
Abstract Graph Transformation

Arend Rensink
Department of Computer Science, University of Twente

rensink@cs.utwente.nl

Dino Distefano
Department of Computer Science, Queen Mary University of London

ddino@dcs.qmul.ac.uk

January 31, 2005

Abstract

Graphs may be used as representations of system states in operational semantics
and model checking; in the latter context, they are being investigated as an alternative
to bit vectors. The corresponding transitions are obtained as derivations from graph
production rules.

In this paper we propose an abstraction technique in this framework: the state
graphs are contracted by collecting nodes that are sufficiently similar (resulting in
smaller states and a finite state space) and the application of the graph production rules
is lifted to this abstract level. Since graph abstractions and rule applications can all be
computed completely automatically, we believe that this can be the core of a practically
feasible technique for software model checking.

1 Introduction
We study state-based models of system behaviour; our particular interest is in software
systems. Our eventual aim is to develop tools to support the verification of software through
such models. For this purpose, it is imperative that the models have an effective finite
description. We propose to use abstraction as a means to obtain finite approximations of
behavioral models. In this paper we describe a technique to define such approximations
automatically for models consisting of graphs, with labelled edges over a finite alphabet,
as states and graph transformations as transitions.

The abstract model we propose is strongly inspired by shape graphs as introduced
in [19] and worked out further in [20]. The abstraction is based on structural similarity
of nodes of the state graphs, described previously in [14] and shown there to give rise
to a finite set of abstract graphs (called shapes, following the terminology of [19]). The
contribution of the present paper is that we also show how to transform shapes, in such
a way that all transitions between the concrete states (transformations of concrete graphs)
give rise to transitions between the abstract states (transformations of shapes). Thus we
have an over-approximation of the concrete transition system, on the basis of which we can
make certain predictions about the actual system behaviour. Moreover, for every abstract
transition there is at least one underlying concrete transition, meaning that we do not have
spurious abstract transitions.

Motivation. We will us a running example of a circular buffer used to store data values.
The buffer consists of an n-linked circular structure of C-nodes and a central B-node point-
ing to the (current) first and last cell through f- and l-edges. A cell can contain an object,

1

〈get〉 〈put〉

f

l

n

v

e = empty

= first
= last
= next
= value

= Object
= Buffer
= Cell

=
1

>
1

=
1

=
1

>
1

=
1

>
1 =

1

=
1

=
1

=
1

=
1

B

C

O ShapeGraph

OC

B

n

C

B

f
nn

v

C

C

e

l
n

e

e
nn

v

l

f

n

n

e

f v

v

l C

OC

C

B
B

C

nC

v

C

O

C

C

O

C

O

B
l

vn

B
f

e
n

C C

Figure 1: Example circular buffer with four cells, its shape, and two production rules

modelled by a v-edge to an O-node, or be empty, modelled by a e-edge back to the B-node.
Fig. 1 shows an example buffer of four cells, two of which are empty. The shape of this
buffer combines the (structurally similar) empty C-nodes and the O-nodes, and additionally
specifies multiplicities on the nodes and incoming edges.1 The =1 on the incoming edge of
the O-node, e.g., indicates that each concrete O-instance has exactly one incoming v-edge,
which can come from either of the C-nodes.

To transform this example graph, Fig. 1 also shows two rules 〈put〉 and 〈get〉, each
consisting of two graphs: a left hand side (LHS) and a right hand side (RHS). The rules
describe the insertion and removal of objects, where for simplicity the nodes modelling
the objects are actually created at insertion and deleted at removal. The effect of a rule is
defined relative to a matching of the LHS, which is an injective graph morphism into the
host graph. The images of those elements not in the RHS are subsequently removed from
the host graph, whereas elements that are fresh in the RHS are added.

Given an initial graph and a set of production rules, we obtain a transition system by
recursively applying all rules to all graphs. For instance, Fig. 2 shows the transition system
for the graph and rules in Fig. 1. We propose to use such transition systems as the basis for
model checking; first results are reported in [17]. However, for this technique to become
practically feasible we need to address the following issues (among others):

• The models should be generic in the size of the data structures. As it is, for our
example we get a different model if we start with a 5-cell buffer, etc.

• The models should be finite. As it is, if we add a rule to our example that may add a
cell to a circular buffer when it is completely full, then the size of the graphs becomes
unbounded and the state space becomes infinite.

By lifting graph transformations to the level of shapes we achieve both these goals. In
fact, what we achieve is a completely automatic technique for state abstraction, in a setting
where the models are inherently dynamic — that is, nodes and edges can be created and
deleted at run-time. We believe that this is a promising basis for software verification,
complementary to existing model checking techniques.

The abstract states will be canonical shapes, which is a sub-class satisfying some nor-
malisation constraints. Their transformation is a three-step process.

Materialisation. This involves identifying the sub-shape where the rule applies (using
the matching) and extracting an explicit, concrete copy of it. This is necessary to
accurately mimic the effect of the transformation. The same principle can be found

1In this paper we assume that graphs are deterministic — defined below — which means that outgoing multi-
plicities are not needed. We write the edge multiplicities on the opposite end of the arrows than is usual in class
diagrams.

2

〈p
u
t〉

〈p
u
t〉

〈p
u
t〉

〈g
e
t〉

〈g
e
t〉

〈g
e
t〉

〈g
e
t〉

〈p
u
t〉

v

B

C

C

C C

n

e

fn

n

e

e

l

n

e
B

C

C

C C

O

O

O

f
nn

v

e

v
n

l

v

n

B

C

C

C C

O

O

O

O

n

v

n

v

l

f

n
v

v
n

B

C

C

C C

O

nn

v

n

f l

ee

n
e

B

C

C

C C

O

O

l

f
nn

v

e

e
nn

Figure 2: Concrete transition system of the circular buffer

in [19], from where we took the term “materialisation”, but also in our own work
[8, 7], where it is called “extraction.”

Transformation. The transformation of a materialised shape is much like an ordinary
graph transformation. We will show that this type of transformation both preserves
and reflects transformations of the corresponding instance graphs.

Normalisation. The result of the transformation, although still an abstract graph, is typ-
ically outside the sub-class of canonical shapes. Therefore, we have to massage it
to fit it back into that class. This may introduce additional non-determinism: an
arbitrary shape typically gives rise to more than one canonical shape.

Structure of the paper. In Sect. 2 we define the basic notions of graphs and graph transfor-
mations, and we recall the shapes introduced in [14]. The materialisation, transformation
and normalisation steps are described in Sections 3–5. In Sect. 6 we combine these steps
and complete the framework. Finally, Sect. 7 summaries the paper and discusses related
work. Proofs of all the theorems are included in App. A.

2 Definitions

2.1 Graphs and their transformations
In this section we define the basic graph formalism that we will use. In the following, L
denotes a fixed, finite set of labels.

Definition 1 (graph and morphism) A graph over L is a tuple G = 〈N, E〉 where N is
a set of nodes and E ⊆ N × L × N a set of labelled edges. G is called deterministic if
(v, a, w), (v, a, w′) ∈ E implies w = w′.

If G = 〈NG, EG〉 and H = 〈NH , GH 〉 are graphs over L, a morphism φ: G → H
is a function φ: NG → NH , extended to EG by φ((v, a, w)) = (φ(v), a, φ(w)), such that
φ(EG) ⊆ EH .

An example deterministic graph was given in Fig. 1. Note that the node labels (B, C etc.)
in that graph are actually not part of the formal definition; in fact they are superfluous (they
can be derived from the edge labels), we have just included them for the sake of readability.
In the following, GraL denotes the class of graphs and DGraL the class of deterministic
graphs. Given a edge e = (v, a, w) ∈ E we call v the source, a the label and w the target
of e. They are indicated as src(e), lab(e), and tgt(e) respectively.

A bijective morphism φ : G → H is called an isomorphism and two graphs G and H
are called isomorphic (denoted G ∼= H) if there exists an isomorphism between them.

In the following definitions, we present production rules and their applications in a
purely constructive manner, instead of the algebraic characterisation found in the standard
literature [3].

