opponent. Our in-
terest is motivated by recent suggestions to adopt an
‘agent-centric’ agenda in multiagent decision making,
by which best-response learning algorithms (like Q-
learning) replace classical game theoretic approaches
to finding an optimal policy (Powers & Shoham, 2005).
There are two strong arguments in favor of this ap-
proach: first, computing a Nash equilibrium is a diffi-
cult problem in general, and efficient algorithms exist
only in special cases. Second, a Nash-policy is too con-
servative in the sense that it will not exploit possible
weaknesses of opponents.

As we show below, in order to compute a best-response
policy against a fixed opponent in a game like poker,
we can model the game as a partially observable
Markov decision process (POMDP) by defining a belief
state for our protagonist agent. This reduction only re-
quires knowing (e.g., estimating by repeated play) the

Best-response Play in Partially Observable Card Games — Frans Oliehoek et al. 46

stochastic policy of the opponent. The POMDP can be
subsequently solved, for instance by dynamic program-
ming, deriving a best-response (deterministic) policy
for the agent. In general, an approximate POMDP
algorithm may be needed to deal with the continuous
belief space (Spaan & Vlassis, 2004). For many card
games however, including poker, the particular struc-
ture of the problem allows the POMDP to be solved
exactly: there are a finite set of reachable beliefs in the
POMDP, which allows mapping the POMDP model
into a discrete-state MDP and then solve it with an
exact dynamic programming method (e.g., value iter-
ation). The resulting policy is optimal (gives the high-
est possible payoff) against the particular opponent.
Moreover we can easily prove that it is no worse than
the optimal Nash-policy when playing against a Nash-
agent (an opponent that uses a Nash-optimal policy).

To illustrate the method, we have implemented a sim-
plified 8-card poker game for which Nash equilibria
can be computed (Koller & Pfeffer, 1997). Then, us-
ing the POMDP approach, we have computed best-
response policies against Nash-agents. We have exper-
imentally verified that a POMDP best-response policy
can indeed reach the optimal Nash payoff when playing
against a Nash-optimal agent.

In the following, we first describe our simplified poker
game that we use as a running example throughout
the paper (Section 2). Then we briefly outline the
game-theoretic approach for solving such partially ob-
servable games (Section 3). In Section 4 we describe
our POMDP-based approach to playing poker against
a fixed opponent. We provide experimental results in
Section 5, and Section 6 concludes.

2. A simplified poker game

Poker is an example of a stochastic game with par-
tial (imperfect or incomplete) information. In poker
a player cannot tell the exact state of the game (e.g.,
the card deal), and he does not know what policy his
opponent will follow. Still, his (sequential) decision
making must include comparing potential reward to
the risk involved, trying to deceive the opponent by
bluffing, dealing with unreliable information from the
opponents’ actions, and modeling the opponent. All
these aspects make poker a very complex game.

There are many poker variants, which all share these
properties (Billings et al., 2003). Most of these vari-
ants, however, are too large to analyze in an exact
fashion because of the number of card combinations
and possible betting sequences. Our goal in this pa-
per is not to compute the ultimate strategy for playing

Figure 1. The partial game-tree of 8-card poker for the
deals (4,2) and (4,6). Gambler’s decision nodes are black,
dealer’s are grey. The payoffs are given for the gambler.

general poker, but to address the problem how to play
optimally against a fixed opponent. As the opponent
strategy we consider can be an optimal Nash policy,
we need to be able to compute the Nash policies. To
this end, and as running example, we will use a small
8-card poker variant, described by Koller and Pfeffer
(1997), which we Nash-solved by using their Gala sys-
tem.

This 8-card poker is played by two players: a dealer
and a gambler, who both own two coins. Before the
game starts, each player puts one coin to the pot, the
ante. Then the dealer deals both players one card out
of a deck of eight cards (1 suit, ranks 1-8). After the
players have observed their card, they are allowed to
bet their remaining coin, starting with the gambler. If
the gambler bets his coin, the dealer has the option to
fold or call. If the dealer folds he loses the ante, and if
he calls showdown follows. If the gambler does not bet,
the dealer can choose to bet his coin. If the dealer does
so, the gambler will have to decide whether to fold or
call. If the game reaches the showdown (neither player
bets or the bet of the dealer is called), the player with
the highest card wins the pot.

3. Game-theoretic approach

In this section we will briefly outline the game theo-
retic approach for representing and solving such poker
games.

3.1. Poker as an extensive form game

We can model 8-card poker as an ezxtensive form game
with partial (imperfect) information (Kuhn, 1953).
The extensive form of a game is given by a tree, in
which nodes represent game states and whose root is
the starting state. There are two types of nodes: de-

47 Best-response Play in Partially Observable Card Games — Frans Oliehoek et al.

cision nodes that represent points at which agents can
make a move, and chance nodes which represent ran-
dom transitions by ‘nature’. In 8-card poker, the only
chance node is the starting state, in which two cards
are chosen uniformly at random from the 8-card deck
and are dealt to the agents.

In a partial information game, an agent may be uncer-
tain about the true state of the game. In particular, an
8-card poker agent may not be able to discriminate be-
tween two nodes in the tree. The nodes that an agent
cannot tell apart are grouped in information sets. In
Fig. 1 a part of the game-tree of 8-card poker is drawn.
At the root of tree (‘Start’ node) a card is dealt to each
agent. At each decision node the agents can choose be-
tween action 1 (bet), and action 0 (fold). Fig. 1 shows
the partial game tree for two deals: in the first the
dealer receives card 2, in the second he receives card
6. The gambler receives card 4 in both cases. There-
fore the gambler cannot discriminate between the two
deals. This is illustrated by the information sets in-
dicated by ovals. The leaves of the tree represent the
outcomes of the game and the corresponding payoffs.
In the figure we only show the payoff of the gambler;
the payoff of the dealer is exactly the opposite. Games
in which payoffs add up to zero, as is the case here,
are called zero-sum games.

3.2. Solving poker

Solving poker means computing the optimal policies
the agents should follow. In 8-card poker, a policy for
an agent is a mapping from his information sets to
actions. A pure policy specifies, for each information
set, an action that should be taken with probability
one. A stochastic policy is a probability distribution
over pure policies: it specifies, for each information
set, an action that should be taken with some specific
probability. For example, in the 8-card poker game
shown in Fig. 1, a stochastic policy for the gambler
could specify that he should bet with probability 0.4
after having received card 4.

The solution of a game specifies how each agent should
play given that the opponent also follows this advise.
As such, it provides an optimal policy for each agent.
The solution of a game is given by one or more of its
Nash equilibria. Let 7; denote a policy for agent .
A pair of policies m = (71, m2) induce expected payoff
H;(m) to agent i, where the expectation is over over
the chance nodes in the game; in a zero-sum game
Hy(m) = —Hy(w). When 7 is a Nash equilibrium,
Hy(7) is the value of the game.

Definition 1. A tuple of policies 7 = (m,m3) is a

Nash equilibrium if and only if it holds that:

Vo (Hi(m1,ma) > Hy(my, m2)) A

(1)

vﬂ'lz (H2(7T177T2) > H2(7T1,7Té))
That is, for each agent i, playing m; gives an equal
or higher expected payoff than playing w,. So both
policies are best responses to each other.

In two-player zero-sum games, a Nash policy is a se-
curity policy and the value of the game is the security
value for an agent. The latter means that the expected
payoff of an agent who plays a Nash policy cannot be
lower than the value of the game. In other words, a
Nash policy gives the payoff that an agent can maxi-
mally guarantee for himself, given that the opponent
will act in a best-response manner in order to minimize
this payoff.

Nash (1951) and Kuhn (1953) have shown that any
extensive-form game with perfect recall' has at least
one Nash equilibrium in stochastic policies. Moreover,
in two-player zero-sum games, all Nash equilibria spec-
ify the same value for the game (Osborne & Rubin-
stein, 1994). Therefore, any Nash policy is optimal
against a best-response opponent, in the sense that it
guarantees the security value of the game.

3.3. Computing Nash equilibria

To find the Nash equilibria of an extensive form game,
the game can be first transformed into its normal form.
This is a matrix representation of all pure policies
available to the agents. Entry (7, j) of the matrix gives
the expected payoff of agent 1’s policy i versus agent
2’s policy j. Consequently, when converting from the
extensive to the normal form, the tree-like structure
of the game is discarded. Moreover, the normal form
representation of an extensive game can be very large.
Note that every pure policy is a mapping from infor-
mation sets to actions, therefore the number of pure
policies is exponential in the size of the game tree.

To compute the Nash equilibria from the normal form
we can use linear programming. The normal form of
a two-player zero-sum game defines a linear program
whose solutions are the Nash-equilibria of the game.
However, transforming an extensive form game to its
normal form results in very large games, making such
an approach for computing Nash equilibria impracti-
cal.

Koller and Pfeffer (1997) proposed the ‘Gala’ system,
which solves games in an alternative representation

1Perfect recall implies that an agent remembers all ac-
tions that he has taken in the past.

Best-response Play in Partially Observable Card Games — Frans Oliehoek et al. 48

called the sequence form, whose size is polynomial with
the number of nodes in the game tree. This allows one
to solve larger games, but real-life games are typically
still too large to solve. For example consider Texas
Hold-em poker?, whose game-tree contains O(10'8)
nodes (Billings et al., 2003) and therefore computing
Nash equilibria is computationally infeasible.

4. Playing against a fixed opponent

In this section we depart from the game-theoretic ap-
proach, and address the problem of how to play opti-
mally against a fixed opponent. It turns out that, if
the (stochastic) policy of the opponent agent j can be
summarized by a model in the form p(a,ls, a;), where
a; denotes his action at some state s and a; our action,
then we can model the poker game as a partially ob-
servable Markov decision process (POMDP) from the
perspective of our protagonist agent i, and compute an
optimal (deterministic) policy for it.

According to our POMDP model, at any time step the
game is in a state s € S, where the state space S con-
tains all chance nodes in the game-tree, as well as all
nodes in which our protagonist agent ¢ takes a decision
(the black nodes in Fig. 1 if agent ¢ is the gambler).
The game starts at the ‘Start’ state (chance node).
At any other state (decision-node) s, our protagonist
agent i takes an action a; € A; = {bet, fold}, and the
opponent takes an action a; according to a stochastic
policy m; = p(aj|s,a;). Then the game switches to
a new state s’ as a result of the two actions (ai,as)
and according to a stochastic joint transition model
p(s'|s,a;,a;). Using the policy of the opponent, we
can compute a single transition model for our agent 4
as follows:

ZP (s']s, aisa5)p(ajls, ai). (2)

(s'|s,a;)

This allows us to treat the game as a POMDP from
the perspective of our protagonist agent i. In our 8-
card poker, the joint transition model p(s'|s,a;,a;)
is stochastic only in the ‘Start’ state and determin-
istic elsewhere (given the actions of the two agents),
since there are no other chance nodes in the game-tree.
However, as we assume a stochastic policy for agent j,
from the viewpoint of agent ¢ the game is stochastic in
every state.

In partial information games the agents cannot di-
rectly observe the true state of the game, but they
receive observations (clues) about the state. In our

2Texas Hold-em is a popular poker variant in which each
player gets two private cards and share 5 public cards.

POMDP model of the game, in each state s our pro-
tagonist agent ¢ perceives an observation o; € O; that
is related to the current state s and his last action
a; through a stochastic observation model p(o;|s, a;).
The first observation o; agent i receives indicates the
hand that is dealt to it, consecutive observations sig-
nal the last action a; of the opponent. Moreover, the
observation model is deterministic: after the cards are
dealt an agent observes o; € {1,...,8} with probabil-
ity one, and in consecutive states he perceives o; = a;
with full certainty.

At every time step an agent k receives an individual
scalar reward signal r(s, a;, a;, ') based on the previ-
ous game state s, current state s’ and the joint action
(ai,a;). Using the policy of the opponent agent j we
can compute the reward our agent i receives as follows:

Zrz 5 y Ajy Ajy S) (aj|svai)' (3)

(s,ai,s

In poker the reward is 0 except for transitions into
one of the end-states, i.e., when one of the agents has
folded or the game reaches showdown (Section 2).

As all sets S, O;, and A; are discrete and finite in
a poker game, we can convert the discrete POMDP
model in a continuous belief-state Markov decision
process (MDP) (Sondik, 1971), in which the agent
summarizes all information about its past using a belief
vector b(s). The belief b is a probability distribution
over S, and grants the agent perfect recall. Our agent
i starts with an initial belief by, which in our poker set-
ting is set to a Dirac distribution on the ‘Start’ state.
Every time agent 7 takes an action a; and observes o;,
it’s belief is updated by Bayes’ rule:

) pPlo;|S,a
b () =) 1zp (5. ai)b
K3 l?

p(o;lai,b) = Z P oi\s ,a; Zp s'|s,a;)b(s) (5)

s'esS ses

(s), where (4)

is a normalizing constant. To solve the belief-state
MDP in general a large range of POMDP solution
techniques can be applied, including exact (Sondik,
1971) or approximate ones (Spaan & Vlassis, 2004).

It turns out, however, that in the class of two-player
card games that we are considering only a relatively
small finite set of beliefs B can ever be experienced by
the agent. The set is finite as the problem has a finite
horizon, and small because the horizon is low and the
sets O; and A; are small. Furthermore, after the card
dealing, in each state only one of two observations is
possible (the action of the opponent agent), reducing
the branching factor of the tree of beliefs. In partic-

49 Best-response Play in Partially Observable Card Games — Frans Oliehoek et al.

1 1 1 1
o8 el 0.8 0.8 0.8
0.6 0.6 0.6 06
S £ £ 2 :
Q040 emnns 204 | mm=e- 204 504 :
0.2 0.2 0.2 0.2 _E
01 2 3 4 5 6 7 8 01 2 3 4 5 6 7 G‘1 2 3 4 5 6 7 8 01 2 3 4 5 6 7 8

Card received Card received

(a) Gambler policy at start (b) Gambler

of game. seeing a bet.

Card received Card received

policy after (¢) Dealer policy after see- (d) Dealer policy after see-

ing a pass. ing a bet.

Figure 2. POMDP and Nash policies for 8-card poker. Dashed lines indicate a Nash policy computed by Gala and solid
lines the best-response POMDP policy against that Nash policy, computed by solving the belief-state MDP. The z-axis
denotes the card dealt to the gambler ((a),(b)) or the dealer ((c),(d)), and the y-axis indicates the probability of betting.

ular, each information set of agent 7 in the game-tree
will induce a single belief.

Given a finite set B we can compute a finite belief-
state MDP from the continuous belief-state MDP, by
taking each b € B as a possible state. Computing a
transition model p(¥'|b, a;) specifying how our agent 4
switches from a particular belief b to another belief b’
when taking action a; is straightforward:

p(t[b,a;) = p(oila;,b), (6)
where p(o;|a;,b) is giving by (5). The reward
ri(b,a;, V') is defined as:

ri(bag, b') = ri(s,ai,s")b(s)b'(5). (7)

s,s’

This MDP can now be solved in an exact fashion us-
ing standard dynamic programming techniques, for in-
stance using value iteration (Sutton & Barto, 1998).
The result is a deterministic best-response policy m; for
our protagonist agent, that maps beliefs it encounters
to optimal actions. Value iteration allows us to com-
pute the value of the initial belief state, which equals
the expected reward of the game when agent i follows
m; and agent j behaves according to ;.

Note that the derived best-response policy for the pro-
tagonist agent is a deterministic one: we know that
the optimal policy of a POMDP is always determinis-
tic (Puterman, 1994). Although this may seem a lim-
iting factor, we can use the following result from game
theory: a stochastic policy is a best-response policy
against some opponent if and only if all the determin-
istic policies to which it assigns nonzero probability
are also best-response policies to this opponent. Our
POMDP derived policies are best-response policies be-
cause our agent maximizes his payoff exactly over the
space of his deterministic policies, and therefore they
must be in the support of a best-response stochastic

policy. In other words, a deterministic POMDP policy
is equally good to any best-response stochastic policy
in terms of achieved payoff.

5. Experiments

We will now present an experiment performed in the
8-card poker setting, in which we solved 8-card poker
as described in Section 2 using the Gala system. The
results from this were a pair of optimal Nash policies
and the value of the game, which is +0.0625 coins per
game in favor of the dealer. The next step was to cre-
ate a POMDP model for the gambler, using the found
optimal Nash policy for the dealer by incorporating
the dealer’s policy in the POMDP transition model,
as described in Section 4. This was also done with
the roles reversed. From this POMDP model a finite
belief-state MDP was extracted which we solved us-
ing value iteration. To construct the policy, the action
with the highest expected payoff for a belief was se-
lected. When for a certain belief the expected values
for both actions are equal, these actions are taken with
equal probability.

The resulting policies are shown in Fig. 2. The ex-
pected payoff for the POMDP policies is equal to the
value attained by the optimal policies (+0.0625 for
the dealer and —0.0625 for the gambler) and as these
are the best payoffs obtainable, the policies are clearly
best-response policies. Furthermore, we see that the
computed POMDP policies are quite similar to the
Nash policies. In particular, betting with probability
1 or 0 happens in exactly the same situations as in the
Nash policies. However there are situations in which
the two policies differ: the cases in which the POMDP
policy is indifferent between both actions and which
are assigned probability 0.5.

Best-response Play in Partially Observable Card Games — Frans Oliehoek et al. 50

6. Conclusions

In this paper we addressed the problem of computing
a best-response policy for an agent playing against a
fixed opponent in a partially observable card game like
poker. In such a card game an agent only receives par-
tial information regarding the true state of the game,
i.e., the cards dealt to each agent. An agent can only
observe its own hand and the action the other agent
has executed. A second source of uncertainty is the
unknown policy of the other agent. A game-theoretic
approach to solving such games would be to compute
a pair of stochastic policies that are best-responses to
each other, i.e.; a Nash equilibrium. Unfortunately,
computing Nash equilibria is a difficult problem in gen-
eral and such a Nash policy is secure but conservative:
it will not exploit possible weaknesses of an opponent.

However, when we assume the opponent agent has a
fixed policy (known or estimated by repeated play), we
can model the game as partially observable Markov de-
cision process (POMDP) from the perspective of our
protagonist agent. We have shown that by solving the
resulting POMDP model we can compute a determin-
istic best-response policy for our agent. We focused
on a simplified 8-card poker game in which Nash equi-
libria can be computed. We have argued and exper-
imentally verified that the computed POMDP best-
response policy can indeed reach the optimal Nash
payoff when playing against a Nash-optimal agent.
Avenues of future research include investigating more
compact state representations, tackling larger poker
variations and considering more general partially ob-
servable stochastic games.

References

Becker, R., Zilberstein, S., Lesser, V., & Goldman,
C. V. (2003). Transition-independent decentralized
Markov decision processes. Proc. of Int. Joint Con-
ference on Autonomous Agents and Multi Agent Sys-
tems.

Billings, D., Burch, N., Davidson, A., Holte, R., Scha-
effer, J., Schauenberg, T., & Szafron, D. (2003). Ap-
proximating game-theoretic optimal strategies for
full-scale poker. Proc. Int. Joint Conf. on Artificial
Intelligence. Acapulco, Mexico.

Emery-Montemerlo, R., Gordon, G., Schneider, J.,
& Thrun, S. (2004). Approximate solutions for
partially observable stochastic games with common
payoffs. Proc. of Int. Joint Conference on Au-
tonomous Agents and Multi Agent Systems.

Hansen, E., Bernstein, D., & Zilberstein, S. (2004).

Dynamic programming for partially observable
stochastic games. Proc. 19th National Conf. on Ar-
tificial Intelligence (AAAI-04). San Jose.

Hespanha, J., & Prandini, M. (2001). Nash equilib-
ria in partial-information games on Markov chains.
Proc. of the 40th Conf. on Decision and Control.

Koller, D., Megiddo, N., & von Stengel, B. (1994).
Fast algorithms for finding randomized strategies in
game trees. Proc. of the 26th ACM Symposium on
Theory of Computing (STOC) (pp. 750-759).

Koller, D., & Pfeffer, A. (1997). Representations and
solutions for game-theoretic problems. Artificial In-
telligence, 94, 167-215.

Kuhn, H. (1953). Extensive games and the problem
of information. Annals of Mathematics Studies, 28,
193-216.

Nair, R., Tambe, M., Yokoo, M., Pynadath, D.,
& Marsella, S. (2003). Taming decentralized
POMDPs: Towards efficient policy computation for
multiagent settings. Proc. Int. Joint Conf. on Arti-
ficial Intelligence. Acapulco, Mexico.

Nash, J. F. (1951). Non-cooperative games. Annals of
Mathematics, 54, 286-295.

Osborne, M. J., & Rubinstein, A. (1994). A course in
game theory. MIT Press.

Powers, R., & Shoham, Y. (2005). New criteria and a
new algorithm for learning in multi-agent systems.
In L. K. Saul, Y. Weiss and L. Bottou (Eds.), Ad-
vances in neural information processing systems 17.
Cambridge, MA: MIT Press.

Puterman, M. L. (1994). Markov decision processes—
discrete stochastic dynamic programming. New
York, NY: John Wiley & Sons, Inc.

Shapley, L. (1953). Stochastic games. Proceedings of
the National Academy of Sciences, 39, 1095-1100.

Sondik, E. J. (1971). The optimal control of partially
observable Markov decision processes. Doctoral dis-
sertation, Stanford University.

Spaan, M. T. J., & Vlassis, N. (2004). Perseus: ran-
domized point-based value iteration for POMDPs
(Technical Report IAS-UVA-04-02). Informatics In-
stitute, University of Amsterdam.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. Cambridge, MA: MIT
Press.

Detecting Deviation in Multinomially Distributed Data

Jan Peter Patist

JPPQFEW.VU.NL

Department of Artificial Intelligence, Mathematics and Computer Science, Vrije Universiteit, Computational

Intelligence, 1081 HV, Amsterdam, the Netherlands

Abstract

Multinomial models are used in describing
the distribution of categorial or discrete vari-
ables. In practice we are often interested
whether a given sample deviates significantly
from a certain multinomial distribution. To
determine this, often Pearson’s y? or likeli-
hood ratio tests are used. Besides these com-
mon tests other tests are possible.

Cressie and Read (Cressie & Read, 1984)
proposed a family of Power Divergence test
statistics of which these most popular tests
are members. These tests have different
power given different alternative hypotheses.
In this paper different characteristics of the
tests are shown. These are: the unimodal
shape of the power of the tests as a function of
)\, the accuracy of the x? approximation, and
the dependency of the power of the test on
sample size and different null- and alternative
hypotheses. There is a large variety of tests
which differ in power under different circum-
stances. Selecting the right test can increase
the performance in detecting deviation. Be-
cause for small samples the x? approximation
of the test statistic is not applicable, and be-
cause the power of the tests depends on many
parameters, simulation can be used to deter-
mine a suitable test with higher power.

1. Introduction

The multinomial distribution is commonly used in
building models describing distributions of categori-
cal data. For example: modelling buying behavior in
retail, where the parameters of the multinomial model
represent the probability of buying a certain product.
Multinomial distributions are also used in discretiz-
ing continuous variables into bins or categories. Here,
the parameters of multinomial distribution represent
the expected amount of values relative to the total
amount of values. The distribution of the amount of

cases falling in bins can be compared with the expected
number of cases falling in bins given some hypoth-
esized distribution of a continuous variable. It can
then be tested whether the continuous variable follows
some hypothesized distribution. In the last two ex-
amples the problem is determining whether some ob-
served counts of the categories are generated from the
hypothesized distribution or not. When this hypothe-
sis is correct the expected counts of the categories and
the observed categories are expected to be more sim-
ilar than when it is not correct. In (Ye et al., 2000)
the x? test is used to detect intrusions in computer
networks. It is very important to be equipped with
powerful methods to detect deviation in case of the
above examples. Suppose, for example, that the buy-
ing behavior of clients is modelled over some time in-
terval. Being able to detect change in this behaviour
faster (or at all) can help in acting upon these changes.
More powerful methods need less data to detect devi-
ation and thus enable us to react faster upon these
changes. Detecting deviation is done by scoring sam-
ples or observations and comparing them with what
is expected. Comparing what is expected with what
is observed is done by hypothesis testing. There are
many different scoring functions. Popular ones are
the Pearson’s x? test and the log likelihood ratio. In
(Chapman, 1976) these two tests are compared for low
dimensionality and a small amount of counts. Cressie
and Read (Cressie & Read, 1984) proposed a family
of these scoring functions, in which these popular ones
are incorporated. The power of these tests are differ-
ent under different circumstances. In this paper we
give an overview of these tests in respect to their char-
acteristics. In practice it is difficult to decide which
test to choose - test’s performance depends on many
parameters such as: sample size, data dimensionality,
distribution of parameters that specify the underlying
multinomial, etc. Therefore, our paper may be viewed
as a contribution towards an experimental framework
that supports the process of selecting the most suit-
able tests by simulations. In other words, to choose a
suitable test one may try several setups and select the

Detecting Deviation in Multinomially Distributed Data — Jan Peter Patist 52

best one. All the tests presented in this paper have
been implemented in Matlab.

1.1. The multinomial distribution

Assume a stochastic vector Xy, .., X () i.i.d. and X,
is multinomially distributed. The multinomial distri-
bution is defined by:

N d
pr(21, .24 | N) = (xl’”.’xd) Hﬂ;z

Where m; denotes the probability that category ¢ will
have a success in a Bernoulli experiment. p, is the
probability distribution of the vector of the stochastic
variables X = (z1,..z4) of dimension d, representing
counts per category. The sum over the counts is equal
to N. X(,,) resembles a sample of m stochastic vectors.
The subscript 7 tells us that the distribution is fixed
by m# = (71...m4), where Z?zl m=10<m <1,
and Z?Zl x; = N.

1.2. Deviation detection and statistical tests

To determine whether a sample is likely to deviate
from the null hypothesis the sample is scored accord-
ing to a scoring function. The variable representing
the score is called a test statistic whenever its value is
only dependent on the data. The test statistic has a
fixed distribution under the null distribution. Based
on some criteria on the score of sample the sample
is flagged as deviated. The criteria are completely
specified in statistical hypothesis testing. In section
2 we elaborate more on this. The reason to use a test
statistic this is either that the test statistic possesses
some nice properties, such as following some known
distribution, or that it is unfeasible to do hypothe-
sis testing based on the distribution parameters them-
selves. Testing samples against some distribution is
called goodness-of-fit testing.

Most popular test statistics for the multinomial model
are the Pearson y? and the likelihood ratio test statis-
tic. These test statistics have an approximate y2 dis-
tribution under the null hypothesis. Besides these
tests, other tests are possible. Cressie and Read
(Cressie & Read, 1984) proposed a family of test statis-
tics called the family of Power Divergence test statis-
tics, where the above mentioned tests are members.
Outside of this family, other tests are also possible. For
an overview of statistical testing see (Lehman, 1997)
and for a more extensive overview of goodness-of-fit-
tests see (Agostino & Stephens, 1986).

1.3. Power Divergence test statistic

Cressie and Read proposed a unified family of test
statistics. The Likelihood Ratio and the Pearson
x? tests are members of this family. Besides these
well known tests, Kullback-Leibler divergence, the
Hellinger distance, and the modified Neyman test
statistic are also part of this family. In Cressie and
Read it is proven that these tests are all x? distributed
when the total number of counts N — oo.

1.4. Practice

When the number of samples or the number of counts
are small, the y? approximation of the distribution of
the test statistics may not be applicable. Then the
possible consequences of using the approximate x? are
either to be unnecessarily conservative or unnecessarily
progressive in rejecting samples. An other possibility
is to simulate the distribution under the null hypoth-
esis. This empirical distribution will converge to the
real distribution in case the number of samples is suf-
ficiently large. Being equipped with these tests and a
mechanism to choose between them would be impor-
tant when it is clear that under different circumstances
different tests are needed. A test is “best” whenever
the test statistic has the highest expected detection
rate against all alternative hypotheses.

1.5. Overview

In the following section we elaborate on the aforemen-
tioned topics. First we explain statistical hypothesis
testing and its criteria, followed by the definition of
the family of Power Divergence test statistics and in-
sight in the differences between its members. Next,
several dependencies and characteristics of the Power
Divergence statistics are illuminated by several exper-
iments. These characteristics are the dependencies on
the sample size, the null- and alternative hypothesis
and the x? approximation. After this we discuss the
influence of these characteristics on the power of the
tests and how we should proceed in practice. Of course
the practical problem is how to choose between the
tests.

2. Statistical Hypothesis Testing

Let us assume a sample X = (z1,...,24) i.i.d. accord-
ing to a multinomial distribution as defined earlier.
The goal is to define criteria which help us in deter-
mining whether the sample is likely generated from a
hypothesized distribution.

53 Detecting Deviation in Multinomially Distributed Data — Jan Peter Patist

2.1. The null and alternative hypothesis

In hypothesis testing two hypotheses are specified
called the null hypothesis and the alternative hypothe-
sis. The null hypothesis describes the case of the data
being distributed according the distribution. The al-
ternative hypothesis is either its complement or a sub-
set of the complement. The alternative hypothesis can
be seen as the hypothesis we wish to prove. So in order
to determine whether a sample X is from P := (p;o) a
test is set up.

In the case where P as well as the alternative dis-
tributions are multinomial distributions, the null-
hypothesis and alternative hypotheses are:

Hy
H,

= Vm; : (m =7o,)
(i # mo,1)

The null hypothesis states that all 7;, mp,; are equal
and the alternative hypothesis the opposite, namely
that at least one (m;, m;)-tuple is not equal. The
null-hypothesis states that X is from P := (p;o) , and
the alternative hypotheses defines all other hypotheses
or subset of them.

T

IS
3

ol ot

= dm; :

2.2. Test criteria

The possible test outcomes are: 1 sample X is rejected
or 2 sample X is not rejected. By “sample X is re-
jected” we mean that sample X is likely not generated
by distribution P. Because samples generated from the
null hypothesis are possible under the alternative hy-
pothesis and vice versa, mistakes are possible while
making a decision in favor of (1) or (2). Although
the probability of X given P can be very small it is
still possible that X was generated by P. Choosing
in favour of (2) in the case X was generated by P is
called error of type 1, or false alarm. Choosing (1) in
the case were X was not generated by P is called an
error of type 2. The best test should be the one which
minimizes both errors.

However, there is a conflict if we want to minimize
both the errors. The error of type 1 can be minimized
by never rejecting samples. But this would clearly in-
crease the error of type 2. On the other hand, reject-
ing every sample would minimize error of type 2, but
would increase the error of type 1 to its maximum.
Making an error of type 1 is less severe than making
an error of type 2. This is because not rejecting X can
be interpreted as a lack of evidence against the null
hypothesis. The best test is then defined as the test,
which gives at most an expected error of type 1 and
gives the lowest error of type 2. Usually there is no
best test for all alternative hypotheses because some
tests are more powerful than others for different al-

ternative hypotheses. a given sufficient statistic (that
depends only on the data) is exceeded. This thresh-
old is set such that the probability of exceeding it is
smaller than a predefined «, and the probability of ex-
ceeding this threshold given a sample generated from
an alternative hypothesis is maximized. In the tests
discussed in this article the thresholds are set to the
(1 — a)-quantile of the distribution of the test statis-
tic. Clearly this threshold corresponds with the de-
mand that the error of type 1 is under the a-level and
that simultaneously the power under the alternative
hypothesis is maximized.

3. Power Divergence test Statistic

Popular choices of the goodness-of-fit tests for multi-
nomial models are the Pearson’s x? and the log like-
lihood ratio test. Besides these two tests other tests
are possible. In (Cressie & Read, 1984), Cressie and
Read proposed a unified approach to goodness-of-fit-
tests for multinomial models, namely through the fam-
ily of Power Divergence statistics. Using this approach
the above mentioned tests e.g. the Pearson’s x2 and
the likelihood ratio test are members of the family.
The family of Power Divergence statistics is defined
by:

2N T (p, 7o), where
d 5 i A
IA _ 3 K3 _ 1
(paﬂ-O) ZZ:;)\(A+1){<7r071> }
+7To,i —Pi R

A+1 7

where N is the sum of the counts of d categories,
p = (p1,.-.,pq) is the vector of the relative ob-
served frequencies of category i and m = (mq,...,7q)
is the probability vector of the multinomial distribu-
tion. Members of the family are distinguished by
A. Known statistics that are member of the family
are: Pearson’s x?, the likelihood ratio ,the Hellinger
distance, Kullback-Leibler divergence and the Ney-
man modified x? test statistic correspond with A\ =
1,0,—1/2,—1, -2, respectively. The family can also
be interpreted as a weighted function G of disparities

o:

d

2NT* =2N Y G(5;)m;, where (1)
i=1

§ = (m; 'p; — 1), and (2)

E+) @+ s
AAF1) At 1

G(5) =

Detecting Deviation in Multinomially Distributed Data — Jan Peter Patist 54

G is a function of disparities 4, where ¢; is the dif-
ference between the observed and expected frequency
divided by the expected frequency.

In Figure 1 we show the function G(¢) for various A. In
the figure we can see that for most A the function G(-)
is not symmetric round § = 0. For larger positive val-
ues of §, positive A give higher G scores and vice versa.
Statistics defined by positive A are more sensitive to
outliers (when observed frequency is larger than the
expected frequency) and negative A more to inliers.
However, outliers in some category (m;) will lead to
inliers in other m;, this is because Y m; = 1. The most
powerful test, with respect to the change, is the test
with the highest probability of rejecting a sample from
the alternative hypothesis or changed distribution. It
is proven (Cressie & Read, 1984) that for all A, 2NI*
is asymptotically x? distributed. Later we will show
that for small N the x2 distribution is not applicable.
In some situations it can easily be seen which \ repre-
sents the best test. For example, when under the null
hypothesis the categories of the distribution are equi-
lly probable and the alternative hypothesis is equal to
the change of a single category upwards and the re-
maining categories equilly downwards or vice versa. A
test equally sensitive in all directions can be obtained
by taking the likelihood.

Some tests are extremely sensitive towards zero-cells.
A zero-cell is a category for which the observed count
in the sample is equal to zero. This follows from the
G function. To deal with this it is possible to add a
penalty term for the zero cells and not summing over
the original partial score of the zero cells. As proposed
in (Basu et al., 2002) the penalty term is defined by:

penalty = h Z e
pi=0

In the case h = %—i—l the penalized G function equals

the original G function. Of course Power Divergence
statistics extended with the penalty term are asymp-
totically x2 distributed when N — oo because the ex-
pectation of the zero-cells goes to zero.

