Fault Tree Analysis: A survey of the state-of-the-art in modeling, analysis and tools

Enno Ruijters’™ and Mariélle Stoelinga®
Formal Methods and Tools, University of Twente, The Netherlands

"E-mail: e.j.j.ruijters@utwente.nl (E. Ruijters), m.i.a.stoelinga@utwente.nl (M. I. A. Stoelinga)
*Corresponding author at: Universiteit Twente, t.a.v. Enno Ruijters, Vakgroep EWI-FMT, Zilverling, P.O. Box 217, 7500 AE Enschede

Abstract

Fault tree analysis (FTA) is a very prominent method to analyze the risks related to safety and economically critical
assets, like power plants, airplanes, data centers and web shops. FTA methods comprise of a wide variety of modelling
and analysis techniques, supported by a wide range of software tools. This paper surveys over 150 papers on fault tree
analysis, providing an in-depth overview of the state-of-the-art in FTA. Concretely, we review standard fault trees, as
well as extensions such as dynamic FT, repairable FT, and extended FT. For these models, we review both qualitative
analysis methods, like cut sets and common cause failures, and quantitative techniques, including a wide variety of
stochastic methods to compute failure probabilities. Numerous examples illustrate the various approaches, and tables
present a quick overview of results.

Keywords: Fault Trees, Reliability, Risk analysis, Dynamic Fault Trees, Graphical models, Dependability Evaluation

Contents [3.2 Analysisof DFT| 18
[3.3 Qualitative analysis|. 18
il Introduction 1 3.4 uantitative analysis| 19
1.1 Research Methodology| 2 1 Ther Fault Tree oxtensions 21
L2 Related world 2 M1 FTA with fuzzy numbery 23
1.3 Legal background) 3 [4.2 Fault Trees with dependent events| . . 25
2 Standard Fault Ireesl 3 (4.3~ Repairable Fault Trees 25
2.1 Fault Tree Structurel 3 [4.4 Fault trees with temporal requirements| 26
RIL Gated 4 L5 State-Event Fault Treed 27
L2 Tenmal definition - 4 .6 Miscellencous FT extensiond 28
213 Semanticsl 4 [4.7 Comparison] 28
2.2 ualitative analysis of SF'Ts[. 5 B Conclusions 28
221 Minimalcutsefd 5 [Appondix A GIoSSary] . « « o v oo e 36

12.2.2 Minimal path sets| 7

223 Common cause failures. . . . 7

P33 Discrete-time quantitative analysig . . 8 1. Introduction

E;; gglgz;ril;z:en;ilob.al.)iiit.ieél: z Risk analysis is an important activity to ensure that

— critical assets, like medical devices and nuclear power plants
[.3. Reliability] ’
B gi Ei}iz:‘;;ly{\fumber o Failurey 13 operate in a safe and reliable way. Fault Tree analy-
BT Contimons fime quantitative analysh 11 sis (FTA) is one of the most prominent techniques here,

: : —— used by a wide range of industries. Fault Trees (FTs)
[2.4.1 Modeling failure probabilities] 11 are a graphical method that model how failures propagate

2.4.2 Ehf{ibﬂ}t. """""" 1 through the system, i.e., how component failures lead to
2.4.3 vailability] 12 .
19 system failures. Due to redundancy and spare manage-

ment, not all component failures lead to a system failure.
FTA investigates whether the system design is dependable
enough. it provides methods and tools to compute a wide

245 Mean Time Between Failures) 13
12.4.6 Expected Number of Failures] 13

2.5 Sensitivity analysis| 13 .
2.0 Importance measures| 13 rage of properties and measures. . .
BT Commocal ool 1 FTs are trees, or more generally .dlrected acyclic graphs,
B Dynamic Fault Treed 16 Whose leaves quel component failures and Whosg gates
T3] 16 failure propagation. Figure [1] shows a representative ex-
g Siod] — oA - '| 17 ample, which is elaborated in Example [T}

Concerning analysis techniques, we distinguish between
qualitative FTA, which consider the structure of the FT;
and quantitative FTA, which compute values such as fail-
ure probabilities for FTs. In the qualitative realm, cut sets
are an important measure, indicating which combinations
of component failures lead to system failures. If a cut set
contains too few elements, this may indicate a system vul-
nerability. Other qualitative measure we discuss are path
sets and common cause failures.

Quantitative system measures mostly concern the com-
putation of failure probabilities. If we assume that the
failure of the system components are governed by a prob-
ability distribution, then quantitative FTA compute the
failure probability for the system. Here, we distinguish
between discrete and continuous probabilities. For both
variants, the following FT measures are discussed. The
system reliability yields the probability that the system
fails with a given time horizon t; the system availability
yields the percentage of time that the system is opera-
tional; the mean time to failure yields the average time
before the first failure and the mean time between failures
the average time between two subsequent failures. Such
measures are vital to determine if a system meets its de-
pendability requirements, or whether additional measures
are needed. Furthermore, we discuss sensitivity analysis
techniques, which determine how sensitive an analysis is
with respect to the values (i.e., failure probabilities) in
the leaves; we also discuss importance measures, which
give other means to determine how sensitive an analysis
is with respect to the values (i.e., failure probabilities) in
the leaves.

While SFTs provide a simple and informative formal-
ism, it was soon realized that it lacks expressivity to model
essential and often occurring dependability patterns. There-
fore, several extensions to fault trees have been proposed,
which are capable of expressing features that are not ex-
pressible in SFTs, like spare management, different opera-
tional modes, dependent events. Dynamic Fault Trees are
the best known, but extended fault trees, repairable fault
trees, fuzzy fault trees, state-event fault trees are popu-
lar as well. We discuss these extensions, as well as their
analysis techniques.

In doing so, we have reviewed over 150 papers on fault
tree analysis, provding an extensive overview of the state-
of-the-art in fault tree analysis.