Definition 2 (production rule) A graph production rule is a pair of graphs P = (L, R)
with L, R ∈ DGraL, called the left hand side (LHS) and right hand side (RHS), respec-
tively. We also sometimes regard P itself as a single graph given by the union L ∪ R, and
we distinguish the following sets:

3

• Ndel = NL \ NR and Edel = EL \ ER, the elements to be deleted;

• Nuse = NL ∩ NR and Euse = EL ∩ ER, the elements used (but not changed);

• Nnew = NR \ NL and Enew = ER \ EL, the elements to be created.

Two example production rules were given in Fig. 1. The set of production rules over L is
denoted ProdL. The application of a production rule P = (L, R) to a graph G entails
finding a matching m: L → G, which is an injective morphism from the LHS to the graph
(also satisfying some other conditions, introduced below), and then removing from G the
images of Ndel and Edel and adding to the resulting graph the elements in N new and Enew.
Care must be taken, however, to ensure that the new elements are fresh and do not coincide
with elements already in G. For this purpose, when discussing the application of a rule P
to a graph G we will always assume P and G to be disjoint, i.e., NP ∩ NG = ∅. This
assumption can be satisfied without loss of generality by taking an isomorphic copy of P
(and the result of the transformation does not depend on which isomorphic copy we take,
modulo isomorphism).

Definition 3 (graph transformation) Let P = (L, R) ∈ ProdL and G ∈ GraL be
disjoint. A matching for P in G is an injective morphism m: L→G such that the following
conditions hold for all e ∈ EG:

1. If src(e) ∈ m(Ndel) or tgt(e) ∈ m(Ndel), then e ∈ m(Edel);

2. If src(e) ∈ m(Nuse) and ∃(m−1(src(e)), lab(e), w) ∈ Enew, then e ∈ m(Edel).

If m is a matching for P in G, the transformation of G according to P and m is defined by
((NG \m(Ndel))∪Nnew, (EG \m(Edel))∪Enew). We write G −P,m−−→ H to denote that m
is a matching for P in G and H is the resulting transformed graph.

Application condition 1 is called the dangling edge condition; it is standard in the so-called
double pushout approach to graph transformation (cf. [3]). Condition 2 could be called
preservation of determinism; it is the most straightforward way to ensure that transfor-
mations remain in DGra (see Sect. 7 for a brief discussion). Example transformations
(without the matchings) were shown in Fig. 2.

Proposition 4 Let P ∈ ProdL and G ∈ DGraL. If G −
P,m
−−→ H then H ∈ DGraL.

2.2 Multiplicities and Shapes
A multiplicity is an interval of natural numbers. Formally, we define the universe of multi-
plicities as M = {(i, j) ∈ N × (N ∪ {?}) | i ≤ j}, where ? is used to denote infinity (i.e.,
i < ? for all i ∈ N). We use µ to range over multiplicities. We write =i for (i, i), >i for
(i+1, ?) and ≥i for (i, ?). The lower bound of a multiplicity µ ∈ M is denoted by bµc and
the upper bound dµe; thus b(i, j)c = i and d(i, j)e = j. Multiplicity µ is called positive if
bµc > 0. We write i ∈ µ if bµc ≤ i ≤ dµe; based on this we define inclusion, µ1 ⊆ µ2,
as ∀i : i ∈ µ1 ⇒ i ∈ µ2. A given set X has multiplicity µ, denoted X :µ, if |X | ∈ µ. The
following defines two operations over multiplicities, where µ, µ1, µ2 ∈ M and i ∈ N (note
that ? − i = ? + i = ? for all i ∈ N):

µ1 + µ2 = (bµ1c + bµ2c, dµ1e + dµ2e)

µ − i = (max(0, bµc − i), dµe − i) if dµe ≥ i.

The following expresses some algebraic properties of these various concepts.

Proposition 5 Let µ ∈ M, and let A, B be arbitrary finite sets.

1. If A : µ then (A \ B) : µ − |A ∩ B|.

2. If i ≤ dµe then (µ − i) + =i ⊆ µ.

4

Multiplicities are used as basic ingredients for the definition of shapes. These are graphs
where a multiplicity is associated with each node, stating how many concrete nodes it
represents, and with each pair of node v and label a, stating how many incoming a-edges
each instance of v has. Formally:

Definition 6 (shape) A shape is a tuple S = 〈N, E,nd , in〉 with 〈N, E〉 ∈ GraL (some-
times denoted by GS), and

• nd : N →M a node multiplicity function;

• in : N → L →M an incoming edge multiplicity function.

S is called deterministic if the following property holds:

• for all v ∈ N such that nd(v) = =1 and all a ∈ L, |{w | (v, a, w) ∈ E}| ≤ 1 and
|{w | (w, a, v) ∈ E}| ≤ din(v)(a)e.

An example deterministic shape was shown in Fig. 1. We use ShaL to denote the class of
shapes over L, and DShaL for the deterministic shapes. Each shape stands for a number of
instances, which are concrete (deterministic) graphs. In this sense, a shape is comparable
to a type graph; however, the multiplicities provide far more control over the structure of
the instances. The relation between a shape and its instances is defined by the following
notion of shaping.

Definition 7 (shaping) Given a graph G ∈ DGraL and a shape S ∈ ShaL, a shaping of
G into S is a morphism s : G → GS such that:

1. for all v ∈ NS , s−1(v) : nd(v);

2. for all v ∈ NG and a ∈ L, {w ∈ NG | (w, a, v) ∈ EG} : in(s(v))(a);

3. for all v ∈ NG and a ∈ L, if ∃(s(v), a, w) ∈ ES then ∃(v, a, w′) ∈ EG.

We write s : G→S to denote that s is a shaping of G into S. It is important to note that, due
to possible inconsistencies between multiplicity constraints, not all shapes have instances.
If a shape admits instances we call it consistent. In [14] we have shown that the notion of
consistency is decidable for arbitrary (finite) S ∈ ShaL.

A graph typically has (shapings into) many shapes; for instance, by changing the mul-
tiplicities of a shape into more permissive ones (i.e., that extend the old ones), all shapings
remain preserved. In fact, shapes are interrelated by so-called abstraction morphisms.

Definition 8 (abstraction morphism) Let S, T ∈ ShaL. An abstraction morphism α from
S to T (written α : S → T) is a morphism α : GS → GT such that:

1. for all v ∈ NT , ndT (v) ⊇
∑

ndS(α−1(v));

2. for all v ∈ NS and a ∈ L, inT (α(v))(a) ⊇ inS(v)(a).;

3. for all v ∈ NS and a ∈ L, ∃(α(v), a, w) ∈ ET implies ∃(v, a, w′) ∈ ES .

The following proposition states that (as expected) any instance of a shape is also an in-
stance of a more abstract shape.

Proposition 9 Let G ∈ DGraL and S, T ∈ ShaL. If s: G→S is a shaping and α: S→T
an abstraction, then α ◦ s is a shaping of G into T .

3 Materialisation
As discussed in the introduction, we will lift the application of graph production rules to
shapes. We do this in two steps: first we materialise the shape, then we transform the
materialised graph as if it were a concrete graph. Materialisation is done relative to a
prospective matching of the rule’s LHS. Since such a matching is not a shaping (the LHS is
only a fragment of a graph and so the cardinality constraints in the shape are not necessarily
met) we have to define first what kind of objects they are.

5

Definition 10 Let L ∈ DGraL and S ∈ ShaL. A pre-shaping p of L in S is a graph
morphism p: L → GS with the additional property that the upper bounds of the node and
edge cardinalities are satisfied; i.e.,

• for all v ∈ NS , |p−1(v)| ≤ dndS(v)e;

• for all v ∈ NG and a ∈ L, |{w ∈ NG | (w, a, v) ∈ EG}| ≤ dinS(p(v))(a)e.

A pre-shaping p is called concrete if the following additional properties hold:

• for all v ∈ NL, ndS(p(v)) = =1;

• for all (v, a, w) ∈ EL, (p(v), a, w′) ∈ ES implies w′ = p(w).