4. Methodology

The main goal of the experiments is to describe the
characteristics of the above described tests. The char-
acteristics of interest are: the influence of the total
number of counts or items on the detection rate, and
of the x2 approximation. The detection rate of the
tests given different null- and alternative hypotheses.
Also the Power Divergence statistic extended with the
penalty term is tested, because some tests are oversen-

Figure 1. The values of the G function is displayed for dif-
ferent \. The different values of A are popular tests. Pear-
son x2, Likelihood ratio, the Hellinger distance, Kullback-
Leibler divergence, and the Neyman modified x? corre-
spond with A =1,0,—1/2, —1, —2, respectively.

sitive towards empty cells. Adding this penalty term
can increase the power. This results in the following
experiments:

e Approximation of the test statistic distribution
with the

e Detection rate with varying A and number of total
counts.

e Detection rate with varying A and different null-
and alternative hypotheses.

e Detection rate with varying A\ and varying zero-
cell penalty.

The test procedure is as follows. We generated three
data sets, call them R, D, F. The R set is data gener-
ated from the ‘real’ distribution, D the deviated data,
thus generated by another multinomial distribution.
Another set F, similar to R which was used to deter-
mine the real false alarm rate. The set R is used to find
the parameters of the real multinomial using the maxi-
mum likelihood estimation. Then the empirical distri-
bution of the test statistic under the real distribution
is determined using R. This is done by calculating the
scores according the Power Divergence function. The
threshold is set on the value of the top 1 percent case.
This is how the threshold is set by simulation. In the
case of the approximate y? distribution the threshold
is set to the 0.99-quantile of the x? distribution. Us-
ing these thresholds we counted the number of cases
from D exceeding the thresholds using the estimated
parameters. The total of the counts divided by the size
of the set D is the detection rate. These are the ways
to set the thresholds either by simulation or by the x?
distribution. The threshold found under the distribu-
tion describes the 1 percent threshold and reflects a
probability of 0,01 on exceeding the threshold.

55 Detecting Deviation in Multinomially Distributed Data — Jan Peter Patist

Approximation threshold by simulation and using 3 distribution

Qﬂ‘ns

Figure 2. Experimentl: The straight line is the 0.99-
quantile of the x? distribution, whereas other lines are the
0.99-quantiles found by simulation for different amount of
items.

Test=care

Figure 3. Experimentl: The straight line is the 0.99-
quantile of the x? distribution, whereas other lines are the
0.99-quantiles found by simulation for different null hy-
potheses.

5. Experiment

In all the experiments the following parameters are
used:

e dimensionality = 10

e \=-2:02:2 4 ¢ 10

Where dimensionality is the number of parameters of
the multionamial distribution and A represents the dif-
ferent tests.

Experiment 1 The approximation by simulation
and x? of the 0.99-quantile of the distribution of the
test statistics in the case of different number of items
is shown in Figure 2 and 3.

In both figures the straight line is the 0.99-quantile of
the x? distribution. In figure 2 is displayed different

Mean defeciion rate for diferent . given different alismativa hypotheses

— T,F001

o2 T,-004 T
- mF00s

5 og =008

— =007

Figure 4. Experiment2: The detection rate of different
tests in the case of Hy is uniform and H; is skewed and
vice versa.

combinations of A and the number of counts the 0.99-
quantile found by simulation. In Figure 3 it is done
for different distributions. Tests for which A are closer
to zero are usually closer to the quantile of the y?
distribution. The bigger the number of items the closer
the x? approximation.

Experiment 2 The detection rate of two cases are
compared. First a uniform null hypothesis and a fam-
ily of skewed alternative hypotheses. The alternative
hypotheses are distributions of which its 10th category
is one of the list of H2 displayed hereunder and the 1
till 9-th are equal. Second the skewed alternatives are
null-hypotheses and the uniform distribution is the al-
ternative.

e number of counts per sample = 10 when hy =
H2, 40 when hy; = H1

e H1=[0.1,0.1,0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]

e H2 = 7,0 =[0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07]

The results of experiment2 are shown in Figure 4. The
uppermost graph in Figure 4 represents the case where
HO is the null hypothesis hg and H1 the alternative hy-
pothesis h;. The lowermost graph represents the case
where H1 is the null hypothesis and HO the alterna-
tive. It can be seen that in the uppermost negative A
are better whenever the last category is smaller and
vice versa.

Experiment3 The detection rate is determined in
the situation he penalty is added. The penalty is a
weight h on the sum of empty cells. Different penalties
are investigated.

Detecting Deviation in Multinomially Distributed Data — Jan Peter Patist 56

Detection rate of Power Divergence Statisties varying peraty

mean detecti

Figure 5. Experiment3: The detection rate of different
tests extended with a penalty term for zero-cells. The
h=normal references to h = and is equal to the power
family without penalty.

1
A+10

The result is shown in Figure 5 In the figure h =
normal references to the case h = %_H which is equal
to the family without penalty term. As can be seen
the detection rate of negative A can increase by adding
penalty.

Experiment4 Two experiments were conducted. In
the first the average detection rate is determined in
the case of several null hypotheses over 100 randomly
sampled from the uniform distribution over the prob-
ability simplex. The distributions were sampled by
the following procedure: Generate a random vector of
dimensionality 9. Sort this vector. Add zero and 1
to the front and back of the vector. Then the differ-
ences between ;11 and m; are uniformly distributed.
And in the second case the average detection rate is
determined in the case of several null hypotheses over
100 randomly sampled from the skewed distribution
over the probability simplex. The skewed distributions
were sampled in a simular way. We sampled uniformly
distributed distributions of dimensionality 14. Then
we replaced the last five categories by one category
equal to the sum over the last five.

The results are displayed in figure 6 and 7 Although
in the case of skewed alternatives all the tests gave
simular results.

Experiment5 The average detection rate was mea-
sured in the case were the null hypothesis is a skewed
distribution having uniformly and skewed distributed
alternative. Two kind of skewed distributions were
chosen. One that is rightly skewed. By normalizing
the vector exp1: 10, and multiplying it by a factor
1 —n and adding 7/10, for n = 0.05,0.1,0.25,0.4 we
obtain the skewed distributions of the first kind. The

Wean detsstion rate of different & given uniformly distributad altematives

Figure 6. Experiment4: The mean detection rate given dif-
ferent uniformly ditributed alternatives. The null hypoth-
esis is uniform. The detection rate is averaged over 100
uniform and skewed alternative distributions.

Figure 7. Experiment 4: The mean detection rate given
different skewly distributed alternative hypotheses. The
null hypothesis is uniform. The detection rate is averaged
over 100 uniform and skewed alternative distributions.

Detection rate of different & for different skewed null hypatheses.

Figure 8. Experiment5a: The mean detection rate given
different alternative hypotheses. The null hypothesis is
equal to several skewed distributions defined by a. Bigger
1 are more skewed. The detection rate is averaged over 100
multinomial distributions uniformly distributed.

e HO; = skewedl : n = 0.05, 0.1, 0.25, 0.4

e HOy = skewed2 : n = 0.1, 0.25, 0.4

57 Detecting Deviation in Multinomially Distributed Data — Jan Peter Patist

Figure 9. Experimentbb: The mean detection rate given
different alternative hypotheses. The null hypothesis is
equal to a uniform distribution. The detection rate is av-
eraged over 100 skewed alternative distributions.

Figure 10. Experimentbc: The mean detection rate given
different alternative hypotheses. The null hypothesis is
equal to several skewed distributions defined by a. Bigger
a are more skewed. The detection rate is averaged over 100
multinomial distributions uniformly distributed.

second kind of distributions were generated by 0.1 -
skewed1*0.2 + 0.02, for n = 0.1,0.25,0.4. In this way
the most right categories of the distribution are less
bigger than the rest.

The results are shown in the Figures 8, 9, 10, 11. In the
figures the different subplots correspond with the dif-
ferent skewed distribution. Whenever the plot shows
4 subplots it means they are rightly skewed. Else the
other skewed distribution. All the test experiments
were performed with number of items of 5, 10 and 15.
The subplots are defined by 1 which resembles a dis-
tribution mentioned before. In all the graphs A around
zero have highest detection rate.

6. Discussion

The power of the power statistics differs and is depen-
dent on many factors, the null hypothesis, the alter-

Detection rate of different & for diferant skewed null hypatheses

Figure 11. Experiment5d: The mean detection rate given
different alternative hypotheses. The null hypothesis is
equal to a uniform distribution. The detection rate is av-
eraged over 100 skewed alternative distributions.

native hypothesis and the number of items. In prac-
tice we don’t know this amount. It is unfeasible to
tabulate for which A, 7w of different dimension which
corresponding number of counts would be sufficient.
However whether we can use the xyZ-approximation for
some A can easily be tested. The number of items for
which the x? approximation is reasonable is dependent
on the dimensions and distribution itself and can the
number can fastly be found by simulation. To decide
which) is best is dependent on the alternative distri-
bution. In some special cases heuristics can be used.
As shown is that in most of the cases positive A are to
be preferred. Another important fact is that positive
cases are sensitive to outliers and negative to inliers.
So when one category would jump upwards positive A
are to be preferred.

The family of Power Divergence tests encompasses a
large variety of tests as possible goodness-of-fit-tests to
determine deviation in the multinomial distribution.
Making use of these tests has some advantages. By
selecting different A we can control the direction of
sensitivity of the tests. This can be advantageous in
the cases where it is approximately known in which di-
rection the deviation will be. This is an advantage over
for example using the Likelihood as the test statistic.
The likelihood test is evenly sensitive because it maps
the observations to their probabilities given a certain
distribution. Setting a threshold will make the test
equally sensitive in all directions. Another advantage
of using the Power Divergence test statistics is that it
is proven to be asymptotically x2 distributed. This
approximation is dependent on the distribution and
A. The approximation is useable for a certain mini-
mal number of items. The approximation of x? given
small amount of samples is not applicable and finding
a suitable test can be done by simulation.

Detecting Deviation in Multinomially Distributed Data — Jan Peter Patist 58

7. Conclusion

In this article we described approaches to detect de-
viation in multinomial models. These approaches are
made from the context of hypothesis testing. In the
case of a single multinomial model we gave an overview
of using the family of Power Divergence statistics
where its members are determined by A. Different A
make the test sensitive to different observables. The
power of these tests follow a nice unimodal curve mak-
ing the choice of A more stable. Increasing the amount
of observations increases the power of the test. Using
negative A can lead to oversensitivity of the tests and
this can be corrected by replacing the zero cells in
the original family of Power Divergence statistics by
a penalty term. Using these tests has several advan-
tages, namely the approximate x? distribution and the
control of the sensitivity towards a certain change. A
lot of different tests are available for use under differ-
ent alternative hypotheses. When the alternatives are
uniformly distributed, a A close to zero is favoured. In
the case of skewed alternative distributions positive A
are to be preferred above negative ones and when the
null hypothesis is uniform the differences between tests
are small. However when more information about the
alternative distribution is known better tests can be
chosen. Tests defined by positive A are more sensitive
to the situation in which the observed is bigger than
expected and for negative A\ more sensitive when the
observed is smaller than expected. Selecting the best
test can increase the power. Selecting a good test can
be done by simulating.

References

Agostino, R., & Stephens, M. (1986). Goodness-of-
fit-tests, vol. 86. Madison Avenue, New York, New
York: Dekker.

Basu, A., Ray, S., Park, C., & Basu, S. (2002). Im-
proved power in multinomial goodness-of-fit tests.
Journal royal statistical society, series B., 51, 381—
393.

Chapman, J. (1976). A comparison of the x?, -2 log
r, and the multinomial probability criterium for sig-
nificance testing when the expected frequencies are
small. Journal of the American Statistical Associa-
tion, 71, 854-863.

Cressie, N., & Read, T. (1984). Multinomial goodness-
of-fit tests. Journal royal statistical society, series,

seriec B., 46, 440-464.

Lehman, E. (1997).
Springer.

Testing statistical hypothesis.

Ye, N., Chen, Q., Emran, S., & Noh, K. (2000). Chi-
square statistical profiling for anomaly detection.
Proceedings IEEE Systems.

Master Algorithms for Active Experts Problems
based on Increasing Loss Values

Jan Poland
Marcus Hutter

JANQIDSIA.CH
MARCUS@IDSIA.CH

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland, http://www.idsia.ch

Abstract

We specify an experts algorithm with the fol-
lowing characteristics: (a) it uses only feed-
back from the actions actually chosen (ban-
dit setup), (b) it can be applied with count-
ably infinite expert classes, and (c) it copes
with losses that may grow in time appropri-
ately slowly. We prove loss bounds against
an adaptive adversary. From this, we obtain
master algorithms for “active experts prob-
lems”, which means that the master’s actions
may influence the behavior of the adversary.
Our algorithm can significantly outperform
standard experts algorithms on such prob-
lems. Finally, we combine it with a univer-
sal expert class. This results in a (compu-
tationally infeasible) wniversal master algo-
rithm which performs — in a certain sense —
almost as well as any computable strategy,
for any online problem.

1. Introduction

Expert algorithms have been popular since about fif-
teen years ago (Littlestone & Warmuth, 1989). They
are appropriate for online prediction or repeated deci-
sion making or repeated game playing (we call these
setups online problems for brevity), based on a class
of “experts”. In each round, each expert gives a rec-
ommendation. From this, we derive a master decision.
After that, losses (or rewards) are assigned to each ex-
pert by the environment, also called adversary. Our
goal is to perform almost as well as the best expert in
hindsight in the long run. In other words, we try to
minimize the regret.

The early papers deal with the full information game,
where we get to know the losses of each expert after
each round. The analysis holds for the worst case,
where the environment is fully adversarial and tries to
maximize our regret in the long run. Later, Auer et al.

(1995) gave a worst-case analysis for the bandit setup,
where the master algorithm knows only the loss of its
own decision after each round. This has been further
generalized to label-efficient prediction (Helmbold &
Panizza, 1997) and partial monitoring (Cesa-Bianchi
et al., 2004).

Recently, de Farias and Megiddo (2004) introduced a
strategic experts algorithm which performs well for a
broader class of environments. The algorithm has still
asymptotically optimal properties against a worst-case
adversary. Additionally, it may perform much bet-
ter than a standard experts algorithm in more favor-
able situations, when the actions influence the behav-
ior of the environment. We refer to these as active
experts problems. One example is the repeated pris-
oner’s dilemma when the opponent is willing to coop-
erate under certain conditions (see Section 5 for some
details). However, de Farias and Megiddo give only
asymptotic guarantees, but no convergence rate.

In this paper, we introduce a different algorithm for ac-
tive experts problems with the same asymptotic guar-
antees, but in addition a convergence rate (of t_%)
is shown. Both algorithm and analysis are assembled
from a standard “toolkit”, basing on Kalai and Vem-
pala (2003); McMahan and Blum (2004). The basic
idea is the following: We use the bandit experts algo-
rithm by McMahan and Blum, but allow the losses to
increase with time t. This allows us to give control to
one expert for an increasing period of time steps.

Secondly, we generalize our analysis to the case of in-
finitely many experts, basing on Hutter and Poland
(2004b). The master algorithm stays computable (if
the experts are), since only a finite (with time increas-
ing) number of experts is involved. Allowing infinitely
many experts also permits to define a wuniversal ez-
pert class by means of all programs on some universal
Turing machine. (This construction is quite common
in Algorithmic Information Theory, see e.g. Hutter,
2004.) Thus, we obtain a universal master algorithm,

Master Algorithms for Active Experts Problems based on Increasing Loss Values — Jan Poland and Marcus Hutter 60

which we show to perform in a certain sense almost as
well as any computable strategy on any online problem.
Thus, we introduce a new approach to universal arti-
ficial intelligence, which is in a sense dual to the AIXI
model based on Bayesian learning (Hutter, 2004). Al-
though the master algorithm is computable, the re-
sulting universal agent is not (like the AIXI model),
since the experts may be non-responsive.

The paper is structured as follows. Section 2 intro-
duces the problem setup, the notation, and the algo-
rithm. In Sections 3 and 4, we give the (worst-case)
analysis for finite and infinite expert classes. The im-
plications to active experts problems and a universal
master algorithms are given in Section 5. Section 6
contains discussion and conclusions.

2. The Algorithm

Our task is an online decision problem. That is, we
have to make a sequence of decisions, each of which
results in a certain loss we incur. “We” is an abbre-
viation for the master algorithm which is to be de-
signed. For concreteness, you may imagine the task of
playing a game repeatedly. In each round, i.e. at each
time step t, we have access to the recommendations of
neNU{oo} “experts” or strategies. We do not specify
what exactly a “recommendation” is — we just follow
the advice of one expert. Before we reveal our move,
the adversary has to assign losses éi >0 to all experts
i. There is an upper bound B; on the maximum loss
the adversary may use, i.e. ¢; € [0,B;]™. This quantity
may depend on ¢ and is known to us. After the move,
only the loss of the selected expert i is revealed. This
is the bandit setup, as opposed to the full information
game where we get to know the losses all experts. Our
goal is to perform nearly as well as the best available
strategy in terms of cumulative loss, after any num-
ber T of time steps which is not known in advance.
The difference between our loss and the loss of some
expert is also termed regret. We consider the general
case of an adaptive adversary, which may assign losses
depending on our past decisions.

If there is a finite number n of experts or strategies,
then it is common to give no prior preferences to any
of them. Formally, we define prior weights w' = %
Moreover, we define the complexity of expert i as k' =
—Inw’. This arises in the full observation game, where
the regret can be bounded by some function of the
best expert’s complexity. On the other hand, if there
are reasons not to trust all strategies equally in the
beginning, we may use a non-uniform prior w. This
is mandatory for infinitely many experts. We then
require w' >0 for all experts 4 and le’ <1.

For t=1,2.3,...
Sample r, €{0,1} independently s.t. Plr,=1]=~;
If r,=0 Then
Play FPL(t)’s decision (I/°F .= [}TT)
Set /i =0 for all 1<i<n
Else
Sample €{1...n} uniformly & play I:
Let T =¢I'n/~, and i =0 for all i1

FoE __71FoE
I t =1 t

Figure 1. The algorithm FoFE

Sample ¢} % Eap independently for 1<i<n
select and play I/ :arglré;iél {mll,+k"—q}}
StsSn

Figure 2. The algorithm FPL(t)

Our algorithm “Follow or Explore” (FoE) builds on
McMahan and Blum’s online geometric optimization
algorithm. (For finite n and uniform prior, it even is
their algorithm, save for the adaptive parameters.) It
is a bandit version of a “Follow the Perturbed Leader”
experts algorithm. This approach to online predic-
tion and playing repeated games has been pioneered
by Hannan (1957). For the full observation game,
Kalai and Vempala (2003) gave a very elegant analysis
which is distinct from the standard analysis of expo-
nential weighting schemes. It is particularly handy if
the learning rate is dynamic rather than fixed in ad-
vance. A dynamic learning rate is necessary if there is
no target time 7" known in advance.

The algorithm is composed of two standard ingredi-
ents: exploration and follow the (perturbed) leader.
Since we are playing the bandit game (as opposed to
the full information game), we need to explore suffi-
ciently. Otherwise, there could be a strategy which
we think is poor (and thus never play), but in reality
it is good. At each time step t, we decide randomly
according to some exploration rate 7, € (0,1) whether
to explore or not. If so, we choose an expert accord-
ing to the uniform distribution (or the prior distribu-
tion, compare (5), in case of non-uniform priors). Af-
ter observing the loss of the selected expert, we want
to give an unbiased estimate of the true loss vector.
We achieve that by dividing the observed loss by the
probability of exploring this expert, and estimate the
unobserved losses of all other experts by zero. We call
the resulting loss vector 0,

When not exploring, we follow some strategy which
performed well in the past. It may be not advisable
to pick always the best strategy so far - the adver-

61 Master Algorithms for Active Experts Problems based on Increasing Loss Values — Jan Poland and Marcus Hutter

sary could fool us in this case. Instead we intro-
duce a perturbation for each expert and follow the
advice of the strategy with the best perturbed score.
In order to assign a score to each expert, note that
we have only access to the estimated losses ,. Let
£Z<T = T 1@ be the estimated cumulative past loss
of expert 1. Then his complexity-penalized score is
defined as nTEZ 4k, ie. high scores are bad. Here,
nr >0 is the learning rate. The perturbed score is then
given by nTlfiT—i—k‘i—qi, where the perturbations ¢* are
chosen independently exponentially distributed. This
ensures a convenient analysis.

The algorithms “Follow or Explore” FoF and “Follow
the perturbed Leader” FPL are fully specified in Fig-
ures 1 and 2. Note that each time randomness is used,
it is assumed to be independent of the past random-
ness. Note also that all algorithms occurring in this
paper work with the estimated losses /. We may eval-
uate their performance in terms of true or estimated
losses, this is specified in the notation. E.g. for the
true loss of FPL up to and including time T we write

[FPL =L while the estimated loss is IiFPL:éff%.

3. Analysis for Uniform Prior

In this section we assume a uniform prior w E% over
finitely many experts. (The general case is treated in
the next section.) We assume that B; >0 is some se-
quence of upper bounds on the true losses, ; € (0,1)
is a sequence of exploration rates, and n; >0 is a de-
creasing sequence of learning rates.

The analysis is according to the following diagram:
LFOE <ELFOE <ELFPL <Ef4FPL <EI:IFPL<IA/b€St <Lbest (1)

The symbol L is used informally for the cumulative
loss ¢1.7. Each “<” means that we bound the quan-
tity on the left by the quantity on the right plus some
additive terms. The first and the last expressions are
the losses of the FoF algorithm and the best expert,
respectively. The intermediate quantities belong to
different algorithms, namely FoE, FPL, and a third
one called IFPL for “infeasible” FPL (Kalai & Vem-
pala, 2003). IFPL is the same as FPL except that it
has access to an oracle providing the current estimated
loss vector /; (hence 1nfea81ble) Then it assigns scores
of nli.,+ki—g! instead of mﬁ +ki—ql. We assume
that TFPL uses the same randomization as FPL (i.e.
the respective ¢; are the same).

The randomization of FoE and FPL gives rise to
two filters of o-algebras. By A; for ¢ > 0 we de-
note the o-algebra generated by the FoE’s random-
ness {uy.t,r1.4} up to time t. We may also write

A=J;>0A:. Similarly, B; is the o-algebra generated
by the FoE’s and FPL’s randomness up to time ¢ (i.e.
Bi={u1.t,71.¢,q1:¢ }). Then clearly A; C B; for each t.

The arguments below rely on conditional expectations
— the expectations in (1) should also be understood
conditional. In particular we will often need the con-
ditional expectations with respect to FoE’s past ran-
domness A;_1, abbreviated as

E;[X]:=E[X|A:1],

where X is some random variable. Then E;[X] is an
A;_1-measurable random variable, meaning that its
value is determined for fixed past randomness A;_ 1-
Note in particular that the estimated loss vectors Zz
are random vectors which depend on FoE’s random-
ness A; up to time ¢ (only). In this way, FoE’s (and
FPL’s and IFPL’s) actions depend on FoE’s past ran-
domness. Note, however, that they do not depend on
FPL’s randomness ¢;.;. Finally, ItFOE and ZfOE are Aj}
measurable, i.e. depend on u.¢,r<¢,q;, but are inde-
pendent of g.

We now start proving the diagram (1). It is helpful
to consider each intermediate algorithm as a stand-
alone procedure which is actually executed (with an
oracle if necessary) and has the asserted performance
guarantees (e.g. in terms of expected losses).

Lemma 1 [LF°E<ELFOE] For each T'>1 and o1 €

(0,1), with probability at least 1—7T, we have

-

¢RE < Z gFoE_i_\/(mn%)Z;f:l B2.

Proof. The sequence of random variables Xp =
S [6°P —E[°P] is a martingale with respect
to the filter B, (not A;!). In order to see this,
observe E[(}F|Br_1] = E(E[(fP|Ar_1]|Br_1) and
E[(FF|Br_1]=(I°F for t<T, which implies

E(Xr|Br-1) =
a Zt 1
— Z EFOE

Its differences are bounded: |X;—X;_1| < B;. Hence,
it follows from Azuma’s inequality that the probability
that X1 exceeds some A>0 is bounded by p=2exp(—

(E[¢/"|Br—1] — E[E[({*"|A¢_1]|Br-1])

E[0/F) A 4]) = Xr_1.

?ﬂz—) Requesting < 9z —p and solving for \ gives the

assermon. a

The relation ELf°F <EL" follows immediately from
the specification of the algorithm FoE.

Master Algorithms for Active Experts Problems based on Increasing Loss Values — Jan Poland and Marcus Hutter 62

Lemma 2 [ELF"ESELFPL] For each t > 1, we have
Eil{*" <(1=7)El{™ +7,B;.

The next lemma relating EL™* and ELfTL is technical
but intuitively clear. It states that in (conditional)
expectation, the real loss suffered by FPL is the same
as the estimated loss. This is simply because the loss
estimate is unbiased. A combination with the previous
lemma was shown in McMahan and Blum (2004).

Lemma 3 [ELFPLSE[A/FPL] For each t > 1, we have
E ([Tt =E (™"

Note that ngL is the loss é{ estimated by FoE, but for
the expert I = I chosen by FPL.

Proof. Let fi= fi(A;_1)=P[I[F =i|A;_1] be the
probability distribution over actions ¢ which FPL uses
at time ¢, depending on the past randomness A;_1.
Let uz=[1...1]/n be the uniform distribution at time ¢
(for non-uniform weights this will be replaced appro-
priately later). Then

Et[étFPL} :%Z?:lfti[(l - u;) -0+ uiﬁ'r,,:l/\[ffﬂzi]
=S il = By,

where éﬂrtzlAlfoE:i = (¢ /(ul~;) is the estimated loss
under the condition that FoE decided to explore (r;=
1) and chose action I/7F =i. a

The following lemma from Kalai and Vempala (2003)
relates the losses of FPL and IFPL. We repeat the
proof, since it is the crucial and only step in the analy-
sis where we have to be careful with the upper loss
bound B;. Let B, = Bi(n/v:) denote the upper bound
on the instantaneous estimated losses.

Lemma 4 [ELPL<ELIL) B, < B, I 4y, B?
holds for all t>1.

Proof. If r, =0, {; =0 and thus ¢FPF = /TFFL }olds.
This happens with probability 1—-;. Otherwise we
have

E ™ = Z/HIfPL:iEidN@% (2)
i=1

where 4 denotes the (exponential) distribution of the
perturbations, i.e. z;:=¢! and density p(z):=e~[1@lle.
The idea is now that if action ¢ was selected by FPL,
it is — because of the exponentially distributed pertur-
bation — with high probability also selected by IFPL.
Formally, we write u* = max(u,0) for u € R, abbre-
viate A = f-;+k/n;, and denote by [..du(zs;) the
integration leaving out the 7th action. Then, using

Nedi —x; <neAj—x; for all j if ItFPL:i in the first line,

and B, >/t — ¢’ in the fourth line, we get

[_dituto) = [[diduteauton)

fEiZmQX{m(M*Aj)JrIj}
e

A —(max{ni(Ni—=X;j)+xz; +
=/€§ée g Ou=a)l s

na —(max{ne (A=) 4@ 0 Be)T
S/éi entBte Jn;l'b {’71: J 1]} o u(x#)

< B / i o maElm Outli=xs~E)+as)* dpu(wz:)

:eth/]II{m:ilfidu(x).

Summing over ¢ and using the analogue of (2) for IFPL,
we see that if r, =1, then EtffPLSe”thEtE{FPL holds.
Thus B FPL > e=mBE, L > (1 —5,B,)E T >
Etffp L—me. The assertion now follows by taking
expectations w.r.t 7. a

The next lemma relates the losses of IFPL and the best
action in hindsight. For an oblivious adversary (which
means that the adversary’s decisions do not depend
on our past actions), the proof was given in Kalai and
Vempala (2003). An additional step is necessary for
an adaptive adversary. We omit the proof here, the
reader may reconstruct it from the proof of Lemma 9.

Lemma 5 [EEF P LSﬁbESt] Assume decreasing learn-
ing rate n; and Zie_kl <1. For all T>1 and 1<i<n,
we have ZthlEtE{FPL §f§:T+% (recall that 0\ is a

random variable depending on Ay).

Finally, we give a relation between the estimated and
true losses, adapted from McMahan and Blum (2004).

Lemma 6 [f,beStSLbESt] For each T>1, 67€(0,1), and

1<i<n, w.p. at least 1— 52T we have
ji i T A
EI:T S gl:T + \/(2 In %)Zt:l Bt2 (3)

Proof. Xt:éli;t_gli:t is a martingale, since
E[X:|Ai1] = B[f | Aa] — £
=X, +E[GA1] -l = X1

Its differences are bounded: |X;—X; 1] < Bt. By
Azuma’s inequality, its actual value at time T does

not exceed (2ln£)thlet2 w.p. 1-2Z. 0

We now combine the above results and derive an up-
per bound on the expected regret of FoE against an
adaptive adversary.

63 Master Algorithms for Active Experts Problems based on Increasing Loss Values — Jan Poland and Marcus Hutter

Theorem 7 [FoE against an adaptive adversary| Let
n be finite and k' =Inn for all 1 <i<n. Let 1 be
decreasing, and £y €[0,B]™ some possibly adaptive as-
signment of loss vectors. Then for all experts i,

T 5 2 T
Bin B2
2 Ty 2B
t=1

t=1

ffof? S ei:T —+ (2 In %)

T T
+M+ZM%+Z%Bt w.p. 1 —4dr and

nr
t=1 t=1

T T
. B2 2
BAF < G+ 50+ D M50+) B
t=1 t=1

T T
2.2
| @)y Py B
t=1 t=1
Proof. The first high probability bound follows by
summing up all excess terms in the above lemmas,
observing that B,=By(n/~;). For the second bound on
the expectation, we take expectations in Lemmas 2-5,
while Lemma 1 is not used. For Lemma 6, a statement
in expectation is obtained as follows: (3) fails w.p. at

most %, in which case €% . —¢i <37 B O

Corollary 8 Under the conditions of Theorem 7,
(i) Bi=1 = BIF <0, +0n*TiVnT),

(i) Bi=1 = (%<, +0m>TivVinT),
(ii)) By =t5 = B <, +0n*TsVinT),

(iv) By=ts = (FE<p 4+ On*TsvVInT),

foralli andT. Here, (ii) and (iv) hold with probability
1-T=2. Moreover, in both cases (bounded and growing
By;) FoE is asymptotically optimal, i.e.
lim sup + (ﬁf"% — min Ei:T) <0 almost surely.
T—oo g

B, =t in (iii) and (iv) is just one choice to achieve
asymptotic optimality while the losses may grow
unboundedly. Asymptotic optimality is sometimes
termed Hannan-consistency, in particular if the limit
equals zero. We only show the upper bound.

Proof. (i) and (i) follow by applying the previous
theorem to mzt‘é, 'ytzt_i, d7=T72, and observing
ZtT:lto‘ < f0T+1t°‘ <2(T+1)'*e for a> —%. In order
to obtain (iii) and (iv), set g, =t~ %, v, =t"4, and
07 =T72. The asymptotic optimality finally follows
from the Borel-Cantelli Lemma, since

P [%(E%E —min; £.;) > CT~5vV/InT | < .

for an appropriate C'>0 according to (i) and (iv). O

For t=1,2.3,...
Sample r, €{0,1} independently s.t. Plr,=1]=~;
If r,=0 Then
Invoke FPLT(t) and play its decision
Set (=0 for ie{t>1}
Else
Sample I; w.r.t. u; in (5) and play [:=I/°F"
Set (1 =¢1/(ul~,) and £i=0 for ie {t>7}\{I}
Set li=B, for ig{t>7}

Figure 3. The algorithm FoE™

Sample ¢} & Ezp independently for i€ {t>7}
select and play I/ =arg min {nll,+ k' —q}}
vt>T

Figure 4. The algorithm FPL" (t)

4. Infinitely Many Experts and
Arbitrary Priors

The following considerations are valid for both fi-
nitely and infinitely many experts with arbitrary prior
weights w’. For notational convenience, we write
n=o0 in the latter case. When admitting infinitely
many experts, two difficulties arise: Since the prior
weights of the experts sum up to one and thus become
arbitrarily small, the estimated losses — obtained by
dividing by these weights — would possibly get arbi-
trarily large. We therefore introduce, for each expert
i, a time 79 >1 at which the expert enters the game. All
algorithms FoE, FPL, IFPL are substituted by coun-
terparts FoE™, FPL™, IFPL™ which use expert i only
for t>7%. Thus, the maximum estimated loss possibly
assigned to these active experts is

B, = B/[ys min{w’ : t > 7'}]. (4)

We denote the set of active experts at time ¢ by {t>
7} ={i:t>7'}. Experts which have not yet entered
the game are given an estimated loss of B,. This also
solves the computability problem: Since at every time
t only a finite number of experts is involved, FoE7 is
computable (if each expert is). The algorithms FoE™
and FPL™ are specified in Figures 3 and 4.

Again, the analysis follows the outline (1). Lemmas
1-4 have equivalent counterparts, the proofs of which
remain almost unchanged. In Lemma 3, the “uniform”
distribution over experts u; now becomes

up = wi]ItZTi/[Zj W > 5]. (5)

The upper bound on the estimated loss B, in Lemma

Master Algorithms for Active Experts Problems based on Increasing Loss Values — Jan Poland and Marcus Hutter 64

4 is given by (4). We only need to prove assertions
corresponding to Lemmas 5 and 6.

Lemma 9 [EL <[] Assume that 3 ;e " <1
and T depends monotonically on k*, i.e. T°>77 if and
only if k' > kI. Assume decreasing learning rate 1.
For all T>1 and all 1 <i<n, we have

T
JIFPL i Ei41
< .
D Bl <l
t=1

Proof. This is a modification of the corresponding
proofs in Kalai and Vempala (2003) and Hutter and
Poland (2004b). We may fix the randomization A and
suppress it in the notation. Then we only need to show

EIFPE < in (76 kit1 6
LT S 1151%1”{ L+t (6)
where the expectation is with respect to IFPL’s ran-
domness gi.7.

Assume first that the adversary is oblivious. We define
an algorithm A as a variant of IFPL™ which samples
only one perturbation vector ¢ in the beginning and
uses this in each time step, i.e. ¢ =¢. Since the ad-
versary is oblivious, A is equivalent to IFPL" in terms
of expected performance. This is all we need to show
(6). Let 19 =00 and Ay =y + (k— q)(m o 1) then

Ao =01+ n_q Recall {t>7}={i:t>71'}. We argue
by induction that for all T'>1,

T

Z)\ <m1n)\1T+maX{
t=1

= (7)

This clearly holds for T'=0. For the induction step,
we have to show

IA
q — T4+1
?;n Mot + max -+ Aryr S AL (8)
i]T+1 g —ki
+ max 4 = min A 4+ max .
TH1>r MT+1 TH1 7 pygs, TETHL T S

The inequality is obvious if 12 11 €{T>7}. Otherwise,
let J=argmax{q'—k':ic{T'>7}}. Then

T
gnln)\lT—&—maX{q }<)\ —&—an

T
-y
t=1

i 7
x {2}
T4+1>7 - 1T+1

ZE < mln)\1 T+max { a=

}+Z C] k m . 1)

The assertion (6) — still for oblivious adversary and
q: =q — then follows by taking expectations and using

Emln)\lT< mln{ﬁ1 T+— Eq }< mln{éle—kk —1

nd B g " (3 - 1) <Bya {155 < .