Organization of this paper As can be seen in the table
of contents, this paper first discusses standard fault trees
in Section 2] and then extensions that increase the expres-
siveness of the model. Dynamic fault trees, as the most
widely used extension, is discussed in depth in Section
while other extensions are presented in Section [4]

For each of the models, we present the definition and
structure of the models, then methods for qualitative anal-
ysis, and then methods for quantitative analysis (if appli-
cable to the particular model). In each section, we dis-
cuss standard techniques is depth, while less common tech-

niques are presented more briefly. Definitions of repeatedly

used abbreviations and jargon can be found in
[Al

Note that all literature references in the electronic ver-
sion are clickable, and that the reference list refers, for
each paper, to the pages where that paper is cited.

1.1. Research Methodology

We intend for this paper to be as comprehensive as
reasonable, but we cannot guarantee that we have found
every relevant paper.

To obtain relevant papers, we searched for the key-
words "Fault tree’ in the online databases
Google Scholar (http://scholar.google.com),
IEEExplore (http://ieeexplore.ieee.org),

ACM Digital Library (http://dl.acm.org),

Citeseer (http://citeseerx.ist.psu.edu),
ScienceDirect (http://www.sciencedirect.com),
SpringerLink (http://link.springer.com),

and SCOPUS (http://www.scopus.com). Further arti-
cles were obtained by following references from the papers
found.

Articles were excluded that are not in English, or deemed
of poor quality. Furthermore, to limit the scope of this sur-
vey, articles were excluded that present only applications
of FTA, present only methods for constructing FTs, or
only describe techniques for fault diagnosis based on FTs,
unless the article also presents novel analysis or modeling
techniques. Articles presenting implementations of exist-
ing algorithms were only included if they describe a con-
crete tool.

1.2. Related work

Apart from fault trees, there are a number of other
formalisms for dependability analysis [I]. We list the most
common ones below.

Failure Mode and Effects Analysis Failure Mode and
Effects Analysis (FMEA) [2[3] was one of the first system-
atic techniques for dependability analysis. FMEA, and in
particular its extension with criticality FMECA (Failure
Mode, Effects and Criticality Analysis), is still very popu-
lar today; users can be found throughout the safety-critical
industry, defence [4], avionics [5], automative [6], and rail-
road domains. These analyses offer a structured way to
list possible failures and the consequences of these fail-
ures. Possible countermeasures to the failures can also be
included in the list.

If probabilities of the failures are known, quantitative
analysis can also be performed to estimate system reliabil-
ity and to assign numeric criticalities to potential failure
modes and to system components [4].

HAZOP analysis A hazard and operability study (HA-
ZOP) [1] systematically combines a number of guidewords
(like insufficient, no, or incorrect) with parameters (like
coolant or reactant), and evaluating the applicability of

http://scholar.google.com
http://ieeexplore.ieee.org
http://dl.acm.org
http://citeseerx.ist.psu.edu
http://www.sciencedirect.com
http://link.springer.com
http://www.scopus.com

each combination to components of the system. This re-
sults in a list of possible hazards that the system is subject
to. The approach is still used today, especially in indus-
trial fields like the chemistry sector.

Reliability block diagrams Similar to fault trees, relia-
bility block diagrams (RBDs) [§] decompose systems into
subsystems to show the effects of (combinations of) faults.
Similar to FTs, RBDs are attractive to users because the
blocks can often map directly to physical components, and
because they allow qualitative analysis (computation of re-
liability and availability) and quantitative analysis (deter-
mination of cut sets).

To model more complex dependencies between com-
ponents, Dynamic RBDs [9] include standby states where
components fail at a lower rate, and triggers that allow
the modeling of shared spare components and functional
dependencies. This may improve the accuracy of the com-
puted reliability and availability.

OpenSESAME The OpenSESAME modeling environ-
ment [I0] extends RBDs by allowing more types of inter-
component dependencies, common cause failures, and lim-
ited repair resources. This is mostly an academic approach
and sees little use in industry.

SAVE The system availability estimator (SAVE) [I1] mod-
eling language is developed by IBM, and allows the user to
declare components and dependencies between them using
predefined constructs. The resulting model is then anal-
ysed to determine availability.

AADL The Architecture Analysis and Design Language
(AADL) [12] is an industry standard for modeling safety-
critical systems architectures. A complete AADL speci-
fication consists of a description of nominal behaviour, a
description of error behaviour and a fault injection speci-
fication that describes how the error behaviour influences
the nominal behaviour.

Such an AADL specification can be used to derive an
FMEA table [I3] in a systematic way. One can also au-
tomatically discover failure effects that may be caused by
combinations of faults [14]. If failure rates are known,
quantitative analysis can also determine the system relia-
bility and availability [3].

UML Another industry standard for modeling computer
programs, but also physical systems and processes, is the
Unified Modeling Language (UML) [I5]. UML provides
various graphical models such as Statechart diagrams and
Sequence diagrams to assist developers and analysts in de-
scribing the behaviours of a system.

It is possible to convert UML Statechart diagrams into
Petri Nets, from which system reliability can be computed
[16]. Another approach combines several UML diagrams
to model error propagation and obtain a more accurate
reliability estimate [I7].

Moébius The Mobius framework was developed by Sanders
et al. [I8] [19] as a multi-formalism approach to modeling.

System Failure

Figure 1: Example FT of a computer system with a nonredundant
system bus (B), power supply (PS), redundant CPUs (C1 and C2)
of which one can fail with causing problems, and redundant memory
units (M1, M2, and M3) of which one is allowed to fail; failures are
propagated by the gates (G1-G6)

The tool allows components of a system to be specified
using different techniques and combined into one model.
The combined model can then be analyzed for reliability,
availability, and expected cost using various techniques de-
pending on the underlying models.