Pre-shapings extend injective morphisms from a graphs-to-graphs notion to a graphs-to-
shapes notion. Concreteness means that the morphism maps only to nodes and edges that
are uniquely identifiable in any concrete instance.

Proposition 11 Let L, G ∈ DGraL and S ∈ ShaL. If f : L→G is an injective morphism
and s: G → S a shaping, then s ◦ f is a pre-shaping of L into S.

S

L

c
??

�
�

�
�

�
�

� m // G

s

OO

Figure 3: Visualisation of Prop. 12

The intuition is that the existence of a pre-
shaping p: L→S indicates that L may be a frag-
ment of an instance of S. We do not currently
have a result that supports that intuition; that is,
we do not know if or when the existence of p im-
plies that there is an instance G with a (proper)
shaping s: G → S and an embedding m: L → G

such that p = s◦m. We conjecture, however, that the results of [14] can easily be extended
so as to reduce this property (for a given L and S) to an integer program, thus giving a
decision procedure. For concrete pre-shapings, on the other hand, we have the following
further property, depicted graphically in Fig. 3:

Proposition 12 Let L ∈ DGraL and S ∈ ShaL and let c: L → S be a concrete pre-
shaping. For any G ∈ DGraL with a shaping s: G → S, there is an injective morphism
m: L → G such that c = s ◦ m.

Given a LHS L, a shape S and a pre-shaping p: L→ S, the materialisation of S relative to
p is defined by disjointly adding a copy of L to S, connecting it to S where necessary, and
adapting the node multiplicities of S to account for the extraction of one or more instances
from them. W.l.o.g. we assume NL ∩NS = ∅; we define a function αp: (NL ∪ NS)→NS

by
αp = p ∪ idS .

αp is extended to edges as usual. The materialisation of S relative to p is defined by
S+p = 〈N+p, E+p,nd+p, in+p〉 with

N+p = NL ∪ NS

E+p = α−1
p (ES) \ {(v, a, w) | v ∈ NL, ∃(v, a, w′) ∈ EL : w′ 6= w}

nd+p : v 7→

{

ndS(v) − |p−1(v)| if v ∈ NS
=1 otherwise

in+p : v 7→ inS(αp(v)) .

An example materialisation is shown in Fig. 4. The first thing to show is the relation
between L, S and S+p. (See also Fig. 5.)

Proposition 13 Let L ∈ DGraL and S ∈ ShaL, and let p: L → S be a pre-shaping.
αp gives rise to an abstraction morphism from S+p to S, and idL gives rise to a concrete
pre-shaping of L into S+p, such that p = αp ◦ idL.

6

=
1

>
0

=
0

>
1

=
1

=
1

=
0

=
1

=
1

=
1

S+p

=
1

>
1

=
1

=
1

=
1

>
1

=
1

=
1

p

αp

idL

L

S =
1

>
1

=
1

=
1

>
1

=
1

>
1 =

1

=
1

=
1

=
1

=
1

=
1

B
C

C

C

n

e

n

f

l

v

v

n

n

n

n
v

n

e

e

v

v

n

f

C

O

C

l

l fn

C

B

C

C

O

B

C

C

n
l

e

B

Figure 4: Materialisation of the shape in Fig. 1 w.r.t. the LHS of 〈put〉

The materialisation satisfies the following characteristic property (see Fig. 5):

Proposition 14 Let L, G ∈ DGraL and S ∈ ShaL. For an arbitrary injective morphism
m: L→G and a shaping s: G→S, let p = s ◦m; then there is a shaping t: G→S+p with
s = αp ◦ t and t ◦ m = idL.

4 Transformation
In this section we prove the correctness of the abstraction we have defined, in the sense that
a transformation of a shape with respect to a singular pre-shaping simulates a transforma-
tion of the underlying instance graphs and vice-versa.

First we extend the transformation definition from graphs (see Def. 3) to shapes.

Definition 15 (shape transformation) Let P = (L, R) ∈ ProdL and S ∈ ShaL be
disjoint. An abstract matching for P in S is a concrete pre-shaping c: L → S such that
c: L → GS is a (concrete) matching for P in the graph part of S. If c is an abstract
matching for P in S, then the transformation of S according to P and s is defined by
T ∈ ShaL such that

NT = (NS\c(N
del)) ∪ Nnew

ET = (ES\c(E
del)) ∪ Enew

ndT (v) =

{

ndS(v) if v ∈ NS
=1 otherwise

inT (v)(a) =

inS(v)(a) − |{w | (w, a, v) ∈ c(Edel)}|
+ =|{w | (w, a, v) ∈ Enew}| if v ∈ NS

=|{w | (w, a, v) ∈ Enew}| otherwise

We write S −P,c−→ T to denote that c is an abstract matching for P in S and T is the resulting
transformed shape.

The following are two of the crucial theorems of this paper, providing the connection be-
tween abstract and concrete transitions.

Theorem 16 Let P = (L, R) ∈ ProdL and S ∈ ShaL, and assume S −P,c
−→ T . For any

shaping s: G → S, there exists a matching m for P in G such that c = s ◦ m, and for
G −

P,m
−−→ H there is a shaping t: H → T .

7

S

S+p

αp

OO

L

p

44

idL

==
{

{
{

{
{

{
{

{ m // G

s

``

t

OO

Figure 5: Visualisation of Propositions 13 and 14

Theorem 17 Let P = (L, R) ∈ ProdL and G ∈ DGraL, and assume G −P,m
−−→ H . For

any shaping s: G → S such that c = s ◦ m is concrete, and S −
P,c
−→ T with a shaping

t: H → T .

5 Normalisation
The previous two sections have presented materialisation and transformation as two essen-
tial ingredients of abstract graph transformations. However, there is a third ingredient still
missing for an effective technique: namely, we need to identify a canonical abstraction
level, on which there exist only a finite number of shapes and to which the target graph of
each transformation will be re-normalised. Failing this, due to materialisation the graphs
under transformation will become ever larger and more concrete, so that the state space is
still infinite and the advantages of abstraction are lost.

For this canonical abstraction level, we will rely on the ideas developed in [14, 16].
First of all, we select a collection of base multiplicities M = {=0, =1, >1} (chosen in such
a way that every finite set has exactly one base multiplicity). M

>0 = M \ {=0} denotes
the set of positive base multiplicities. Next, we define the following notion of similarity
∼S ⊆ NS × NS over nodes of a shape S:

v1 ∼S v2 ⇔ inS(v1) = inS(v2) ∧ lab(src−1
S (v1)) = lab(src−1

S (v2)) . (1)

Hence, two nodes are similar if they have the same incoming edge multiplicities and out-
going edge labels.

Definition 18 (canonical shape) A shape S ∈ ShaL is called canonical if

1. S is deterministic;

2. for all v ∈ N , nd(v) ∈ M
>0;

3. for all (v, a, w) ∈ E, in(v)(a) ∈ M
>0;

4. for all v, w ∈ N , v ∼S w implies v = w.

In words, a shape is canonical if it is deterministic, specifies positive base multiplicities
for all nodes and edges (Clauses 2 and 3) and contains no non-trivially similar nodes
(Clause 4).2 The class of canonical shapes is denoted CShaL. An important fact from
[14] is that CShaL is finite for every finite set L.

We use the term canonical because, as we have shown in [16], there is an automatic
way to obtain the most concrete canonical shape can(G) of a given deterministic graph
G. For an arbitrary shape S, on the other hand, there is typically not a single canonical
shape that “covers” S in the sense of being more abstract (see Def. 8). Instead, we define a

2In [16] we required canonical shapes to be “fully satisfiable”, meaning that there should exist a surjective
shaping into them. The requirement of determinism is easier to maintain, but weaker than full satisfiability. As a
consequence, in contrast to [16] it is not true that every graph has a unique canonical shaping.

8

function norm such that norm(S) is a set of canonical shapes, which is optimal in a sense
(shown below).

To normalise multiplicities, we take all (non-empty) intersections of the multiplicities
occurring in S with M. This is defined as follows (where µ ∈ M and f : X →M):

µ/M = {µ′ ∈ M | ∃i : i ∈ µ ∧ i ∈ µ′}

f/M = {g: X → M | ∀x ∈ X : g(x) ∈ f(x)/M} .