Here, (*) holds because 7¢ depends monotonically on
k?, and Eq’ =1, and maximality of /¢ ,, for T <7;. The
last inequality can be proven by an application of the
union bound (Hutter & Poland, 2004b, Lem.1).

Sampling the perturbations ¢; independently is equiv-
alent under expectation to sampling ¢ only once. So
assume that ¢; are sampled independently, i.e. that
IFPLT is played against an oblivious adversary: (6) re-
mains valid. In the last step, we argue that then (6)
also holds for an adaptive adversary. This is true be-
cause the future actions of IFPL™ do not depend on its
past actions, and therefore the adversary cannot gain
from deciding after having seen IFPL™’s decisions. (For
details see Hutter & Poland, 2004a. Note the subtlety
that the future actions of FoE™ would depend on its
past actions.) O

Lemma 10 [’ <[’ For each T >1, dr €(0,1),
and 1<i<n, we have £} 7 <li 1+1/(2ln*)Zt B2+

Z;;lét w.p. 1—°L

This corresponds to Lemma 6. The proof proceeds in a
similar way: we have to note that ¢, —Zl . 1s a martin-

gale only for t>7%, and Iz i exceeds g ", by at most
— Il . Then the following theorem corresponds to

Theorem 7 and is proven likewise.

Theorem 11 [FoE™ against an adaptive adversary]
Let n be finite or infinite, Zie_kl <1, 7 depend
monotonically on k', and the learning rate n; be de-
creasing. Let £y some possibly adaptive assignment of
(true) loss vectors satisfying ||¢]|co < Bi. Then for all
experts i, we have

T T
o) % E Bf2 §
EFE <€1:T+ (2111%) ’Y?(w;‘)2 + Bt2
t=1 t=1

-1

- T
+£ +1 Z ’tht +Z %n()2 +Z%Bt

t=1

with probability 1— 07, where w; = min{w® : ¢t > 7t}.
A corresponding statement holds for the expectation
(compare Theorem 7).

65 Master Algorithms for Active Experts Problems based on Increasing Loss Values — Jan Poland and Marcus Hutter

Corollary 12 Assume the conditions of Theorem 11.
Then for all i and T, the following holds w.p. 1—4r.

(i) By =1,7" = [(w")™¥]
EFOE i;T+O((#)11+T%\/II17T)7 and
(ii) By = ti6, 7t = [(w')~19]
= (% < 00+ O((&)?2 + TFVInT).

Corresponding assertions are true for the expectation
(compare Corollary 8). In both cases (bounded and
growing By) FoE is asymptotically optimal w.r.t. each
expert: hmsupT_,OOT(EFOE 0)<O a.s. for all i.

Proof. Let n, = t*%, vy = t*i and 67 =T2. For
' =[(w")~] and B;=t", we have w}=min{w’:T >
[(w) =} >min{w : T~ = <w]}>T"= and

23<771)B < W By @))

(observe w*; | > (ri=1)"a > (w")"(=3)). Then set
=8, 3=0, for (i) and a=16, 3= for (ii). Asymp-
totic optimality is shown as in Corollary 8. O

5. Active Expert Problems and a
Universal Master Algorithm

If the adversary’s goal is just to maximize our (ex-
pected) regret, then it is well known what he can
achieve (at least for uniform prior, see e.g. the lower
bound in Cesa-Bianchi et al., 1997; Auer et al.,
2002). We are interested in different situations. An
example is the repeated playing of the “Prisoner’s
dilemma” against the Tit-for-Tat! strategy (de Farias
& Megiddo, 2004). If we use two strategies as experts,
namely “always cooperate” and “always defect”, then
it is clear that always cooperating will have the bet-
ter long-term reward. It is also clear that a standard
expert advice or bandit master algorithm will not dis-
cover this, since it compares only the losses in one step,
which are always lower for the defecting expert.

We therefore propose to give the control to a selected
expert for periods of increasing length. Precisely, we
introduce a new time scale ¢ at which we have single

'In the prisoner’s dilemma, two players both decide in-
dependently if thy are cooperating (C) or defecting (D). If
both play C, they get both a small loss, if both play D,
they get a large loss. However, if one plays C and one D,
the cooperating player gets a very large loss and the de-
fecting player no loss at all. Thus defecting is a dominant
strategy. A Tit-for-Tat player play C in the first move and
afterwards the opponent’s respective preceding move.

games with losses /;. The master’s time scale ¢ does
not coincide with ¢. Instead, at each ¢, the master gives
control to the selected expert i for T} single games and

z(tiz;?‘ 1£’ Assume that the game

has bounded instantaneous losses 67%6 [0,1]. Then the
master algorithm’s instantaneous losses are bounded
by T;. We denote this algorithm by FoE7 or FoET.

receives loss £, =

Corollary 13 Assume FoEj (or FoE%, respectively)
plays a repeated game with bounded instantaneous
losses E%G [0,1]. Let the exploration and learning rates
be =1~ T and m=t"1. In case of uniform prior,
choose Tt |£5 | (7"_0). In case of arbitrary prior let
T, = Lt16J and 78 = [(w*)~18]. Then for all experts i
and all T, suppressing the dependence on the prior of
expert i, we have

9

< 4L+ O(T™o
E/FET < (TUJ*D

(kT w.p. 1—T2% and

)
)-
Consequently, lim supTHoo(éfj]? —00.7)/T <0 almost

surely. The rate of convergence is at least T-1. The
same assertions hold for FoET.

Proof. This follows from changing the time scale from
~ ~ 1
t to t in Corollaries 8 and 12: # is of order ¢'*5 in the
1
uniform case and ¢t'7 1 in the general case. Then the

bounds are T5v/InT in the former and T %y InT in
the latter case. Both are upper bounded by Ti%. O

Broadly spoken, this means that FoE7 performs as-
ymptotically as well as the best expert. Asymptotic
guarantees for the Strategic Experts Algorithm have
been derived by de Farias and Megiddo. Our results
approve upon this by providing a rate of convergence.
One can give further corollaries, e.g. in terms of flexi-
bility as defined by de Farias and Megiddo.

It is also possible to specify a universal experts al-
gorithm. To this aim, let expert ¢ be derived from
the ith program p° of some fixed universal Turing ma-
chine. The ith program can be well-defined, e.g. by
representing programs as binary strings and lexico-
graphically ordering them (Hutter, 2004). Before the
expert is consulted, the relevant input is written to the
input tape of the corresponding program. If the pro-
gram halts, the appropriate number of first bits is in-
terpreted as the expert’s recommendation. E.g. if the
decision is binary, then the first bit suffices. (If the pro-
gram does not halt, we may for well-definedness just
fill its output tape with zeros.) Each expert is assigned
a prior weight by w'=271e"8"2(") wwhere length(p’) is
the length of the corresponding program and we as-
sume the program tape to be binary. This construc-
tion parallels the definition of Solomonoft’s universal

Master Algorithms for Active Experts Problems based on Increasing Loss Values — Jan Poland and Marcus Hutter 66

prior (1978). This has been used to define a universal
agent AIXI in a quite different way by Hutter (2004).
Note that like the universal prior and AIXI, our univer-
sal agent is not computable, since we cannot check if a
program halts. It is however straightforward to impose
a bound on the computation time which for instance
increases rapidly in t. If used with computable ex-
perts, the algorithm is computationally feasible. The
universal master algorithm performs well with respect
to any computable strategy.

Corollary 14 Assume the wuniversal set of experts
specified in the last paragraph. If FoET is applied with
Yt = tii; = t7%7 ,ft = Ltﬁj, and 7' = {(wi)716‘|7
then it performs asymptotically at least as good as any
computable expert i. The rate of convergence is expo-
nential in the complexity k' and proportional to T-1.

6. Discussion

For large or infinite expert classes, the bounds we have
proven are irrelevant in practice, although asserting al-
most sure optimality and even a convergence rate: the
exponential of the complexity is far too huge. Imag-
ine for instance a moderately complex task and some
good strategy, which can be coded with mere 500 bits.
Then its weight is 27590, a constant which is not distin-
guishable from zero in all practical situations. Thus,
it seems that the bounds can be relevant at most for
small expert classes with uniform prior. This is a gen-
eral shortcoming of bandit experts algorithms: For
uniform prior a lower bound on the expected loss which
is linear in y/n has been proven (Auer et al., 2002).

If the bounds are not practically relevant, maybe the
algorithms are so? We leave this interesting question
unanswered. Intuitively, it might seem that the al-
gorithms proposed here are too much tailored towards
worst-case bounds and fully adversarial setups. For ex-
ample, the exploration rate of t7 s quite high. Mas-
ter algorithms which are less “cautious” might perform
better for many practical problems. Finally, it would
be nice to investigate the differences between the pro-
posed expert style approach and other definitions of
universal agents, such as by Hutter (2004).

Acknowledgement: This work was supported by
SNF grant 2100-67712.02.

References

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire,
R. E. (1995). Gambling in a rigged casino: The ad-
versarial multi-armed bandit problem. Proc. 36th
Annual Symposium on Foundations of Computer

Science (FOCS 1995) (pp. 322-331).

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire,
R. E. (2002). The nonstochastic multiarmed bandit
problem. SIAM Journal on Computing, 32, 48-77.

Cesa-Bianchi et al., N. (1997). How to use expert ad-
vice. Journal of the ACM, /4, 427-485.

Cesa-Bianchi, N., Lugosi, G., & Stoltz, G. (2004). Re-
gret minimization under partial monitoring (Tech-
nical Report).

de Farias, D. P., & Megiddo, N. (2004). How to com-
bine expert (and novice) advice when actions im-
pact the environment? In S. Thrun, L. Saul and
B. Scholkopf (Eds.), Advances in neural information
processing systems 16. Cambridge, MA: MIT Press.

Hannan, J. (1957). Approximation to Bayes risk
in repeated plays. In M. Dresher, A. W. Tucker
and P. Wolfe (Eds.), Contributions to the theory of
games 3, 97-139. Princeton University Press.

Helmbold, D., & Panizza, S. (1997). Some label effi-
cient learning results. Proceedings of the tenth an-
nual conference on Computational learning theory
(pp- 218-230). Nashville, Tennessee, United States:
ACM Press.

Hutter, M., & Poland, J. (2004a). Adaptive online pre-
diction by following the perturbed leader (Technical
Report IDSTA-30-04).

Hutter, M., & Poland, J. (2004b). Prediction with
expert advice by following the perturbed leader for
general weights. International Conference on Algo-
rithmic Learning Theory (ALT) (pp. 279-293).

Hutter, M. (2004). Universal artificial intelligence: Se-
quential decisions based on algorithmic probability.
Berlin: Springer.

Kalai, A., & Vempala, S. (2003). Efficient algorithms
for online decision. Proc. 16th Annual Conference
on Learning Theory (COLT-2003) (pp. 506-521).
Berlin: Springer.

Littlestone, N., & Warmuth, M. K. (1989). The
weighted majority algorithm. 30th Annual Sympo-
stum on Foundations of Computer Science (pp. 256—
261). Research Triangle Park, North Carolina.

McMahan, H. B., & Blum, A. (2004). Online geometric
optimization in the bandit setting against an adap-
tive adversary. 17th Annual Conference on Learning
Theory (COLT) (pp. 109-123). Springer.

Solomonoff, R. J. (1978). Complexity-based induction
systems: comparisons and convergence theorems.
IEEE Trans. Information Theory, IT-24, 422—-432.

Strong Asymptotic Assertions for Discrete MDL in Regression and
Classification

Jan Poland
Marcus Hutter

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland

Abstract

We study the properties of the MDL (or max-
imum penalized complexity) estimator for
Regression and Classification, where the un-
derlying model class is countable. We show
in particular a finite bound on the Hellinger
losses under the only assumption that there is
a “true” model contained in the class. This
implies almost sure convergence of the pre-
dictive distribution to the true one at a fast
rate. It corresponds to Solomonoff’s central
theorem of universal induction, however with
a bound that is exponentially larger.

1. Introduction

Bayesian methods are popular in Machine Learning.
So it is natural to study their predictive properties:
How do they behave asymptotically for increasing sam-
ple size? Are loss bounds obtainable, either for cer-
tain interesting loss functions or even for more general
classes of loss functions?

In this paper, we consider the two maybe most impor-
tant Bayesian methods for prediction in the context of
regression and classification. The first one is marginal-
ization: Given some data and a model class, obtain a
predictive model by integrating over the model class.
This Bayes mixture is “ideal” Bayesian prediction in
many respects, however in many cases it is computa-
tionally untractable. Therefore, a commonly employed
method is to compute a mazimum penalized complezity
or mazimum a posteriori (MAP) or minimum descrip-
tion length (MDL) estimator. This predicts according
to the “best” model instead of a mixture. The MDL
principle is important for its own sake, not only as
approximation of the Bayes mixture.

Most work on Bayesian prediction has been carried out
for continuous model classes, e.g. classes with one free
parameter ¥ € R? While the predictive properties

JAN@IDSIA.CH
MARCUS@IDSIA.CH

of the Bayes mixture are excellent under mild condi-
tions (Clarke & Barron, 1990; Hutter, 2003b; Ghosal
et al., 2000), corresponding MAP or MDL results are
more difficult to establish. For MDL in the strong
sense of description length, the parameter space has
to be discretized appropriately (and dynamically with
increasing sample size) (Rissanen, 1996; Barron et al.,
1998; Barron & Cover, 1991). A MAP estimator on the
other hand can be very bad in general. In statistical
literature, some important work has been performed
on the asymptotical discovery of the true parameter,
e.g. (Cam & Yang, 2000). This can only hold if each
model occurs no more than once in the class. Thus it
is violated e.g. in the case of an artificial neural net-
work, where exchanging two hidden units in the same
layer does not alter the network behavior.

In the case of discrete model classes, both loss bounds
and asymptotic assertions for the Bayes mixture are
relatively easy to prove, compare Theorem 2. In
(Poland & Hutter, 2004a), corresponding results for
MDL were shown. The setting is sequence prediction
but otherwise very general. The only assumption nec-
essary is that the true distribution is contained in the
model class. Assertions are given directly for the pre-
dictions, thus there is no problem of possibly undistin-
guishable models. In order to prove that the MDL esti-
mator (precisely, the static MDL estimator in terms of
(Poland & Hutter, 2004a)) has good predictive proper-
ties, we introduce an intermediate step and show first
the predictive properties of dynamic MDL, where a
new MDL estimator is computed for each possible next
observation.

In this paper, we will derive analogous results for re-
gression and classification. While results for classi-
fication can be generalized from sequence prediction
by conditionalizing everything to the input, regres-
sion is technically more difficult. Therefore the next
section, which deals with the regression setup, covers
the major part of the paper. Instead of the popular
Euclidian and Kullback-Leibler distances for measur-

Strong Asymptotic Assertions for Discrete MDL in Regression and Classification — Jan Poland and Marcus Hutter 68

ing prediction quality we need to exploit the Hellinger
distance. We show that online MDL converges to the
true distribution in mean Hellinger sum, which implies
“rapid” convergence with probability one. Classifica-
tion is briefly discussed in Section 3, followed by a
discussion and conclusions in Section 4.

2. Regression

We neglect computational aspects and study the prop-
erties of the optimal Bayes mixture and MDL predic-
tors. When a new sample is observed, the estimator is
updated. Thus, regression is considered in an online
framework: The first input z; is presented, we pre-
dict the output y; and then observe its true value, the
second input x5 is presented and so on.

Setup. Consider a regression problem with arbi-
trary domain X (we need no structural assumptions
at all on X) and co-domain) = R. The task is to
learn/fit/infer a function f : X — Y, or more gener-
ally a conditional probability density v(y|x), from data
{(x1,y1), -, (Xn,Yn)}. Formally, we are given a count-
able class C of models that are functions v from X to
uniformly bounded probability densities on R. That is,
C ={v; : i > 1}, and there is some C > 0 such that

oo

vi(yle)dy =1 (1)

foralli>1, x € X, and y €).

0 <vy;(ylz) < C and /

— 00

Each v induces a probability density on R"™ for n-
tuples 1., € X" by V(yl:n|x1:n) = H?:l V(ytlxt)'
The notation x1.,, for n-tuples is common in sequence
prediction. Each model v € C is associated with a
prior weight w, > 0. The logarithm log,w, has of-
ten an interpretation as model complexity. We require
>, w, = 1. Then by the Kraft inequality, one can
assign to each model v € C a prefix-code of length
Nogyw,!.

We assume that an infinite stream of data (21.00, Y1:00)
is generated as follows: Each x; may be produced by an
arbitrary mechanism, while y,; is sampled from a true
distribution p conditioned on z;. In order to obtain
strong convergence results, we will require that p € C.

Example 1 Take X = R and Ci" = {ax + b +
N(0,0?%) : a,b € Q} to be the class of linear regres-
sion models with rational coefficients a, b, and inde-
pendent Gaussian noise of fixed variance o2 > 0. That

is, Clinl = {pab9 . g b € Q}, where

— 1 _(y—ax—>b)?
Va,b,a(l,’y): Py (y—ax—Db))

bo2(y — ax —b) = \/2ir7

Alternatively, you may consider the class Clz”;lo

{v@% . a, b0 € Q,0 > g¢} for some oy > 0, where
also the noise amplitude is part of the models. In
the following, we also discuss how to admit degenerate
Gaussians that are point measures such as Chn1

The setup (1) guarantees that all subsequent MDL es-
timators [(9) and (10)] exist. However, our results and
proofs generalize in several directions. First, for the co-
domain Y we may choose any o-finite measure space
instead of R, since we need only Radon-Nikodym den-
sities below. Second, the uniformly boundedness con-
dition can be relaxed, if the MDL estimators still exist.
This holds for example for the class Chn1 (see the pre-
ceding example), if the definition of the MDL estima-
tors is adapted appropriately (see footnote 2 on page
4). Third, the results remain valid for semimeasures
with f v < 1 instead of measures and > w, < 1, which
is however not very relevant for regression (but for uni-
versal sequence prediction). In order to keep things
simple, we develop all results on the basis of (1). Note
finally that the models in C may be time-dependent,
and we need not even make this explicit, since the time
can be incorporated into X (x, = (z},¢) € X' x N =
X). In this way we may also make the models de-
pend on the actual past outcome, if this is desired
(zt = (¥ 4y1:0-1) € X x Y* = X).

The case of independent Gaussian noise as in Exam-
ple 1 is a particularly important one. We therefore
introduce the family

(€= o}z i vile,y) = (2)
(ba? (y - fi(l')),O’i > 09 > O,le—ﬂR}

of all countable regression model classes with lower
bounded Gaussian noise. Clearly, Cji*!,Cinl e FGavss
is satisfied. Similarly FGauss 5 fgauss denotes

the corresponding family without lower bound on o;.
Then Clzlr(l)l c fGauss \ fgauss.

f;}auss

We define the Bayes mizture, which for each n > 1
maps an n-tuple of inputs x1., € X" to a probability
density on R"™:

n
Zwu y1n|x1n ZwUHV(yt|mt)

velC velC t=1
(3)

(recall > w, = 1). Hence, the Bayes mixture dom-
inates each v by means of {(+|x1.,) > w,v(-|z1.4,) for
all 1.,. For v € C and z, € X, the v-prediction of
yn € R, that is the nu-probability density of observing
Yn, 18

5 Y1: n|1'1 n

V(YnlT1ms Y<n) = V(Ynl|Tn)-
This is independent of the history (x<p,y<n) =
(Z1:n—1,Y1:n—1). In contrast, the Bayes mizture pre-

69 Strong Asymptotic Assertions for Discrete MDL in Regression and Classification — Jan Poland and Marcus Hutter

diction or regression, which is also a measure on R,
depends on the history:

€(y1:n|xltn) _ ZV Wy H?:l V(yt‘xt)
EW<nlz<n) X, w, TI7 viyele:)

(4)
This is also known as marginalization. Observe that
the denominator in (4) vanishes only on a set of u-
measure zero, if the true distribution p is contained in
C. Under condition (1), the Bayes mixture prediction
is uniformly bounded. It can be argued intuitively
that in case of unknown p € C the Bayes mixture is
the best possible model for u. Formally, its predictive
properties are excellent:

g(yn‘xlzm y<n) =

Theorem 2 Let p€C, n>1, and x1., € X", then

iE/ (\/H(yt|xlzt7y<t) - \/§(yt|$1;t,y<t)>2dyt (5)

-1
w -

< lnw

E denotes the expectation with respect to the true
distribution . Hence in this case we have E... =
J ... 1(dy<¢). The integral expression is also known as
square Hellinger distance. It will emerge as a main tool
in the subsequent proofs. So the theorem states that
on any input sequence x., the expected cumulated
Hellinger divergence of p and the Bayes mixture pre-
diction is bounded by In w;l. A closely related result
was discovered by Solomonoff ((Solomonoff, 1978))
for universal sequence prediction, a “modern” proof
can be found in (Hutter, 2003a). This proof can be
adapted in our regression framework. Alternatively, it
is not difficult to give a proof in a few lines analogous
to (14) and (15) by using (12).

We introduce the term convergence in mean Hellinger

sum (i.m.H.s.) for bounds like (5): For some pre-

dictive density 1, the -predictions converge to the

pu-predictions i.m.H.s. on a sequence of inputs T.., €

Xx°°, if there is R > 0 such that HZ__(u,%) < R,

where

o0
HY__ () =Y E[h7] with (6)

t=1

hi = / (\/M(yt|$1:t,y<t) - \/¢(yt|$1¢t’y<t))2dyt'

Convergence i.m.H.s. is a very strong convergence cri-
terion. It asserts a finite expected cumulative Hellinger
loss in the first place. If the co-domain) is finite as for
classification (see Section 3), then convergence i.m.H.s.
implies almost sure (a.s.) convergence of the (finitely
many) posterior probabilities. For regression, the situ-
ation is more complex, since the posterior probabilities

are densities, i.e. Banach space valued. Here, conver-
gence i.m.H.s. implies that with p-probability one the
square roots of the predictive densities converge to the
square roots of the p-densities in L?(R) (endowed with
the Lebesgue measure). In other words, h? converges
to zero a.s.:

P(Eltzn:h52€>

p(U{nzel) @

t>n

> P(h =)

t>n

1 _
< Y ERZ2™Z=Z0
S S LEHT

IN

holds by the union bound, the Markov inequality for
alle > 0, and H§<m < 00, respectively, where P is the
p-probability. If the densities are uniformly bounded,
then also the differences of the densities (as opposed
to the difference of the square roots) converge to zero:

V(Y| T1:6, Y<t) — H(yt|$1:t7y<t) = 0 in LQ(R) a.8.

Moreover, the finite bound on the cumulative Hellinger
distances can be interpreted as a convergence rate.
Compare the parallel concept “convergence in mean
sum” (Hutter, 2003b; Poland & Hutter, 2004a).

MDL Predictions. In many cases, the Bayes mix-
ture is not only intractable, but even hard to approx-
imate. So a very common substitute is the (ideal)
MDL! estimator, also known as maximum a posteri-
ori (MAP) or maximum complexity penalized likeli-
hood estimator. Given a model class C with weights
(w,) and a data set (21.n, y1.n), we define the two-part
MDL estimator as

vt o= V(*Ilzmylm) = argl}gcx{wvy(ylzﬂxlm)} and
o(Yrn|T1m) = ng{wuy(ylzﬂ-rl:n)} (8)

= wV*V*(yl:n‘xl:n)~

Note that we define both the model v* which is the
MDL estimator and its weighted density p. In our
setup (1), the MDL estimator is well defined, since

! There is some disagreement about the exact meaning
of the term MDL. Sometimes a specific prior is associated
with MDL, while we admit arbitrary priors. More impor-
tantly, when coding some data x, one can exploit the fact
that once the model v™ is specified, only data which lead
to the maximizing element v* need to be considered. This
allows for a shorter description than log,v*(x). Neverthe-
less, the construction principle is commonly termed MDL,
compare for instance the “ideal MDL” in (Vitdnyi & Li,
2000).

Strong Asymptotic Assertions for Discrete MDL in Regression and Classification — Jan Poland and Marcus Hutter 70

all maxima exist?. Moreover, o(-|x1.,) is a density
but its integral is less than 1 in general. We have
o(-|x1.n) = wyv(-|z1.m), so like & o dominates each
v e€C. Also, o(-|z1:n) < &(+|z1:p) is clear by definition.
If we use v* for (sequential online) prediction, this is
the static MDL prediction:

static(

o yn‘xl:n7y<n) = Vzcw<n,y<n)(yn|wn)' (9)

This is the common way of using MDL for prediction.
Clearly, the static MDL predictor is a probability den-
sity on R. Alternatively, we may compute the MDL
estimator for each possible y, separately, arriving at
the dynamic MDL predictor:

Q(yl:n|x1:n)

Q(y<n|x<n). (10)

Q(yn|x1:na y<n) =

We have o(yn|Z1:n, Y<n) < VEK (yn|xs) for each

T1:n,Ylin
Yn,, which shows that under condi‘gion) (1) the dynamic
MDL predictor is uniformly bounded. On the other
hand, o(Yn|Z1:n,Y<n) > V&<my<n)(yn|xn) holds, so
the dynamic MDL predictor may be a density with
mass more than 1. Hence we must usually normalize

it for predicting:

Q(yl:n|$1:n) (11)

Aomlernsvn) = oty lora)dyn

Both fractions in (10) and (11) are well-defined except
for a set of measure zero. Dynamic MDL predictions
are in a sense computationally (almost) as expensive
as the full Bayes mixture.

Convergence Results. Our principal aim is to prove
predictive properties of static MDL, since this is the
practically most relevant variant. To this end, we first
need to establish corresponding results for the dynamic
MDL. Precisely, the following holds.

Theorem 3 Assume the setup (1). If u € C, where p
is the true distribution, and H2__(-,-) is defined as in

T<oo
(6), then for all input sequences ,__ € X*° we have

(i) HI__(p0)<w,'+hw,",

(i) H7_ (2.0 <2wy,”, and
(Z’LZ) H3<x(gﬂ QstatiC) < 3,“};1

For a model class with Gaussian noise C € F&" (2),
we may dispose of the uniform boundedness condition and
admit e.g. also CiB!. In order to compute the MDL esti-
mator, we must then first check if there is nonzero mass
Concentrated on (:clm, Y1:n), in which case the mass is even
one and the corresponding model with the largest weight is
chosen. Otherwise, the MDL estimator is chosen according
to the maximum penalized density. All results and proofs
below generalize to this case.

Since the triangle inequality holds for ,/H2__ (-,

T<oo)’ we

immediately conclude:

Corollary 4 Given the setup (1) and p € C, then all
three predictors 9, o, and ¢***Y1° converge to the true
density p in mean Hellinger sum, for any input se-
quence T In particular, we have H?(u, o**%¢) <
21w, '

We will only prove (i) of Theorem 3 here. The proofs
of (it) and (i#¢) can be similarly adapted from (Poland
& Hutter, 2004a, Theorems 10 and 11), since the
Hellinger distance is bounded by the absolute distance:

[(Vuly) — v) dy < [|u(y) — v(y)|dy follows
from (\f— Vb)? < |a —b| for any a,b € R (this shows
also that the integral h? in (6) exists). In order to
show (i), we make use of the fact that the squared
Hellinger distance is bounded by the Kullback-Leibler
divergence:

J (Vi@ - Vo) o < [a2, a2)

for any two probability densities u and v on R (see
g. (Borovkov & Moullagaliev, 1998, p. 178)). So we
only need to establish the corresponding bound for the

Kullback-Leibler divergence and show
(yt|x1:tvy<t)d

D~ 0 = E 1
() Z | i e o
< wp —&-lnw;l (13)

for all n > 1. In the following computation, we take
T<oo to be fixed and suppress it in the notation, writ-
ing e.g. p(yely<:) instead of w(ye|z1.4,y<¢). Then

Dulyle) = Y min “y’z";’j (14)
. yt|y<t n f@(yl:t)dyt
a ZE[o(yely<t) o(y<t) }

The first part of the last term is bounded by

w(yely<i)
E In (15
H o(yely<t))

— Em u(y1;n|x1:n)

Q(yl:n|$1:n)
-1
H b)

ZEl M yt‘y<t) _

yt|2/<t)

< lnw

since always £ < w;l. For the second part, use Inu <

u — 1 to obtain

J o(y1.1)dy,

Eln
o(y<t)

71 Strong Asymptotic Assertions for Discrete MDL in Regression and Classification — Jan Poland and Marcus Hutter

<ZE[ny1tdyt_1]

y<t)

/N Y<t)(f@ (y1:)dy: — 0(y<t)
o(y<¢)

w, ! [/ o(yrt)dyr.c — /9(y<t)dy<t} .

If this is summed over ¢ = 1...n, the last term is
telescoping. So using o(f)) = max, w, > 0 and ¢ < ¢,
we conclude

ZEI fQ Y1:¢)dy:

o(y<t)

dy<¢

IN

it | [etmonrin, - o0

< wt [€madn., (10

Hence, (14), (15), and (16) show together (13). a

We may for example apply the result for the static
predictions in a Gaussian noise class C € F&auss,

Corollary 5 Let C € FS*5S [see (2)] then the mean
and the variance of the static MDL predictions con-
verge to their true wvalues almost surely. The same
holds for C € FGas. In particular, if the vari-
ance of all models in C is the same value o2, then
> 201 = exp(fwn < 2lw,!, where
f(zt) is the mean value of the true distribution and
g* = argming, {15 S0 (ye — fi(xe))? + 202 Inw; '}
s the mean of the MDL predictor.

For C € F$uss almost sure convergence holds since
otherwise the cumulative Hellinger distances would
be infinite, see (7). This generalizes to C € FGauss,
compare the footnote 2 on page 4. In the case of
constant variance, the cumulative Hellinger distances
can be explicitly stated as above. Note that since
1 — exp (_ (9*($t\~ég;f(1t))z) ~ (9*(Et|~é);f(l’t))2 for
small (g*(a¢|...) — f(x;))?, this implies convergence
of g* to f faster than O(%) if the convergence is
monotone. Moreover, deviations of a fixed magnitude
can only occur finitely often.

Compared with the bound for the Bayes mixture in
Theorem 2, MDL bounds are exponentially larger.
The bounds are sharp, as shown in (Poland & Hutter,
2004a, Example 9), this example may be also adapted
to the regression framework.

3. Classification

The classification setup is technically easier, since only
a finite co-domain Y has to be considered. Results

corresponding to Theorem 3 and Corollary 4 follow
analogously. Alternatively, one may conditionalize the
results for sequence prediction in (Poland & Hutter,
2004a) with respect to the input sequence r., ar-
riving equally at the assertions for classification. The
results in (Poland & Hutter, 2004a) are formulated
in terms of mean (square) sum convergence instead of
Hellinger sum convergence. On finite co-domain, these
two convergence notions induce the same topology.

Theorem 6 Let X be arbitrary and Y be a finite set
of class labels. C = {v; : i > 1} consists of clas-
sification models, i.e. for each v € C, x € X and
y € Y we have v(ylz) > 0 and 3 v(ylz) = 1. Each
model v is associated with a prior weight w, > 0, and
>, wy, = 1 holds. Let the MDL predictions be de-
fined analogously to (8), (9) and (10) (the difference
being that here probabilities are mazimized instead of
densities). Assume that u € C, where p is the true
distribution. Then for each x <o € X,

iE Z <\/M(y|37t) -

t=1 yeY

ZEZ< (Ylze) —

t=1 yey

2
VO (o, yar)) < 21w,

. 2
Stamc(y|$1:t7y<t)) < 21w, !

holds. Similar assertions are satisfied for the normal-
ized and the un-normalized dynamic MDL predictor.
In particular, the predictive probabilities of all three
MDL predictors converge to the true probabilities al-
most surely.

The second bound on the quadratic differences is
shown in (Poland & Hutter, 2004a). The assertions
about almost sure convergence follows as in (7).

4. Discussion and Conclusions

We have seen that discrete MDL has good asymp-
totic predictive properties. On the other hand, the
loss bounds for MDL are exponential compared to the
Bayes mixture loss bound. This is no proof artifact,
as examples are easily constructed where the bound is
sharp (Poland & Hutter, 2004a).

This has an important implication for the practical
use of MDL: One need to choose the underlying model
class and the prior carefully. Then it can be expected
that the predictions are good and converge fast: this
is supported by theoretical arguments in (Rissanen,
1996; Poland & Hutter, 2004b). The Bayes mixture in
contrast, which can be viewed as a very large (infinite)
weighted committee, also converges rapidly with un-
favorable model classes, but at higher computational
expenses.

Strong Asymptotic Assertions for Discrete MDL in Regression and Classification — Jan Poland and Marcus Hutter 72

One might be interested in other loss functions than
the Hellinger loss. For the classification case, a bound
on the expected error loss (number of classification er-
rors) of MDL may be derived with the techniques from
(Hutter, 2003a), using the bound on the quadratic dis-
tance. (Hutter, 2003a) gives also bounds for arbitrary
loss functions, however this requires a bound on the
Kullback-Leibler divergence rather than the quadratic
distance. Unfortunately, this does not hold for static
MDL (Poland & Hutter, 2004a). For the regression
setup, analysis of other, more general or even arbi-
trary loss functions is even more demanding and, as
far as we know, open.

Considering only discrete model classes is certainly a
restriction, since many models arising in science (e.g.
physics or biology) are continuous. On the other hand
there are arguments in favor of discrete classes. From
a computational point of view they are definitely suffi-
cient. Real computers may even treat only finite model
classes. The class of all programs on a fixed univer-
sal Turing machine is countable. It may be related
to discrete classes of stochastic models by the means
of semimeasures, this is one of the central issues in
Algorithmic Information Theory (Li & Vitdnyi, 1997).

References

Barron, A. R., & Cover, T. M. (1991). Minimum com-
plexity density estimation. IEEE Trans. on Infor-
mation Theory, 37, 1034-1054.

Barron, A. R., Rissanen, J. J., & Yu, B. (1998). The
minimum description length principle in coding and
modeling. IEEE Trans. on Information Theory, 44,
2743-2760.

Borovkov, A. A., & Moullagaliev, A. (1998). Mathe-
matical statistics. Gordon & Breach.

Cam, L. L., & Yang, G. (2000). Asymptotics in statis-
tics. Springer. 2nd edition.

Clarke, B. S., & Barron, A. R. (1990). Information-
theoretic asymptotics of Bayes methods. I[EEE
Trans. on Information Theory, 36, 453—471.