1.3. Legal background

FTA plays an important role in product certification,
and to show conformance to legal requirements. In the
European Union, legislature mandates that employers as-
sess and mitigate the risks that workers face [20]. FTA
can be applied in this context, e.g. to determine the con-
ditions under which a particular machine is dangerous to
workers [21]. The U.S. Department of Labor has also ac-
cepted the use of FTA for risk assessment in workplace
environments [22].

Similarly, the EU Machine Directive [23] requires man-
ufacturers to determine and document the risks posed by
the machines they produce. FTA is one of the techniques
that can be used for this documentation [24].

The transportation industry has also adopted risk anal-
ysis requirements, and FTA as a technique for perform-
ing such analysis. The Federal Aviation Administration
adopted a policy in 1998 [25] requiring a formalized risk
management policy for high-consequence decisions. Their
System Safety Handbook [26] lists FTA as one of the tools
for hazard analysis.

o, 2 @

Intermediate (b) Transfer (c) Transfer
event in out

d) Undeveloped
event

Figure 2: Images of non-basic events in fault trees

2. Standard Fault Trees

As discussed in the previous section, it can be necessary
to analyze system dependability properties. A fault tree
is a graphical model to do so: It describes the relevant
failures that could occur in the system, and how these
failures interact to possibly cause a failure of the system
as a whole.

Standard, or static, fault trees (SFTs) are the most
basic fault trees. They have been introduced in the 1960
at Bell Labs for the analysis of a ballistic missile [27]. The
classical Fault Tree Handbook by Vesely et al. [28] provides
a comprehensive introduction to SF'Ts. Below, we describe
the most prominent modelling and analysis techniques for
SETs.

2.1. Fault Tree Structure

A fault tree is a directed acyclic graph (DAG) consist-
ing of two types of nodes: events and gates. An event is
an occurrence within the system, typically the failure of a
subsystem down to an individual component. Events can
be divided into basic events (BEs), which occur sponta-
neously, and intermediate events, which are caused by one
or more other events. The event at the top of the tree,
called the top event (TE), is the event being analyzed,
modeling the failure of the (sub)system under considera-
tion.

In addition to basic events depicted by circles, Figure 2]
shows other symbols for events. An intermediate event is
depicted by a rectangle. If an FT is too large to fit on
one page, triangles are used to transfer events between
multiple FTs to act as one large FT. Finally, sometimes
subsystems are not really BEs, but insufficient information
is available or the event is not believed to be of sufficient
importance to develop the subsystem into a subtree. Such
an undeveloped event is denoted by a diamond.

2.1.1. Gates

Gates represent how failures propagate through the
system, i.e. how failures in subsystems can combine to
cause a system failure. Each gate has one output and one
or more inputs. The following gates are commonly used in
fault trees. Images of the gates are shown in Figure [3]

AND Output event occurs if all of the input events occur,
e.g. gate G3 in the example.

K

) AND gate (b) OR gate (

(d) INHIBIT
k/N gate gate
©)

Figure 3: Images of the gates types in a static fault tree

OR Output event occurs if any of the input events occur,
e.g. gate G2 in the example.

k/N ak.a. VOTING, has N inputs. Output event occurs
if at least k input events occur. This gate can be
replaced by the OR of all sets of k inputs, but us-
ing one k/N gate is much clearer. Gate G6 in the
example is a 2/3 gate.

INHIBIT Output event occurs if the input event occurs
while the conditioning event drawn to the right of
the gate also occurs. This gate behaves identically
to an AND-gate with two inputs, and is therefore not
treated in the rest of this paper. It is sometimes used
to clarify the system behaviour to readers. Gate G1
in the example is an INHIBIT gate.

Several extensions of FT introduce additional gates
that allow the modelling of systems that can return to
a functional state after failure. These ‘Repairable Fault
Trees’ will be described in Section E3l

Other extensions include a NOT-gate or equivalent, so
that it is possible for a component failure to cause the
system to go from failed to working again [29]. Such a
system is called noncoherent, and it often indicates an er-
ror in modeling [2§].

Example 1. Figure (modified from Malhotra and Trivedi
[30, [31)]) shows a fault tree for a partially redundant com-

puter system. The system consists of a bus, two CPUs

8 memory units, and a power supply. These components

are represented as basic events in the leaves of the tree, B,

C1, C2, M1, M2, M3, and PS respectively. The top of the

tree (labeled System Failure here) represents the event of

interest, namely a failure of the computer system.

As stated, gates represent how failures propagate from
through the system: Gate G1 is an Inhibit-gate indicating
that a system failure is only considered when the system
18 in use, so that faults may be repaired during scheduled
downtime.

The OR gate G2, just below G1, indicates that the fail-
ure of either the bus (basic event B) or the computing sub-
system causes a system failure. The computing subsystem
consists of two redundant units combined using an AND
gate G8 so that both need to fail to cause an overall fail-
ure. Each unit can fail because either the CPU (C1 or C2)
fails or the power supply (PS) fails. Note that the event PS
is duplicated for each subtree, but still represents a single
event.

A failure of the memory subsystem can also cause a
unit to fail, but this requires a failure of two memory units.
This is represented by the 2/8 gate G6. This gate is an
input of both compute subsystems, making this a DAG, but
the subtree could also have been duplicated if the method
used required a tree but allowed repeated events.

2.1.2. Formal definition

e Forge G and T(g) = VOT(k/N), let

mr(S,9) = > WF(S,$)> > k.

z€l(g)

Note that the AND gate with N inputs is semantically
equivalent to an VOT(N/N) gate, and the OR gate with
N inputs is semantically equivalent to a VOT(1/N) gate.
In the remainder of this paper, we abbreviate the interpre-

To formalize an F'T, we use Gate Types = {And, Or, Inhibit {dtion of the top event ¢ by stating mp(S,t) = mp(S). It

{VOT(k/N) | k,N € N>' ik < N}. Following Codetta-
Raiteri et al. [32], we formalize an FT as follows.