The function norm : ShaL → 2
CShaL is then defined as follows:

norm : S 7→ {part(T) | T ∈ DShaL, T / S, T consistent} .

where the property T / S is defined as the conjunction of the following conditions:

NT ⊆ {(v, f) | v ∈ NS , f ∈ inS(v)/M}
ET ⊆ {((v, f), a, (w, g)) | (v, a, w) ∈ ES , g(a) 6= =0}
ndT ∈ {h: NT →M

>0 | ∀v ∈ NS : ndS(v) ⊆
∑

(v,f)∈NT
h((v, f))}

inT = {((v, f), f) | (v, f) ∈ NT }

and part(S) = T is defined by:

NT = NS/∼S

ET = {([v]∼S
, a, [w]∼S

) | (v, a, w) ∈ ES}

ndT = {([v]∼S
, (

∑

v∼Sw ndS(w))/M) | v ∈ NS}

inT = {([v]∼S
, inS(v)) | v ∈ NS}

T / S means that T is essentially obtained from S by assigning normalised incoming edge
multiplicities and positive normalised node multiplicities to the nodes of S. This may
result in S-nodes disappearing (if they otherwise would have multiplicity =0) or being split
(if there is a choice of incoming edge multiplicities). The conditions on T ensure that it
satisfies Clauses 2 and 3 of Def. 18. part(S), on the other hand, combines ∼S-similar
nodes, and so ensures Clause 4 of the definition provided that S already satisfies Clauses
1–3.

An example can be found in Fig. 6, which shows the normalisation of the shape ob-
tained by transforming S using the materialisation in Fig. 4. This normalisation contains
four shapes, two of which (on the right hand side) contain a sub-structure consisting of one
or more n-linked C-nodes disconnected from the rest of the buffer. Such a structure does
not model any graph occurring on the concrete level; it is an example of the ambiguity
introduced by abstraction.

The canonical shape of an arbitrary deterministic graph is defined through a mapping
can:DGraL → CShaL, defined by

can : G 7→ part(Sinst

G) (2)

where Sinst

G = (NG, EG,nd , in) is the “instance shape” of G, defined such that nd as-
signs =1 to all nodes v ∈ N and in(v)(a) = µ is the unique multiplicity in M such that
(tgt−1

G (v) ∩ lab
−1
G (a)) : µ. For instance, the shape in Fig. 1 is the image under can of the

graph in the same figure. The following results are recalled from [16].

Theorem 19 For arbitrary G ∈ DGraL, can(G) ∈ CShaL and ∃s: G → can(G).

Theorem 20 For arbitrary S ∈ ShaL, norm(S) = {can(G) | ∃s: G → S}.

9

norm(T)

C

B

C

O

C

B

C O

B
C

C

C

=
1

=
1

=
1

=
1 =

1

=
1

=
1

>
1=

1

=
1

=
1

=
1

=
1

=
1

>
1

=
1

=
1

>
1

=
1

=
1 =

1 =
1

>
1

=
1

=
1

=
1

=
1

=
1

=
1

=
1

>
1

=
1

>
0

=
1

>
1

=
0

=
1

=
1

=
1 =

1
>

1

=
0

=
1

=
1

>
0

=
1 =

1

=
1

=
1

T

n
e

v

v

n

n

v

l

n

f

n
e

v

vl

n

f

n

v

n

C

B

C O

C

C

OC

B C

C

C
>

1

=
1

=
1

>
1

=
1

=
1

=
1

=
1

>
1

=
1

=
1

=
1

=
1

=
1

=
1

=
1

=
1

=
1

=
1

=
1

=
1

=
1

>
1

=
1

=
1

=
1

=
1

=
1

n

e

n

f
v

v

n

l

n

f
v

n

n

v

l

n

e

f

l

v

n

n

v

v

n

n

e

f

l v

v
n

v

nC

B

C O

C

C

C

O

C

Figure 6: Normalisation of the shape T with S+p −
〈put〉,idL−−−−−→ T (with S and p as in Fig. 4)

6 Transitions
In this section we combine the definitions and results of the previous, by defining con-
crete (graph) transition systems and abstract (shape) transition systems and proving their
correspondence.

Definition 21 (transition system) Let Π be a set of production rules.

• A graph transition is a triple G −P−→ H with G, H ∈ DGraL and P ∈ Π such that
G −P,m

−−→ H for some m. A graph transition system is a tuple (G,−→) where −→ is
the graph transition relation and G ⊆ DGraL is closed under −→ (i.e., G ∈ G and
G −P−→ H implies H ∈ G).

• A shape transition is a triple S −P−→ T with S, T ∈ CShaL and P = (L, R) ∈ Π

such that S+p is consistent, S+p −
P,idL−−−→ S′ and T ∈ can(S′) for some pre-shaping

p: L→S. A shape transition system is a tuple (S,−→) where −→ is the shape transition
relation and S ⊆ CShaL is closed under −→.

Given a set of production rules Π and a graph G ∈ DGra, we write GTS (Π, G) for
the smallest graph transition system including G; likewise, given S ∈ CShaL we write
STS (Π, S) for the smallest shape transition system including S. For instance, Fig. 2 shows
the graph transition system GTS (Π, G) where Π = {〈put〉, 〈get〉} and G is the graph of
Fig. 1. Fig. 7 shows STS (Π, can(G)), where we have used some notational conventions
to represent multiplicities: thin arrows and nodes are singular (node/incoming edge multi-
plicity =1) whereas fat ones are multiple (multiplicity >1). The arrows in Fig. 7 indicate
〈put〉-applications; for each arrow there is an implicit 〈get〉-application in the reverse di-
rection. The darker (shaded) area is the fragment of the state space that actually is the
image of the concrete transition system.

The following theorem states that can maps each graph transition system homomorphi-
cally to a finite shape transition system, and that, with respect to this mapping, STS (Π, G)
contains no spurious transitions.

Theorem 22 Let Π be a set of production rules and I ∈ DGra; let GTS (Π, I) = (G,−→)
and STS (Π, can(I)) = (S,−→).

1. can(G) ⊆ S and S is finite;

10

n

e

n

v

v

v
n

f

C

n
C

v

C

v

n

v

f
n

l
n

e

n

B

f

C

e

C

n

O

e

e

n

n

v

v

l

C

O

n

B

O

n
C

C

f

l

n

n

e

C

B

C

C

C

O

C
C

C

C

C

v

n

B

O

C

e

f l
nn

v

n

B

B

n

C

C

C

e

O

l

n
f

n

v

v

e

C

e

n
e

n

e

v

f
n

l
e

n

n

B

l

C

f

C

B C

n

O
v

C

C

C

v

n

v

v

v
n

C C

v

n
n

C

n
l

B

f

l
e

n

e

B

e

C

v

C

n

C

n

f
C

O

C

O

C

n
f

n
f e

e

e

n

n

l

e

B

e

C

e

C

n

O

n

C

l

C

B

n

e

B

C

C

C

n

e

O

C

C

B

f

l

v

n

v
n

v

n

n

e

C

B

n

C

l

C

e

C

n

O

n

e

n

e

l

n

v

v

v
n

e

C

l

f

f

e

l

n

f

B

f

C

n

C

l

O

e

C

n

C

n

n

e
B

v

n

C

v

n
C

v

O

n

f

l
e

n

v

n v

v
n

C

B

n

C

e

C

C

O

n

C

B

C

C

n

v

C

n

v

C

C

l

C

f

l
n

f

l
e

n

v

n

v

v

n

v

B

n

C

v

C

v

O

n

C

v

B

C

C

n

n

v

v

v

n

C

C

n

n

n

C

f

graph state

n

C

O

f

l
e

n

O

B

O

C

C

C
C

O

B

C

n

v

v

v

n

n

v

v

v

n

C

C

v

n

C

v

OC

n

C

v

f

l
e

n

v

B

singular node / incoming edge

C

O

C

C

O

C

f

n

v

l

C

n

C

n

e

B

n

e
l

f

n

B

n

n
f e

l

n

n
e

e

C

B

l

C

C

C

C

O

O

e

n

v

C

C

C

C

(remainder is over−approximation)
correct fragment of transition system

f
C

n

v

transformation back and forth:

v

<get> in reverse direction

n
f e

l

n

n
e

e

n

B

v

C

v

C

v

O

n

<put> in arrow direction

n

v

C

C

C

C

f

v

n

C

O

n

C

n
B

n
f e

l

n

e

n

e

e

B

C

C
f

C

l

C

n

O

C

n

e

Legenda

B

n

v

v

v
n

multiple node / incoming edge

C

C

n

B

C

C

n

v

f

l
e

n

O

B

n

C

O

C

C

C

n n

v
O

e

v

C

l

C

B

n

e

f

l
e

n

n

v

v

e

B

n

C

n

C

e

C

f

O

n

l
e

n

n

n

v

v

v
n

f

B

C

n

f

l
n

C

B

l

C

C

C

e

C

C

O

v

f

l

Figure
7:A

bstractbuffertransition
system

11

L RLine 4: a.head := a.head.nextRL Line 1 (while guard)