Ghosal, S., Gosh, J., & van der Vaart, A. (2000). Con-
vergence rates of posterior distributions. Ann. Sta-
tist., 28, 500-531.

Hutter, M. (2003a). Convergence and loss bounds for
Bayesian sequence prediction. IEFE Trans. on In-
formation Theory, 49, 2061-2067.

Hutter, M. (2003b). Optimality of universal Bayesian
prediction for general loss and alphabet. Journal of
Machine Learning Research, 4, 971-1000.

Li, M., & Vitanyi, P. M. B. (1997). An introduc-
tion to Kolmogorov complexity and its applications.
Springer. 2nd edition.

Poland, J., & Hutter, M. (2004a). Convergence of dis-
crete MDL for sequential prediction. 17th Annual
Conference on Learning Theory (COLT) (pp. 300—
314).

Poland, J., & Hutter, M. (2004b). On the convergence
speed of MDL predictions for Bernoulli sequences.
International Conference on Algorithmic Learning
Theory (ALT) (pp. 294-308).

Rissanen, J. J. (1996). Fisher Information and Sto-
chastic Complexity. IEEE Trans. on Information
Theory, 42, 40-47.

Solomonoff, R. J. (1978). Complexity-based induction
systems: comparisons and convergence theorems.

IEEFE Trans. Information Theory, IT-24, 422-432.

Vitdnyi, P. M., & Li, M. (2000). Minimum de-
scription length induction, Bayesianism, and Kol-
mogorov complexity. IFEE Trans. on Information
Theory, 46, 446-464.

Speaker Prediction based on Head Orientations

An Evaluation of Machine Learning and Human Performance

Rutger Rienks
Ronald Poppe
Mannes Poel

RIENKSQEWI.UTWENTE.NL
POPPEQEWI.UTWENTE.NL
MPOELQEWI.UTWENTE.NL

Human Media Interaction Group, Department of Electrical Engineering, Mathematics and Computer Science
University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands

Abstract

To gain insight into gaze behavior in meet-
ings, this paper compares the results from a
Naive Bayes classifier, Neural Networks and
humans on speaker prediction in four-person
meetings given solely the azimuth head an-
gles. The Naive Bayes classifier scored 69.4%
correctly, Neural Networks 62.3% and hu-
mans only 37.7%. None of the classifiers was
able to generalize over meetings. We show
that there are strong indications that human
specific gaze behavior influences the fact that
the models do not generalize. Additionally,
we show that for all classifiers the perfor-
mance of the prediction in the beginning and
at the end of a speaker turn is worse than
halfway through the speaker turn.

1. Introduction

Nowadays a lot of research is being done on machine
processing and interpretation of signals from people
or other elements present in an observed environment.
Smart rooms are widely used as test environments for
research in this area. Sensors in the room can cap-
ture information which can be fused, manipulated and
augmented in order to achieve interpretation at desired
levels (Reidsma et al., 2004).

Currently smart meeting rooms are being used for all
kinds of research purposes in e.g. the AMI project,
the CMU meeting Room Project and the NIST Meet-
ing Room project. One can think of a smart meet-
ing room with a system that creates notes by under-
standing speech, creates summaries (Mani & Maybury,
1999), or automatically switches microphones on and
off. EasyMeeting (Chen & Perich, 2004) is an exam-
ple of a system that can provide relevant services and
information to meeting participants.

State of the art in computer graphics and animation
of embodied agents allows us to build quite realistic
3D virtual environments in which real humans can
meet virtual human-like avatars (Vilhjalmsson & Cas-
sell, 1998; Nijholt, 2004). These virtual environments
can be used as a test bed for data visualization and
for studying human perception and interpretation of
meeting situations.

In this paper we examine the performance of humans
and machine learning techniques on the task of speaker
prediction from horizontal head orientation angles (az-
imuth). Gaze is not solely determined by the head ori-
entation but also by the direction of eye gaze. It has,
however, been shown that there is a high correlation
between gaze and head orientation (more than 85%)
(Stiefelhagen, 2002).

2. Research aim

Within a meeting context, our aim is to gain insight
into the nature of human gaze behavior. We can use
this knowledge for both generation of gaze behavior
in virtual meetings and the extraction of useful infor-
mation from gaze behavior such as the speaker, the
addressee and the focus of attention.

Imagine a virtual chairman who understands the meet-
ing sufficiently to be able to structure the meeting ac-
cording to an agenda by giving appropriate turns, in-
terrupting if someone speaks for too long and keeping
participants focused when they seem distracted. This
might sound far-fetched, but when a machine under-
stands where someone is looking during a meeting, it
might conclude based on its models that the person
is focused on the object in line with the head orienta-
tion. If a non-speaker is always looking at the ceiling
instead of at the speaker, this might reveal something
about his attention level or even about the personality
of that person.

Speaker Prediction based on Head Orientations — Rutger Rienks et al. 74

Autonomous agents can use the derived gaze behav-
ior models in combination with their own beliefs, de-
sires, intentions and emotions (Wright, 1997) to be-
come ‘aware’ of the perceived situation and even to act
according to the models. Current applications of such
models lead to increased appreciation of such agents
(van Es et al., 2002), since they become more lively.
This directly improves remote communication (Garau
et al., 2001).

2.1. Gaze behavior

In general it is believed that gaze can bear a conver-
sational function. When someone is looked at, the
person who is looking might expect a reaction from
the other, either visual or vocal. According to Kendon
(Kendon, 1967) gaze serves four functions: visual feed-
back, regulation of conversation flow, communication
of emotions and relationships, and improvement of
concentration by restricting visual input.

Argyle et al. (Argyle et al., 1973) define six almost
similar categories: information seeking, signaling, con-
trolling the synchronization of speech, mutual gaze
and intimacy, avoiding undue intimacy, and avoiding
excess input of information. We are especially inter-
ested in examining the information seeking and the
conversational flow regulation. While speaking a per-
son emits information so we expect the listeners to
look at the speaker, seeking for information.

Research showed that people gaze nearly twice as much
at others while listening (75%) than while speaking
(41%) (Argyle & Cook, 1976). In the case of a single
speaker, all listeners would be focussing more in the
direction of the speaker than the speaker is focussing at
all of them. In accordance with this, Vertegaal found
that, in a setting with three persons, people gaze much
more at the speaker (62.4%) than at others (8.5%)
(Vertegaal, 1998).

Assuming this, we expect head orientations of persons
in a meeting to be good indicators for speaker iden-
tification. The remainder of this paper addresses this
issue. First we describe the data collection. Then we
show how well machine learning techniques are able to
predict the speaker amongst four meeting participants,
followed by a discussion how humans performed on
this task. Finally, we compare the results for both ap-
proaches and elaborate on these results revealing more
insight in gaze behavior.

3. Data collection

We used three four-person meetings with a total du-
ration of 21 minutes that were recorded in the IDTAP

Figure 1. The setting of meeting 6, with close-ups of par-
ticipants

smart room. Apart from the video and audio record-
ings, we recorded head position and orientation for all
meeting participants. Flock of Bird sensors were used
to accurately measure position and orientation at a
rate of 50 Hz. The sensor is a small box and when
mounted on top of a participant’s head is not obtru-
sive and does not cause any distraction, as can be seen
in close-ups in Fig. 1.

The non-scripted meetings contain lively discussions
about pre-formulated statements. To make the experi-
ment more realistic we also incorporated a whiteboard,
where statements were shown.

After recording, we analyzed both video and orienta-
tion data to discover possible biases due to incorrect
mounting of the Flock sensor on the head. We cor-
rected the orientation data for these biases. For sim-
plicity reasons, we only used azimuth data, see Fig. 2.
Since all participants reside in the same plane, parallel
to the table surface, we expect that azimuth orienta-
tion contains the most relevant information.

Elevation -

Figure 2. Azimuth, elevation and roll angles for heads

75 Speaker Prediction based on Head Orientations — Rutger Rienks et al.

Furthermore, all occurrences with non-speech (laugh-
ter, silence, etc.) or with speech overlap were removed
from the data set. The number of frames for each
meeting, including a priori probabilities for each meet-
ing and for all meetings, can be found in Table 1.

M1 M2 M3 Total
Samples 11333 13078 28148 | 52559
A priori SP1 | 404% 26.9% 24.8% | 28.7%
A priori SP2 | 27.3% 234% 9.8% | 16.9%
A priori SP3 | 7.7% 8.6% 29.4% | 19.5%
A priori SP4 | 24.7% 41.2% 36.0% | 34.9%

Table 1. Number of samples and a priori probabilities of
speakers in each meeting and all meetings. M1 is meeting
1, SP1 corresponds to speaker 1.

4. Machine learning performance

In this section we compare the prediction results of
Naive Bayes classifiers and Neural Networks for the
task of speaker identification.

4.1. Data representation

For our machine learning experiment, we used input
vectors vy = (a(1)¢, @(2)¢, a(3)s, a(4):), sampled at
time ¢. Each «(i); corresponds to the azimuth angle
of person i at time ¢. We used batch training, dur-
ing which we also presented the speaker SP; at time
t, where SP; € {1,2,3,4}.

In both experiments four series of tests were per-
formed, each test having a different composition of
training and test sets. In a first series both training
and test set were obtained from a single meeting. In
series two, both training and testing were performed
on samples from all three meetings. In the third series,
we trained on two meetings and tested on the third.
Finally, we trained on a single meeting and tested on
the other two. We discuss the results for the two ma-
chine learning techniques below.

4.2. Naive Bayes classifier

We trained a Naive Bayes classifier with and with-
out supervised discretisation (Yang & Webb, 2003;
Dougherty et al., 1995) using gaze vectors. We con-
ducted the test for three different meetings using ten-
fold cross validation. The results for the four series are
shown in Table 2. The discretized data is shown in the
column D, the original not discretized data is shown
in the column ND.

From the table it can be seen that within a single
meeting the classifier performs quite well. However

Trained Test ND D

M1 M1 63.0% 82.8%
M2 M2 51.3% 90.0 %
M3 M3 54.5% 76.6 %
MI, M2 & M3 M1, M2 & M3 | 50.0% 69.4 %
M1 & M2 M3 39.5% 35.4%
M1 & M3 M2 38.8% 33.5%
M2 & M3 M1 45.6% 40.4%
M1 M2 & M3 34.5% 36.5%
M2 M1 & M3 37.5% 32.7%
M3 M1 & M2 42.5% 32.3%

Table 2. Classification results for the Naive Bayes classifier
without (ND) and with (D) discretization

when our training and test sets are taken from dif-
ferent meetings the performance drops significantly.
Discretization improves our results when we test on
samples from the meeting on which we trained and it
decreases our results when we test on samples from
other meetings than those trained on. Since the dis-
cretization algorithm is supervised, the bins created by
the algorithm when trained on a particular meeting do
not apply for samples from a different meeting. This
results in a worse instead of an increased performance.

4.3. Neural Networks

We also used Neural Networks to estimate the speaker
from the azimuth angle data. The Levenberg-
Marquardt algorithm (Moré, 1978) was used for train-
ing. We performed the same four series of tests used
for the Naive Bayes classifier.

In each series, we experimented with different numbers
of neurons in the hidden layer. In the first two series,
25 neurons were found to yield best results, in the
third series we used 15 neurons and in the last series
only 5 neurons were used. In the first two series, the
data was divided into a training set (60%), a test set
(20%) and a validation set (20%). In the last two
series, the training set contained all samples from the
training meeting. The validation set contained 20% of
the test meeting samples. The test set contained the
other 80%. In each test, 5 runs were performed and
the Neural Network with the best performance on the
validation set was used to obtain the test performance.
In Table 3, these results are summarized.

Again, we see that when training and test sets are sam-
pled from the same meetings, the performance is high.
The results however, do not generalize over meetings.

Speaker Prediction based on Head Orientations — Rutger Rienks et al. 76

Training Test Result
M1 M1 82.6%
M2 M2 81.3%
M3 M3 72.3%
M1, M2 and M3 M1, M2 and M3 | 62.9%
M1 and M2 M3 44.2%
M1 and M3 M2 43.7%
M2 and M3 M1 48.1%
M1 M2 and M3 38.2%
M2 M1 and M3 40.2%
M3 M1 and M2 42.4%

Table 3. Classification results for Neural Networks

5. Human performance

In this section we describe how we tested the human
performance on predicting speaker turns based only
on head orientations. The main problem is that in-
terpreting the numerical v; vector is hard for humans.
However, presenting the video data gives more infor-
mation than just vy, such as possible facial expressions
and gestures. But there are other problems such as the
fact that humans have background knowledge. This
information enables them to reason about gaze behav-
ior and use their prior knowledge about meetings.

5.1. Experiment setup

To overcome the fact that we cannot present a num-
ber of numerical vectors to humans we exploited the
fact that humans have background knowledge about
meetings. We created a virtual meeting room (VMR,
Fig. 3), allowing precise control over the delivered
stimuli. In this VMR the setting is visualized, in-
cluding the locations of the participants and the white
board.

One problem with this kind of controlled virtual envi-
ronment is the trade-off between the ecological validity
and the experimental control, resulting in sterile arti-
ficial environments (Loomis et al., 1999). However,
since we are only interested in head orientations we
actually want to neglect other influences. By replac-
ing the real setting (Fig. 1) with a virtual setting we
are not only able to display the necessary information
but also to remove all other possibly distorting infor-
mation. This makes it possible, to a minimal extent,
for the humans to interpret the gaze vectors and for
other possible variables to be controlled.

Participants in the experiment were shown the meeting
room with the participants as well as an option panel
where they were able to choose among the four speak-
ers, being either confident or very confident. Also there

Contidert

Figure 3. The virtual meeting room setting

was a ‘no idea’ button to prevent biased unfounded
choices.

Each experiment consisted of a session with four parts,
each containing 20 samples. There were two types
of sessions. Type 1 contained feedback only on the
first part whereas in type 2 the feedback was omit-
ted completely. For the first two parts of both session
types two times 20 samples were randomly chosen from
meeting 3, the third part contained 20 randomly cho-
sen samples from meeting 2 and the last part contained
20 randomly chosen samples from meeting 1.

The idea behind this was twofold. In the first place
it enabled us to see if the feedback was helpful to the
participants. Secondly, we were able to see whether
feedback on samples from one meeting influenced the
results on samples from different meetings. The feed-
back was given by showing a red arrow above the head
of the correct speaker directly after the participants
had judged the sample. We asked students and em-
ployees of our department to do the test.

5.2. Results

Both session types were completed 20 times, resulting
in a total of 3200 answered samples. The results are
shown in Table 4.

The table shows that the human performance is ap-
proximately 38%, which is lower than we expected.
An interesting thing to note here is that there are sig-

77 Speaker Prediction based on Head Orientations — Rutger Rienks et al.

Type | Part 1 Part 2 Part3 Part4 | Total
1 47.8% 49.3% 29.8% 24.8% | 37.9%
2 39.3% 42.0% 33.3% 35.3% | 37.4%

Table 4. Classification results for humans per session type

nificant (p < 0.05 using a paired T-test) differences
between the two session types. In the first place the re-
sults on the first two session parts are better with feed-
back than without feedback and for the last two session
parts we see a significantly worse performance. Fur-
thermore it appeared that when no feedback was given
the performance remained much more stable over the
different session parts.

We expect that if feedback is given humans create
rules or models that work better for the meeting on
which they received feedback. These could be a priori
models that are applied when there is doubt about a
possible outcome. When these models were tested on
samples from different meetings they did not general-
ize. This seems to be in accordance with our machine
learning findings.

6. Evaluation

From the results of both the machine learning tech-
niques and the experiment with humans, it appears
that the models do not generalize over all meetings.
Apparently in the meetings different gaze behavior is
displayed. This could be caused by different meeting
topics, more or less frequent use of the whiteboard and
differences in individual gaze behavior.

To gain more insight into differences between and
within meetings, we examine two factors more closely
in this section. First we investigate if there is a relation
between the predicted speaker and the actual speaker
in terms of location in the meeting. The second topic
we investigate is the performance of the speaker pre-
diction on different moments in a speaker turn.

6.1. Location effect on performance

We expect that different persons display different gaze
behavior. Because we do not have sufficient meeting
data in which the same persons participate, we try
to find indications that there are differences between
participants. We examine this by looking at differences
in prediction performance for all speakers given the
confusion matrices for all classifiers. Then we look at
the person specific performance for neural networks on
all meetings. Finally we examine whether the position
with respect to other participants is of any influence.

In Table 5, 6, 7 and 8 the confusion matrices for the
prediction results are shown for all classifiers. For the
machine learning algorithms, training and testing is
performed on samples from all three meetings (series
2 of Table 2 and 3) to obtain the most reliable model.

Actual Estimated speaker
speaker | SP1 SP2 SP3 SP4
SP1 262% 12.9% 9.9% 51.1%
SP2 9.6% 60.1% 6.0% 24.3%
SP3 87% 124% 425% 36.4%
SP4 11.8% 11.6% 7.6% 69.0%

Table 5. Confusion matrix for actual speakers (row) and
predicted speakers (column) for Bayes classifier without
discretization. Performance is 50.0%

Actual Estimated speaker
speaker | SP1 SP2 SP3 SP4
SP1 65.5% 8.0% 7.7% 18.9%
SP2 9.5% 71.6% 62% 12.7%
SP3 11.5% 7.0% 67.0% 14.5%
SP4 15.9% 4.7% 63% 73.2%

Table 6. Confusion matrix for actual speakers (row) and
predicted speakers (column) for Bayes classifier with dis-
cretization. Performance is 69.4%

Actual Estimated speaker
speaker | SP1 SP2 SP3 SP4
SP1 50.6% 9.7% 11.3% 28.4%
SP2 10.1% 61.4% 8.0% 20.5%
SP3 9.8% 83% 60.1% 21.2%
SP4 12.3% 6.1% 6.6% 75.0%

Table 7. Confusion matrix for actual speakers (row) and
predicted speakers (column) for the experiment with Neu-
ral Networks. Performance is 62.9%

Actual Estimated speaker
speaker | SP1 SpP2 SP3 SP4
SP1 31.8% 154% 24.0% 28.8%
SP2 15.3% 42.8% 24.0% 17.9%
SP3 14.3% 14.7% 51.1% 20.0%
SP4 21.7% 12.7% 22.0% 43.7%

Table 8. Confusion matrix for actual speakers (row) and
predicted speakers (column) for the experiment with hu-
mans. Performance is 42.3%

It appears that there are differences in prediction re-
sults for a certain location. For example, for the Naive
Bayes classifier without discretization (Table 5) correct

Speaker Prediction based on Head Orientations — Rutger Rienks et al. 78

performance for speaker 1 is 26.2% whereas the per-
formance for speaker 4 is 69.0%. The results from the
above tables are summarized over the three meetings.
To find out whether different persons display differ-
ent gaze behavior we examine the differences between
meetings. In Table 9, the Neural Network prediction
results for each meeting are summarized.

Location M1 M2 M3 Total
1 51.4% 47.8% 51.6% 59.0%
2 67.8% 57.4% 58.7% 59.0%
3 88.7% 451% 59.8% 62.2%
4 73.8% 70.2% 77.8% 73.0%

Table 9. Correct Neural Network predictions for each loca-
tion per meeting

Given the results of the Neural Network it appears that
the differences in speaker prediction performance are
also present between meetings. This shows that there
are differences in performance for each person in each
meeting, which is a strong indication that there are
differences in gaze behavior for different persons. This
might be an explanation for the fact that our models
do not generalize.

If we look at the origin of the prediction errors, we can
tell what mistakes are made with respect to the rela-
tive position. In Fig. 3 we see that participants 1 and
4 are sitting next to each other, whereas participants 1
and 2 are sitting opposite to each other. Finally, par-
ticipants 1 and 3 are sitting diagonally to each other.
Table 10 summarizes the errors in these directions.

Next to Opposite Diagonal
g:é:fﬁfra%e\lsm 36.0% 324% 3LT%
gzis:fﬁfra}(lgs) 30.2% 3L1% 29.8%
Eg}clle;ilrk 37.1% 31.6% 31.4%
Humans 38.2% 32.3% 29.5%

Table 10. Estimation errors in different directions for ma-
chine learning techniques and humans for all meetings

We see that there is more confusion between two per-
sons who are sitting next to each other than between
two people who are in opposite corners of the table.
The results are similar for all four classifiers. We ex-
pect a relation between physical participant distance
and the prediction error. The distance between par-
ticipants at one side of the table is smaller than the
distance between two participants on opposite sides of
the table. Changing the meeting setting from a square
table with participants sitting opposite to each other

to a round table as is used in (Stiefelhagen, 2002) could
eliminate those biases but cannot explain the differ-
ences from Table 9.

6.2. Performance within a speaker turn

We can take a closer look at the data and determine
how our classifiers perform during a speaker turn. Can
the speaker be determined better in the beginning, in
the middle or at the end of a speaker turn? If we
look at the speaker prediction scores within speaker
turns longer than 1 second (92.4% of all samples), we
obtain the results from Fig. 4. We ignored speaker
turns shorter than 1 second, containing short utter-
ances. Ten equally sized bins were used to assure that
for each interval sufficient samples (over 300 per bins)
remained.

+= Bayesian Classifier (D)

0.85- — Neural network
= = Bayesian classifier (ND)
0.8 ++ Humans

Classification performance

L L L L .
0 10 20 30 40 50 60 70 80 90
Percentage of speaker turn

Figure 4. Speaker prediction performance during a speaker
turn using 10 bins

We see a trend in the graph for all four classifiers. In
the beginning and at the end of a speaker turn, the
speaker is harder to determine than halfway the turn.
This could be explained by assuming that participants
switch from speaking to listening, from listening to
speaking or start gazing at the new speaker. A similar
explanation could be found for the lower identification
performance at the end of a speaker turn. Participants
might start gazing at the person who they expect will
reply to the current speaker.

7. Conclusions

To gain insight into gaze behavior in meetings, a
comparison of classification results for a Naive Bayes
classifier, Neural Networks and humans was made on
the task of speaker prediction from azimuth head an-
gles. In four-person meetings, a Naive Bayes classi-

79 Speaker Prediction based on Head Orientations — Rutger Rienks et al.

fier was able to predict 69.4% correctly, Neural Net-
works scored 63.2%, and humans only 37.7%. The
machine learning classification results do not general-
ize over meetings. In the experiment with humans we
see similar results. The model that was learned using
the feedback increased the outcome for the meeting
where the feedback was given, but decreased the re-
sult for the other meetings. We showed that there are
strong indications that human specific gaze behavior
influences the fact that the models do not generalize.
Additionally, we showed that for all classifiers the per-
formance in the beginning and at the end of a speaker
turn is worse than halfway through the speaker turn.

8. Future work

To improve insight into gaze behavior we plan to in-
vestigate whether adding more information, such as
body orientation will increase the classification perfor-
mance. Experiments have started where we analyze
head orientations of complete speaker turns. Also, we
plan to verify simple protocols possibly applied by hu-
mans when predicting the speaker.

With respect to the fact that our models do not gener-
alize over meetings, we intend to do more research on
person specific gaze behavior. Information such as the
typical duration of personal speaker turns, the average
head movement during a turn might reveal more cues
along our path to addressee detection and focus of at-
tention estimation. Also, more research needs to be
done on the effect of meeting topics and their context
on the prediction of gaze behavior.

9. Acknowledgements

This work was partly supported by the European
Union 6th FWP IST Integrated Project AMI (Aug-
mented Multi-party Interaction, FP6-506811, publica-
tion AMI-33).

References

Argyle, M., & Cook, M. (1976). Gaze and mutual gaze.
Cambridge University Press.

Argyle, M., Ingham, R., Alkema, F., & McCallin, M.
(1973). The different functions of gaze. Semiotica,
7, 19-32.

Chen, H., & Perich, F. e. a. (2004). Intelligent agents
meet semantic web in a smart meeting room. Pro-
ceedings of the Third International Joint Confer-

ence on Autonomous Agents & Multi Agent Systems
(AAMAS 2004).

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Su-
pervised and unsupervised discretization of continu-
ous features. International Conference on Machine
Learning (pp. 192-202).

Garau, M., Slater, M., Bee, S., & Sasse., M. (2001).
The impact of eye gaze on communication using hu-
manoid avatars. Proceedings of the SIG-CHI confer-

ence on Human factors in computing systems (pp.
309-316). Seattle, WA USA.

Kendon, A. (1967). Some functions of gaze direction
in social interaction. Acta Psychologica, 32, 1-25.

Loomis, J. M., Blascovich, J. J., & Beall, A. C. (1999).
Immersive virtual environment technology as a ba-
sic research tool in psyychology. Behavior Research
Methods, Instruments and Computers, 31(4), 557—
564.

Mani, I., & Maybury, M. T. (1999). Advances in au-
tomatic text summarization. MIT Press.

Moré, J. (1978). The Levenberg-Marquardt algorithm:
Implementation and theory. Lecture Notes in Math-
ematics 630 (pp. 104-116).

Nijholt, A. (2004). Where computers disappear, vir-
tual humans appear. Computers and Graphics, 28.
to appear.

Reidsma, D., Rienks, R., & Jovanovich, N. (2004).
Meeting modeling in the context of multimodal com-
munication. Proceedings of the MLMI’04, Martigny.

Stiefelhagen, R. (2002). Tracking focus of attention in
meetings. Proc. of the ICMI2002. Pittsburgh.

van Es, 1., Heylen, D., van Dijk, E., & Nijholt, A.
(2002). Gaze behavior of talking faces makes a differ-
ence. Proceedings of the ACM-CHI 2002 (pp. 734—
735). Minneapolis, USA.

Vertegaal, R. (1998). Who is looking at whom. Doc-
toral dissertation, University of Twente.

Vilhjalmsson, H., & Cassell, J. (1998). Bodychat:
Autonomous communicative behaviors in avatars.
Proc. of the 2nd Annual ACM Int. Conf. on Au-
tonomous Agents. Minneapolis, USA.

Wright, 1. (1997). Emotional agents. Doctoral disser-
tation, University of Birmingham.

Yang, Y., & Webb, G. I. (2003). On why discretiza-
tion works for naive-bayes classifiers. Proceedings of
the 16th Australian Joint Conference on Artificial
Intelligence (Al).

A Modular Approach to Facial Expression Recognition

Michal Sindlar

SINDLAR@PHIL.UU.NL

Cognitive Artificial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht

Marco Wiering

MARCO@CS.UU.NL

Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht

Abstract

We study the use of multi-layer perceptrons
in applying machine learning to the recog-
nition of emotional expressions from frontal
images of human faces. The perceptrons are
trained using per-pixel luma data from the
images’ mouth and eye areas, and map the
inputs to one of 6 emotions. We compare
3 different methods for processing input in-
formation: 1) one network module for all in-
puts; 2) one network module for both eyes,
and one for the mouth; 3) one network mod-
ule for the mouth, one for the left eye, and
one for the right eye. Our results show that
involving multiple modules leads to better re-
sults, resulting in a performance high of 84%
images classified correctly.

1. Introduction

Automated facial expression recognition from static
images can be useful in a number of different appli-
cations, such as human-machine interaction, or detec-
tion of audience response. The goal of this study is to
find out whether it is possible to successfully perform
facial expression recognition using multi-layer percep-
trons in a modular setup on practically unprocessed
input data. For this specfic purpose a software tool
named Narcissus' was developed.

The sections 2—7 deal with the following: Section 2
discusses the setup of the research and the image data
used, section 3 is about the application used to pro-
cess the data, section 4 briefly describes the training
and testing procedure, in section 5 the tests and the
results are discussed, and section 6 discusses our study
in a context of related work. Section 7 concludes this

paper.

! After the mythical figure who fell in love with himself
after seeing the reflection of his own face in a pond.

2. Research setup

Since the main object is to construct a classifier to use
with static frontal images of human faces expressing
emotions, a proper classifier as well as suitable images
will be needed. This section discusses the selection of
both.

2.1. Choice of classifier

We want a classifier that is robust, and relatively easy
to implement, like a multi-layer perceptron (MLP) or
radial basis function network (RBF). Since a study
similar to this one obtained good results with MLPs,
and results with RBFs were somewhat worse (Garge-
sha & Kuchi, 2002), MLPs with a logistic sigmoid ac-
tivation function are selected as classifiers. Learning
takes place through back-propagation. The classifier’s
outputs are Ekman’s 6 basic emotions with clear facial
signals: anger, disgust, fear, happiness, sadness, and
surprise (Ekman, 1994). Other output categories are
of course possible —such as the 2-dimensional model
of emotion (Russell, 1980)— but Ekman’s emotions
are widely-used in research, and also the image data
described in section 2.2 is based on them, so this model
was adopted.

2.2. Image data

To investigate the expression of emotions in facial im-
ages, a sufficient amount of images expressing those
emotions is of course required. Three sets were used,
described in more detail in Sections 2.2.1, 2.2.2 and
2.2.3. Sample pictures are shown in Figure 1.

2.2.1. COHN-KANADE IMAGE SET

The Cohn-Kanade Facial FExpression Database
(Kanade et al., 2000) is a collection of approxi-
mately 2,000 grayscale image sequences from over 200
subjects. The images used were expertly analyzed
with FACS for the occurrence of so-called action

A Modular Approach to Facial Expression Recognition — Michal Sindlar and Marco Wiering 82

Figure 1: Sample images expressing surprise, one from the
Cohn-Kanade database (left), one from the JAFFE database
(middle), and one from the POFA set (right).

units, as described in the Facial Action Coding
System (Ekman & Friesen, 1978). The AU-codes were
manually translated into Ekman’s 6 basic emotions
using the rules from the FACS Investigator’s Guide
(Ekman et al., 2002), and only the images that were
expressing emotion according to this system were
used in this research.

2.2.2. JAFFE IMAGE SET

The Japanese Female Facial Expression (JAFFE)
database (Lyons et al., 1998) consists of 213 grayscale
images of Japanese women posing the 6 basic expres-
sions used in this research, plus a neutral one. The
images have been rated on a 5-point scale (from 1 to
5) for each of the 6 emotion categories by 60 female
Japanese students. Each of the images was assigned to
the category for which it achieved the highest overall
rating.

2.2.3. POFA IMAGE SET

The Pictures Of Facial Affect image set (Ekman &
Friesen, 1976) contains grayscale photographs of 14
actors portraying expressions that are reliably classi-
fied by naive observers as the 6 basic expressions used
in this study (the overall agreement is 91.6%).

3. Specifics of the application

The inner workings of the software tool Narcissus? are

briefly described in this section. Section 3.1 describes
the loading of images into the application for process-
ing, in section 3.2 training one or more networks using
data from the opened images is described, and sec-
tion 3.3 describes testing one or more networks on the
opened images.

3.1. Opening images

Images of the formats GIF, JPEG and PNG are sup-
ported. These images can be opened into the applica-

2 Available at http://narcissus.no-ip.org/

tion, and can be used either for creating and training
a network, or testing an existing network. When im-
ages are opened for the first time, the areas containing
the left eye, the right eye, and the mouth have to be
selected by hand. These areas are the facial features
that are expected to contain most emotion-related in-
formation. The selection procedure is manual: the
user draws a selection rectangle to select the region
where the features are. The aspects of these selection
rectangles are constant, with a horizontal : vertical
ratio of 1.3 : 1 for the eyes, and 2.2 : 1 for the mouth.
The aspects are kept constant, so that no distortion
occurs when the feature images are scaled. The num-
bers of 1.3 and 2.2 were chosen more or less arbitrarily;
the criterion being that the whole feature region (e.g.
the left eye) could be fitted, without incorporating a
lot of the surrounding ‘noise’.

3.2. Training one or more networks

In training mode the images that have been opened
can be used to train one or more networks. Table 1
shows the possible situations.

[# of networks | input |

1 both eyes and the mouth

2 both eyes into one network,
the mouth into the other

3 each eye goes into a separate
network, as does the mouth

Table 1: Different networks and their input.

When one network is selected, this network processes
all image features. When two networks are selected,
one network will be set up to process the left as well as
the right eye, the other will process the mouth. In the
case of three networks, each feature is processed by a
separate network. From now on, when talking about
the networks used by Narcissus, these will be referred
to as ‘modules’. The mode in which 2 modules are
selected for processing — wherein one processes both
eyes and the other the mouth — will be referred to as
‘a system of 2 modules’ or a ‘2-module system’, and
likewise for 3 modules.

After selecting the number of modules, the desired
feature dimensions have to be set for the eyes (same
dimensions for both) and the mouth. All features
are scaled to these dimensions using the standard
Java AFFINETRANSFORM.GETSCALEINSTANCE(%,y)
scaling operation, to ensure that every feature image
yields the same amount of inputs. The default setting
is a dimension of 20 x 15 pixels for the eyes and 40 18
pixels for the mouth.

83 A Modular Approach to Facial Expression Recognition — Michal Sindlar and Marco Wiering

For a 1-module system, this yields (including the bias):

(20 * 15) * 2 + (40 * 18) + bias = 1,321 inputs

The data that is the actual input for the networks, is
the luma (Y”) value of each pixel, which is calculated
with the following standard formula for obtaining luma
values from non-linear RGB.

Y' ' =0.299% R+ 0.587«G+0.114 x B

This comes down to converting the image from RGB
color to grayscale. Using the luma values reduces the
dimensionality of the data: instead of using three val-
ues (R, G, and B) from each pixel as input, we now
only have to use one (Y”). This is also the case for im-
ages that already are in grayscale, which in RGB color
space are represented as (Y, Y’ Y”). The network in-
put value then is 0.299 Y/ 4+0.587 Y’ +0.114 Y/ =Y.

3.3. Testing one or more networks

In testing mode, the networks that were created in
training mode can be evaluated. The necessary pa-
rameters, such as the feature dimensions, are taken
from the network settings. Images can be evaluated
with respect to a 1-, 2-; or 3-module system one by
one or all at once. This mode provides a lot of visual
feedback. The outputs of all networks are recorded and
displayed, as well whether or not an image was classi-
fied correctly. Also, the outputs can be visualized in a
graph, for easy viewing.

The face in Figure 2 was analyzed manually as de-
scribed in 2.2.1 and reported to be expressing sadness.
The output of the 3-module system as visualized in
Figure 3 tells that two modules got it right, and one
did not. There are six groups of bars; one for each
emotion category.

00- 123211

Figure 2: Sample image from the Cohn-Kanade database,
expressing sadness.

i

anger dis;l:ust fear hapﬂiness sadness
output expression neurons

output value

—
surprise

Figure 3: Graph showing the output from three networks.

From left to right: anger, disgust, fear, happiness, sad-
ness, surprise. There are three bars: one for each mod-
ule. The module analyzing the left eye is represented
by the leftmost bar in each group (blue), the middle
(green) bar stands for the right eye, and the module
analyzing the mouth is the rightmost bar in each group
(red). In this case, the left eye (left, blue) and mouth
(right, red) correctly reported sadness (the 5'group of
bars), while the right eye module (middle, green) got
it all wrong: it reported surprise, with fear coming in
second by the smallest of margins. Sadness actually
was the least likely option for this network.