Definition 2. An FT is a 4-tuple F = (BE,G,T,I), con-
sisting of the following components.

e BF is the set of basic events.

e G is the set of gates, with BE NG = (. We write
E= BEUG for the set of elements.

o T : G — GateTypes is a function that describes the
type of each gate.

e [:G — P(E) describes the inputs of each gate. We
require that I(g) # 0 and that |1(g)| = N if T(g) =
VOT(k/N).

Importantly, the graph formed by (E, I) should be a directed
acyclic graph with a unique root TE which is reachable
from all other nodes.

This description does not distinguish between the con-
ditioning event and the input event of an inhibit gate, since
this does not affect the evaluation of the tree. Also, in-
termediate events are not explicitly represented, again be-
cause they do not affect analysis. However, both are useful
for documentation purposes. Some analysis methods de-
scribed later require the undirected graph (E,I) to be a
tree, i.e., forbid shared subtrees. In this paper, an FT will
be considered a DAG.

2.1.3. Semantics

The semantics of an FT F describes, given a set S of
failed BEs, for each element g, whether or not that element
fails.

Definition 3. The semantics of FT F is a function 7p :
P(BE) x E — {0,1} where np(S,e) indicates whether e
fails given the set S of failed BEs. It is defined as follows.

e Forec BE, np(S,e) =e€ S.
e Forge G and T(g) = And, let

mr(S,9) = N 7wr(S).
z€l(g)
e Forge G and T(g) = Or, let
mr(S,9) = V 7wp(S).

z€l(g)

follows easily that standard FT are coherent, i.e. if event
set S leads to a failure, then every superset S’ also leads to
failure. Formally, S C S’A7np(S,z) =1= 7p(S",z) = 1.

2.2. Qualitative analysis of SFTs

Fault tree analysis techniques can be divided into quan-
titative and qualitative techniques. Qualitative techniques
provide insight into the structure of the FT, and are used
to detect system vulnerabilities. We discuss the most
prominent qualitative techniques, being (minimal) cut sets,
(minimal) path sets, and common cause failures. We recall
the classic methods for quantitative and qualitative fault
tree analysis presented by Lee et al. [29] as well as many
newer techniques.

In Tables and [4] (Pages @ @ @ and re-
spectively), we have summarised the qualitative analysis
techniques that we discuss in the current section.

Quantitative techniques are discussed in Section (2.3
These compute numerical values over the FT. Quantita-
tive techniques can be further divided into importance
measures, indicating how critical a certain component is,
and stochastic measures, most notably failure probabili-
ties. The stochastic measures are again divided into those
handling discrete failure probabilities and continuous time
ones; see Section [2.3]

2.2.1. Minimal cut sets

Cut sets and minimal cut sets provide important in-
formation about the vulnerabilities of a system. A cut set
is a set of components that can together cause the system
to fail. Thus, if an SFT contains cut sets with just a few
elements, or elements whose failure is too likely, this could
result in an unreliable system. Reducing the failure prob-
abilities of these cut sets is usually a good way to improve
overall reliability. Minimal cut sets are also used by some
quantitative analysis techniques described in Section [2.3

This section describes three important classes of cut
set analysis: Classical methods which are based on ma-
nipulation of the boolean expression of the FT, methods
based on Binary Decision Diagrams, and others. Tables
summarises these techniques.

Definition 4. C C BE is a cut set of FT F if np(C) = 1.
A minimal cut set (MCS) is a cut set of which no subset
is a cut set, i.e. formally C C BE is an MCS if mp(C) =
1AVeorco: WF(CI) =0.

Author Method Remarks Tool
Vesely et al. [2§] Top-down Classic boolean method MOCUS [33]
Vesely et al. [28] Bottom-up Produces MSC for intermediate events MICSUP [34]
Coudert and Madre [35] | BDD Usually faster than classic methods MetaPrime [306]
Rauzy [37] BDD Only for coherent FTs but faster than

[35] Aralia [38]
Dutuit and Rauzy [39] Modular BDD | Faster for FTs with independent submodules | DIFTree [40]
Remenyte et al. [41,42] | BDD Comparison of BDD construction methods -
Codetta-Raiteri [43] BDD Faster when FT has repeated subtrees -
Xiang et al. [44] MCV Reduced complexity with large voting gates | CASSI [44]
Carrasco et al. [45] CS-MC Less complex for FTs with few MCS -
Vesely and Narum [46] Monte Carlo Low memory use, accuracy not guaranteed PREP [46]

Table 1: Summary of methods to determine Minimal Cut Sets of SFTs

Example 5. In Figure[l, {U, B} is an MCS. Another cut
set is {U, M1, M2, M3}, but this is not an MCS since it
contains the cut set {U, M1, M2}.

Denoting the set of all MCS of an FT F as MC(F), we

can write an expression for the top event as \/CeMC(F) Npcco @

This property is useful for the analysis of the tree, as de-
scribed below.

Boolean manipulation

The classical methods of determining minimal cut sets
are the bottom-up and the top-down algorithms [28]. These
represent each gate as a Boolean expression of BEs and/or
other gates. These expressions are combined, expanded,
and simplified into an expression that relates the top event
to the BEs without any gates. This expression is called the
structure function. At every step, the expressions are con-
verted into disjunctive normal form (DNF), so that each
conjunction is an MCS.

Example 6. In Figure[l], the expression for the TE G1 is
U A G2, and that for G2 is BV G3. Substituting G2 into
G1 gives G1 = U A (B V G3). Converting to DNF yields
G1 = (UAB)V(UAG3). Continuing in this fashion until
all intermediate events have been eliminated results in the
minimal cut sets. This is the top-down method.

The bottom-up method begins with the expressions for
the gates at the bottom of the tree. This method usually
produces larger intermediate results since fewer opportu-
nities for simplification arise. As a result, it is often more
computationally intense. However, it has the advantage of
also providing the minimal cut sets for every intermediate
event.