L RLine 2: Cell tmp := b.head

L RLine 3: b.head := a.head

E = Environment, L = List, C = Cell, N = nil, h = head, n = next, t = tmp

L RLine 5: B.head.next := tmp (case 2)

L RLine 5: B.head.next := tmp (case 1)

E

L

L

4

EL

3

E

L

3

EL

2

E

2

L CE

1

L CE
aa nn

hpcpc

h CC LL 5

E

4

Ea h a h
pc pc

h

n

n

b h b h

tpc pc

h

pc pc

h h

h

b b
pc pc

a a
h

n
b b

t

h

pc pc

L

n

C

b

C

b

t

h

L 1

E

5

E

CC LL 1

E

5L

Figure 8: Small-step transformation rules for the list reversal program.

2. For all G, H ∈ G, G −P−→ H implies can(G) −P−→ can(H).

3. For all S, T ∈ S such that S −P−→ T , there are G′, H ′ ∈ DGra such that S =
can(G′) and G′ −P−→ H ′.

This theorem implies that we can verify LTL safety properties, where the propositions are
graph predicates in the fragment of first-order logic that is reflected by our abstraction —
characterised in [14] as a fragment of 2-variable logic. Typical examples of such properties
are state invariants, such as:

• The buffer is either empty (i.e., no cell reachable from the first contains an object),
or the first cell contains an object;

• If the buffer is empty, then the last cell is the predecessor of the first;

• If a cell contains an object, then either it is the last or the next also contains an object.

Examples of valid properties that can not be verified, i.e., that appear to be violated on the
abstract level but are in fact true in any concrete instance (often called “false negatives”)
are:

• All cells of the circular buffer are connected;

• 〈put〉 can only be executed infinitely often if 〈get〉 is also done infinitely often;

• Objects are removed in the order they were inserted.

List reversal. To enable a better comparison with existing approaches, the remainder
of this section is devoted to an example that has been used several times before in heap
structure analysis; see, e.g., [19, 18]. The program uses a data structure consisting of List-
nodes pointing via a head-edge to a list of Cell-nodes linked by next-edges; there is a unique
nil-node modelling the end of the list.

1 while (a.head != nil) do
2 Cell tmp := b.head;
3 b.head := a.head;
4 a.head := a.head.next;
5 b.head.next := tmp;
6 od

Fig. 8 shows a straightforward, line-by-line translation of
this program into graph transformation rules. The variables and
fields are represented by edges and their values by nodes. There
is a central, E-labelled node that stands for the run-time environ-
ment, to which the local variable edges are attached and which
maintains a pc-labelled “program counter” edge. Line 5 needs
two rules, to distinguish the case where b.head.next is already

12

L R<swap>

E = Environment, L = List, C = Cell, N = Nil, h = head, n = next

L R<single>

C N nh

hb

C
L

b

a h

h

n

b

La

E
h

L

n
C

h

N a a

b

h

h
n

L

E

L C
E

LL

E

L

Figure 9: Large-step rules for the list reversal program.

equal to tmp (which may occur if the list a originally has only
a single element); this is because our matchings are required to be injective (see Def. 2).
We can now use standard graph transformation theory to concatenate these rules into larger
ones, which describe the combined effect of the loop body. This results in two “large-step”
rules, shown in Fig. 9 (where we have left out the program counter, which now always
stands at 1).

We show in Fig. 10 the complete transition system generated by the large-step rule
〈swap〉 — 〈single〉 is never enabled from the chosen start state. Note that the transition
system is smaller than the one we would get from the small-step rules (see, e.g., [19]): the
graph transformation theory has paid off here. The possible runs of the transition system all
terminate in S7, which represents the reversed list which is now pointed to by b, whereas a
is empty. An example property that can be seen in the transition system that the two lists
are always kept separate: no Cell node is ever shared.

7 Conclusions
We have presented a technique for the push-button construction of a finite abstract model of
operational semantics, on the basis of a graph production system consisting of a set of graph
transformation rules. As pointed out in the introduction, the contribution with respect to
previous work is that this paper works out the transformation itself and the ensuing abstract
transition system (Sections 4 and 6): the shape model was presented before. Given the fact
that, as argued elsewhere (see, e.g., [2, 6, 9, 11]), graph transformations are a very suitable
formalism to model the behaviour of software systems, especially in the face of dynamic
evolution, the results of this paper form an important step in creating a practically feasible
method for the verification of such systems.

Related work. In addition to the more or less related work mentioned above, there are
some lines of research that should be described in some more detail.

First and foremost among these is the work on shape graphs in [19, 20]. Although we
have carried out our investigation in the context of a different formalism, there are clear

S

nn n n

n

n n nS5S3 S4S2

n nS7

n n

n
S6 n

C

N

M

N

L

C

C

C

C

C

L

L

N

M

M

L

C

L

L

C

L

C

C

L

N

L

M

L

M

C CL

NL

C

N

L

M

L

M

C

N

h

b

a

a
h

h

h

h

ha

b

b

a

h

h

h

h

h

a

b

b

a

h

h

b

b

a

h

Figure 10: Abstract transition system of the list reversal program.

13

analogies between the shapes as presented here and those in the papers above. Technically,
the main difference lies in our use of multiplicities, based on [14], rather than three-valued
logic. This lends itself to another kind of abstraction refinement, different from instrumen-
tation: extending the set of base multiplicities M, for instance to {=0, =1, =2, >2}, does
not affect the theory and will improve the precision of the abstraction. Methodologically,
the difference is larger, and this is where our main contribution lies: we are using a “pure”
graph transformation approach, which allows us to benefit from existing theory from that
area. One place where this is apparent in the current paper is in constructing the large-step
rules in Fig. 9 from the small-step rules in Fig. 8.

It should also be remarked that there are properties that we can not conclude from
our encoding of the list example that other approaches do treat, such as the fact that no
nodes become disconnected as a result of the list reversal (although it follows from the
multiplicities that any such disconnected cells must be on a cycle). The reason is essentially
that our abstraction reflects only a fragment of first-order logic, and hence connectivity
properties cannot be verified.

More broadly speaking, our approach can be seen as an instance of abstract interpre-
tation, pioneered by Cousot and Cousot [4]; see also [5] for a discussion of the use of
abstract interpretation in model checking. In terms of [13], our shapes form a distinctness
domain; however, in that terminology our abstract domain consists not of individual shapes
but of sets of shapes (modulo isomorphism), and the abstract ordering is set inclusion. We
therefore do have a Galois connection; but then, since we are not interested in computing
fixpoints of computations but rather in expressing temporal properties of behaviour, we do
not currently derive much benefit from this fact.

Another related area is the assertional approach for local reasoning on memory struc-
tures developed in, e.g., separation logic [12, 18]. Here, too, an abstraction of a graph-based
memory representation is taken as the basic model upon which verification is carried out.
Although the core formalism is quite different in this case, one possible way to combine
strengths is to investigate assertional semantics for graph transformation rules.