4. Training and testing procedure

The image set available for training and testing con-
sists of 458 images in total. The images are spread
unevenly over the 6 emotion categories , as follows
(with the Cohn-Kanade / JAFFE / POFA ratio shown
in parentheses): 60 in anger (23/24/13), 82 in dis-
gust (51/18/13), 30 in fear (10/7/13), 116 in happi-
ness (73/30/13), 55 in sadness (22/22/11) and 115 in
surprise (77/25/13).

Since the number of samples is quite low for some cat-
egories, cross-validation has been adopted as training
procedure. Cross-validation allows us to obtain valid
results using only a small number of samples. This is
done by dividing the data into S segments, using data
from S — 1 of these segments for training, and testing
performance with the remaining segment. This pro-
cess is repeated S times, and the results of S runs are
then averaged to obtain the final result. In our case the
data has been split up in 10 sets, each containing ap-
proximately 90% of the samples as training data and
the remaining 10% or so for testing. A certain net-
work’s performance has been defined as the average of
its results on the 10 subsets.

A Modular Approach to Facial Expression Recognition — Michal Sindlar and Marco Wiering 84

5. Tests & results

The tests described in this section were performed fol-
lowing the procedure explained in section 4.

5.1. Determining optimal parameters

The following sections are about determining a func-
tion that returns a reasonable number of hidden units
based on the number of inputs (5.1.1), and finding a
feature size that has enough detail, without being un-
necessarily large and slow to process (5.1.2).

5.1.1. HIDDEN UNITS

The focus here is on calculating the number of hid-
den units as a function of the number of inputs. This
number should not be too small because this allows
for fewer possible mappings, and thus less expressive
power, but there should not be too many hidden units
either, because this increases processing time and can
lead to overfitting the data.

No optimal feature size has been determined yet, so
three sets of feature sizes have been considered, listed
below in order of increasing number of inputs.

Low-detail: The dimension of the eyes is 5 x4 = 20
pixels and the dimension of the mouth is 10 %5 =
50 pixels. Including the bias, this amounts to
(2 * 20) + 50+ 1 = 91 inputs.

Medium-detail: Eyes are 108 and mouth is 20 % 9.
Total of 160 4+ 180 + 1 = 341 inputs.

High-detail: Eyes are 40 * 31 and mouth is 80 * 36.
Total of 2,480 + 2,880 + 1 = 5,361 inputs.

All features are processed by one single network. For
this test there was no need to do otherwise, because
the number of hidden units applies to a network in
general, and does not depend on the particular features
it is processing. The learning rate was fixed at 0.02
and all networks ran 500 passes. If a 100% score was
achieved on the training set before the 500" pass, back-
propagation (and thus further learning) stopped.

First the number of hidden units np;q4en, Was calcu-
lated from the number of inputs 7,y using the func-
tion:

Nhidden = +/Minput

Then, 4 tests were performed using the aforementioned
formula and the values 2, 3, 4 and 5 for z. This test
yielded the results shown in Table 2. This table shows
the average score over 10 cross-validation runs, and in
parentheses the standard deviation (o) of the 10 scores
that make up the final score.

[T [low [medium [high]
2 | 70% (5.6) | 79% (4.3) | 81% (3.6)
3 | 64% (3.9) | 78% (6.5) | 81% (4.2)
4 | 57% (7.9) | 73% (5.8) | 81% (4.3)
5 | 48% (8.9) | 57% (7.0) | 77% (5.0)

Table 2: Scores for the ¢/Minput function.

The most desirable results were obtained with z = 2
for the low-detail system, x = 2 for medium-detail,
and x = 4 for high-detail. A function that yields a
suitable number of hidden units, in a range compara-
ble to the one given by npidden = ¢/Minput with the
aforementioned values for z, is

Nhidden = 3xIn Tinput

This function returns a relatively large amount of
hidden units for small networks, and (compared to
YMinput, for instance) a small npiggen for large net-
works. Considering the results as seen in Table 2, this
is what we want.

5.1.2. FEATURE SIZE

As Table 2 shows, more inputs and a lot of hidden
neurons seem to give the best results. However, there
is a downside to having a large network. Table 3 shows
the approximated processing times® for one pass on
414 examples without back-propagation.

[T [low [medium [high]
2 | 0.05 0.24 12.70
3 | 0.04 0.10 3.20
4 | 0.03 0.06 1.50
5 | 0.02 0.05 1.10

Table 3: Approxzimated processing times in seconds for each of
the networks.

This means the network processing the low-detail fea-
tures (91 inputs in total) with &minpu; function for
the hidden neurons took 50 milliseconds (0.05 seconds)
for classifying 414 images, while the network process-
ing high-detail features with /Minput hidden neurons
took 12.7 seconds. Training both these network for
500 passes would take well over (because of back-
propagation, which was not considered in Table 3) 25
seconds for the low-detail network, compared to 1 hour
and 45 minutes for the high-detail network. This is
not really a problem if learning takes place off-line,
but there’s no use in having large processing times if
it doesn’t improve results.

The medium-detail network did not have as good re-
sults as the high-detail one, but the latter took a lot
longer to process, without spectacular improvements

30n an Athlon XP 32004 with 1 gigabyte of memory.

85 A Modular Approach to Facial Expression Recognition — Michal Sindlar and Marco Wiering

in performance. Therefore an intermediate sized net-
work was trained. This network has a 20 % 15 size
for the eyes, and a 40 % 18 size for the mouth. In-
cluding the bias, this amounts to 1,321 inputs. The
Nhidden = 3 % IN Njppye function returns 22 hidden neu-
rons. This network has quite a good processing time:
about 0.8 seconds per pass. The averaged score of 10
cross-validation runs is 82% with a standard deviation
of 4.7, which is the best result so far. In all following
experiments these settings (Table 4) are used.

[eyes [mouth]| Nhidden |
[20%15 | 4018 | 3+In1,321 = 22 |

Table 4: Optimal settings for feature size and Npidden -

5.2. Performance of networks

In this section, the performances of 1-, 2,- and 3-
module systems are evaluated using the determined
settings, and also a ‘voting’ system that combines the
other systems’ outputs is reviewed.

5.2.1. CROSS-MODULE COMPARISON

Table 5 shows the performance of each network from
a 1-, 2-; and 3-module system as the overall percent-
age of correctly classified images, with the standard
deviation ¢ on 10 cross-validation runs in brackets.

[system | module [score (o) |
1 module eyes & mouth | 82% (4.7)
2 modules | eyes 68% (5.3)
mouth 70% (7.9)
3 modules | left eye 62% (7.8)
right eye 60% (5.0)
mouth 69% (6.0)

Table 5: Comparison of 1-, 2-, and 3-module systems.

Clearly, the single-module system does best. It has the
highest overall score of 82% correctly classified images,
and the lowest o (4.7), which means that it had the
least amount of variation on the 10 cross-validation
runs, and therefore is the most consistent of the 3 sys-
tems. Table 6 shows the highest and lowest scores for
each of the networks in Table 5.

[network [module [highest [lowest]
1 module eyes & mouth 89% 74%
2 modules | eyes 74% 59%
mouth 85% 60%
3 modules | left eye 76% 54%
right eye 65% 51%
mouth 7% 61%

Table 6: Performance high/low for 1-, 2-, and 3-module
systems.

Also note how the networks processing a single eye do

not perform much worse than the network processing
both eyes. The highest score for the 3-module system
working on the left eye (76%) was even higher than the
one for the 2-module network working on both eyes
(74%). This is interesting, because it shows that even
from a partially occluded face (where perhaps only half
of the face is visible) expression recognition is possible
when using a modular approach.

5.2.2. MODULE ADDITION

Section 5.2.1 showed how a 1-module system outper-
formed the networks from the 2- and 3-module sys-
tems, and how the networks from the 2-module sys-
tem also outperformed those from the 3-module sys-
tem. Now let’s see what happens when the individual
modules are combined, so that they all ‘cast a vote’
in a single system. An easy way to achieve this is by
simply adding up the 6 outputs of each system and
pretending the resulting values are the outputs of a
single system. Table 7 shows the results of this proce-
dure for the 2- and 3-module systems, along with the
result of the 1-module system for comparison.

[system | module [score (o) |
1 module eyes & mouth 82% (4.7)
2 modules | eyes + mouth 82% (3.5)
3 modules | left eye + right eye + mouth | 84% (5.3)

Table 7: Performance of the 2- and 3-module systems after
addition of output activations.

After addition of output activations, the 3-module sys-
tem suddenly performs best! Same as with the discus-
sion of the separate modules, let’s have a look at the
highest and lowest scores of each of the systems. The
1-module system’s scores are the same, of course. The
results are shown in Table 8.

[system [module [highest [lowest]
1 module eyes & mouth 89% 74%
2 modules | eyes + mouth 87% 7%
3 modules | left eye + right eye + mouth 93% 79%

Table 8: Performance high/low for 1-, 2-, and 3-module
systems after addition.

Adding these systems up again produces a combined
super-system in which all three systems are casting
their vote. This system performs as shown in Table 9.

[system [score [o [highest [lowest |
[combined | 8% [55 93% [75% |

Table 9: Score, o and performance high/low for 1-, 2-,
3-module systems added together.

This is the best system so far, but not by a great mar-
gin and at a price. It takes approximately three times

A Modular Approach to Facial Expression Recognition — Michal Sindlar and Marco Wiering

86

as much time to run compared to the other systems,
because it actually consists of those systems. Its pro-
cessing time is the processing time of the 1-module
system, added up to that of the 2-module system, and
again to that of the 3-module system. Therefore it’s
quite inefficient without major improvement over the
other systems.

5.3. In-depth analysis

In this section the systems discussed in section 5.2.2
will be analyzed in-depth. The analysis is presented
in form of a confusion matriz, as defined in (Kohavi &
Provost, 1998). This matrix visualizes the combined
results of the 10 cross-validation test runs in a dia-
gram, whose row as well as column headings show a
category label. A stands for anger, D for disgust, F' for
fear, H for happiness, Sa for sadness and Su for sur-
prise. The column headings (first row) stand for the
desired (correct) classification, the row headings (first
column) for the actual classification. The cell values
show how often a certain error (confusion) occurred.
The values in the ¥-column’s and ¥-row’s cells show
the summation over the preceding cells in their respec-
tive row and column. For the 3-column, this can be
interpreted as the bias towards a category, and for the
Y-row it represents the total number of misclassifica-
tions for images from this category. On the diagonal
the percentage of correctly classified samples of a cer-
tain category is shown, and the final row (T) shows
the total number of samples in each category, together
with the total number of pictures. (X,X) shows the
performance of this system as a percentage of correctly
classified images, with the total number of misclassi-
fied images in brackets.

So, for example, by going to (4,Sa) in Table 10,
we find that after 10 cross-validation tests for the 1-
module system, 3 images in total that should have
been classified as Sadness were confused for the cate-
gory Anger.

(A, A) tells us that 63% of the test samples from the
Anger category were correctly classified as such. This
can be verified by checking the total number of misclas-
sified Anger images in (X, A), which is 22, and indeed
60—22

=22 4 100% = 63%.

The following sections 5.3.1 to 5.3.4 discuss the four
addition systems from section 5.2.2.

5.3.1. 1-MODULE SYSTEM, TABLE 10

As Table 10 shows us, the best-recognized category
(happiness) was recognized much better than the
worst-recognized (fear): 94% compared to 47%. Anger

LT AT D [F [A [S |5 [¥ |
A][63% 6 1 2 3 3 15

D 9 85% 2 0 3 1 15

F 2 0 47% 2 2 3 9

H 3 3 2 94% 5 2 15

Sa, 6 3 4 3 73% 0 16

Su 2 0 7 0 2 92% 11
[][22 [12 [16 | 7] 15 | 9 [82% (81) |
[T 60] 8 [30 [116 | 55 [115 [458 |

Table 10: Confusion matriz for the 1-module system.

and disgust were often confused for each other: 15
times in total (add (A, D) and (D, A) together). Sur-
prise is mistaken for disgust only once, and disgust
never for surprise. In fact, only fear is often mistaken
for surprise, and this quite often too (7 times). An-
other thing to note is that sadness is mistaken for hap-
piness — which could be considered the opposite emo-
tion — 5 times in total, which is a lot in this context.

5.3.2. 2-MODULE SYSTEM, TABLE 114

[T A [DT F [A [S [S [¥ |
A 73% 7 2 4 5 1 19

D 5 84% 1 2 1 0 9

F 3 0 47% 1 3 5 12

H 3 4 3 93% 6 1 17

Sa 5 2 4 1 65% 1 13

Su 0 0 6 0 4 93% 10
[][16 [18 [16 | 8 | 19 | 8 [82% (80) |
[T 60 [82 [380 [116 [55 [115 | 458 |

Table 11: Confusion matriz for the 2-module system, after
addition of individual modules.

Anger and disgust are mistaken for each other 12 times
in total, again the highest score, while disgust and
surprise are never mistaken for each other. Again, fear
is often mistaken for surprise: 6 times. This is a lot,
especially considering the fact that fear only has 30
samples. Sadness is mistaken for happiness 6 times.

5.3.3. 3-MODULE SYSTEM, TABLE 12

The anger-disgust confusion is lower for the 3-module
system, only 8 mistakes. Sadness is mistaken for hap-
piness 7 times. Disgust and surprise are confused only
once. Fear is mistaken for surprise 5 times.

5.3.4. COMBINED SUPER-SYSTEM, TABLE 13

Since this system reflects the previously discussed
three systems, there are no real surprises.

“For (%,¥) in Table 11, (378/458) * 100% = 83% and
not 82%. This is not an error, but a reflection of the fact
that the performance has been calculated as the average of
the performance of individual cross-validation tests, which
in this case leads to a discrepancy of 1%.

e e}
3

A Modular Approach to Facial Expression Recognition — Michal Sindlar and Marco Wiering

LT AT D[F [HJS [S]] S |
A 70% 3 1 2 5 0 11

D 5 85% 3 3 1 1 13

F 2 2 53% 1 3 1 9

H 5 6 3 93% 7 1 22

Sa, 5 1 2 1 69% 1 10

Su 1 0 5 1 1 97% 8
[X [18 [12 [14 | 8 [17 | 4 [8% (73)]
[T 60 [82 [30 [116 | 55 [115 | 458 |

Table 12: Confusion matriz for the 3-module system, after
addition of individual modules.

[T A DT F [H S [5] = |
A 72% 5 1 1 3 0 10
D 6 87% 3 1 2 1 13
F 1 0 50% 1 3 3 8
H 3 4 3 96% 6 1 17
Sa 5 2 4 2 78% 0 13
Su 2 0 4 0 1 96% 7
[X [17] 11 [15 | 5 [15 | 5 [85% (68) |
[T 60 [8 [30 [116 | 55 [115 [458 |

Table 13: Confusion matriz for the combined super-system.

The overall pattern for the four systems considered is
that fear is recognized worst by far, and that perfor-
mance on happiness and surprise is best. There is a
clear correlation between performance and the total
number of samples for a certain category: the more
samples, the better the performance. For all cases
considered, bias towards happiness was significantly
higher than bias towards surprise. Perhaps this is be-
cause the expression of surprise has a more unique sig-
nal (wide-open mouth), only to be confused with fear,
while the expression of happiness comes in many dif-
ferent forms. It could therefore be that the networks
assign indeterminable samples other than fear to hap-
piness, because this has the highest chance of being
correct.

6. Related work

In the first part of this section, related studies are
briefly reviewed. In the second part, a comparison
is drawn between this study and similar ones. Finally,
suggestions for further research are given, as well as
possible improvements for the current approach.

6.1. Review of related work

The past decade has seen a lot of activity in the field
of (semi-) automatic facial expression recognition, us-
ing widely differing approaches. This brief review will
focus on a neural network-based method operating on
input data gathered from static facial images. Other
possibilities are analysis of image sequences (with out-
put to FACS AU’s, for instance), and analysis of static

images using template- or rule-based methods. For a
concise overview of the myriad of possible approaches,
see (Pantic & Rothkrantz, 2000).

Zhang et al. (Zhang et al., 1998) compare geometry-
based and Gabor wavelets-based approaches to facial
expression recognition using multi-layer perceptrons.
Their findings are that Gabor wavelets are much more
powerful than geometric position. They achieve an
overall score of 90.1% using combined information
from Gabor wavelets and geometric position, with 7
hidden units and output to 7 categories (anger, dis-
gust, fear, happiness, sadness, surprise, and neutral),
using 213 images from the JAFFE database. Fear is
problematic: when excluding it, the results are 92.3%
correctly classified images, and human agreement with
the expressors’ intention rises with 6% to 85.6%.

A very interesting approach is taken by Dailey et al.
(Dailey et al., 2002) in a system called EMPATH.
They present an artificial approach to facial expres-
sion recognition, modelled on the human perceptual
system. Their system has three major layers. The
perceptual layer uses Gabor filters and represents the
human complex cells in the visual cortex. The Gestalt
layer performs principal component analysis using lin-
ear hidden units, and is comparable to the ‘face cells’
in the human inferior temporal cortex. The category
layer is the output layer, and has the 6 categories
of anger, disgust, fear, happiness, sadness and sur-
prise. This system’s performance on the POFA image
database as input was as depicted in Table 14. Again,
performance on fear is particularly bad.

[Ezpression [[System performance | Human agreement

Happiness 100.0% 98.7%
Surprise 100.0% 92.4%
Disgust 100.0% 92.3%
Anger 89.1% 88.9%
Sadness 83.3% 89.2%
Fear 67.2% 87.7%

[Average | 90.0% [91.6%

Table 14: Performance of EMPATH and human agreement on
image data from the POFA database.

6.2. Comparison to related work

Compared to other approaches, ours is simple and
straightforward because it uses hardly any preprocess-
ing (apart from converting all data to grayscale, which
doesn’t affect much since all image sets used have
grayscale images). Still, it achieves pretty good re-
sults, with a high around 85%. However, feature se-
lection is manual, and one could wonder how much
bias is introduced by hand-selecting the features.

A Modular Approach to Facial Expression Recognition — Michal Sindlar and Marco Wiering 88

An interesting phenomenon is the (relatively) poor de-
tection of fear by artificial neural network-based sys-
tems, as well as human observers (as illustrated by
Table 14 with the EMPATH results). In our system,
detection of fear was quite terrible too, which we first
attributed to the low number of training samples. Now
it seems that a higher amount of fear-examples maybe
could improve results, but that fear also has inherent
characteristics which make it harder to recognize.

It should be noted that we used three different image
collections, and that most other studies use only one.
The sample images from a single set for a single cate-
gory can be quite low; e.g. 7 samples from the JAFFE
database for fear. Most likely our results could im-
prove by using more samples per image set, since it is
much harder for machine learning methods to gener-
alize when learning from a low number of samples.

7. Discussion

Our goal of creating a working system to classify emo-
tions from static frontal images, using hardly prepro-
cessed images and multi-layer perceptrons, has been
met quite well. Most notable of the method used
in this study is perhaps the use of a separate net-
work module per facial feature (left eye, right eye, and
mouth). Separate feature modules yield reasonable re-
sults (between 60% and 70%), and simple addition of
output values improves results to well over 80%). This
could be useful in processing facial images for recogni-
tion of emotional expression, where features have been
(partially) obscured. It is probable that a modular ap-
proach could be successful in identity recognition from
partially obscured facial images as well.

Using preprocessing, such as application of Gabor fil-
ters, seems to improve results. This study could be
extended by applying a Gabor wavelet-based approach
and a modular one to build a more robust Gabor-
based system. It would also be interesting to see how
a modular approach would perform when automatic
face and/or feature detection is applied. Moreover,
to obtain a generally applicable emotion-recognition
tool, training should be performed using many sam-
ples showing expressions in many different circum-
stances. This means using samples involving multi-
cultural subjects in different lighting conditions, and
perhaps also lateral facial images, partially occluded
images, or subjects wearing glasses.

Independent of particular image sets or preprocessing
techniques used, though, a modular approach to facial
expression recognition appears to be favorable over a
non-modular approach.

References

Dailey, M., Cottrell, G., Padgett, C., & Adolphs, R.
(2002). EMPATH: A neural network that catego-
rizes facial expressions. Journal of Cognitive Neuro-
science, 14, 1158-1173.

Ekman, P. (1994). All emotions are basic. The Nature
of Emotions; Ekman, P. and Davidson, R.J., eds.,
pages 15-19.

Ekman, P., & Friesen, W. (1976). Pictures of facial
affect. Consulting Psychologists Press, Palo Alto,
CA.

Ekman, P., Friesen, W., & Hager, J. (2002). Facial Ac-
tion Coding System Investigator’s Guide. A Human
Face, Salt Lake City, UT.

Ekman, P., & Friesen, W. V. (1978). Facial Action
Coding System. Consulting Psychologist Press, Palo
Alto, CA.

Gargesha, M., & Kuchi, P. (2002). Facial ex-
pression recognition using artificial neural net-
works. http://www.public.asu.edu/ pkuchi/
ExpressionRecognition.pdf.

Kanade, T., Cohn, J. F., & Tian, Y. (2000). Com-
prehensive database for facial expression analysis.
Proceedings of the Fourth IEEE International Con-
ference on Automatic Face and Gesture Recognition
(FG’00), March 2000, Grenoble, France.

Kohavi, R., & Provost, F. (1998). Glossary of terms.
Machine Learning, 30, 271-274.

Lyons, M. J., Akamatsu, S., Kamachi, M., & Gyoba,
J. (1998). Coding facial expressions with Gabor
wavelets. Proceedings of the Third IEEE Interna-
tional Conference on Automatic Face and Gesture
Recognition, April 14-16 1998, Nara Japan, pages
200-205.

Pantic, M., & Rothkrantz, L. (2000). Automatic anal-
ysis of facial expressions: the state of the art. IEFE
Transactions on Pattern Analysis and Machine In-
telligence, 22, 1424-1445.

Russell, J. A. (1980). A circumplex model of affect.
Journal of Personality and Social Psychology, 39,
1161-1178.

Zhang, Z., Lyons, M., Schuster, M., & Akamatsu, S.
(1998). Comparison between geometry-based and
Gabor wavelets-based facial expression recognition
using multi-layer perceptrons. Proc. Int’l Conf. Au-
tomatic Face and Gesture Recognition, 454—459.

Reliability yields Information Gain

I.G. Sprinkhuizen-Kuyper
E.N. Smirnov

IKAT, Universiteit Maastricht
P.0.BOX 616, 6200 MD Maastricht, The Netherlands

G.I. Nalbantov
ERIM, Erasmus University Rotterdam

Abstract

In this paper we prove that the reliability
of the classifications of individual instances,
provided by a classifier, results in informa-
tion gain with respect to the accuracy of
the classifier. We illustrate this result using
our new approach to classification reliability
called version space support vector machines.

1. Introduction

In the last ten years machine-learning classifiers have
been applied to various classification problems (Kukar
& Kononenko, 2002). Nevertheless, almost no clas-
sifiers have been employed in real applications, espe-
cially in critical domains. The main reason is that it is
difficult to determine whether a classification assigned
to a particular instance is reliable or not.

There are two groups of approaches to classification
reliability. The approaches in the first group estimate
some parameter(s) that are related to classification re-
liability. Then, they learn a threshold on that param-
eter(s) to decide whether an instance classification is
reliable.

The approaches in the first group differ in the param-
eters estimating the reliability. The oldest approach
used the posterior probability of the predicted class as
a reliability parameter (Duda et al., 2000). Newer ap-
proaches use reliability parameters based on the the-
ory of randomness (cf. (Kukar & Kononenko, 2002;
Papadopoulos et al., 2002; Proedru et al., 2002)). The
underlying scheme to compute these parameters is as
follows: (1) measure the level of randomness of the
training data; (2) classify an instance; (3) label the in-
stance with the new class and add the instance to the
training data; (4) measure the level of randomness of
the updated training data. The reliability parameter

KUYPERQCS.UNIMAAS.NL
SMIRNOV@CS.UNIMAAS.NL

NALBANTOV@QFEW.EUR.NL

is inversely proportional to the difference between the
two levels of randomness of the training data.

The second group of the approaches to classification
reliability is based on version spaces (Mitchell, 1997;
Smirnov, 2001). The key idea assumes that we can
maintain version spaces containing (close approxima-
tions of) the target classifiers. If the assumption is
correct for the training data under consideration, the
classification rule of unanimous voting applied on these
version spaces guarantees that if an instance is classi-
fied, then the instance is classified correctly; i.e., the
classification assigned to each instance has reliability
equal to one.

In (Smirnov et al., 2004) we proposed the first ap-
proach from the second group. The approach is appli-
cable for binary classification tasks. It is a combination
of version spaces and support vector machines (SVM)
(Vapnik, 1998), and it is called version space sup-
port vector machines (VSSVM). VSSVM employ the
training-data representation of version spaces (Hirsh,
1992; Smirnov, 2001). The unanimous-voting classifi-
cation rule for this representation is based on testing
version spaces for collapse. Testing is realised with
SVM.

We conducted experiments with VSSVM on datasets
from the UCI ML repository (Blake & Merz, 1998).
We found an acceptable coverage and the accuracy on
the coverage was 1 (100%), so all instances where clas-
sified with a reliability of 1. We computed the infor-
mation gain with respect to SVM and found for all
datasets a considerable information gain.

In this paper we prove that the results of our experi-
ments are not accidental, they show an important prin-
ciple of classification reliability. The principle states
that extra information on the reliability of the classi-
fications of individual instances results in information

Reliability yields Information Gain — I.G. Sprinkhuizen-Kuyper et al. 90

gain with respect to the information given by the ac-
curacy of a classification algorithm.

The remainder of the paper is organized as follows.
Section 2 formalizes the classification task. In sec-
tion 3 the notions of entropy and information gain are
summarized. Our main theorem on information gain is
proved in section 4. Section 5 explains the information
gain obtained by combining classifiers. In section 6 we
introduce VSSVM. Our experiments with VSSVM are
given in section 7. Section 8 concludes the paper.

2. Classification Task

In this paper we restrict ourselves to two-class classi-
fication tasks.

Assume that we have [training instances x; in an
n-dimensional Euclidian space R™. Each training in-
stance has a class label y; € Y, where Y = {—1,+1}.
The class labels separate the training instances into
two sets It and I~ (x; € IT iff y; = +1; x; € I~ iff
y; = —1). Given a hypothesis space H of all possible
functions h (h : R™ — Y), the classification task is to
find a function (classifier) h that accurately classifies
future, unseen data.

Usually the performance of a classifier is measured by
its accuracy. The accuracy is the proportion of cor-
rectly classified instances of a test set that has the
independently identically distributed (i.i.d.) property,
i.e. it is large enough, independent of the training set
and has a distribution over the instances correspond-
ing to the underlying distribution of all instances. So
accuracy is a global property over a large number of
instances.

In this paper we consider the classification reliability
of individual instances. The reliability r; of the classi-
fication of an individual instance x; is an estimate (in
the range [0,1]) that the classification of that instance
is correct. T'wo extreme cases are r; = 1, i.e. we know
for sure that the classification is correct, and r; = 0,
i.e. we know for sure that this instance is incorrectly
classified, and this instance belongs to the other class.

3. Entropy and Information Gain

In information theory, the notion of entropy is in-
troduced using the notion of ensembles! (MacKay,
2003). An ensemble X is a triple (z, Ax, Px), where
the outcome z is the value of a random variable,
which takes on one of a set of possible values, Ax =

!Please note the difference of the notion of ensemble in
information theory and machine learning.

{a1,a2, -+ ,a;, -+ ,ap}, having probabilities Px =
{p1,p2,-- ,pm}, with p(z = a;) = pi, pi > 0 and
Y a,eay P(@ = a;) = 1. The entropy of an ensemble
X is defined to be the average Shannon information
content of an outcome:

H(X)= Y —p(x)logzp(x) (1)

T€Ax

In machine learning the entropy of a classifier is an im-
portant measure of the quality of the classifier. In our
paper we consider two types of entropy: class entropy
and meta-class entropy.

Given a set K of classes and an i.i.d. test set Sg, the
class entropy H is defined by formula 1 if the set Ax
equals the set K and the probabilities p; € Px are
the proportions of the instances in Sy belonging to the
classes in K.

Given an i.i.d. test set Sy and a classifier A, the meta-
class entropy F(Sp|A) is defined by formula 1 if the
set Ax equals {correct,incorrect} with probabilities
p1,p2 € Px so that py = a and py = 1 — a, where
(in)correct is an event: “the classifier A is (in)correct”,
and a is the accuracy of the classifier A on the test set
So.

For both types of entropy we can define the informa-
tion gain of a classifier A with respect to an other
classifier A’ as the difference between the entropy for
A’ and the entropy for A. The lower the entropy, the
higher the information gain.

If the set Sy is divided into disjoint sets S;, the meta-
class entropy E(Sp|A) can be computed as follows:

Bl = 3

S;CSo | 0|

E(5i|4) (2)

4. Information Gain of Reliability

In this section we consider a fixed i.d.d. test set Sy of
size N and some classifier(s) having accuracy a and/or
reliability = (r1,--- ,rn). To stress on accuracy and
reliability, we will use in this section the notations F,,
for entropy based on accuracy a, and FE,., for entropy
based on reliability r, and we will skip Sy and the name
of the classifier from our notation.

Consider a classifier without reliability information. If
we know that its accuracy equals a, the entropy F, of
an i.i.d. test set equals

91 Reliability yields Information Gain — I.G. Sprinkhuizen-Kuyper et al.

E, = —alogza — (1 —a)loga(1 — a) (3)

Based on this accuracy we expect each instance of the
test set to have a reliability r; equal to a. If the test
set consists of N instances, the entropy E, equals

N
=~ Z (—alogaa — (1 — a)loga(1 —a)) (4)

where —alogaa — (1 —a)loga(1 —a) is the contribution
of each individual instance.

Suppose that the algorithm also outputs information
on the reliabity r; of each individual instance, such
that the average reliability equals the accuracy

1 N
Zﬁizzlﬁ‘ (5)

Each individual instance will contribute —r; logsr; —
(1 —7;)log2(1 — ;) to the entropy E,. of the test set.
So, the entropy of the test set will be equal to

L
E, = N Z(—H logari — (1 —7i)loga(1 —1i)) (6)

The main theorem of this paper yields that the infor-
mation gain, i.e. the difference between E, and E,
is positive for all values of the reliabilities, such that
equation 5 holds.

Theorem 1 For all values of r;, 0 < r; < 1, i =
1,2,--- , N such that equation 5 holds, the information
gain IG is positive:

IG=E,—E, >0 (7)

where the entropy E,. is given in equation 6 and the
entropy E, is given in equation 3. Moreover, IG =0
only holds when r; = a, for alli=1,2,--- /N.

Proof Let us introduce the notation f(z) =
—zlogax — (1 —) loga(1 — x) for the entropy func-
tion. This function has its range equal to [0, 1]. See
figure 1.

1

Figure 1. The entropy function f(z) = —zlogax — (1 —
z)loga(1 —).

We have to prove that IG > 0 for values r; € [0,1],i =
1,2,--- , N that satisfy equation 5. Let us consider the
function IGG, obtained from equation 7 by replacing
a in equation 3 by using equation 5:

N

N
1 1
IGG = f(5 ;ri) - % Z} fri)
Since the function f(z) is strictly concave the inequal-
ity IGG > 0 is an immediate consequence of Jensen’s
inequality (see (MacKay, 2003)). Jensen’s inequality
also implies that /GG = 0 only if all r;’s are equal.

As a consequence the information gain /G > 0 and
IG = 0 only holds when r; = a, foralli =1,2,--- | N.
O

5. Information gain by combining
classifiers

An extreme case of classifiers that use classification-
reliability information is the case of classifiers Cov that
classify a part of the instances with reliability 1, while
the remaining instances are not classified. An example
is our algorithm VSSVM presented in section 6. The
meta-class entropy of such a classifier Cov is computed
according to formula 2. The classifier Cov divides the
set Sp into two sets S7; and Sy: the set S is the cov-
ered set (all the instances in S are classified correctly
by Cov); and the set Sy is the non-covered set (all
the instances in Sy are not classified by Cowv). Since
the accuracy a of Cov on Sy is 1, the meta-class en-
tropy of the classifier on the set S; is 0 (see formula
1). Since the instances in S are not classified, the
meta-class entropy of the classifier on the set Sy is 1.
Thus, according to formula 2 the meta-class entropy
E(So|Cov) of a classifier Cov is (1 — ¢).

In order to get more information on the part of in-
stances not covered by the classifier Cov it is natural
to combine Cov with another classifier A classifying

Reliability yields Information Gain — I.G. Sprinkhuizen-Kuyper et al. 92

all instances of Sy with an accuracy a.

Consider the algorithm CovA that classifies the in-
stances of Sy that are covered by Cov according to
Cov and the remaining instances according to A. The
next theorem proves that the information gain of CovA
is positive with respect to both classifiers Cov and A.

In the theorem we need that the accuracy of the clas-
sifier A is at least 0.5 in order increasing accuracy to
result in decreasing entropy. This is no restriction at
all for two-class problems, since an algorithm with ac-
curacy below 0.5 immediately results in an algorithm
with accuracy above 0.5 by inverting all classifications
to the opposite class.

Theorem 2 Given a classifier A with accuracy a >
0.5 and a classifier Cov with coverage ¢ > 0. Suppose
that each instance in the coverage of Cov is classified
correctly with a reliability equal to 1. Then these al-
gorithms can be combined to an algorithm CovA with
information gain greater than those of A and Cov.

Proof Let the classifier A have accuracy a > 0.5 and
no reliability information. So, the entropy of A is given
by E(So|A) = f(a). Let the classifier Cov have cover-
age ¢, such that the reliability of the classification of
each covered instance equals 1. So, the entropy of Cov
is given by E(Sp|C) = 1 — ¢, since on the covered part
we have complete information, while on the remaining
part we have no information at all.

Consider the classifier CovA that uses A and Cov as
described above. Let b be the proportion of Sy that
is differently classified by A and Cov. Since, the al-
gorithm CovA follows for this proportion b the classi-
fication of Cov, the algorithm CovA has an accuracy
a =a+b.

The contribution to the entropy of CovA of the pro-
portion classified by Cov equals 0.

Let us consider the remaining proportion 1 — ¢ of Sp.
In this proportion, a proportion 1 —a — b with respect
to the the original set, thus (1 —a — b)/(1 — ¢) with
respect to the remaining part, is classified incorrectly
by A, while a proportion (a+b—c)/(1—c) is classified
correctly by A. So, the contribution to the entropy of
CovA of the proportion 1 — ¢ equals (1 —¢)f((a+b—
0/(1~c)).