Binary Decision Diagrams

An efficient way to find MCS is by converting the fault
tree into a Binary Decision Diagram (BDD) [47]. A BDD
is a directed acyclic graph that represents a boolean func-
tion f : {x1,22,...2,} — {0,1}. The leaves of a BDD
are labeled with either 0 or 1. The other nodes are la-
beled with a variable z; and have two children. The left
child represents the function in case x; = 0; the right child

represents the function z; = 1. BDDs are heavily used in
model checking, to efficiently represent the state space and

transition relation [35] [48].

Figure 4: Example conversion of SFT to BDD

Example 7. Figure[]] shows the conversion of an FT into
a BDD. Each circle represents a BE, and has two children:
a 0-child containing the sub-BDD that determines the sys-
tem status if the BE has not failed, and a 1-child for if it
has. The leaves of the BDD are squares containing 1 or
0 if the system has resp. has not failed. For example, if
components Fy and E4 have failed, we begin traversing the
BDD at its root, observe that E1 has failed, and follow the
1-edge. From here, since Fs3 is operational we follow the
0-edge. E4 has failed, so here we follow the 1-edge to reach
a leaf. This leaf contains a 1, so this combination results
in a system failure.

Cut Sets can be determined from the BDD by starting
at all 1-leaves of the tree, and traversing upwards toward
the root. The set of all BEs reached by traversing a 1-
edge from a particular leaf forms one CS. The CS may not
be minimal, depending on the algorithm used to construct
the BDD.

This method was first coined by Coudert and Madre
[35] as well as Rauzy [37]. Sinnamon et al. [49] improve
this method by adding a minimization algorithm for the

intermediate BDD. While the conversion to a BDD has ex-
ponential worst-case complexity, it has linear complexity
in the best case. In practice, BDD methods are usually
faster than boolean manipulation. This is strongly influ-
enced by the fact that BDDs very compactly represent
boolean functions with a high degree of symmetry [50],
and fault trees exhibit this symmetry as the gates are sym-
metric in their input. A program that analyzes F'Ts using
BDDs has been produced by Coudert and Madre [36].

The conversion of an FT to a BDD is not unique: De-
pending on the ordering of the BEs, different BDD can
be generated. Good variable ordering is important to re-
duce the size of the BDD. Unfortunately, even determining
whether a given ordering of variables is optimal is an NP-
complete problem. [5I]. Figure [5| shows how a different
variable ordering affects the size of the resulting BDD.

Remenyte and Andrews [41, [42] have compared several
different methods for constructing BDDs from FTs, and
conclude that a hybrid of Rauzy’s if-then-else method [37]
and the advanced component-connection method by Way
and Hsia [52] is a good tradeoff between processing time
and size of the resulting BDD.

Figure 5: Example of how variable ordering affects BDD size. The
upper BDD has 13 vertices, the lower BDD has 9. Other orderings
are possible, but are not obvious.

Improvements to BDD Dutuit and Rauzy [39] provide
an algorithm for finding independent submodules of FT's,

which can be converted separately to BDDs and analyzed,
reducing the computational requirements for analyzing the
entire tree.

If parts of an FT are repeated, then the approach by
Codetta-Raiteri [43] called ‘Parametric Fault Trees’ can be
used. This method performs qualitative and quantitative
analysis on such a tree without repeating the analysis for
each repetition of a subtree.

Miao et al. [53] have developed an algorithm to deter-
mine minimal cut sets using a modified BDD, and claim its
time complexity is linear in the number of BEs, although
their paper does not seem to support this claim. More-
over, this result seems incorrect to us, since the number of
MCS is already exponential in the number of BEs.

Other methods For FTs with voting gates with many in-
puts, a combinatorial explosion can occur, since a k/N vot-
ing gate means each combination of k failed components
results in a separate cut set. Xiang et al. [44] propose
the concept of a Minimal Cut Vote as a term in an MCS
to represent an arbitrary combination of k£ elements. This
method is of linear complexity in the number of inputs to
a voting gate, while the BDD approach has exponential
complexity.

For relatively large trees with few cut sets, the algo-
rithm by Carrasco and Sufié [45] may be useful. Its space
complexity is based on the MCS, rather than the com-
plexity of the tree like for BDD. However, according to
the article this method does seem to be slower than the
BDD approach.

In practice, it is often not necessary to determine all
of the MCS: Cut sets with many components are usually
unlikely to have all these components fail. It is often suf-
ficient to only find MCS with a few components. This
may allow a substantial reduction in computation time by
reducing the size of intermediate expressions [29].

Due to the potentially very large intermediate expres-
sions, the earlier methods for finding MCS can have large
memory requirements. A Monte Carlo method can be used
as an alternative. In the method by Vesely and Narum
[46], random subsets of components are taken to be failed,
according to the failure probabilities. If a subset causes a
top event failure, it is a cut set. Additional simulations
reduce these cut sets into MCS. While the memory re-
quirements of the Monte Carlo method are much smaller,
the large number of simulations can greatly increase com-
putation time. In addition, there is a chance that not all
MCS are found.

2.2.2. Minimal path sets

A minimal path set (MPS) is essentially the opposite
of an MCS: It is a minimal set of components such that,
if they do not fail, the system remains operational.

Definition 8. A P C BE is a path set of FT F if n(F, BE\P) =

0.

Example 9. In Figure[l, an MPSis {B,C1,M1, M2, PS}.

Similarly to MCS, a fault tree has a finite number of
MPS. If we denote the set of all MPS of a fault tree as

MP(F) = {P € BE\, b n(F,BE\P)) = 1

7(F,BE\P) =0 A }

then we can write a boolean expression for the TE as

A Ve

PEMP(F) z€P

TE =

Minimal Path Sets can, like MCS, be used as a starting
point for improving system reliability. Especially if the
system has an MPS with few elements, improving such an
MPS may improve the reliability of many MCS.