In the context of graph transformation, the closest related work is [1] on approxima-
tion of graph transition systems using unfolding, a technique that is generalised from Petri
nets. Instead of constructing individual states, an unfolding combines all states into a sin-
gle structure, in which transitions are modelled as purely local changes. Since eventually
such local changes tend to propagate to a global level, the unfolding is cut off after a certain
number of steps, at which point an over-approximation of the remaining behaviour is taken.
Essentially, this approach promises the same capabilities for generic and infinite-state sys-
tem verification as ours; once tool support for both is in place, a more detailed comparison
should prove very interesting.

Future work. There is a host of smaller and larger improvements to be made.

• The current framework has a number of limitations in the graphs and transformation
rules that are supported: graphs are deterministic, matchings have a dangling edge
condition and have to be injective, and negative application conditions (cf. [10]) are
not allowed. We conjecture that all of these restrictions can be lifted to some degree,
at the price of some complications in the theory. For instance, rather than forbidding
transformations that would violate the determinism, as we currently do in the defini-
tion of concrete matchings, one could take the pushout in the category of determin-
istic graphs, which essentially means determinising the graph after transformation,
i.e., recursively merging outgoing edges with the same label.

• Graph transformations enjoy a very strong algebraic theory (see, e.g., [3]), which we
have completely ignored in the current paper. In particular, our abstract shape trans-
formation have no underlying notion of a morphism or span of morphisms; instead
they are based on ad hoc constructions. Consequently, there is no way to lift the

14

results of this paper to other graph formalisms (for instance typed, attributed, or hy-
pergraphs) or other types of abstraction without redoing the proofs. Working out an
algebraic theory of abstract graph transformations is one of the items on our agenda.

• Since (as a consequence of the previous point) shape transitions do not include a
relation between the nodes of source and target shapes, we cannot keep track of the
identities of nodes. Hence certain types of properties cannot be verified that we did
study, for more limited pointer structures, in [7], such as for instance the existence
of a permanent link between two particular nodes. Here, too, we are quite interested
in regaining the lost ground.

Notwithstanding the fact that there is ample room for improvement, the constructions
worked out in this paper are mature enough for implementation. We plan to extend the
tool GROOVE (see [15]), which has the capability of generating concrete state spaces from
graph production systems for the purpose of model checking (see [17]), with the neces-
sary functionality to deal with shapes. As a proof-of-concept, we have “hand-crafted” the
examples presented in this paper into GROOVE production rules mimicking the abstract
behaviour.

References
[1] P. Baldan, B. König, and B. König. A logic for analyzing abstractions of graph transformation

systems. In R. Cousot, editor, Static Analysis, volume 2694 of Lecture Notes in Computer
Science, pages 255–272. Springer-Verlag, 2003.

[2] A. Corradini, F. L. Dotti, L. Foss, and L. Ribeiro. Translating java into graph transformation
systems. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors, Second Inter-
national Conference on Graph Transformation, volume 3256 of Lecture Notes in Computer
Science, pages 383–389. Springer-Verlag, 2004.

[3] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic approaches
to graph transformation, part I: Basic concepts and double pushout approach. In G. Rozenberg,
editor, Handbook of Graph Grammars and Computing by Graph Transformation, volume I:
Foundations, chapter 3, pages 163–246. World Scientific, Singapore, 1997.

[4] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference
Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 269–282, San Antonio, Texas, 1979. ACM Press, New York, NY.

[5] P. Cousot and R. Cousot. Refining model checking by abstract interpretation. Automated Soft-
ware Engineering, 6(1):69–95, 1999.

[6] R. Depke, R. Heckel, and J. M. Küster. Formal agent-oriented modeling with UML and graph
transformation. Science of Computer Programming, 44:229–252, 2002.

[7] D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when to whom? On the auto-
mated verification of linked list structures. In The 24th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), Lecture Notes in Computer Science.
Springer-Verlag, 2004. To appear.

[8] D. Distefano, A. Rensink, and J.-P. Katoen. Model checking birth and death. In R. A. Baeza-
Yates, U. Montanari, and N. Santoro, editors, Foundations of Information Technology in the
Era of Network and Mobile Computing, volume 223 of IFIP Conference Proceedings, pages
435–447. Kluwer Academic Publishers, 2002.

[9] F. L. Dotti, L. Foss, L. Ribeiro, and O. M. dos Santos. Verification of distributed object-based
systems. In E. Najm, U. Nestmann, and P. Stevens, editors, Formal Methods for Open Object-
based Distributed Systems, volume 2884 of Lecture Notes in Computer Science, pages 261–275.
Springer-Verlag, 2003.

[10] A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application conditions.
Fundamenta Informaticae, 26(3/4):287–313, 1996.

15

[11] S. Kuska, M. Gogolla, R. Kollmann, and H.-J. Kreowski. An integrated semantics for UML
class, object and state diagrams based on graph transformation. In M. Butler, L. Petre, and
K. Sere, editors, IFM 2002, volume 2235 of Lecture Notes in Computer Science, pages 11–28.
Springer-Verlag, 2002.

[12] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data structures.
In L. Fribourg, editor, CSL 2001, volume 2142 of Lecture Notes in Computer Science, pages
1–19. Springer-Verlag, 2001.

[13] I. Pollet, B. L. Charlier, and A. Cortesi. Distinctness and sharing domains for static analysis of
java programs. In J. L. Knudsen, editor, ECOOP 2001 - Object-Oriented Programming, 15th
European Conference, Budapest, Hungary, June 18-22, 2001, Proceedings, volume 2072 of
Lecture Notes in Computer Science, pages 77–98. Springer-Verlag, 2001.

[14] A. Rensink. Canonical graph shapes. In D. A. Schmidt, editor, Programming Languages and
Systems — European Symposium on Programming (ESOP), volume 2986 of Lecture Notes in
Computer Science, pages 401–415. Springer-Verlag, 2004.

[15] A. Rensink. The GROOVE simulator: A tool for state space generation. In J. Pfalz, M. Nagl,
and B. Böhlen, editors, Applications of Graph Transformations with Industrial Relevance (AG-
TIVE), volume 3063 of Lecture Notes in Computer Science, pages 479–485. Springer-Verlag,
2004.

[16] A. Rensink. State space abstraction using shape graphs. In Automatic Verification of Infinite-
State Systems (AVIS), Electronic Notes in Theoretical Computer Science. Elsevier, 2004. To
appear.

[17] A. Rensink, Á. Schmidt, and D. Varró. Model checking graph transformations: A comparison
of two approaches. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors,
International Conference on Graph Transformations (ICGT), volume 3256 of Lecture Notes in
Computer Science, pages 226–241. Springer-Verlag, 2004.

[18] J. Reynolds. Separation logic: A logic for shared mutable data structures. In Seventeenth
Annual IEEE Symposium on Logic in Computer Science. IEEE, Computer Society Press, 2002.

[19] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with de-
structive updating. ACM Trans. Prog. Lang. Syst., 20(1):1–50, Jan. 1998.

[20] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM Trans.
Prog. Lang. Syst., 24(3):217–298, May 2002.

16

A Proofs of the theorems
Proposition 11 Let L, G ∈ DGraL and S ∈ ShaL. If f : L→G is an injective morphism
and s: G → S a shaping, then s ◦ f is a pre-shaping of L into S.

Proof. Let p = s ◦ f . Clearly p is a graph morphism; we only have to show satisfaction of
the multiplicities’ upper bounds, in the sense of Def. 10.

• Let v ∈ NS be arbitrary. It follows (by the fact that s is a shaping) that s−1(v) :
ndS(v), which implies (among other things) |s−1(v)| ≤ dndS(v)e. From the injec-
tivity of f it follows that |f−1(s−1(v))| ≤ |s−1(v)|, hence we are done.