So, the entropy of CovA equals:

(a+b—c)
(1—=¢)

The best classifier will classify the instances in the pro-

E(So|CovA) = (1 —) f() (8)

portion 1—c according to the algorithm A if a+b—c >
1 — a — b, while it will invert these classifications if
a+b—c<l—a-—0.

Considering the entropy E(Sp|CovA), it is smaller
than E(So|Cov) iff a+b—¢c # 1 —a —b. The en-
tropy E(Sp|CovA) is obtained from an algorithm with
accuracy a’ > a, by adding reliability information.
By theorem 1 we find that E(Sg|CovA) < f(a’), and
since 0.5 < a < o/, we conclude that E(Sy|CovA) <
E(Sp|A).

So, we conclude that E(Sp|CovA) < E(Sp|A) and
E(Sp|CovA) < E(Sp|Cov), with exception of the case
that a +b—c=1—a—b. In this case E(Sp|CovA) =
E(Sp|Cov), but almost certainly another classifier A’
will give information gain. O

6. Version Space Support Vector
Machines

In this section we illustrate our findings from sec-
tions 4 and 5 using the example of version space sup-
port vector machines (VSSVM) (Smirnov et al., 2004).
VSSVM are a new approach to classification reliability
based on version spaces (Mitchell, 1997) and support
vector machines (Vapnik, 1998). They do implicitly
maintain the version space w.r.t. training data assum-
ing that the version space does contain (close approx-
imations of) the target function. Under this assump-
tion applying the unanimous-voting classification rule
means that if an instance is classified, then it is classi-
fied correctly. Thus, VSSVM assign a reliability equal
to 1 to each instance they are able to classify.

To avoid problems with explicit version-space repre-
sentations, VSSVM employs the training data rep-
resentation (Hirsh, 1992; Smirnov, 2001). The
unanimous-voting classification rule for this represen-
tation is based on testing version spaces for collapse.
Testing is realised with SVM.

For our illustrative purposes we consider VSSVM in
the next two subsections. In subsection 6.1 we define
version spaces employed in VSSVM, formalise their
classification rule, and prove that it can be imple-
mented if it is possible to test version spaces for col-
lapse. In subsections 6.2 and 6.3 we provide the clas-
sification algorithm of VSSVM and an example.

6.1. Version Spaces

Version spaces are sets of functions h € H consistent
with training sets I and I~ (Mitchell, 1997):

93 Reliability yields Information Gain — I.G. Sprinkhuizen-Kuyper et al.

VS(It,I7) ={h € H|cons(h,(I*,I7))},

where cons is the consistency predicate defined as:

cons(h, (IT,I7)) « (¥x; € ITUT)(y; = h(x;)).

The version-space classification rule is the unanimous
voting. Given a nonempty version space VS(It,17),
an instance x € R" receives a classification y € YU{0}
as follows:

+1 if(Vh e VST, I7))(h(x) = +1)
y= =1 if(Vh e VS(IT,I7))(h(x) = —1)
0 otherwise.

The unanimous-voting rule assigns class +1 (—1) to
the instance x if VS(I*, ™) is nonempty and all func-
tions hin VS(I",I7) assign the same class +1 (—1) to
the instance. In all other cases, the class is unknown
which is denoted by 0.

VSSVM apply the unanimous-voting rule for the
training-data representation of version spaces (Hirsh
et al., 1997; Smirnov, 2001). The implementation of
the rule in this case requires testing whether the ver-
sion space is empty. The whole process can be ex-
plained by theorem 3 (Hirsh et al., 1997; Smirnov,
2001). Assume that we have a nonempty version space
VS(I*,I7) and an instance x to be classified. Then,
theorem 3 states that all the functions in VS(IT,17)
assign class +1 (—1) to x if and only if the subset
VS, I~ U{x}) (VSUT U{x},I7)) of VST, T7)
of which the functions assign class —1 (+1) is empty.
In all other cases, the class of x is unknown.

Theorem 3 If VS(I*,17) is nonempty, then for an
arbitrary instance x € R™:

(Vhe VS(IH,I7))(h(x) = +1) < VST, I-U{x}) =0,
(Vhe VST, I7))(h(x)=—1)« VS{ITU{x},I7) = 0.

6.2. Classification Algorithm

The classification algorithm of VSSVM implements
the unanimous-voting rule on version spaces in the hy-
pothesis space H. It is based on theorem 3. To test
whether version spaces are empty SVM are employed.

Given a set of training instances IT U I~, SVM with
cost parameter C' > 0 find the hyperplane that min-
imizes the sum of the inverse of the margin between

(most instances of) the sets I™ and I~ and C times
the errors introduced by those points of I and I~
that are at the wrong side of the margin. Note that
points at the wrong side of the margin are classified
correctly by SVM as long as they are between the hy-
perplane found by SVM and the hyperplane defining
the margin of their class (see e.g. (Burges, 1998).

The classification algorithm is given in figure 2. The
algorithm input is: training data sets I™ and I~; an
instance x to be classified; and the cost parameter C'
of SVM. The algorithm outputs the classification of x:
+1, —1, or O.

The classification algorithm starts by building a hyper-
plane h(C, (I, I7)). If h(C,(I",I7)) is inconsistent
with (I, 17), then the version space VS(I*,I7) is
empty in the hypothesis space H for the value of the
parameter C' and according to the unanimous-voting
rule the algorithm returns 0; i.e., the classification
of x is unknown. If the hyperplane h(C,{I*,17))
is consistent with (I, 77), then the version space
VS(I*,I7) is nonempty in H for the value of the
parameter C. In this case the algorithm builds hyper-
planes h(C, (IT, I~ U{x})) and h(C, (ITU{x},T17)). If
R(C, (I, I~ U{x})) is inconsistent with (I, I~ U{x})
and h(C,(I"™ U {x},I7)) is consistent with (I U
{x},I7), then VS(It,I~U{x}) is empty and VS(ItU
{x},I7) is nonempty in H for the value of the pa-
rameter C. This means that all the hyperplanes in
VS(IT,I7) assign class +1 to x. Thus, by theorem 3
the algorithm assigns class +1 to x. If the class +1
cannot be assigned, the algorithm checks analogously
if it can assign class —1. If both classes cannot be as-
signed, the algorithms returns 0; i.e., the classification
of x is unknown.

If there is an assumption that the version space con-
tains (close approximations of) the target hyperplane
(classifier), the classification algorithm of VSSVM re-
turns implicitly the reliability of processed instances.
More precisely,

e if an instance is classified by the classification al-
gorithm, then all the hyperplanes in the version
space assign a classification C' to the instance.
Since (a close approximation of) the target hy-
perplane is in the version space, the instance re-
ceives the same classification C' by (close approx-
imations of) the target hyperplane. This means
that the classification C of the instance is indeed
correct and the reliability of the classification C'
is 1.

e if an instance is not classified by the classifica-
tion algorithm, then the hyperplanes in the ver-

Reliability yields Information Gain — I.G. Sprinkhuizen-Kuyper et al.

94

Input: An instance x to be classified;
Training data sets I™ and I~ ;
The parameter C' of SVM;

Output: classification of x;

Build a hyperplane h

return 0.

Build a hyperplane h(C, (I, I7));
if —=cons(h(C,{I*,I7)),(I",I7)) then return 0;
(C (I, 7 ui{x}));
Build a hyperplane h(C, (IT U {x},17));
if ~cons(h(C, (I, I~ U{x})), I, T~ U{x})) and
cons(h(C, (IT U{x},17)),(IT U{x},I7)) then return +1;
if cons(h(C, (I, I~ U{x})), I, I~ U{x})) and

—cons(h(C, (It U {x}, 175 ,(ITU{x},I7)) then return —1;

Figure 2. The Classification Algorithm of VSSVM.

sion space assign different classifications to the in-
stance and we cannot determine the classification
assigned by (a close approximation of) the target
hyperplane (remember we can reason only about
the version space as a whole). Thus, in this case
we can think that the instance receives both clas-
sifications but their reliability is 0.5.

6.3. Example

We illustrate our classification algorithm on a clas-
sification task: the space H is the set of all ori-
ented lines in R?, and training data consist of the
sets I™ = {(1,0),(2,0),(1,1),(2,1)} and I~ =
{(-1,0),(—2,0),(-1,1),(—2,1)} (see figure 3). For
large C' (C' = 4+00) only the points to the right of the
three line segments through the training points (1, 0)
and (1,1) will be classified as positive and the corre-
sponding region to the left of the three line segments
through the training points (—1,0) and (—1,1) will
be classified as negative. The version space in this
case consists of all the lines not intersecting the line
segments shown. Running our algorithm with C' = 30
results in the classifications in figure 3: positively clas-
sified: +, negatively classified: *, and not classified:
0. It is clear from the figure that for C' = 30 the ver-
sion space is smaller and thus the coverage is larger,
than for C = +o0o. In the figure some unclassified
points (e.g., the point (—1,—0.1)) are expected to be
classified. Such points can correspond to solutions of
the SVM that are not uniquely determined. In such a
case the hyperplane defining the solution can be trans-
lated a bit while resulting in the same minimum of the
inverse of the margin and the cost term, resulting in
separation for some solutions while other solutions will
not separate.

3 4 # % #000000000000000000000+++++
% #* #000000000000000D000000++++ +
G *¥XEAODODOOOOOOOENEEAAO00FEDF T+

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

++++++++++++++++++++++++++++

+

1 + T4+ +a
+++++++++++++++++++++++++++++

05,

R T R E R N I T
B KR K CE X ¥ B ¥ K L K R KD OO b E bbb
OF % % % ¥ W F 2 5 £ ¥ K F XD DD+ + +At++EAF 4
FAE KRR A eF DA X D0 00O+ FD RSt
_D_s‘:**‘*/‘-"/‘****305090‘:****:\'\{_*****
K % & % 4% 4 5 2 £ DD0DDODDODDDD+ &4 &+ S+ 4
$ e 4 e 888000000000 0OF 4+ 54+ PR
SF % % x kw9 R 3 0000000000000+ 4+ + ++ + 7%
$ %% %% %4200000000000D0D00+++4++ 444
$ %% %0%#000000000000D00000+++++++
Y wss*¥so0DODODooODOODOODODOOOOO+
$#%#%$000000000000000A000000+++++
H 1 o R H 3

Figure 3. llustration of the version spaces for C = +o0
(bounded by the lines) and C = 30 (I marked by A, I~
marked by V, positively classified: +, negatively classified:
%, and not classified: O).

7. Experiments

We implemented VSSVM in WEKA (Witten & Frank,
2000) using the SMO implementation of SVM (Platt,
1998). We experimented with VSSVM using polyno-
mial function kernels (P) and radial-basis function ker-
nels (RBF). The method for evaluation was the leave-
one-out method. We searched for values of the pa-
rameters (E (exponent) and C for P and G (gamma)
and C for RBF) resulting in the highest coverage for
the leave-one-out method. In table 1 we provide the
best results we obtained for 7 datasets (from the UCI
ML repository (Blake & Merz, 1998)) with VSSVM
together with the results of SVM.

To measure the performance of VSSVM we com-
puted the information gain of VSSVM w.r.t. to SVM
(we used the same parameter settings for SVM and

95 Reliability yields Information Gain — I.G. Sprinkhuizen-Kuyper et al.

Data Set Parameters Cussvm Ayssvm A sym €vssum Esvm 1G

Heart-Statlog P, E=2.0, C=1730 0.563 1.0 0.730 0.42 0.84 0.42
Heart-Statlog RBF, G=0.2 , C=2182 0.407 1.0 0.737 0.59 0.83 0.24
Hepatitis P, E=1.4, C=11.7 0.800 1.0 0.800 0.00 0.72 0.72
Hepatitis RBF, G=0.02 , C=2140 0.697 1.0 0.819 0.29 0.68 0.39
Horse Colic P, E=1.3, C=154.5 0.508 1.0 0.783 0.49 0.75 0.26
Horse Colic RBF, G=0.015 , C=12030 0.549 1.0 0.791 0.45 0.74 0.29
Tonosphere P, E=1.1, C=5200 0.778 1.0 0.892 0.22 0.49 0.27
Tonosphere RBF, G=0.05, C=4030 0.772 1.0 0.903 0.22 0.46 0.24
Labor P, E=1.25, C=1.17 0.842 1.0 0.877 0.12 0.54 0.42
Labor RBF, G=0.02, C=61 0.842 1.0 0.930 0.16 0.37 0.21
Sonar P, E=1.0, C=3340 0.707 1.0 0.740 0.15 0.83 0.68
Sonar RBF, G=0.65, C=0.664 0.625 1.0 0.856 0.36 0.59 0.23
W. Breast Cancer P, E=3, C=58.6 0.850 1.0 0.936 0.15 0.34 0.19
W. Breast Cancer RBF, G=0.8 , C=70.9 0.825 1.0 0.943 0.16 0.32 0.16

Table 1. Coverage cyssvm 0f VSSVM and accuracy asym of SVM. The accuracy ayssvm of VSSVM on the coverage is 1. The
coverage of SVM is 1. P is a polynomial kernel with exponent E. RBF is a radial-basis function kernel with parameter G.
The cost parameter is C. The other variables are: e,ssum, the entropy of VSSVM when SVM classifies the instances not
covered by VSSVM; esum, the entropy of SVM, and IG, the information gain of VSSVM w.r.t. SVM.

VSSVM; see table 1). The entropy of SVM was com-
puted using the proportions of correctly and incor-
rectly classified instances estimated by the accuracy
asym- The coverage of VSSVM is denoted by cyssum
The entropy of VSSVM was computed as the weighted
sum of the entropy of the set of reliably classified in-
stances and the entropy of the set of unclassified in-
stances (according to formula 2). Note that the en-
tropy of the sets of reliably classified instances is 0
since the accuracy of VSSVM on the sets of reliably
classified instances is 1. In order to classify the in-
stances not covered by VSSVM using SVM, we re-
mark that each instance in the coverage of VSSVM
will be correctly classified by the SVM algorithm with
the same parameters, since that algorithm is used in
VSSVM to decide on the separability. Thus, for this
combination of algorithms we have Cyssom < Qspm-
Thus the proportion @sym — Cyssum Of the original set
is correctly classified in that set, while the propor-
tion 1 — agyy, is incorrectly classified. So the accu-
racy an. on the set not covered by VSSVM equals
(asvm — Cossum)/ (1 — Cossum), Tesulting in a reliability
Ty = Gne, corresponding to equation 5. The contribu-
tion of the set not covered by VSSVM to the entropy
is equal to:

(1 - Cvssvm)(*anc l092anc - (1 - anc) lOgQ(l - a'nc))-

All cases in table 1 resulted in a considerable informa-
tion gain. We especially mention the hepatitis dataset
(the case of polynomial kernel) of which the informa-
tion gain is 0.72 (we even obtained perfect informa-
tion!) and the labor dataset (the case of polynomial

kernel) of which the information gain is 0.42.

8. Conclusion

For practical application of machine learning algo-
rithms knowledge about the reliability of individual
instances is absolutely necessary, since decisions have
to be taken over individual cases.

This paper proves that reliability information results
in information gain. This result is illustrated by a
new approach to classification reliability called version
space support vector machines (VSSVM). The exper-
iments show that VSSVM achieve an accuracy of 1 on
the instances they are able to classify for data sets from
the UCI repository. The information gain of VSSVM
w.r.t. SVM was computed and was considerable for the
data sets investigated.

A research question for future research is how the in-
formation gain provided by the reliability information
can be used to improve the accuracy of the existing
machine learning algorithms. We plan to investigate
this question by exploiting combinations of VSSVM
based on ensemble techniques.

In addition, we foresee two future directions of research
that are specific for VSSVM. The first one is to extend
VSSVM for classification tasks with more than two
classes. The second direction is to apply VSSVM when
it is not possible to find consistent hyperplanes w.r.t.
the training data. In this context we consider to apply
the generalized version spaces (Mitchell, 1997).

Reliability yields Information Gain — I.G. Sprinkhuizen-Kuyper et al. 96

9. Acknowledgements

We thank the anonymous referees for their valuable
comments.

References

Blake, C., & Merz, C. (1998). UCI repository of machine
learning databases.

Burges, C. (1998). A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery, 2, 121-167.

Duda, R., Hart, P., & Stork, D. (2000). Pattern classifica-
tion. Willey. second edition.

Hirsh, H. (1992). Polynomial-time learning with version
spaces. Proceedings of the Tenth National Conference on
Artificial Intelligence (AAAI-92) (pp. 117-122). Menlo
Park, CA: AAAT Press.

Hirsh, H., Mishra, N., & Pitt, L. (1997). Version spaces
without boundary sets. Proceedings of the Fourteenth
National Conference on Artificial Intelligence (AAAI-
97) (pp. 491-496). Menlo Park, CA: AAAT Press.

Kukar, M., & Kononenko, I. (2002). Reliable classifica-
tions with machine learning. Proceedings of the 13th Eu-
ropean Conference on Machine Learning (ECML-2002)
(pp. 219-231). Springer.

MacKay, D. J. C. (2003). Information theory, inference
and learning algorithms. Cambridge University Press.

Mitchell, T. (1997). Machine learning. New York, NY:
McGraw-Hill.

Papadopoulos, H., Proedru, K., Vovk, V., & Gammer-
man, A. (2002). Comparing the bayes and typicalness
frameworks. Proceedings of the 13th FEuropean Confer-
ence on Machine Learning (ECML-2002) (pp. 345-356).
Springer.

Platt, J. (1998). A fast algorithm for training support vec-
tor machines (Technical Report). Microsoft Research.

Proedru, K., Nouretdinov, I., Vovk, V., & Gammerman, A.
(2002). Transductive confidence machines for pattern
recognition. Proceedings of the 13th European Confer-
ence on Machine Learning (ECML-2002) (pp. 381-390).
Springer.

Smirnov, E. (2001). Conjunctive and disjunctive version
spaces with instance-based boundary sets. Doctoral dis-
sertation, Department of Computer Science, Maastricht
University, Maastricht, The Netherlands.

Smirnov, E., Sprinkhuizen-Kuyper, 1., & Nalbantov, G.
(2004). Unanimous voting using support vector ma-
chines. BNAIC-2004: Proceedings of the Sizteenth
Belgium-Netherlands Conference on Artificial Intelli-
gence (pp. 43-50).

Vapnik, V. (1998). Statistical learning theory. NY: John
Wiley.

Witten, 1., & Frank, E. (2000). Data mining: Practical
machine learning tools and techniques with java imple-
mentations. Morgan Kaufmann.

Reinforcement Learning using Optimistic Process Filtered Models

Funlade T. Sunmola
Jeremy L. Wyatt

FTS@QCS.BHAM.AC.UK
JLWQCS.BHAM.AC.UK

School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

Abstract

An important problem in reinforcement
learning is determining how to act while
learning sometimes referred to as the
exploration-exploitation dilemma or the
problem of optimal learning. The problem is
intractable, usually solved through approx-
imation such as by being optimistic in the
face of uncertainty. In environments with in-
herent determinism, arising for example from
known process templates, acting conforms to
certain acceptable conventions that limit ex-
ploration. We present an algorithm for the
learning problem in which action selection
is through optimistic models filtered to con-
form to conventions specified by a process
language. We show results to illustrate the
approach and its benefits for task transfers.

1. Introduction

A reinforcement learning (RL) agent learns by itera-
tively performing actions in the world and using re-
sulting experiences to decide future actions. The ex-
periences encapsulate among other things a reward or
reinforcement on the actions taken. The environments
in which agents act are usually stochastic and typi-
cally modelled as Markov Decision Processes (MDPs).
Model-based RL agents build MDP models of their
environments then plan and act using the models.
Model-based approaches are advantageous in domains
where real-world actions are expensive and computa-
tion time is relatively cheap.

Central to reinforcement learning is the challenges of
exploration-exploitation trade off (Wyatt, 1997) and
seeking to profit from structure inherent in the task
environment (Dearden, 2000). The former is crucial
for controlling action selection and is, typically for a
reinforcement learning agent, an intractable problem
of knowing how to act while learning so as to maximise
lifetime performance. This inevitably involves balanc-

ing exploitation of current knowledge and exploration
to discover new knowledge that might lead to better
performance in the future. The latter contributes to
alleviating the problems of scaling up to large domains
by exploiting the natural organisation of the task en-
vironment.

In Markov Decision Processes (MDPs) the optimal
Bayesian solution to the trade off problem is well
known, but intractable (Martin, 1967; Bellman, 1961).
Many approximate ways of dealing with the trade off
in RL have been proposed. A new heuristic method
was recently introduced (Wyatt, 2001) that brings
together ideas from several recent approaches (Kael-
bling, 1990; Wiering & Schmidhuber, 1998; Kearns &
Singh, 1991). The heuristics provides a framework for
exploration control in reinforcement learning based on
optimistic model selection (OMS) from a density over
possible models. The heuristics was shown to outper-
form existing methods when optimised. A structured
version of the heuristics for factored MDPs using dy-
namic Bayesian networks is presented in (Sunmola &
Wyatt, 2003). Essentially, through OMS, it is possible
to perform a structured optimistic search on a density
of possible process models while allowing a prior dis-
tribution over the space of models to be incorporated
in the learning steps.

In this paper we study the leverage offered to the
agents while learning to carry out a new task in an
environment with inherent determinism arising, for ex-
ample, from known process templates, value and pol-
icy constraints acquired typically from experiences on
related tasks. We focus here on process (transition)
model determinism and the constraints imposed on
possible process models due to availability of conven-
tions to which the learnt process models must con-
form. The templates are specified by a process (action)
language to which there is an underlying context free
grammar. The process templates provide added in-
formation and it would seem likely that acting based
on optimistic models filtered through the templates
should improve learning.

Reinforcement Learning using Optimistic Process Filtered Models — Funlade T. Sunmola and Jeremy L. Wyatt 98

The paper is organised as follows: in section 2 we start
by introducing reinforcement learning and the explo-
ration control problem. Also contained in the section is
an overview of the standard OMS algorithm. We con-
centrate on explicitly represented state-based MDPs.
In section 3 we discuss the idea of constraining explo-
ration and present a new OMS algorithm called most
optimistic first that allows for process filtering. Sec-
tion 4 describes empirical results on a circular flags
world task and the paper is concluded in section 5
with directions for future research.

2. Reinforcement Learning

Our agent is learning to control a stochastic environ-
ment modelled as an MDP. An explicitly represented,
state based, MDP is simply a 4-tuple (S, A, P, R). In
the tuple, S is a set of distinct states, A is a set of
actions, pf; € P is a transition function that captures
the probability of reaching state j after executing an
action a at state i such that i,j € S, and r € R is a
reward function mapping S into real-valued rewards.
The state transition coefficients pf; obey standard sto-
chastic constraints hence they have the following prop-
erties 0 < pf; < 1and), pf; = 1. The decision prob-
lem for an agent in the MDP is to find a policy =«
that optimises the expected discounted total reward
V =E(;2, 7" re), where r; is the reward received
t steps into the future and v € [0,1] is a discount fac-
tor.

2.1. Exploration Control Problem

In Bayesian formulation of the problem, we assume
that there is a space P of possible transition functions
(parametric models) for the MDP and that there exists
a prior probability density over this space. Given that
a state ¢ € S in the process has IV possible succeeding
states when an action a is taken, then the transition
function from that state action pair is a multinomial
distribution over the outcomes:

ﬁia:{pglvp?27"'7p?N} (1)

The possible transition functions from ¢, a are the pos-
sible p,°.

A convenient, natural conjugate, choice of prior distri-
bution over the p;* is Dirichlet density:

r N,lm?. N ma 1
) = S T it o)

and the density is parameterised by the m{; > 0 for all
j. The transition functions p;* may be chosen based on

prior information available for the process or initialised
to non-informative uniform values.

We observe process transitions. From our choice of
likelihood function and prior distribution, it follows
directly that the ensuing posterior distribution will be
Dirichlet too with parameters m?}l. For a single tran-
sition i ~% 7 the update rule is m%l = m‘i”; + 1. The
density for the multi-state case follows directly from
this since the densities over the one step transition
functions for all state action pairs are independent.
The density f(P|M) for a possible transition function
P € P for the MDP is therefore simply the product
of the f(p;*|m¢) over all 4. The density is parame-
terised by the matrix M = [m;] where M € M. In
a Bayesian framework, we choose a prior matrix M’
which specifies our prior density over the space of pos-
sible models. The additional information from a se-
quence of observations is captured in a count matrix
F. The posterior density given these observations is
therefore simply parameterised by M” = M’ + F.

Given the usual squared error loss function, the
Bayesian estimator of expected return under the opti-
mal policy is the expectation of the value function V;
in our MDP with unknown transition probabilities:

Vi(M) = E[Vi|M] = /P Vi(P)f(PIM)dP (3)

where V;(P) is the value of ¢ given the transition func-
tion P. We know from the central result of both Bell-
man and Martin that when this integral is evaluated
we transform our problem into one of solving an MDP
with unknown transition probabilities, defined on the
information space M x S:

Vi(M) = maz, {Zﬁ?j(M)(r?ﬁvV}(T{}(M)))} (4)

in which, for convenience, the transformation on M
due to a single observed transition i 43" j is denoted
(T5(M)), pi;(M) is the marginal expectation of the
Dirichlet, and i 18 the reward associated with the
transition i <% j. This shows how the Bayesian esti-
mate of value elegantly incorporates the value of future
information. The optimal solution to our exploration-
exploitation trade off problem is thus to act greed-
ily with respect to the Bayes Q-values. The solution
to the problem is however intractable because it in-
volves dynamic programming over a tree of informa-
tion states. Approximate solutions may be found by
either simply using the certainty equivalent (CE) es-
timate constructed by replacing T; z‘;(M) with M, ap-
proximate the integral by random sampling, or select
models optimistically in the face of uncertainty.

99 Reinforcement Learning using Optimistic Process Filtered Models — Funlade T. Sunmola and Jeremy L. Wyatt

2.2. Optimistic Model Selection

The goal of model selection is to identify the one
model, from a set of competing models, that best cap-
tures the regularities underlying the cognitive process
of interest. The OMS method (Wyatt, 2001) inte-
grates ideas from a popular family of approximate
approaches to the exploration-exploitation trade off
which typically use some instantiation of the heuris-
tic ‘be optimistic in the face of uncertainty’ (Kael-
bling, 1990; Wiering & Schmidhuber, 1998; Meuleau
& Bourgine, 1999). OMS integrates the instantiation
idea with the Bayesian view of exploration by select-
ing an optimistic model P,,; from P using probability
intervals calculated based on f(P|M). Wyatt suggests
two ways of selecting P,,:, which were termed simple
and full OMS. In simple OMS we are optimistic only
about hypothesised transition to an imaginary termi-
nal state. In full OMS we can be optimistic about
transitions to other states too.

2.3. Full OMS

Following an initialisation step (step 1), the main loop
(steps 2-5) of an OMS-oriented solution approach to
the exploration-exploitation trade off problem is or-
ganised as follows:

Step 1: initialise process values and model parame-
ters.

Step 2: select action based on the current value es-
timate, interact with environment and observe
transition.

Step 3: update parameter matrix in standard way,
based on the observed transition.

Step 4: select an optimistic model P,;.

Step 5: do value backup using Ppp.

In the full OMS, P, is selected as follows. Given
state action pair i, a we order its successors by the
current estimate of the value function, in descend-
ing order. We then calculate the lower and upper
bounds of the (1 — a) probability interval for each
transition. We construct an optimistic transition func-
tion by allocating the maximum probability mass to
states early in the ordering while keeping all proba-
bilities within their lower and upper bounds. For ex-
ample, consider a process shown in Figure 1 at state
¢ = 1 under action a and with four observed succes-
sor states j = [2,4,3,1]. The successor states are or-
dered according to their value function estimates in
descending order and we select a full optimistic model
Doy = 10.38,0.32,0.20,0.10].

Once p,,; ; is selected, the state action pair i, a is
then backed up using the optimistic one step transition
function that results. The relevant Bellman equation
is:

§ (M) =3 Poyn,iy (M) + ymazar {&5 (M)} (5)

where pg,, ;.(M) are the transition probabilities ac-
cording to Fy,p:. The agent selects the action with the
highest optimistic value .

Current Value
Estimate
(0.27,0.38) 2 30
1 (0.13,0.32)
4 24
3 15
1 8

OptimisticModel state1—= [2,4,3,1] = [0.38, 0.32, 0.20, 0.10]

Figure 1. An example process at state ¢ = 1 under action
a with four successor states. Bounds on probabilities for
each transition are shown as (lowerbound, upperbound).

3. Constraining Exploration

We consider feasible regions P’ € P defined as the
set of points in the model space for which the MDP
satisfies all specifications on its behavior. By select-
ing models that belong only to the feasible region we
constrain exploration to relevant parts in the space of
possible process models. The integral of equation 3 is
constrained to the following.
Vi) = E7M) = [vipypeinae
P’ € P represents the feasible region where the model
parameters are such that the MDP and, consequently,
the learning agent satisfy behavioral requirements.

In this work, we do not attempt to evaluate the above
integral. Instead, the feasible region is approximated
using a process template and we attempt to select op-
timistic models that comply with the approximated
feasible region. The optimal policy is the point P at
which the expected return V;(M) is maximised given
the feasible region defined by the process template. In
the sections that follow, we introduce a process de-
scription language that specifies the template and de-
scribe an algorithm for selecting conforming optimistic
models.

Reinforcement Learning using Optimistic Process Filtered Models — Funlade T. Sunmola and Jeremy L. Wyatt 100

3.1. Process Description Language

A process description language is a specialised lan-
guage (or grammar) that helps express an MDP pre-
cisely and compactly in a system of words that can
be understood by an agent and its learning algorithm.
Central to the process description of an MDP is an
action language component. The action description
language (Gelfond & Lifschitz, 1993) which was intro-
duced in 1992 became very popular particularly for
model checking (Bultan, 2000) and has been designed
to come up with a specification language which de-
scribes the effect of actions in a simple, elegant and
natural way. In general, action languages are for-
mal models specifically designed to specify actions and
their effects.

Formal languages (or automata) constitute a corner-
stone of computer science (Salomaa, 1973). A formal
language is normally defined by an alphabet and for-
mation rules. The alphabet of a formal language is a
set of symbols on which the language is built. Some of
the symbols in an alphabet may have a special mean-
ing. The formation rules specify which strings of sym-
bols should be considered as well-formed, often called
words, expressions, formulas, or terms. The forma-
tion rules are usually recursive, they postulate that
such and such expressions belong to the language in
question or establish how to build well-formed expres-
sions from other expressions belonging to the language.
Formation rules are sufficient for defining simple lan-
guages. More syntactically complex languages can be
defined by means of finite automata, grammars, regu-
lar expressions or certain operations.

In a grammar system we have an initial symbol and a
set of rewriting rules, which state how a word is derived
from another. A grammar defining formal language £
is a quadruple (Ly, L7, Lgr, Ls), where Ly is a finite
set of nonterminals, Ly is a finite set of terminal sym-
bols, Lg is a finite set of productions, and Lg is an
element of L. The set Ly of terminal symbols is L’s
alphabet. Nonterminals are symbols representing lan-
guage constructs. The sets Ly and Ly should not in-
tersect. Lg is called the start symbol. Productions are
rules of the form: prod, — prody, where both prod,
and prod, are strings of terminals and nonterminals,
prod, contains at least one nonterminal.

3.2. Optimistic Process Filtered Models

Filtering is the problem of estimating the state of a
system as a set of observations becomes available on-
line. A process filter is predicated on the ideas of the
general filtering problem. Given a process template
based upon a process description language £, a process

Table 1. Main loop of the OMS algorithm with Process Fil-
tering

Optimistic Process Filtered Model Selection

begin
Initialise ¢, prior parameter matrix m, process
description language £, and exploratory value
function &
repeat
observe current state x.
choose an action a based on value function &,
breaking ties randomly.
do a and observe transition z < y.
update parameter matrix m.
until your ARTDP algorithm stops
choose state @
for each action b
find ﬁoz;t using most-optimistic-first
update &;° using equation 5
update t — ¢t + 1.
end

filter estimates the importance of a process model P;
for an MDP, attaching weight w; to the model. A
weight is conceptually the probability of the process
model given the language.

The model with maximum weight is selected as the
most conforming process model. Feasible process
models are approximated as those whose weights are
greater than a specified threshold g i.e. Pr(FP;|L) > 3,
with 3 typically small ~ 0.

We add a filter component to the standard OMS al-
gorithm. The filter component discourages process
models which have a zero conformance probability. It
takes as input an optimistic model, passes the model
through the process language and return state tran-
sitions in the optimistic model that are not in con-
formance with the specified language. The main loop
of the OMS algorithm incorporating process filtering
in an asynchronous real time dynamic programming
(ARTDP)framework is shown in table 1. Any other
asynchronous methods may be used with the OMS-
algorithms in a convenient way.

Search of the feasible model space is conducted by us-
ing a full OMS procedure to first obtain the most op-
timistic model for the MDP at the current time step.
The most optimistic model is then passed through the
process filter component. If all transitions of the op-
timistic model conform to the language the most op-
timistic model is selected and the state action pair is

101 Reinforcement Learning using Optimistic Process Filtered Models — Funlade T. Sunmola and Jeremy L. Wyatt

Table 2. A description of process shown in Figure 1.

Language fragment for a sample process

** greatestsuccstate is the state that has the largest
transition probability in the set of successors to the
current state under action (act)

** Prob(i &% j) is the transition probability for state
¢ to state j under action act

var := {greatestsuccstate}
operators := {mult,>}

state_ltransitions(act):
greatestsuccstate := 2;

act

Prob(1 ~» 1) > mult(0.5, Prob(greatestsuccstate));

then backed up using the selected optimistic model.
Otherwise, if there are non-conforming transitions, we
reapply the full OMS algorithm on the non-conforming
transitions.

To illustrate, assume the process language of table 2

applies to the example of Figure 1. The language spec-

ifies transition from state 1 to state 2 (ie. 1 g 2)

as having the largest probability in the set of succes-
sors of state 1. Using the current optimistic proba-
bility estimates for transitions from state 1, the tran-
sition probability of 1 21 s expected to be greater
than 0.5 x 0.38 = 0.16 according to the process lan-
guage. The lower bound for the transition 1 2 s
reset to 0.16, defining a feasible region for the model.

The current optimistic process model is updated to
Pty =[0.38,0.32,0.14, 0.16] as shown in Figure 2.

Current Value
Estimate
(0.27,0.38) 2 30
1 (0.13,0.32)
4 24
3 15
(0.16, 0.22)
u| &a;ted
P 1 8

OptimisticModel ~ state = [2,4,3,1] =[0.38, 0.32, 0.14, 0.16]

Figure 2. An extension of example shown in Figure 1, al-
lowing for the language fragment described in table 2

4. Empirical Results

To test the optimistic methods presented in this paper,
we used the optimistic model selection algorithms with
and without process filtering in learning how to behave
in a reinforcement driven environment. We employed
a flags world domain similar in principle to the one
described in (Dearden, 2000) where an agent attempts
to collect flags and get them to a goal.

repair

forward

reverse

Il trackA
[]trackB

F flag

Figure 3. The reinforcement learning task in a three action
circular flags world composed of twelve cells and two binary
flags positioned at cells 3 and 9. Cell 12 is the start and
goal cell.