Analysis Any algorithm to compute MCS can also be
used to compute MPS. To do so, the FT is replaced by
its dual: AND gates are replaced by OR gates, OR gates
by AND gates, k/N voting gates by (N-k)/N voting gates,
and BEs by their complement (i.e. ’component failure’ by
'no component failure’). The MCS of this dual tree are
the MPS of the original FT [54].

2.2.3. Common cause failures

Definition Another qualitative aspect is the analysis of

probable common cause failures (CCF). These are sepa-
rate failures that can occur due to a common cause that
is not yet listed in the tree. For example, if a component
can be replaced by a spare to avoid failure, both this com-
ponent and its spare are in one cut set. If the spare is
produced by the same manufacturer as the component, a
shared manufacturing defect could cause both to fail at
the same time. If such common causes are found to be too
likely, they should be modeled explicitly to avoid overesti-
mating the system reliability.

Analysis Although CCF analysis is not possible using au-
tomated methods from the FT alone, since CCF depend
on external factors not modeled in the tree, experts may
try to determine whether any cut sets have multiple com-
ponents that are susceptible to a common cause failure.
Such an analysis relies on expert insight, and is therefore
quite informal.

T e‘g‘e

Figure 6: Example FT showing the addition of common cause C of
events P and S.

Common causes can be added to an FT by inserting
them as BEs and replacing the BEs they affect by OR-
gates combining the CCF and the separate failure modes.
An example is shown in Figure [} where common cause C
of event P and S is added.

2.8. Quantitative analysis of SFT: discrete-time

Quantitative analysis methods derive relevant numer-
ical values for fault trees. Stochastic measures are wide
spread, as they provide useful information such as failure
probabilities. Importance measures indicate how impor-
tant a set of components is to the reliability of the system.
Moreover, the sensitivities of these measures to variations
in BE probabilities are important.

Moreover, it can be used to decide whether it is safe
to continue operating a system with certain component
failures, or whether the entire system should be shut down
for repairs.

The next section first describes some basic probability
theory, and then provides definitions and analysis tech-
niques for several measures applicable to discrete-time FTs.

2.8.1. Preliminaries on probability theory

A discrete random variable is a function X : Q@ — S
that assigns an outcome s € S to each stochastic ex-
periment. The function P[X = s] denotes the probabil-
ity that X gets value s and is called the probability den-
sity function. We consider Boolean random variables, i.e.
s € {0,1} where s = 1 denotes a failure, and s = 0 a work-
ing FT element. If X, Xs,...X, are random variables,
and f:S" — S is a function, then f(X;,Xs,...X,,) is a
random variable as well.

2.8.2. Modeling failure probabilities

The discrete approach does not consider the evolution
of a system over time: a fixed time horizon is considered,
during which each component can fail only once. We as-
sume that the failures of the BEs are stochastically inde-
pendent. If the FT has shared subtrees, then the failures
of the gates are not independent.

Thus, the BE are equipped with a failure probability
function P : BE — [0,1] that assigns a failure probability
P(e) to each e € BE, see Figure lﬂ Then, each BE e can
be associated with random variable X, ~ Alt(P(e)); that
is P(X, =1) = P(e) and P(X, =0) =1 — P(e). Given a
fault tree F with BEs {ey,e2,...e,}, the semantics from
Definition [3] yields a stochastic semantics for each gate
g € G, namely as the random variable 7p(Xe,, ..., X, 9).
We abbreviate the random variable for the top event of FT
F as Xp.

Note that under these stochastic semantics, it holds for
all g € G that

o X, =max;er(q) X, if T(g9) = And,
o X, = min;ey(q) Xy, if T(g) = Or,

Model o > 2| 2| 2| 2| B
I I T T =
& F Hl = W A
I R
SEE=T
~< 58
<
Discrete-time | + +
Continuous-time | + | + | + +
Repairable cont.-time | + | + | + | + | + | + | +

Table 2: Applicability of stochastic measures to different FT types

Author Measures | Remarks Tool
Vesely et al. [28] Reliability | Valid for infrequent failures -

Barlow and Proschan [54] | Reliability | Exact calculation based on MCS KTT [46]
Stecher [55] Reliability | Efficient for repeated events -

Bobbio et al. [56] Reliability | Allows dependent events DBNet [57]
Durga Rao et al. [5§] Reliability | Monte Carlo, allows arbitrary distributions | DRSIM [58]
Aliee and Zarandi [59] Reliability Fast Monte Carlo, requires special hardware | -

Barlow and Proschan [54] | Availability | Translation to reliability problem -

Durga Rao et al. [58] Availability | Monte Carlo, allows arbitrary distributions | DRSIM [5§]
Amari and Akers [60] MTTF Assumes exponential failure distributions -
Schneeweiss [61] MTBF Exact method based on boolean expression | SyRePa [62]
Amari and Akers [60] MTBF Assumes exponential failure distributions -

Table 3: Summary of qualitative analysis methods for SFTs

o X, = (> Xz-) >k, if T(g) = VOT(k/N).
i€l(g)

2.3.3. Reliability

The reliability of a discrete-time FT is the probability
that the failure does not occur during the (modeled) life
of the system [54].

Definition 10. The reliability of a discrete-time FT F is
defined as Re(F) =P(Xp =0).

The reliability of a fault tree F' with BEs eq,...¢e,
can be derived from the non-stochastic semantics by us-
ing Bayes Law and the stochastic independence of the BE

failures:

P(Xe, = b1 A Xe, =by)

= 7TF(b1,...

Here, Pi(e) = P(e) and Py(e) =1 — P(e). Computing
(*) directly is complex. Below, we discuss several methods
to speed up the reliability analysis.