• Let v ∈ NL and a ∈ L be arbitrary. Since s is a shaping it follows (among other
things) that |{w ∈ NG | (w, a, f(v)) ∈ EG}| ≤ dinS(s(v))(a)e. From the injectiv-
ity of f it follows that

|{w ∈ NL | (f(w), a, f(v)) ∈ EG}| ≤ |{w ∈ NG | (w, a, f(v)) ∈ EG}| ;

moreover, since f is a graph morphism we have {w ∈ NL | (w, a, v) ∈ EL} ⊆
{w ∈ NL | (f(w), a, f(v)) ∈ EG}. These three inequalities suffice to conclude the
proof obligation. 2

Proposition 12 Let L ∈ DGraL and S ∈ ShaL and let c: L → S be a concrete pre-
shaping. For any G ∈ DGraL with a shaping s: G → S, there is an injective morphism
m: L → G such that c = s ◦ m.

Proof. By the fact that c is concrete, it follows that ndS(c(v)) = =1 for all v ∈ NL; hence
s(w) = c(v) uniquely identifies w ∈ NG, and so s−1(c(v)) is well-defined. We make use
of this fact by defining a node mapping m: NL → NG as

m : v 7→ s−1(c(v)) .

Since c = s ◦ m holds by construction, we only have to show that m is an injective graph
morphism.

Let (v, a, w) ∈ EL be arbitrary. It follows that (c(v), a, c(w)) ∈ ES ; but then (due
to Clause 3 of Def. 7) ∃(m(v), a, w′) ∈ NG, and so (c(v), a, s(w′)) ∈ ES . Because c is
concrete, it follows that s(w′) = c(w), and so w′ = m(w). We may conclude that m is
indeed a graph morphism.

The injectivity of m follows from the fact that c is injective (which is enforced by the
node multiplicity ndS(c(v)) = =1 for all v ∈ NL). 2

Proposition 13 Let L ∈ DGraL and S ∈ ShaL, and let p: L → S be a pre-shaping.
αp gives rise to an abstraction morphism from S+p to S, and idL gives rise to a concrete
pre-shaping of L into S+p, such that p = αp ◦ idL.

Proof.αp is a graph morphism by construction of E+p. To show that αp: S
+p → S is an

abstraction morphism we prove the properties of Def. 8.

1. Let v ∈ NS ; then α−1
p (v) = p−1(v)∪{v}. Defining i = |p−1(v)| and using Prop. 5.2

we obtain
∑

nd+p(α−1
p (v)) = (ndS(v) − i) + =i ⊆ ndS(v) .

2. By construction of in+p;

3. By construction of E+p.

idL is a concrete pre-shaping by construction of S+p, taking into account that p is already
a shaping. Finally, p = αp ◦ idL is immediate by the definition of αp. 2

17

Proposition 14 Let L, G ∈ DGraL and S ∈ ShaL. For an arbitrary injective morphism
m: L→G and a shaping s: G→S, let p = s ◦m; then there is a shaping t: G→S+p with
s = αp ◦ t and t ◦ m = idL.

Proof. Note that p is a pre-shaping by Prop. 11, so the materialisation S+p is well-defined.
The required shaping t is given by

t : v 7→

{

m−1(v) if v ∈ m(NL)
s(v) otherwise.

On the level of functions over node sets, we show s = αp ◦ t by a simple case distinction.
Let v ∈ NG be arbitrary.

• If v ∈ m(NL) then t(v) = m−1(v) ∈ NL, implying αp(t(v)) = p(t(v)) =
s(m(m−1(v))) = s(v).

• If v /∈ m(NL) then t(v) = s(v), implying αp(t(v)) = idS(t(v)) = s(v).

To see that t ◦ m = idL holds (as functions over node sets), let v ∈ NL be arbitrary; then
m(v) ∈ m(NL), hence t(m(v)) = m−1(m(v)) = v. We now show that t is a shaping of
G to S+p.

• By construction, t maps NG into N+p.

• Let (v, a, w) ∈ EG be arbitrary. It follows that (s(v), a, s(w)) ∈ ES due to the
fact that s is a shaping; hence (t(v), a, t(w)) ∈ α−1

p (ES) due to s = αp ◦ t, proved
above. To show that (t(v), a, t(w)) ∈ E+p, we now only have to show that either
t(v) /∈ NL or @(t(v), a, w′) ∈ EL : w′ 6= t(w). For this purpose assume t(v) ∈ NL

and (t(v), a, w′) ∈ EL; then (m(t(v)), a, m(w′)) ∈ EG. It follows by construction
of t that v ∈ m(NL) and v = m(t(v)); hence m(w′) = w due to the determinism
of G, implying t(m(w′)) = t(w). Since t(m(w′)) = w′ by construction of t, we are
done.

• Let v ∈ N+p be arbitrary. We make the following case distinction:

– v ∈ NL. By definition, t−1(v) = {m(v)}; since nd+p(v) = =1, we are done.

– v ∈ NS . By definition, t−1(v) = s−1(v) \ m(NL). Since m is injective,
|s−1(v) ∩ m(NL)| = |m−1(s−1(v))| = |p−1(v)|. Since s−1(v) : ndS(v) by
the fact that s is a shaping, it follows by Prop. 5.1 that t−1(v) : nd+p(v).

• Let v ∈ NG and a ∈ L be arbitrary, and define the a-predecessors of v in G as
X = {w ∈ NG | (w, a, v) ∈ EG}. By the fact that s is a shaping it follows that X :
in(s(v))(a). Due to s = αp ◦ t(v) it follows that in+p(t(v)) = in+p(αp(t(v))) =
in+p(s(v)), hence X : in+p(t(v))(a). 2

Fig. 11 shows a diagram to clarify Theorems 16 and 17.

Theorem 16 Let P = (L, R) ∈ ProdL and S ∈ ShaL, and assume S −
P,c
−→ T . For any

shaping s: G→S, there exists a matching m for P in G such that c = s◦m, and G −P,m−−→ H
such that there is a shaping t: H → T .

Proof. Let s: G → S be an arbitrary shaping. By S −P,c
−→ T we have that c: L → GS is a

concrete pre-shaping. Then, by Prop. 12 there exists an injective morphism m: L→G such
that c = s ◦ m. We show that m is in fact a (concrete) matching. To show this, we prove
that m satisfies the conditions of Def. 3.

18

L

m
��

c

��
p

$$

G
P, m //

s
��

H

t
��

S+p
P, c //

αp

��

T

S

Figure 11: Concrete and abstract transitions; visualization of Theorems 16 and 17.

1. Let (v, a, w) ∈ EG; this implies (s(v), a, s(w)) ∈ ES . Since c is an abstract match-
ing, we have:

s(v) ∈ c(Ndel) ∨ s(w) ∈ c(Ndel) ⇒ (s(v), a, s(w)) ∈ c(Edel)

implying
c−1(s(v)) ∈ Ndel ∨ c−1(s(w)) ∈ Ndel ⇒ c−1((s(v), a, s(w))) ∈ Edel

implying [since c−1 ◦ s = m−1]

m−1(v) ∈ Ndel ∨ m−1(w) ∈ Ndel ⇒ m−1((v, a, w)) ∈ Edel

implying

v ∈ m(Ndel) ∨ w ∈ m(Ndel) ⇒ (v, a, w) ∈ m(Edel).

2. Again, if (v, a, w) ∈ EG, then (s(v), a, s(w)) ∈ ES . Since c is an abstract matching,
we have:

s(v) ∈ c(Nuse) ∧ ∃(c−1(s(v)), a, w′) ∈ Enew ⇒ (s(v), a, s(w)) ∈ c(Edel)

implying
c−1(s(v)) ∈ Nuse ∧ ∃(c−1(s(v)), a, w′) ∈ Enew ⇒ c−1((s(v), a, s(w))) ∈ Edel

implying [since c−1 = m−1 ◦ s−1]
m−1(v) ∈ Nuse ∧ ∃(m−1(v), a, w′) ∈ Enew ⇒ m−1(v, a, w) ∈ Edel

implying

v ∈ m(Nuse) ∧ ∃(m−1(v), a, w′) ∈ Enew ⇒ (v, a, w) ∈ m(Edel)

This proves that m is a (concrete) matching. Hence, there exists a transition G −P,m−−→ H
where by Def. 3 we have:

NH = (NG \ m(Ndel)) ∪ Nnew

EH = (EG \ m(Edel)) ∪ Enew

where Nnew and Enew are fresh by the assumption on the definition of production rule.
It remains to prove that there exists a shaping t: H→T . This is defined by the following

node function:

t : v 7→

{

v if v ∈ Nnew

s(v) otherwise.