We devised a circular flags world shown in Figure 3
that contains twelve cells and two binary flags. The
agent navigates the flags world using an automatic
guided vehicle (agv) that may occasionally breakdown.
At any given time, flags in the world may be either set
or unset and the agv may have a status of either faulty
or not faulty. In all, the flags world have 12 x 22 x
2 = 96 possible states. In the flags world instance of
Figure 3, the start and goal positions are located in
cell 12 while the flags (marked ‘F’ in the Figure) are
positioned in cells 3 and 9. The cells in the flags world
are divided into sections which in our experiments we
labeled as track A and track B. The agent receives re-
ward on reaching the goal cell based on the number of
flags collected.

Initially, the agent starts at the start cell with an agv
that is not faulty and all flags unset. The agent nav-
igates the world with three possible actions forward,
reverse, and repair moving the agent forward to the
next cell, backwards to the previous cell and carrying
out repairs when the agv is faulty, respectively. The
7/th flag is set only if the agv is not faulty and when
the agent executes an action at the cell containing the
flag. Once set, the flag may only be unset at the goal
cell. All the flags are unset once the agent executes an
action at the goal cell. Transitions from one cell to an-

Reinforcement Learning using Optimistic Process Filtered Models — Funlade T. Sunmola and Jeremy L. Wyatt 102

Table 3. A description of the circular flags world instance
used in the experiments

Circular flags world instance with 96 states and 2 flags.

** greatestsuccstate is the state that has the largest
transition probability in the set of successors to the
current state under action (act)

** Prob(i,act,j) is the transition probability for state 4
to state 7 under action act

action := { forward | reverse | repair }

operators := {move, not, override, tol, add, mult, tog-
gle, trackfactor, ingoalcell, inflagcell, flagisset, faulty}
var := {greatestsuccstate,curstate,altsuccstate}

doingForwardReverse(action,curstate):
greatestsuccstate := move(action, curstate);
altsuccstate := move(toggle(action, ‘action’), curstate);
if (inflagcell, not(flagisset), not(faulty))
greatestsuccstate:=override(greatestsuccstate,flagisset);
altsuccstate := override (altsuccstate, flagisset);
if (ingoalcell)
greatestsuccstate:=override(greatestsuccstate,
not(flagisset));

if (faulty)

Prob(curstate,action,altsuccstate) := tol(0.14, 0.02);
if (action == ‘forward’)
Prob(curstate,action,curstate) := tol(0.2, 0.01);

else Prob(curstate,action,curstate) := tol(0.3, 0.01);
Prob(curstate,action,greatestsuccstate):=

add (mult(trackfactor(curstate,action),Prob(curstate,
action, curstate)), Prob(curstate,action,altsuccstate));

doingRepair(action,curstate):
if (faulty)
if (ingoalcell) greatestsuccstate := toggle (over-
ride(curstate,not(flagisset)), ‘fault’);
else greatestsuccstate := toggle(curstate,‘fault’);

Prob(curstate,action,greatestsuccstate):=t0l(0.945,0.013)

Prob(curstate,action,curstate) := t0l(0.045, 0.013);

other is stochastic for all three actions. Inherent in the
flags world are structural dependencies. For example,
due to the flags, the probability of transitions from one
cell to another does not depend on flags setting.

We carried out our experiments on a specific instance
of the circular flags world of Figure 3. The task to
learn is specified with a reward of 10 for setting a sin-
gle flag and 100 for setting both flags. We choose a
non-informative prior matrix with zero transitions for
all entries except for transitions leading to an imagi-
nary state which we set to 1. The template provides
information about the process particularly at states in
which the agv is faulty.

In addition, available to the agent, is a template

(shown in table 3) that specifies a fragment of the
process. The process fragment described in table 3
consists of two action modules. The doFowardRe-
verse module applies to the forward and reverse ac-
tions, and the doingRepair module applies to the re-
pair action. In each of the modules, given the cur-
rent state (curstate) and the current action, the agent
can determine the state (greatestsuccstate) which has
the largest transition probability amongst the succes-
sor states to the current state. In deriving the great-
estsuccstate, operators move and override are used.
Move is a function that takes as input an action and
the current state then returns the next state in the
flags world when the action is performed successfully,
ignoring requirements for flag settings. Override takes
as input a state and a flag setting then returns a corre-
sponding state in which the flag variable has the same
setting as the flag setting parameter passed to it.

Also specified in the action modules are guides for the
transition probability from the current state to the
greatestsuccstate under a given action. The specifica-
tion uses function tol which takes two floats (fl1, fl2)
and returns a tolerance range fly &+ flo. Also used is
the function trackfactor that returns a number for a
given action and state. Trackfactor is set as follows.
For forward action, trackfactor returns 3.0 if the cur-
rent state is in track A and 2.4 for track B. For reverse
action, trackfactor returns 1.33 for both tracks A and
B.

400 - Opti mal Policy

350 ;,

w
S
=]

T

i “;'

N

a

=]
T

o0 AN
o | W ;‘\‘ | l 1” (il M |
Filtering M I "‘

Discounted total reward —
.)
o o
o o
T T

il
G

“H‘) ! /
/wl //V ﬂ/#iaandardcws

100~

50 4 ‘
W

.)
500 1000 1500 2000 2500 3000 3500 4000
Time steps —

Figure 4. Plot of discounted total rewards over time for the
OMS algorithms in comparison with Optimal Policy on a
circular flags world instance averaged over 10 trials.

Performance of the learning agent can be measured
in several ways. To account for exploration and ex-

103 Reinforcement Learning using Optimistic Process Filtered Models — Funlade T. Sunmola and Jeremy L. Wyatt

ploitation tradeoff we measured the discounted total
reward to-go at each point at each time step. More pre-
cisely, suppose the agent receives the following rewards
r1,T2,...,7 in a run of time length ¢. The reward-to-
go at time ¢’ is defined to be 3,5, 77" ~*. This esti-
mate is reliable only for points that are far enough from
the end of the run. In Figure 4, we plot the discounted
total reward-to-go for each of the OMS algorithms in
comparison to the optimal policy, as a function of time
averaged over 10 runs. As expected, the optimum pol-
icy gave the largest discounted total reward, averaging
350 from start. The most optimistic first algorithm
based on optimistic model selection with filtering re-
sulted in an improved performance when compared to
standard OMS without filtering. The slight gain is at-
tributed to the additional information made available
to the most optimistic first algorithm. Whilst these
are preliminary results, it thus offer prospects for ac-
complishing task transfers as the template provides a
constraining influence on exploration early in learning
for related tasks covered by the template.

5. Conclusions and Future Work

We have extended the standard optimistic model se-
lection algorithm to incorporate a process filter. The
process filter discourages the selection of models that
do not conform to a specified process description lan-
guage. We studied a version of the OMS algorithms
called most optimistic first. Preliminary results indi-
cate that by filtering the process models the most op-
timistic first algorithm is able to constrain exploration
with prospects of improving learning performance. Ar-
eas of further work include establishing the efficiency
of the most optimistic first algorithm, improving its
performance, and studying other filtering methods. In
addition, we are studying additional leverage obtained
using factored representations. Finally, other impor-
tant areas of future work are the sensitivity of learning
to variations in process templates and the linkage be-
tween the process templates and the prior information
matrix.

References

Bellman, R. E. (1961). Adaptive control processes: A
guided tour. Princeton University Press.

Bultan, T. (2000). Action language: A specification
language for model checking reactive systems. Pro-
ceedings of the 22nd International Conference on
Software Engineering (ICSE 2000) (pp. 335-344).

Dearden, R. (2000). Learning and planning in struc-

tured world. Department of Computer Science, Uni-
versity of British Columbia, Canada: Ph.D.Thesis.

Gelfond, M., & Lifschitz, V. (1993). Representing ac-
tion and change by logic programs. Journal of Logic
Programming, 17, 301-321.

Kaelbling, L. P. (1990). Learning in embedded systems.
Dept. of Computer Science, Stanford: Ph.D.Thesis.

Kearns, M., & Singh, S. (1991). Near-optimal rein-
forcement learning in polynomial time. Proceedings
of the Fifteenth International Conference on Ma-
chine Learning, 12, 993-1001.

Martin, J. (1967). Bayesian decision problems and
Markov chains. New York: Wiley.

Meuleau, N., & Bourgine, P. (1999). Exploration of
muti-state environments: Local measures and back-
propagation of uncertainty. Machine Learning, 35,
117-154.

Salomaa, A. (1973).
Press.

Formal languages. Academic

Sunmola, F., & Wyatt, J. (2003). Optimistic model
selection in structure based reinforcement learning.
Proceedings of the Sizth European Workshop on Re-
inforcement Learning (pp. 31-32).

Wiering, W., & Schmidhuber, J. (1998). Efficient
model-based exploration. From Animals to Animats
5: Proceedings of the Fifth International Conference
on Simulation of Adaptive Behaviour (pp. 223-228).

Wyatt, J. L. (1997). Ezploration and inference in
learning from reinforcement. University of Edin-
gurgh, Dept. of Artificial Intelligence, Edingurgh
University: Ph.D.Thesis.

Wyatt, J. L. (2001). Exploration control in reinforce-
ment learning using optimistic model selection. In-
ternational Conference on Machine Learning (ICML
2001), 593-600.

Experiments with Relational Neural Networks

‘Werner Uwents
Hendrik Blockeel

WERNER.UWENTS@QCS.KULEUVEN.AC.BE
HENDRIK.BLOCKEEL@QCS.KULEUVEN.AC.BE

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract

The fundamental difference between proposi-
tional and relational learners is the ability to
handle sets. Most current relational learners
handle sets either by aggregating over them
or by testing the occurrence of elements with
specific properties, but a non-trivial combi-
nation of both remains a challenge. In this
paper, we present a neural network approach
to solve relational learning tasks. These re-
lational neural networks are in principle able
to make such a combination. We will discuss
some experiments that we conducted to test
the capacity of our approach.

1. Introduction

Neural networks have been applied to solve many dif-
ferent learning tasks, but their use is still limited to
relatively simple data types. Feedforward neural net-
works, for example, only deal with propositional data,
where each tuple consists of a fixed-size vector of real
values. Recurrent networks are able to process se-
quences. However, few attempts have been made to
extend the data domain of neural networks beyond
this point. Allowing different types of relations in
the dataset and relationships between tuples would be
a powerful extension. We will present an approach,
based on standard neural networks, to learn concepts
over such relational data.

The most fundamental difference between proposi-
tional and relational learning is the ability to handle
sets. These sets are the result of following one-to-many
and many-to-many relationships in the dataset. Some
approaches to deal with these sets already exist, but
they are often biased as will be explained in the next
section. There are also some approaches, based on
neural networks, that deal with problems very similar
to the relational learning task.

The existing work that is probably closest to our ap-
proach, is a line of work in the neural networks com-

munity on learning from structured data using recur-
sive neural networks or folding architecture networks
(Goller & Kiichler, 1996; Sperduti & Starita, 1997;
Frasconi et al., 1998). These authors describe how to
learn from structured data (e.g. logical terms, trees,
graphs) and discuss tasks like the identification of sub-
structures. Those tasks relate to the tasks we consider,
more or less as inductive logic programming (ILP) re-
lates to our approach and some existing results on
learnability of recursive neural networks may carry
over to our setting. However, they do not specifically
consider the problem of learning aggregate functions
over sets and the problem of different types of data.
They also focus on learning in graph structures instead
of learning in relational databases.

There has also been some research in using neu-
ral networks for multi-instance problems (Ramon &
De Raedt, 2000). These problems can be seen as a
special case of relational learning because they deal
with learning over a single set. If one instance in the
set is positive, the sample as a whole will be classified
as positive. The basic idea behind multi-instance net-
works is to use a feedforward network to feed all the
instances into and to combine all the results with an
aggregation function, namely the maximum function.

Neural logic programs (Ramon et al., 2002) are also
somewhat similar to our relational neural networks,
with as main differences that they are described in a
first order logic framework and that, just like for multi-
instance neural networks, specific aggregate functions
are encoded in advance by the user, instead of learned.
Typically, they represent logical conjunctions and dis-
junctions.

Our approach is also based on neural networks, but it
is oriented specifically towards relational data domains
and it does not rely on predefined aggregate functions
or concepts. We believe that from the point of view
of relational learning, the ability to learn aggregate
functions is a crucial advantage of this approach.

In the next section, we will discuss the difference be-

Experiments with Relational Neural Networks — Werner Uwents and Hendrik Blockeel 106

Order

Customer

Figure 1. Example of a relational dataset.

tween selection and aggregation over sets. Section 3
gives a definition of the structure and training of re-
lational neural networks. The results of some experi-
ments with these networks will be presented in section
4. We end with some conclusions about the presented
approach in section 5.

2. Combining Selection and
Aggregation

The learning task that we are considering, is a re-
lational learning task. This means that we have a
dataset with a number of different relations. For each
relation, a set of tuples is given. Each tuple has a
number of attribute values and can also have relation-
ships with other tuples. We want to classify all tuples
belonging to some target relation Rr, based on their
own attribute values and the attribute values of related
tuples.

The specific problem that arises in relational datasets,
is how to deal with sets. These sets are the result
of one-to-many or many-to-many relationships. An
example dataset containing the relations customer and
order is given in figure 2. Customer tuples can be
linked to a number of order tuples. These linked tuples
form a set. The first customer is linked to two orders,
the second to three, so the number of tuples in these
sets can vary. This is the reason why we can not reduce
this dataset to a propositional dataset.

Relational learners can be divided into two categories,
depending on how they handle one-to-many and many-
to-many relationships, or, equivalently, how they han-
dle sets of tuples (Blockeel & Bruynooghe, 2003). Most
current relational learners are restricted to one of these
categories. This imposes a significant, possibly unde-
sirable bias on these learners.

Methods in the first category, selective methods, han-
dle sets by looking at properties of their elements. A
set S is examined by testing a condition of the form

Jx € S: P(x). This P(x) can be a complicated cri-
terium, but it only considers the attributes of a single
tuple. Using this method, we can learn a concept like
‘people with at least one son’.

Aggregating methods, the second category, compute a
function F'(S) over a set S of tuples. This reduces the
set to a single value. One example of such a function is
the cardinality function that simply counts the number
of elements in the set. With such a function, we could
express a concept like ‘people with two children’.

Many approaches to relational learning rely on some
kind of propositionalization of the relational data. On
the resulting propositional dataset, a propositional
learner can be used. An example of this is the RE-
LAGGS system (Krogel & Wrobel, 2001). The propo-
sitional data is extended with some extra attributes,
which are the result of evaluating predefined aggre-
gate functions over the related data. This method,
however, cannot learn undefined aggregate functions.
How combinations of aggregation and selection could
be learned, is not explained by the authors.

This is a problem when we want to express a concept
like ‘people with two sons’. This concept clearly com-
bines aggregation and selection: we have to select all
males from the set of children and then count them
to check this criterium. Other concepts may require
different kinds of combinations of selection and aggre-
gation. As aggregation and selection are both very
natural operations, a relational learning system should
be able to combine both in the models it builds. How-
ever, these combinations can be quite complicated and
diverse, and they may depend on the structure of the
dataset and the relations in it.

For instance, probabilistic relational models (PRMs),
as defined by (Getoor et al., 2001), cannot learn the
concept of ‘people having two sons’ without having
separate relations for sons and daughters. Manually
introducing these separate relations of course presup-
poses that the user is aware of the possible importance
of these concepts. Alternatively, one could predefine
a large number of aggregate functions that have ap-
propriate selection conditions built in. In that case,
a search through a space of aggregate functions is
needed. The power of this approach largely depends
on which aggregate functions are defined.

In inductive logic programming (ILP), one could for
instance define aggregate functions as background
knowledge. Then, e.g., the rule p(X) :- count(Y,
(child(X,Y), male(Y)), 2) expresses the concept
of people having two sons. The main difficulty here
is that the second argument of the count metapred-

107 Experiments with Relational Neural Networks — Werner Uwents and Hendrik Blockeel

icate is itself a query that is the result of a search
through some hypothesis space. It is not obvious how
such a search should be conducted. The many results
in ILP on how to search a first-order hypothesis space
efficiently (Nienhuys-Cheng & De Wolf, 1997), do not
consider the case where the resulting hypothesis will
be used as the argument of a metapredicate.

ILP-like approaches that do not include aggregate
functions, can still express the concept as, e.g., ‘the
person has a male child « and a male child y and = # y
and there does not exist a child z such that z is male
and z # x and z # y’. But in practice, the length of
this rule, as well as the occurrence of a negation, make
it difficult to learn. The comprehensibility of the result
is also negatively influenced.

Knobbe et al. (2002) are, to our knowledge, the first
to present a method that performs a systematic search
in a hypothesis space (in this case, that of ‘selection
graphs’) where hypotheses combine aggregation and
selection. Their approach is however limited to mono-
tone aggregate functions, which limits its applicabil-
ity somewhat (for instance, sum and average are not
monotone), and to selecting aggregate functions from
a limited set given by the user.

Our relational neural networks would have as advan-
tage over the other approaches that they can learn an
aggregate function, without that function being pre-
defined and with selection possibly integrated in it.
Training the relational neural network automatically
constitutes a search through aggregations and selec-
tions simultaneously.

3. Relational Neural Networks

Assume that we have a dataset with a target relation
Rt and some other relations Ry,..., Ry. We denote
the attribute sets of R; by U;. For any relation R, we
define

e Si(R): R; € S1(R) iff each tuple ¢t € R is con-
nected to exactly one tuple in R;. This means R
has a one-to-one or many-to-one relationship with
R;, in which R participates completely.

e Sp1(R): R; € So1(R) iff each tuple t € R is con-
nected to at most one tuple in R;. This is, again,
a one-to-one or many-to-one relationship between
R and R;, but now with partial participation.

e Sy(R): R; € Sy(R) iff each tuple t € R is con-
nected to zero, one or more tuples in R;. This is
a one-to-many or many-to-many relationship be-
tween R and R;, with complete or partial partic-

ipation.

e Sy(R): R; € Sy(R) iff R; is a relation of the
relational dataset, but not in Si(R), Soi(R) or
Sn(R). This means R is not directly connected
to Ri.

Given a tuple t € Rp, we want to classify it based
on the information contained in the tuple and in any
tuples linked to this tuple. For a relation R;, we use
U; to denote the original attribute set of that relation.
All attributes in U; must be real values, as this is the
only type of input a neural network can process. Other
types of attributes need to be converted to real values
first. We use I; to denote the attribute set actually
used as input to our neural network. One might expect
that I, = U;, but there will be some small differences:

e For Ry, the target relation, It = Up—{C}, where
C is the class attribute.

e For any R; € Sp1(R), there can be a tuple ¢ €
R for which there exists no tuple s € R; that ¢
is directly connected to. As neural networks do
not have a distinguished encoding for null values,
we will use an extra attribute E; that indicates
whether the link to R; yielded a tuple or not. I; =
U, U {El}

e The same problem arises for R; € Sy (R), so here
also I, =U; U{E;}.

Based on the above, we can construct a relational neu-
ral network that classifies ¢t € Rt based on its own
attribute values as well as those of related tuples. For
each tuple t € Ry, we construct a tuple ¢ with at-
tributes

I U (U

:R; €S (RT)US()l (RT)

owyu(U

i:R; ESN(RT)

Oni)

with I; as defined above, O1; a set of attributes that
are the output values of a feedforward neural network
taking I, as input values and Op; a set of attributes
that are the output values of a recurrent neural net-
work taking I; as input values. This tuple ¢’ has then
a fixed set of attributes which can be used to feed into
a feedforward neural network. The output of this net-
work gives us the final result of our classifier.

In the described approach, sets resulting from rela-
tions in Sy (Rr) are processed using recurrent neural
networks. These networks are able to process tuple se-
quences of indefinite length. However, we are present-
ing the tuples to the network in some imposed order

Experiments with Relational Neural Networks — Werner Uwents and Hendrik Blockeel 108

Figure 2. Example of the structure of a relational neural
network.

while the sets are actually unordered. As we will see,
this fact can be exploited in training the network.

The precise structure of the different neural networks
in our classifier must be defined now. We take both
the feedforward and recurrent networks to have two
layers. The ideal number of neurons in each layer needs
to be tuned by conducting experiments, there is no
straightforward rule to determine this.

For the recurrent networks, we also have to define
which recurrent connections are allowed. The most
expressive recurrent network is a fully connected net-
work in which each neuron has connections with all
other neurons. But as this makes the number of con-
nections increase quadratically when the number of
neurons increases, we prefer the Jordan recurrent net-

work (Jordan, 1986).

In this kind of recurrent network, each neuron in the
second layer is connected with all neurons in the first
layer. The number of recurrent connections is then
ny1 X ng, with my and no the number of neurons in
the first and second layer respectively. This gives us a
good trade-off between expressiveness and the number
of neurons and connections in the network.

A small example of a relational network is given in
figure 3. The two attributes of the target relation are
fed into the feedforward part of the network (white
neurons). The two attributes of the tuples of another
relation, linked to the target relation, are fed into the
recurrent part of the network (black neurons). The
output of this recurrent part is used as extra input to
the feedforward part.

The technique of adding to ¢ the O1; and Op; at-
tributes that summarize related tuples, can be re-
peated for those tuples, thus also incorporating infor-
mation in indirectly linked tuples. In the end, this
yields a hierarchical structure where each node is a

neural network that takes the attributes of a relation
and the outputs of its children as input and propagates
the result to its parent node.

Training this relational neural network can be done
with an adapted form of the standard backpropagation
algorithm. The feedforward neural networks in the re-
lational network are trained with standard backpropa-
gation. The recurrent networks are trained with back-
propagation through time (BPTT) (Werbos, 1990).
The key idea to BPTT is the unfolding of the recurrent
network into a feedforward network.

As many folds (copies of the original network) are
created as there are instances in the input sequence
and recurrent connections are converted into feedfor-
ward connections between successive folds. The result-
ing feedforward network is trained using the standard
backpropagation algorithm, but with one important
restriction: since all folds have been created by repli-
cating the original network, weights in all folds should
be the same.

The fact that sets are fed into the recurrent network
in some imposed order, can be used to improve our
training algorithm. This can be done by reshuffling
the sequence and presenting the set to the recurrent
network in a different order. T'wo possibilities can be
considered: reshuffling after every training iteration
and expanding the training set by adding reshuffled
copies of the initial instances.

4. Experiments

To evaluate this approach, we have performed exper-
iments on the musk and trains datasets. The musk
dataset, available from UCI (Merz & Murphy, 1996),
is an example of a multi-instance learning task. As
mentioned above, this can be seen as a special case
of relational learning. In this dataset, each exam-
ple describes a molecule. For each example, several
poses (instances) are given, each with 166 attributes.
If at least one of these poses has some property, the
molecule is said to be musk.

There are two versions of this dataset, musk 1, con-
taining 92 molecules, and musk 2, containing 102
molecules, which differ in size. Musk 2 has more con-
formations per molecule than musk 1. Several learning
approaches have been compared on this dataset (Diet-
terich et al., 1997). To be able to compare our results
with these results, we conduct our experiments in the
same setting, namely ten-fold cross-validation.

Overall results are summarized in table 1 (results for
multi-instance neural networks come from Ramon and

109

Experiments with Relational Neural Networks — Werner Uwents and Hendrik Blockeel

Table 1. Classification accuracies on the musk dataset.

method musk 1 | musk 2
iterated-discrim APR 92.4% | 89.2%
GFS elim-kde APR 91.3% 80.4%
GFS elim-count APR 90.2% 75.5%
GFS all-positive APR 83.7% 66.7%
all-positive APR 80.4% 72.6%
simple backpropagation 75.0% 67.7%
multi-instance neural networks 88.0% 82.0%
C4.5 68.5% 58.8%
1-nearest neighbor (euclidean distance) / 75%

neural network (standard poses) / 75%

1-nearest neighbor (tangent distance) / 79%

neural network (dynamic reposing) / 91%

relational neural networks 89.1% | 85.3%

Table 2. Training configurations for the musk dataset (n1 = number of neurons in first layer of the recurrent component,
n2 = number of neurons in second layer of the recurrent component, n = learning rate, 4 = momentum term).

| | dataset | ni | no | n | o | reshuffle iterations | accuracy
1 | musk1 | 50 | 10 | 0.5 | 0.2 | every it. 190 84.8%
2 | musk1l | 50 | 10 | 0.5 | 0.2 none 110 88.0%
3| musk1l | 50 | 10 | 0.5 | 0.2 | 30 copies 10 89.1%
4 | musk2 | 80 | 20 | 0.5 | 0.2 | every it. 40 76.5%
5| musk2 | 80 | 20 | 0.5 | 0.2 none 240 85.3%
6 | musk2 | 40 | 15 | 0.5 | 0.2 none 50 77.5%
7| musk2 | 40 | 15 | 0.5 | 0.2 | 5 copies 20 80.4%

De Raedt (2000), other results from Dietterich et al.
(1997)). The tangent distance and dynamic reposing
technique require computation of the molecular sur-
face, which cannot be done using the feature vectors
included in the dataset. A comparison of different con-
figurations for the relational neural networks, is shown
in table 2.

These results show that relational neural networks are
performing quite well. They give results that are a
lot better than simple backpropagation and even bet-
ter than multi-instance neural networks. The lat-
ter can only be the result of better parameters be-
cause the hypothesis space searched by relational neu-
ral networks, Hrnn, is a superset of the hypothesis
space Hpsrnn searched by multi-instance neural net-
works. This means that the hypothesis in Hgryy that
best approximates the target hypothesis, must also be
in Hyynvy. The accuracy of iterated-discrim axis-
parallell rectangles (iterated-discrim APR), the best
method, is still significantly higher, but this method is
specifically designed for this kind of problems.

When we look at the differences between different con-
figurations for training the relational neural networks,
we see that reshuffling the training data after every
iteration gives poor results. However, expanding the
training set with reshuffled copies does improve train-
ing. Although the training set becomes larger, the ac-
curacy is better and the necessary number of iterations
is reduced. It also helps to avoid overfitting.

Figure 3 shows us why reshuffling after every itera-
tion is not working well. Reshuffling after every iter-
ation actually changes the training set continuously.
This means that the error function also changes con-
tinuously, and what was the gradient in the previous
iteration may be unrelated to the gradient in this it-
eration. This makes it difficult for the backpropaga-
tion algorithm to converge. The mean square error on
training and test set is very jagged in this case (see
figure 4(a)). This is not the case for adding reshuffled
copies to the training set (see figure 4(b)). Adding
reshuffled copies has a similar effect as enlarging the
dataset with new samples.

Experiments with Relational Neural Networks — Werner Uwents and Hendrik Blockeel 110
Figure 3. Mean square error (MSE) for training and test set in function of the number of training iterations.
' ' "I'raining Error ' ' ﬁ'raining Error

0.5 Test Error - 8 0.5 Test Error ———— A
0.4 0.4 B

w 03 w 03 B

) 0

= =
0.2 0.2 b
0.1 0.1 B

0 1 1 1 1 0 1 T
0 200 400 600 800 1000 0 200 400 600 800 1000
iterations iterations

(a) With reshuffling after every iteration.

(b) With adding reshuffled copies.

Table 3. Accuracies on the trains dataset, comparing relational neural networks with first order decision trees using
random forrests (RNN 1 is without reshuffling, RNN 2 is with reshuffled copies).

| dataset | concept | samples | noise | RNN 1 | RNN 2 | FORF
trains 1 | simple 100 none 80% 95% 100.0%
trains 2 | simple 100 5% 78% 89% 92.8%
trains 3 | simple 1000 none | 100% 100% | 100.0%
trains 4 | complex 800 none | 89.4% | 97.8% 96.1%
trains 5 | complex 800 5% 84.5% | 89.8% | 90.3%

The second tested dataset is the train dataset based
on the Michalski train problem. This problem
was invented by Ryszard Michalski around 25 years
ago (Michalski, 1980). The aim is to find a concept
which explains why trains are travelling eastbound or
westbound. Every train consists of a number of cars,
carrying some load. The concept is based on the prop-
erties of these cars and their loads.

We used a generator for this train problem to create a
dataset (Michie et al., 1994). Two different concepts
are used for the generation, a simple and a more com-
plicated. The simple concept defines trains that are
eastbound as trains with at least two circle loads, the
other trains are westbound. The more complicated
concept defines westbound trains as trains that have
more than seven wheels in total but not more than
one open car with a rectangle load, or trains that have
more than one circle load; the other trains are east-
bound.

First-order decision trees using random forests (Vens
et al., 2004) are another approach to tackle the prob-
lems combining selection and aggregation. We com-
pare our results with results obtained with the latter

method. A complete overview of the results is given in
tables 3 and 4. The used datasets are generated to test
different settings: a simple versus a more complicated
concept and noise versus no noise. The tests were done
with five-fold cross-validation.

What we see for the simple concept (datasets 1, 2 and
3), is that 100 samples is not enough to learn the con-
cept completely. Taking a dataset with 1000 samples,
however, we can reach 100% accuracy. Adding 5%
noise results in an accuracy that is a little more than
5% lower, so our classifier seems to be rather noise
resistant.

For the more complicated concept (datasets 4 and 5),
the results are quite similar to those for first-order de-
cision trees using random forests. The effect of noise is
the same as for the simple concept. For both the sim-
ple and complicated concept, there is a remarkable dif-
ference between training without reshuffling and with
added reshuffled copies.

111

Experiments with Relational Neural Networks — Werner Uwents and Hendrik Blockeel

Table 4. Training configurations for the trains dataset (n1 = number of neurons in first layer of the recurrent component,
n2 = number of neurons in second layer of the recurrent component, n = learning rate, 4 = momentum term).

dataset |n1 | na | n | I | reshuffle

iterations | accuracy
trains 1 | 20 | 10 | 0.1 | 0.0 none 250 80%
trains 1 | 20 | 10 | 0.1 | 0.0 | 10 copies 100 95%
trains 2 | 20 | 10 | 0.1 | 0.0 none 300 8%
trains 2 | 20 | 10 | 0.1 | 0.0 | 20 copies 150 89%
trains 3 | 20 | 10 | 0.1 | 0.0 none 40 100%
trains 3 | 20 | 10 | 0.1 | 0.0 | 10 copies 10 100%
trains 4 | 60 | 40 | 0.2 | 0.1 none 300 89.4%
trains 4 | 60 | 40 | 0.2 | 0.1 | 20 copies 200 97.8%
trains 5 | 60 | 40 | 0.2 | 0.1 none 200 84.5%
trains 5 | 60 | 40 | 0.2 | 0.1 | 20 copies 130 89.8%
5. Conclusions forests.
We have presented a novel, neural network based ap-
References

proach to relational learning. The approach consists of
constructing a neural network that reflects the struc-
ture of the relational dataset. This relational neu-
ral network may contain both feedforward and re-
current parts. The training algorithm for this rela-
tional network is based on the standard backpropaga-
tion (through time) algorithm.

Our approach was tested on two datasets. It turned
out that relational neural networks are performing
quite well compared with other methods. They can
deal with noisy data and the expressive power of Jor-
dan recurrent networks seems to be sufficient to learn
the desired concepts.

While many open questions remain regarding the op-
timal architecture of these relational neural networks,
their learning behaviour, the optimal learning method-
ology, etcetera, we did obtain a first important result
from these experiments: the ‘copy reshuffling” method
to temove the effect of set ordering is clearly superior
to the other reshuffling method. Its effects include a
higher final accuracy, less iterations needed to train the
network and reducing the risk of overfitting. These ad-
vantages outweigh the disadvantage of having a larger
training set.

Acknowledgements

Hendrik Blockeel is a postdoctoral fellow of the Fund
for Scientific Research of Flanders (FWO-Vlaanderen).
Werner Uwents is supported by IDO/03/006 ‘Develop-
ment of meaningful predictive models for critical dis-
ease’. We thank Celine Vens for generating the train
dataset and obtaining results with first-order random

Blockeel, H., & Bruynooghe, M. (2003). Aggregation
versus selection bias, and relational neural networks.
1JCAI-2003 Workshop on Learning Statistical Mod-
els from Relational Data, SRL-2003, Acapulco, Mex-
ico, August 11, 2003.

Dietterich, T. G., Lathrop, R. H., & Lozano-Pérez, T.
(1997). Solving the multiple-instance problem with
axis-parallel rectangles. Artificial Intelligence, 89,
31-71.

Frasconi, P., Gori, M., & Sperduti, A. (1998). A gen-
eral framework for adaptive processing of data struc-
tures. IEEE-NN, 9, 768-786.

Getoor, L., Friedman, N.; Koller, D., & Pfeffer, A.
(2001). Learning Probabilistic Relational Models.
In S. Dzeroski and N. Lavrac (Eds.), Relational data
mianing, 307-334. Springer-Verlag.

Goller, C., & Kiichler, A. (1996). Learning task-
dependent distributed representations by backprop-
agation through structure. Proceedings of the

IEEE International Conference on Neural Networks
(ICNN-96) (pp. 347-352).

Jordan, M. I. (1986). Attractor dynamics and paral-
lelism in a connectionist sequential machine. Pro-
ceedings of the Fighth Annual Conference on Cogni-
tive Science (pp. 531-546).

Knobbe, A., Siebes, A., & Marseille, B. (2002). Involv-
ing aggregate functions in multi-relational search.
Principles of Data Mining and Knowledge Discov-
ery, Proceedings of the 6th European Conference
(pp. 287-298). Springer-Verlag.

Experiments with Relational Neural Networks — Werner Uwents and Hendrik Blockeel

112

Krogel, M.-A., & Wrobel, S. (2001). Transformation-
based learning using multi-relational aggregation.
Proceedings of the Eleventh International Confer-
ence on Inductive Logic Programming (pp. 142-155).

Merz, C., & Murphy, P. (1996). UCI
repository of machine learning databases
[http://www.ics.uci.edu/ "mlearn/mlrepository.html].
Trvine, CA: University of California, Department of
Information and Computer Science.

Michalski, R. (1980). Pattern Recognition as Rule-
Guided Inductive Inference. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2, 349—
361.

Michie, D., Muggleton, S., Page, D., & Srinivasan,
A. (1994). To the international computing commu-
nity: A new east-west challenge (Technical Report).
Oxford University Computing Laboratory, Oxford,
UK. Available at ftp.comlab.ox.ac.uk.

Nienhuys-Cheng, S.-H., & De Wolf, R. (1997). Foun-
dations of Inductive Logic Programming, vol. 1228
of Lecture Notes in Computer Science and Lecture
Notes in Artificial Intelligence. New York, NY,
USA: Springer-Verlag.