Bottom up analysis For systems without shared BEs,
failure probabilities can be easily propagated from the bot-
tom up, by using standard probability laws. If the input

o) Py, (€1) - ... - Py, (€n) (¥)

distributions X3, Xo,... X, of a gate G are all stochasti-
cally independent (i.e., there are no shared subtrees), then

we have

P Xanp(Xy,...X,) =1]
=PX;=1A...ANX, =1]
=PX;=1]-...-PX,, =1]
For the OR, we use
P Xor(X1,...X,) =1]
=1-PXor(X1,...X,) =0

=1-PX;=0A...AX, =0]
=1-(1-PX;=1])-...- (1 -P[X,, =1])

The VOT(k/N) gate is slightly more involved. It is possible
to rewrite the gate into a disjunctions of all possible sets

_ P(Xp=1Xe, =b1A...AX, = bn)Of k inputs, obtaining

PXvorm/m) (X1, .. Xn) = 1]
=P(X1=1A...ANX=1)
\/(X1 =1AN.. AXp1 =1ANXgp1 = 1)

V(X =1A...ANX, =1)]

however, expanding this into an expression of simple prob-
abilities requires the use of the inclusion-exclusion princi-
ple and results in very large expressions for gates with
many inputs where k is neither very small nor close to N.
It is more convenient to recursively define the voting gate:

HD[XVOT(U/N)(XM LX) = 1] =1- P[XOR(Xl, LX) =
P[XVOT(N/N)(XL X)) =1 =PXanp(X1, ... X)) = 1]
PIXvorm/n)(X1,... Xn) = 1]
=P[(X1 =1AXvormi/n-1)(X2,... Xn) =1)
V(X1 =0AXvoram-1)(Xa, ... Xn) =1)]
=PX1 =1] - P Xvore-1/n1)(Xz, ... Xn) = 1]
+P[X1 = 0] - P[Xvorm/n-1)(Xz, ... Xpn) = 1)]

Figure 7: Example FT showing the propagation of failure probability
in a discrete-time FT.

Example 11. Figure [shows an example of how such
probabilities propagate. Failure of the AND-gate requires
all inputs to fail, which has a probability of 0.3-0.4-0.1 =
0.012. The OR-gate fails if any input fails, i.e. remains
operational only if all inputs do not fail. This has proba-
bility 1 — (1 — 0.012)(1 — 0.1) = 0.1108.

This approach does not work when BEs are shared,
since the dependence between subtrees is not taken into
account. To take an extreme example, consider an AND-
gate with two children that are actually the same event
with failure probability 0.1. Clearly, the unreliability of
this gate is also 0.1, but propagating the probabilities as
independent would give an incorrect unreliability of 0.01.

Rare event approximation For systems with repeated
or shared events, the total unavailability of the system can
also be approximated by summing the unavailabilities of
all the MCS. This rare event approzimation [63] is reason-
ably accurate when failures are improbable. However, as
failures become more common and the probability of mul-
tiple cut sets failure increases, the approximation deviates
more from the true value. For example, a system with 10
independent MCS, each with a probability 0.1, has an un-
reliability of 0.65, whereas the rare event approximation
suggests an unreliability of 1.

Example 12. Considering Figure[]] and assuming all ba-
sic events have an unavailability of 0.1, the probability of
a failure of gate G6 can be approzimated as Pp,i(G6) ~

10

Proit({M1, M2}) + Pyt ({M2, M3}) + Praa({M1,M3}) =
0.03. As the actual probability is 0.028, the approximation
has slightly overestimated the failure probability.

If some cut sets have a relatively high probability, this
rare event approximation is no longer accurate. If no com-
ponent occurs in more than one cut set, the correct proba-
bility may be calculated as P (F) =1 —[Joercor)(l —
Prair(C)).

If some components are present in many of the cut sets,
more advanced analysis are needed. An exact solution may
be obtained by using the inclusion-exclusion principle to
avoid double-counting events. Alternative methods may
be more efficient in special cases, such as the algorithm
by Stecher [55] which reduces repeated work if the FT
contains repeated events.

Dynamic Bayesian Network analysis In order to accu-
rately calculate the reliability of a fault tree in the presence
of statistical dependencies between events, Bobbio et al.
[56] present a conversion of SFT to Dynamic Bayesian Net-
works. A Dynamic Bayesian Network [64] is a sequence
X1, Xo,..., X, of stochastically dependent random vari-
ables, where X; can only depend on X if j < 4. Indeed,
the failure distribution of a gate in a F'T only depends on
the failure distributions of its children. Bayesian networks
can be analysed via conditional probability tables P[B|A,]
by using Bayes Law: for an event B, and a partition A4; of
the event space, we have

P[B] = ZP[BlAj]P[Aj]

For example, if X4 depends on X3 and X5, then Bayes
Law ylelds]P)[X4 = 1] = Zi,je{&l}]P)[X4 = 1|X3 = Z/\X2 =
j]P[Xg = ’L/\Xg = j] The values]P)[X4 = 1|X3 = Z/\X2 =]
are given by conditional probability tables, and P[X3 =
i A Xy = j] are computed recursively, via Bayes law again.
Example 13. Figure[§ shows the conversion of a simple
FT into a Bayesian Network. The BEs A, B, and C are
connected to top event T and assigned reliabilities. Gates
have conditional probabilities dependent on the states of
their inputs. All nodes can have only states 0 or 1 cor-
responding to operational and failed, respectively. Classic

inference techniques [64)] can be used to compute P(T = 1),
which corresponds to system unreliability.

In addition, [56] allow BE with multiple states: Rather
than being either up or failed, components can be in dif-
ferent failure modes, such as degraded operational modes,
or a valve that is either stuck open or stuck closed. The
Bayesian inference rules work the same for multiple-state
fault trees, but lead to larger conditional probability ta-
bles. Also, [56] model common cause failures by adding a
probability of a gate failing even when not enough of its
inputs have failed, although this has the disadvantage of
making the potential failure causes less explicit. Finally,

ot AT
® @ f5oiLs
@& @ ® ro-yoo

Figure 8: The BN obtained by converting the FT in Figure|7|to a
Bayesian Network

gates can be ‘noisy’, meaning they have a chance of failure.
For example, the failure of one element of a set of redun-
dant components may have a small change of causing a
system failure.