We prove that t is indeed a shaping.

• t is a graph morphism. To see this, let (v, a, w) ∈ EH . If (v, a, w) ∈ EG \ m(Edel)
we have: t(v, a, w) = s(v, a, w) = (s(v), a, s(w)) = (t(v), a, t(w)) since s is a

19

shape morphism. Otherwise if (v, a, w) ∈ Enew then we have to distinguish several
cases depending whether v, w belong to N new or to Nuse. In all cases, it is trivial to
see that by construction we have t((v, a, w)) = (f(v), a, f(w)) = (t(v), a, t(w)).

• Now we show that conditions 1-3 of Def. 7 hold.

1. If v ∈ Nnew then |t−1(v)| = 1 ∈ ndT (v). If v ∈ NS then, since s is a shaping,
we have |t−1(v)| = |s−1(v)| ∈ ndS(v) = ndT (v).

2. Let v ∈ NH and a ∈ L. If v ∈ N new then inT (t(v))(a) = inT (v)(a),
which equals =|{w | (w, a, v) ∈ Enew}|. However, since v ∈ N new we have
{w | (w, a, v) ∈ Enew} = {w | (w, a, v) ∈ EH}. ⊆ is trivial. We show ⊇ by
contradiction. Assume ∃(w, a, v) ∈ EH \Enew then (w, a, v) ∈ EG \m(Edel)
and therefore v /∈ N new which is indeed a contradiction. Hence, we conclude
that {w | (w, a, v) ∈ EH} : inT (t(v))(a).
If v ∈ NG \ m(Ndel) then

inT (t(v))(a) = inS(s(v))(a) − |{w | (w, a, s(v)) ∈ c(Edel)}|

+ =|{w | (w, a, s(v)) ∈ Enew}| .

Due to the fact that c and m are injective morphisms, and moreover m−1 =
c−1 ◦ s, we have

|{w ∈ NH | (w, a, v) ∈ EH}|

= |{w ∈ NG | (w, a, v) ∈ EG}| − |{w ∈ NG | (w, a, v) ∈ m(Edel)}|

+ |{w ∈ NG | (w, a, v) ∈ Enew}|

= |{w ∈ NG | (w, a, v) ∈ EG}| − |{w ∈ NT | (w, a, s(v)) ∈ c(Edel)}|

+ |{w ∈ NT | (w, a, s(v)) ∈ Enew}| .

Since s is a shaping, we have |{w ∈ NG | (w, a, v) ∈ EG}| ∈ inS(s(v))(a);
hence we may conclude |{w ∈ NH | (w, a, v) ∈ EH}| ∈ inT (t(v))(a).

3. Let v ∈ NH , a ∈ L and (t(v), a, w) ∈ ET . If (t(v), a, w) ∈ Enew then by
construction (t(v), a, w) ∈ EH .
If (t(v), a, w) ∈ ES \ c(Edel) then t(v) ∈ NS \ c(Ndel). By definition of
t it follows that v /∈ N new which implies t(v) = s(v). Therefore we have
(t(v), a, w) = (s(v), a, w). Since s is a shaping by hypothesis, then there
exists (v, a, w′) ∈ EG for some w′ such that s(w′) = w. Thus to show that
(v, a, w′) ∈ EH it remains to be proved that (v, a, w′) /∈ m(Edel). We prove
that by contradiction. Assume (v, a, w′) ∈ m(Edel) then m−1((v, a, w′)) ∈
Edel. Since m−1 = c−1 ◦ s then it follows s(v, a, w′) ∈ c(Edel) which implies
(s(v), a, s(w′)) ∈ c(Edel). This finally implies (t(v), a, w) ∈ c(Edel) that
contradicts our initial assumption.

Hence, we conclude that t is a shaping. 2

Theorem 17 Let P = (L, R) ∈ ProdL and G ∈ DGraL, and assume G −P,m−−→ H . For
any shaping s: G→S such that c = s◦m is concrete, S −

P,c
−→ T such that there is a shaping

t: H → T .

Proof. Since there exists m: L → G and s: G → S then by Prop. 11 s ◦ m: L → S is
a pre-shaping. Let c = s ◦ m be concrete. Because m is a concrete matching, we can
prove that c is an abstract matching for P in the graph part of S. To show this we prove
condition 1 and 2 of Def. 3. Let (v, a, w) ∈ ES , we have (c−1(v), a, c−1(w)) ∈ EL. Since
c−1 = m−1 ◦ s−1 we have:

(s−1(v), a, s−1(w)) ∈ EG.

Since m is a concrete matching we have:

20

1. For the first condition

s−1(v) ∈ m(Edel) ∨ s−1(w) ∈ m(Edel) ⇒ (s−1(v), a, s−1(w)) ∈ m(Edel)

implying
m−1(s−1(v)) ∈ Edel ∨ m−1(s−1(w)) ∈ Edel

⇒ (m−1(s−1(v)), a, m−1(s−1(w))) ∈ Edel

implying [since c−1 = m−1 ◦ s−1]
c−1(v) ∈ Edel ∨ c−1(w) ∈ Edel ⇒ (c−1(v), a, c−1(w)) ∈ Edel

implying
v ∈ c(Edel) ∨ w ∈ c(Edel) ⇒ (v, a, w) ∈ c(Edel)

2. For the second condition:

s−1(v) ∈ m(Nuse) ∧ ∃(m−1(s−1(s)), a, w′) ∈ Enew

⇒ (s−1(v), a, s−1(w)) ∈ m(Edel)

implying
v ∈ s ◦ m(Nuse) ∧ ∃(c−1(s), a, w′) ∈ Enew ⇒ (v, a, w) ∈ s ◦m(Edel)

implying
v ∈ c(Nuse) ∧ ∃(c−1(s), a, w′) ∈ Enew ⇒ (v, a, w) ∈ c(Edel)

Therefore we conclude that c is an abstract matching. Then, by Def. 15 there exists a
transition S −

P,c
−→ T . Moreover, The target graphs H and T of the concrete and the abstract

transition are defined according to Def. 3 and Def. 15. Let t: H → T be defined as in the
proof of Theorem 16; as shown in that proof, t is a shaping. 2

Theorem 22 Let Π be a set of production rules and I ∈ DGra; let GTS (Π, I) = (G,−→)
and STS (Π, can(I)) = (S,−→).

1. can(G) ⊆ S and S is finite;

2. For all G, H ∈ G, G −P−→ H implies can(G) −P−→ can(H).

3. For all S, T ∈ S such that S −P−→ T , there are G′, H ′ ∈ DGra with a shaping
s: G′ → S, such that G′ −P−→ H ′.

Proof. Let S = can(G).

1. can(G) ⊆ S follows from the next item. The finiteness of S is a consequence of the
finiteness of CShaL, proved in [14].

2. Let P = (L, R) and assume m is the matching for G −P−→ H . By construction of S,
there is a shaping s: G→S (see Th. 19). Due to Prop. 11, p = s ◦m is a pre-shaping
of L in S; hence due to Prop. 13, there is a concrete pre-shaping id L: L → S+p.
Hence due to Th. 17, there is an abstract shape transformation S+p −P,idL−−−→ T with
a shaping t: H → T . By Th. 20 we have can(H) ∈ norm(T). It follows that, by
definition, S −P−→ T .

3. Let P = (L, R). By definition of shape transitions, S+p is consistent, S+p −P,idL−−−→ S′

and T ∈ can(S′) for some pre-shaping p: L → S. It follows that there is a shaping
s′: G → S+p; by Prop. 9, s = αp ◦ s′ is then a shaping of G in S. By Th. 16, there
exists a matching m for P in G such that idL = s ◦ m and G −

P,m
−−→ H . 2

21