Ramon, J., & De Raedt, L. (2000). Multi instance neu-
ral networks. Proceedings of the ICML-Workshop on
Attribute- Value and Relational Learning.

Ramon, J., Driessens, K., & Demoen,
B. (2002). Neural logic programs.
http://www.cs.kuleuven.ac.be/”janr/nlptechrep.ps,
to be published as a technical report.

Sperduti, A., & Starita, A. (1997). Supervised neural
networks for the classification of structures. IEEE
Transactions on Neural Networks, 8, 714-735.

Vens, C., Van Assche, A., Blockeel, H., & Dzeroski, S.
(2004). First order random forests with complex ag-
gregates. Proceedings of the 14th International Con-
ference on Inductive Logic Programming (pp. 323—
340). Springer.

Werbos, P. J. (1990). Back propagation through time:
What it does and how to do it. Proceedings of the
IEEE (pp. 1550-1560).

Evolving Neural Networks for Forest Fire Control

Marco Wiering

MARCOQCS.UU.NL

Intelligent Systems Group, Utrecht University, Padualaan 14, 3508TB, Utrecht

Filippo Mignogna
Presidio Siemens, I.C.P., via Daverio 6. 20100 Milano

Bernard Maassen

FMIGNOGN@CS.UU.NL

BMAASSEN@QCS.UU.NL

Computer Science Department, Utrecht University, Padualaan 14, 3508TB, Utrecht

Abstract

Forest fire control is a challenging research
problem involving a non-stationary environ-
ment and multiple cooperating agents. In
this paper we describe the application of en-
forced sub-populations (ESP) to evolve neu-
ral network controllers that solve different
instances of the forest fire control problem.
Our system works by initially generating sub-
goals and assigning subgoals to the different
agents. The subgoal generator and task as-
signment module are modelled as multi-layer
perceptrons which are evolved to minimize
the damage done by the spreading fire. The
experiments show that agents learn to stop
forest fires and that incremental learning can
be used to solve more complex problems.

1. Introduction

Forests play a crucial role for sustaining the human
environment and because forest fires are among the
largest dangers for forest preservation, it is not a sur-
prise to see increasing state expenditures for forest fire
control. Despite of this, annually millions of hectares
of forests are still destroyed by fires. If we look at
the way current forest fires are attacked, then usually
the fire boss makes an initial attack plan to stop the
spread of the fire. This plan consists of a number of
fire-lines that break the fire-propagation. Then he al-
locates resources from neighboring resource bases to
fulfil all subplans. After this the field-commander is
in control and reevaluates the plans constantly based
on a stream of online information (Wiering & Dorigo,
1998). In case of very large fires, a first attack plan
usually does not work. Therefore in this case, no-one
knows how to deal with the problem and the forest fire

control team usually waits until the weather changes
which can last as long as three weeks. This of course
results in large forest areas being destroyed. There-
fore we want to study the application of intelligent
algorithms for dealing with large forest fires.

Forest fires as expanding processes resemble disease
epidemics and volcanic eruptions, and for all these
catastrophes propagation lines should be removed.
E.g., to control disease epidemics roads leading away
from diseased areas should be severely controlled so
that the disease cannot spread itself further. In forest
fire control there are three ways to deal with the prob-
lem; removing fuel, removing oxygen, and decreasing
temperature. Removing fuel can be done by bulldoz-
ers or other ground agents that cut away trees or grass
and this is the most effective way for dealing with large
forest fires. For removing oxygen or decreasing tem-
perature, airborne agents can be used that throw wa-
terbombs containing chemicals, but without cutting
fire-lines this method is not sufficiently effective to
stop a large forest fire (although airborne agents are
helpful to decrease the propagation speed of the fire).
Therefore, there are basically three types of attacks:
airborne attack, a ground attack, and a mixed attack
employing both air- and ground-forces. In this paper
we concentrate on ground-attacks, although our simu-
lator also allows for mixed attacks.

In previous work, forest fire control is done using
planning algorithms. One of the first attempts was
Phoenix (Cohen et al., 1989), a simulated environment
modelling forest fires in Yellowstone National Park.
Agents, which included watchtowers, fuel trucks, heli-
copters, bulldozers, and a coordinating fire boss, were
used to fight the fire using planning techniques. The
CHARADE project (Ricci et al., 1994; Avesani et al.,
1997; Avesani et al., 2000) is a working environmen-
tal decision support system for managing first inter-

Evolving Neural Networks for Forest Fire Control — Marco Wiering et al. 114

vention in forest fires. The planning system inte-
grates case-based reasoning and constraint satisfaction
(Avesani et al. 1997) and is integrated with a geo-
graphic information system (GIS). The case-based rea-
soning system uses a database of previous plans to deal
with forest fires in the south of France to select appro-
priate plans for the current fire. The problem of this
approach is that there are no plans available for very
large forest fires, which have never been controlled suc-
cessfully. Instead, our approach relies on simulation
and learning, where a large number of plans is sim-
ulated and after each simulation the plan-generating
policy is adapted based on results of previous plans.

For learning to control forest fires, we use enforced
sub-populations (Gomez & Miikkulainen, 1998) which
is a promising evolutionary algorithm for evolving
neural network controllers. Basically, enforced sub-
populations (ESP) is an approach to solving reinforce-
ment learning (RL) problems using direct policy search
instead of learning a value function. The disadvan-
tages and advantages of direct policy search versus
value function based RL are still being debated, but
we think that direct policy search based on evolution-
ary algorithms makes it faster to find initially good
controllers, although the fine tuning of the controllers
is more difficult (due to the small amount of policies
that work better instead of worse compared to the
best previous policy). Nevertheless, they might also be
combined in some fruitful way, and we intended to re-
search first direct policy search since the environment
is composed of multiple agents and due to the highly
non-stationary forest fire dynamics, learning accurate
value functions is very difficult.

In the next section we will describe the forest fire sim-
ulator called “Bushfire”. In section 3, we explain how
we use the ESP algorithm for evolving neural network
controllers implementing forest fire control policies. In
sections 4 and 5 we present experimental results. Fi-
nally in section 6 we discuss the obtained results and
describe possibilities for future research.

2. Forest Fire Simulator: Bushfire

We study forest fire control by a learning multi-agent
system. For this we developed a forest fire simulator,
named Bushfire, based on a stochastic cellular automa-
ton where single cells may contain different kinds of
trees, grass, water, digged paths, and cells may be on
fire or not. The fire starts at some place and then prop-
agates itself according to wind strength and direction,
and humidity.

The basic variable entity of a cell is its fire activity. If a

cell is ignited the cell starts to release fire activity to its
neighboring cells according to its type, wind direction
and speed, and humidity. After a cell has received
more fire activity than a specific threshold for this cell-
type (e.g. the threshold for trees is larger than for
grass) the cell starts to burn as well and releases fire
activity to its neighbours. After some time the fuel of
a cell becomes depleted and the cell enters a burned
state that is not able to release fire activity any longer.
By setting the different parameters, we can construct
forest fires which are moving slowly or very fast. This
enables us to deal with a large number of different
difficulty levels for controlling them. One of the most
important parameters here is the trade-off between the
number of steps a bulldozer can make compared to
the number of steps the fire is able to propagate itself.
Setting this parameter to a high value means that it is
easy to perform many steps to control the fire, thereby
making the success ratio much larger and the size of
the burned area much smaller.

The goal of the multi-agent system is to control the
propagation of the forest fire. This they can do by
cutting fire-lines around the fire. Therefore the ques-
tion becomes: where should the agents cut fire-lines to
minimize the damage done by the forest fire?

The problem can in principle be described by a Markov
decision process consisting of states, actions for the
agents, transition rules to go from one state to the
next when the agents have executed their actions, and
a reward function. The number of states is huge; first
of all there are at least 10,000 discrete cells in our sim-
ulations which have their own properties such as con-
sisting of grass, trees, digged paths, etc. Furthermore
the properties of a cell also consist of the fire activity
and the remaining unburned fuel which are continu-
ous numbers. Thus, it is clear that even if we could
measure all these properties, we cannot take the whole
state information into account when selecting an ac-
tion. The actions are much simpler, basically there are
8 of them; drive north, south, east, west, and dig north,
south, east, and west. The transition rules are com-
plicated and depend on the cellular automaton and its
parameters. Finally, the reward function should han-
dle the case that an agent is burned in the fire, that
the fire is contained by the fire-lines, that special cells
are put on fire (e.g. houses), and the size of the area
being burned.

To solve the problem, we propose an algorithm that
generates subgoals after which the bulldozers cut fire-
lines between subgoals. The planning between sub-
goals is currently done using a simple linear path-
planner, but can also be done using the A* algo-

115 Evolving Neural Networks for Forest Fire Control — Marco Wiering et al.

rithm that takes into account that cutting fire-lines
over grass can be done much faster than cutting away
trees. The main problem is to generate optimal sub-
goals. This is a difficult control problem, since each
forest fire looks different and the state space is huge.

The method we devised for controlling forest fires con-
sists of four steps:

e Generate initial subgoals around the fire
e Enhance subgoals using local information

e Assign each bulldozer to a specific path from one
subgoal to another subgoal

e Dig lines between subgoals using a path-planner

Some replanning of subgoals is done automatically if a
straight line from an agent to a subgoal goes through
the fire. We explain these steps in more detail below.

2.1. Generating Initial Subgoals

For controlling forest fires, we developed a representa-
tion using 8 subgoals in all wind-directions around the
fire. If the agents are able to cut fire-lines around the
fire by going through and connecting all subgoals, the
fire has been contained. For generating the subgoals
we use 8 lines in all 8 directions to place each subgoal.
First we use a fixed offset from the centre of the fire
(this can be seen as a non-learning approach) and then
we learn with a neural network how much the offsets
should be displaced in all 8 directions. This neural
network can receive as inputs the distance and angle
to the fire front, the wind and speed direction, and
some measures of the average humidity, fuel, and the
threshold of the fire front neighbouring cells. Figure 1
shows how initial subgoals are generated.

2.2. Subgoal Enhancer

The previously described subgoal generator only used
global information such as wind speed and direction
and distance to the fire front as inputs in the neural
network. Sometimes it is necessary to look at local
characteristics as well for generating subgoals. E.g.
if there is a house or river nearby, this may change
the optimal plan. The task of the subgoal enhancer
module is to learn to map local information to a small
change of the position of the subgoal. The enhancer
neural network looks at all initially generated subgoals
and receives local information given the place of the
subgoal to compute an evaluation. Then the subgoal
may be changed some squares in the cellular automa-
ton and using the new input generated by the new

WIND

Fixed offset
|

\Sulj-h oals

Figure 1. Around the fire we first construct 8 subgoals us-
ing a fixed offset. After this, the neural networks receive
information from each subgoal and learn to displace it from
the fire. The 8 subgoals will then be used for the bulldoz-
ers, although replanning may change them afterwards.

relative local surroundings, the neural network com-
putes a new evaluation. If some neighboring square
has a higher evaluation than the current square, we
continue this local hillclimbing strategy with the new
square and otherwise we stop.

2.3. Task Assignment

Although we assume that the number of resources is
fixed before a simulation (the number of resources can
be chosen by the user), we still have to assign (allocate)
the subgoals to each individual agent. This is also done
using neural networks. The neural networks obtain
information such as the distance from a subgoal to
the agent, the wind speed and direction, the distance
from an agent to the fire front, and which subgoals
have already been chosen before, to choose for each
agent a single subgoal to go to. If there are multiple
agents, all agents examine all subgoals from which a
list of evaluations is obtained by propagating subgoal
and agent information through the neural networks,
after which first the highest evaluation is taken and
that agent is allocated to that subgoal. Then, the
fact that this agent is allocated to a subgoal is used as
input in the neural network for computing the subgoals
of the next agents, after which the second agent is
allocated to its highest subgoal etc. In this way the
task assignment module is responsible for learning to
coordinate the multi agent team. There is no need for
communication etc., since we alternatively assign each
agent to a subgoal and this information is used by the
task assignment module to assign the other agents one
by one.

Evolving Neural Networks for Forest Fire Control — Marco Wiering et al. 116

2.4. Path Planning

Once subgoals are generated and allocated to each
agent, the agent uses a path-planner to dig a fire-line
from its current position to the subgoal. In case the
simulation just started, the agents first go to a subgoal
before digging a fire-line thereby driving with higher
speed to reach a subgoal. We implemented a simple
path-planner that constructs more or less a direct line
to the subgoal. If it is detected that this straight line
goes through the fire, the subgoal’s location is changed
by the subgoal generation module now taking into ac-
count different input information. The other path-
planner is A* and can take into account that going
close to the fire is dangerous, and that digging through
grass goes faster than digging through trees, but since
A* is much more time consuming, we only used the
simple path-planner in our current experiments.

§
o
oCT
') I's Bl
O
oy~
e = = | TASK ENVIRONMENT
(
E SR | : :
O O LN /.]

O

')
[

Fitness

Figure 2. Enforced Sub-Populations (ESP) constructs a
neural network by taking one neuron from each sub-
population. The resulting neural network is tested and
the evaluation is used to evolve novel sub-populations of
neurons.

3. Enforced Sub-Populations for
Evolving Neural Networks

For learning to generate subgoals and assign agents
to them, we use Enforced Sub-Populations (ESP).
ESP (Gomez & Miikkulainen, 1998) is an evolution-
ary method for evolving neural networks. It works by
keeping different subpopulations containing neurons
that have weighted connections to inputs and outputs
(see Figure 2). To generate a neural network, one neu-
ron is selected from each subpopulation and these neu-
rons then form a feedforward neural network. In order
to train the system, each neuron from each subpopula-
tion is combined a number of times (we use 10 times on
average) with neurons from different subpopulations,
and the neuron is assigned the average (or maximal)
fitness of the networks in which it took part. Then
crossover and mutation are used within the subpopu-
lations to generate new neurons. In this way, neurons

that can collaborate well with other neurons will re-
ceive higher fitness values, and will be used to evolve
novel neurons. ESP has already been used for par-
ticular difficult reinforcement learning problems such
as double pole balancing with hidden state (Gomez &
Miikkulainen, 1998) and active guidance of a rocket
(Gomez & Miikkulainen, 2003) and obtained good re-
sults.

The reason we used ESP for evolving neural networks
is that they do not suffer from the permutation prob-
lem when using crossover on complete neural net-
works. This permutation problem is caused by dif-
ferent orderings of neurons in a network, so that off-
spring can easily have the same functional units multi-
ple times and loose an important different unit. Since
we want to use crossover for finding solutions, we use
a symbiotic algorithm with specialized neuron sub-
populations. A difference with SANE (Moriarty &
Miikkulainen, 1996) which keeps a single population
and no sub-populations is that SANE requires a meta-
stable population in which neurons with different func-
tions stay in the population at the same time, whereas
in ESP each sub-population may converge to a unique
neuron. Furthermore, recombination of neurons im-
plementing different functions is usually not very effec-
tive, and therefore ESP only recombines neurons in the
same sub-population. In some aspects, ESP resembles
the cooperative co-evolution method from Potter and
de Jong (2003) and SEAM from Watson and Pollack
(2000) which are also evolutionary algorithms based
on symbiotic combination instead of sexual reproduc-
tion, but ESP is specifically tailored for evolving neural
networks.

We use ESP for evolving the different modules; the
subgoal generator, the subgoal enhancer, and the task
assignment (although in our current experiments we
did not use the subgoal enhancer module). These dif-
ferent modules can be evolved at the same time. An
advantage of ESP is that it is easy to use for multi-
agent learning. In multi-agent learning, issues arise
about credit assignment to individual agents given a
team reward. In ESP these issues are solved using the
same mechanism as with single agent learning; each
agent uses its own neurons and each neuron is again
evaluated by how well the resulting combinations of
neurons (and multiple neural networks) work. The fit-
ness of such a combination of neural networks is com-
puted by testing the system in a forest fire simulation.
The fitness function takes into account the burned
area, whether the fire-propagation was stopped, how
much subgoals were successfully digged, and how often
it was necessary to recompute subgoals. By evolving
neurons which have higher and higher fitness values,

117 Evolving Neural Networks for Forest Fire Control — Marco Wiering et al.

the resulting neural networks also become better and
after a while we can save the best found complete neu-
ral network modules.

4. Experiments with Learning the
Subgoal Generation Module

In this section we perform two different experiments to
study the ability of the system to learn to control forest
fires using only the subgoal generation module. The
enhancer was not necessary, since the local regions look
alike (there are no houses, rivers etc.). Furthermore,
we use the fixed nearby assign module for allocating
agents to subgoals. Therefore in the experiments we
describe in this section we only used a learning subgoal
generation neural network.

In the first experiment, we study a virtual pine for-
est environment in which three agents are located in
different parts of the world that have to cooperate
to stop the fire propagation. In this environment we
gradually lower the cells’ thresholds to increase the
fire propagation speed. In our second experiment,
we show the Incremental Learning skill of ESP. If we
train a population to solve a determined task, we can
use the same population to solve a similar, but more
difficult task. In previous work (Gomez & Miikku-
lainen, 1998), it was shown that starting the evolution
from a trained population in an easier task resulted
much faster in good performing individuals for a more
complex task than starting evolution from a randomly
initialised population.

Figure 3. Pine forest environment: in the centre the fire
has spread as far as the fire-line has been digged. In the
angles north-east, south-west, and south-east of the map
we can see the bulldozers’ depots.

4.1. Three Bulldozers in a Pine Forest

The first set of experiments are done on a virtual
pine forest by an agency composed of three bulldoz-
ers. Trees are more difficult to ignite than grass, how-
ever once ignited they release much more heat thus
propagation is still fast. For this reason pine-tree cells
present bigger fuel and threshold than grass. Con-
trollers operate in much more difficult circumstances in
a pine trees forest than in a grassy terrain. We model
this by decreasing the digging and moving speed in a
pine forest environment. We experimented in a world
of 120 x 120 cells. Experiments with a single agent
were not satisfactory. One single bulldozer was not
able to dig a complete line around the fire in a good
time. Therefore we used a system composed of three
bulldozers initially located in three different depots.
In Figure 3 we show a virtual pine forest in which fire
has been contained in the line digged by the agents.

Setup. We tried different kinds of neural networks
with different architectures and activation functions.
We decided to use a single hidden layer network with 8
hidden units and 1 linear output unit, because we did
not find meaningful improvements using more layers
and neurons. The sigmoid function has been proved
to work well in the hidden layer but not in the out-
put unit. The setting of the ESP parameters applied
to our architecture are as follows: Population size is
30. We assign the maximal (and not the average) fit-
ness obtained in one of the (on average ten) tests of
a neuron (individual). The crossover rate is 50%. We
used linear mutation with 25% probability and Gaus-
sian mutation with 33% probability. We designed a
quite complex fitness function including information
such as the time of spreading, the overall cost of the
cells burnt, the number of generated subgoals and the
number of goals reached.

Threshold Burnspeed | Gen. | Fitness | Efficiency
330 1.11 1 11.438 52.4%
305 2.35 2 11.375 53.5 %
280 2,66 2-3 11.279 55.9 %
255 2,75 3-4 11.044 58.8 %
230 3,16 5-6 10.201 64.8 %
205 3,33 - 3.787 0

Table 1. ESP performances using a team of three agents in
a virtual pine forest environment.

Results. In Table 1 we can see the results. The task
is solved if the system finds a solution with fitness big-
ger than 10 (in this case the fire propagation has been
stopped effectively). We always stopped the simula-
tion after the twentieth generation. The simulations
were repeated 10 times for each problem and we store
the average of the maximum fitness received in each

Evolving Neural Networks for Forest Fire Control — Marco Wiering et al. 118

simulation in the table. We also store the generation
in which the system finds the solution in the major-
ity of the simulations. Efficiency is the ratio between
the time of the controllers to dig a complete line sur-
rounding the fire and the time of the fire to burn the
cell inside that line. When the system finds a solution
with a low efficiency (< 35%) it means that the task
was too easy or that the solution found was not so
useful, because the agents could have digged a smaller
line to reduce the area destroyed by the fire. However,
if this value is too big (> 90%) the solution computed
is not robust, because if there is a slight change of the
environmental conditions the system cannot anymore
deal with the problem.

For all the tasks except for the last one we found a
solution in each simulation; in the last task we tried
with a threshold of 205 we never found a solution. The
fastest fire propagation the system could successfully
deal with is characterised by a threshold of 230 and an
average propagation speed of about 3.16 cells/step.

We can also see from Table 1 that the fitness obtained
decreases when lowering the threshold. However, the
efficiency of the system increases. The explanation
lies in the fact that for faster propagation the system
has to generate a larger digged line to surround the
fire. Thus, more cells burn and the fitness is lower.
However, in the same situation the system has proved
to be more efficient in terms of time to dig the line
versus the time for the cells to burn. Figure 4 shows a
typical learning evolution of ESP with a threshold of
230.

— Average Filness
== Iviazd mum Fitness
a - SR

TR DR T T a W1 o1om omoow®
Generation

Figure 4. ESP applied to contain flames in a pine forest
environment with a threshold of 230.

ESP works well even if at the first generations the max-
imum and the average fitness are very low. In these
cases the fire propagation was not stopped. After the
fifth generation we can see that the maximum fitness
increases a lot. In that case a solution has been found

— Average Fithess
— Maximum Fithess

v '
Generations

Figure 5. Incremental ESP applied to contain flames in a
pine forest environment with a threshold of 230.

with an efficiency of 65%. After that individuals start
to converge to the best performing ones. We can see
ESP’s principal strength: the fast search for a satis-
factory solution. ESP is not so good in improving the
solution found: when a satisfactory result is obtained
ESP rarely improves it. In this experiment we found
that ranking the neurons according to the maximal
fitness received in the tests worked better than taking
the average fitness.

4.2. Incremental Learning

We repeat the previous experiments on the virtual pine
forest with the same neural network and ESP settings.
However, we do not start from a randomly generated
population, but we use a population already trained
in an easier task. In our experiments we start to solve
the task with a threshold of 280. Once we have found
a solution we use the population trained to search a
solution for the task with a threshold of 255. Then
we repeat the same operation until we reach the task
with a threshold of 205. In Figure 5 we can see the
fitness evolution in solving the task with a threshold
of 230, starting with a population already trained to
solve the easier tasks with a threshold of 280 and 255.
With respect to the fitness evolution of the same task
starting with a random population we can observe that
the system finds a solution in the 3rd generation in-
stead of after 5 or 6 generations. Then, we used this
trained population to solve the task with a threshold
of 205. We repeated this last part of the experiment
10 times and we found a solution in 80% of the tri-
als. The generations in which we found the solutions
range from the eighth generation to the twelfth gener-
ation. We note that without incremental learning, we
never found a solution for this difficult problem. Thus,
starting from a population already evolved to solve an

119 Evolving Neural Networks for Forest Fire Control — Marco Wiering et al.

Figure 6. Heterogeneous environment consisting of hay,
small brushes, and oak trees. In the north-west we can
see the bulldozer’s depot.

easier task has been proved effective in this case.

5. Experiments with Learning Subgoals
and Task Assignment

In the previous experiments, we only trained the sub-
goal generator module (SGG), since the nearby as-
sign module works well for homogeneous terrain types.
However, for heterogeneous terrain types, learning
subgoals and the assignment may prove worthwhile.

The map used for these experiments consists of 3 ter-
rain types, one is fast burning but does not generate
much heat (hay), one is slow burning but generates lots
of heat (oak trees) and we use a terrain type that is be-
tween the two (small brushes). The terrains are setup
in such a way that the hay will ignite the small brushes
in time, but has big problems igniting the oak trees.
The small brushes can ignite the hay with ease and
will ignite the oak trees in time. The oak trees can ig-
nite both with ease, and they all can ignite themselves.
With these terrain types we have built a map that has
corridors of fast burning hay and slow burning plains.
In this way the fire does not spread in a circle form
but has a far more grim form, making it much more
difficult to extinguish. In Figure 6 we show the map.

All experiments are done on the same map under the
same conditions. We used only 1 agent to extinguish
the fire. The map had a dimension of 100 by 100 cells.
Each simulation went on until the fire was extinguished
or the program had done 2000 steps. These 2000 steps
are more than enough to burn almost the whole map
giving a very low evaluation value. The agent started
in the upper left corner and the fire started in the
middle of the map.

We used the map and let the fire spread with different

speeds. Instead of adjusting the threshold values, we
used the Fire Propagation (FP) step divider that reg-
ulates how many steps FP has to wait before it can do
one step. By making this each time 1 less we can find
a value for which the system cannot find a solution.

5.1. Experiment 1: Without Learning

As a baseline for the results, we first examined the
performance when learning was not used at all in this
map. In this experiment the subgoals are placed at
a specified distance from the fire front, and the agent
will drive/dig towards the closest free subgoal. The
results of this experiment are shown in Table 2.

FP step divider Number of Successes
10 10/10

9 9/10

8 3/10

7 0/10

Table 2. Results without learning. A lower FP step divider
increases the propagation of the fire relative to the number
of steps a bulldozer can make, thereby making the problem
more difficult.

5.2. Experiment 2: Learning only SGG

In this experiment we only learn to generate subgoals
and use the fixed nearby assignment module. The neu-
ral network for generating subgoals only used two in-
puts; the wind vector, and the distance from the fire
centre to the fire-front, where wind vector means the
difference between the wind direction and the line an-
gle used to find the direction. Since we used static
weather for the experiments, it was not necessary to
include the wind speed. The results of this experiment
are shown in Table 3.

FP step divider Nr. Generations

10 5
9 6
8 8
7 20
6 B

Table 3. Results with learning only subgoals.

5.3. Experiment 3: Learning Assign

In this experiment we used a non learning SGG module
that placed the subgoals at a fixed distance from the
fire front. But now we used a learning assign module.
The neural network for learning the assignment task
has the following inputs: the distance from the fire to
the subgoal, the distance from the fire to the agent,
the distance from agent to the subgoal, the distance
from the subgoal to the middle of the fire, the distance

Evolving Neural Networks for Forest Fire Control — Marco Wiering et al. 120

from the agent to the north, east, south and west of
the map, the wind direction and force, and for each
subgoal if it is free or already assigned.

The results of learning assign are given in Table 4.

FP step divider Nr. of Generations
10 8

9 15

8 19

7 Z

Table 4. Results with learning only the assign module.

5.4. Experiment 4: Learning SGG and Assign

In this experiment we used the learning SGG mod-
ule and the learning assign module. We compare two
approaches: learning both modules at the same time,
and learning the modules alternatively. We started
with training both modules at the same time, but this
did not work at all. Even when the FP step divider
was set upon 10, the program was not able to learn a
solution within 50 generations, hence we aborted this.

The second experiment went a lot better. Here we first
trained the SGG module while using the nearby assign
module. Then when this reached an acceptable level
we stopped training the SGG module and evolved the
Assign module. Then when Assign showed intelligent
behavior we stopped training the Assign module and
started training the SGG module again. This process
was repeated until no significant improvements were
shown. In this way, we obtained successful controllers
even when the FP step divider was set to 5. A very
good solution to this difficult problem was obtained af-
ter 40 generations, but after 25 generations we already
had some good results.

6. Discussion

In the experiments we have seen that cooperative
agent policies are evolved to solve quite large forest
fires. By using incremental learning the system was
able to find solutions to even harder tasks with a larger
fire propagation speed. This means that incremental
learning can be effective to solve even more compli-
cated problems. We have also studied the evolution of
different modules (the subgoal generator and the task
assignment). It turned out that evolving them syn-
chronously did not work well. The reason of this is
that if both modules are constantly changing and ini-
tially random it takes a lot of time to progress to a so-
lution. In other experiments, when we evolve only one
module at a time, evolution is much more steady and
although in the initial generations no solutions were

found, the system finally learned good solutions. One
way to cope with multiple adaptive modules is to train
them alternatively as was done in the experiments in
the last section. By optimizing both modules, but not
at the same time, solutions could be found even for
environments in which the fire propagation was very
fast. In the future, we want to research even larger and
more complex forest fires. The Bushfire simulator al-
lows us to generate a learning environment in an easy
way, and therefore it is possible to perform much more
experiments. For this we want to focus on incremental
learning and training all modules in an asynchronous
way and test the enhancer module by generating envi-
ronments containing houses or rivers.

References

Avesani, P., Perini, A., & Ricci, F. (1997). CBET: A case
base exploration tool. Proceedings of the 5th congress on
the Italian Asscociation for Artificial Intelligence on Ad-
vances in Artificial Intelligence (pp. 405-416). Spinger-
Verlag, London.

Avesani, P., Perini, A., & Ricci, F. (2000). Interactive
case-based planning for forest fire management. Applied
Intelligence, 13(1), 41-57.

Cohen, P., Greenberg, M., Hart, D., & Howe, A. (1989).
Trial by Fire: Understanding the design requirements for
agents in complex environments. Al Magazine, 10(8),
32-48.

Gomez, F., & Miikkulainen, R. (1998). 2-d pole balanc-
ing with recurrent evolutionary networks. International
Conference on Artificial Neural Networks (pp. 425-430).
Berlin, New York: Springer.

Gomez, F., & Miikkulainen, R. (2003). Active guidance
for a finless rocket through neuroevolution. Genetic and
Evolutionary Computation Conference (Gecco-03) (pp.
2085-2095).

Moriarty, D. E., & Miikkulainen, R. (1996). Efficient re-
inforcement learning through symbiotic evolution. Ma-
chine Learning, 22, 11-32.

Potter, M., & Jong, K. D. (2003). Cooperative coevolution:
An architecture for evolving coadapted subcomponents.
Evolutionary Computation, 8(1), 1-29.

Ricci, F., Mam, S., Marti, P., Normand, P., & Olmo, P.
(1994). CHARADE: a platform for emergencies man-
agement systems (Technical Report 94094-07). IRST,
Trento, Italy.

Watson, R., & Pollack, J. (2000). Symbiotic combination
as an alternative to sexual recombination in genetic al-
gorithms. Proceedings of Parallel Problem Solving from
Nature (PPSNVI) (pp. 425-434).

Wiering, M. A., & Dorigo, M. (1998). Learning to control
forest fires. Proceedings of the 12th international Sym-
posium on “Computer Science for Environmental Pro-
tection” (pp. 378-388). Marburg: Metropolis Verlag.

121

List of authors

List of authors

B

Bengio, Samy (invited speaker) 1
Blanzieri, Enrico 37
Blockeel, Hendrikciiiiiin.. 105
Bourlard, Hervé o 1
D

De Knijf, Jeroent 13
F

Feelders, Ad ... 13
Fischer,Igor i, 21
H

Hutter, Marcuscooiiiiiiniinnn... 59, 67
J

Jongde, Edwin il 29
K

Kersting, Kristian (invited speaker) 11
M

Maassen, Bernard 113
Malossini, Andreaccoviiiiniiinninn.. 37
Mignoga, Filippo ..., 113
N

Nalbantov, G.I. i 89
Ng,Raymond T.c ... 37
(0]

Oliehoek, Frans 45
P

Patist,JanPeter i 51
Poel, Mannesouiiiiiiniinnnn.. 73
Poland,Jan 21,59, 67
Poppe,Ronald il 73
R

Rienks, Rutger ... 73
S

Sindlar, Michal, 81
Smirnov, EN. 89
Spaan, Matthijs T.J. i, 45
Sprinkhuizen-Kuyper, IL.G. 89
Sunmola, Funlade T. 97
U

Uwents, WErneroovviiinniinnnnn... 105

A\
Vlassis, NiKOSt 45
w
Wiering, Marcoocovviiiiiennnnnn. 81,113
Wyatt, Jeremy L.o 97

	Multi-Channel Sequence Processing
	Samy Bengio (IDIAP Research Institute, Martigny, Switzerland) and Hervé Bourlard (IDIAP Research Institute and Swiss Federal Institute of Technology at Lausanne (EPFL), Switzerland)

	Probabilistic Logic Learning and Reasoning
	Kristian Kersting (University of Freiburg, Institute for Computer Science, Machine Learning Lab, Freiburg, Germany

	Monotone Constraints in Frequent Tree Mining
	Jeroen De Knijf and Ad Feelders (Utrecht University, Institute of Information and Computing Sciences, Utrecht, the Netherlands)

	Amplifying the Block Matrix Structure for Spectral Clustering
	Igor Fischer (Telecommunications Lab, Saarland University, Saarbrücken, Germany) and Jan Poland (IDSIA, Manno-Lugano, Switzerland)

	Maximizing Expected Utility in Coevolutionary Search
	Edwin D. de Jong (Decision Support Systems Group, Institute of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands)

	Assessment of SVM Reliability for Microarrays Data Analysis
	Andrea Malossini, Enrico Blanzieri (Department of Information and Communication Technology, University of Trento, Povo, Italy) and Raymond T. Ng (Department of Computer Science, University of British Columbia, Vancouver, Canada)

	Best-response Play in Partially Observable Card Games
	Frans Oliehoek, Matthijs T.J. Spaan and Nikos Vlassis (Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands)

	Detecting Deviation in Multinomially Distributed Data
	Jan Peter Patist (Department of Artificial Intelligence, Mathematics and Computer Science, Vrije Universiteit, Amsterdam, the Netherlands)

	Master Algorithms for Active Experts Problems based on Increasing Loss Values
	Jan Poland and Marcus Hutter (IDSIA, Manno-Lugano, Switzerland)

	Strong Asymptotic Assertions for Discrete MDL in Regression and Classification
	Jan Poland and Marcus Hutter (IDSIA, Manno-Lugano, Switzerland)

	Speaker Prediction based on Head Orientations
	Rutger Rienks, Ronald Poppe and Mannes Poel (Human Media Interaction Group, Department of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands)

	A Modular Approach to Facial Expression Recognition
	Michal Sindlar (Cognitive Artificial Intelligence, Utrecht University, Utrecht the Netherlands) and Marco Wiering (Intelligent Systems Group, Utrecht University, Utrecht, the Netherlands)

	Reliability yields Information Gain
	I.G. Sprinkhuizen-Kuyper, E.N. Smirnov (IKAT, Universiteit Maastricht, Maastricht, the Netherlands) and G.I. Nalbantov (ERIM, Erasmus University Rotterdam, the Netherlands)

	Reinforcement Learning using Optimistic Process Filtered Models
	Funlade T. Sunmola and Jeremy L. Wyatt (School of Computer Science, University of Birmingham, Birmingham, UK)

	Experiments with Relational Neural Networks
	Werner Uwents and Hendrik Blockeel (Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium)

	Evolving Neural Networks for Forest Fire Control
	Marco Wiering (Intelligent Systems Group, Utrecht University, Utrecht, the Netherlands), Filippo Mignogna (Presidio Siemens, I.C.P., Milano, Italy) and Bernard Maassen (Computer Science Department, Utrecht University, Utrecht, the Netherlands)

	List of authors