Monte Carlo simulation Monte Carlo methods can also
be used to compute the system reliability. Most techniques
are designed for continuous-time models [65], 58] or quali-
tative analysis [46], but adaptation to discrete-time models
is straightforward. Each component is randomly assigned
a failure state based on its failure probability. The FT is
then evaluated to determine whether the TE has failed.
Given enough simulations, the fraction of simulations that
does not result in failure is approximately the reliability.

2.8.4. Ezxpected Number of Failures

Definition The FEzpected Number of Failures (ENF) de-
scribes the expected number of occurrences of the TE
within a specified time limit. This measure is commonly
used to evaluate systems where failures are particularly
costly or dangerous, and where the system will operate for
a known period of time.

Since a discrete-time system can fail at most once, it
is easy to show that the ENF of such a system is equal
to its unreliability. Let Ng denote the number of failures
system F' experiences during its mission time, so that

E[Np] = Zz .P[Np = i]

=0-P[Np=0]+1-P[Np = 1]
— 0+ P[Xp = 1]
= Re(F)

A major advantage of the ENF is that the combined
ENF of multiple independent systems over the same times-
pan can very easily be calculated, namely ENF(S1,52) =
ENF(S1) + ENF(S2). For example, if a power company
requests a number of 40-year licenses to operate nuclear
power stations, it is easy to check that the combined ENF
is sufficiently low.

Analysis Since a discrete-time FT can only experience
at most one failure during its mission time, the expected
number of failures is the same as the unreliability.

11

2.4. Quantitative analysis of SFT: continuous-time

Where discrete-time systems treat the entire lifespan of
a system as a single event, it is often more useful to con-
sider dependability measures at differents times. Provided
adequate information is available, continuous-time fault
trees provide techniques to obtain these measures. This
section provides, after a description of the basic theory,
definitions and analysis techniques for these measures.

2.4.1. Modeling failure probabilities

Continuous-time FT's consider the evolution of the sys-
tem failures over time. The component failure behaviour is
usually given by a probability function D, : RT — [0,1],
which yields for each BE e and time point ¢, the prob-
ability that e has not failed at time t. In practise, the
failure distributions can often be adequately approximated
by inverse exponential distributions, and BEs are specified
with a failure rate R : BE + R*, such that R(e) = \ «
D.(t) =1 — exp(—At).

If components can be repaired without affecting the
operations of other components, BEs have an additional
repair distribution over time. Like failure distributions, re-
pair distributions are often exponentially distributed and
specified using a repair rate RR : BE — RT. More gen-
erally, BEs can be assigned repair distributions as RD, :
R* — [0,1].

Like for the discrete-time case, we can use random vari-
ables X, to describe failures of basic events, and derive a
stochastic semantics for the FT. However, due to the pos-
sibility of repair, it is helpful to introduce some additional
variables. Consider a BE e with a failure distribution D,
and repair distribution RD.. Now we take F, 1, Fe2,... as
the relative failure times, and Qe 1, Qe¢,2, . . . as the relative
repair times, with @)1 = 0 for convenience. It follows that
P[F.,; < t] = D.(t) and P[Q.; < t] = RD.(t) for i > 1.
We can now define the random variables X, and X,.

For basic events, X (t) is 1 if ¢ is some time after a
failure, and before the subsequent repair. We can rewrite
this as follows:

X, (t) = 1iff
3 D Qe+ Feg) SEAQei + 3 (Quy + Fuy) >t
| ji<i J<i .
&3 D Qe+ Fey) SEAL=Qei <D (Qej+ Fey)
| ji<i J<i .
&3 [t=Qei <Y (Qej+ Fey) <t
i<i

For gates, X(t) is defined analogously to the discrete-
time case. To summarize, we have the following definition:

Definition 14.
L if3iit—Qei < 2(Qej+Fej) <t

Xe(t) = 7<i
1 otherwise
max;cr(q) X;(t) if T(g) = And
in, X;(t if T'(g) = O
Xg(t) — min EI(g) () Zf (g) r

>k

> Xi(t)

i€l(g)

if T(g9) = Vote(k/N)

Depending on the failure distributions, the random
variables of the BEs can have relatively easy distributions.
For example, a BE with exponentially distributed failures
with rate A has probability P(X.(t) = 0) = 1 — exp(—At).
The distributions of the gates typically do not follow con-
venient distributions.

Given the definition of X;, classic statistical methods
may be used to analyse the F'T. For example, the availabil-
ity of an FT F is described as A(F) = lim;—, oo E(XFp(t)).

This method of analysis can be applied to FTs with
arbitrary failure distributions, even if the BEs are statis-
tically dependent on each other. Unfortunately, the alge-
braic expressions for the RV distributions often become
too large and complex to calculate, so other techniques
have to be used for larger FTs.

2.4.2. Reliability

Definition The reliability of a continuous-time FT F is
the probability that it operates for a certain amount of
time without failing. Formally, we define a random vari-
able Yr = max; (Vs<: X (t) = 1) to denote the time of the
first failure of the tree. The reliability of the system up to
time ¢ is then defined as Rep(t) = P(Yp > t).

Analysis In continuous-time systems, the reliability in a
certain time period can be calculated by conversion into a
discrete-time system, taking BE probabilities as the prob-
ability of failure within the specified timeframe.

Monte Carlo methods can also be used to compute sys-
tem reliability. In the method by Durga Rao et al. [58],
random failure times and, if applicable, repair times are
generated according to the BE distributions. The system
is simulated with these failures, and the system reliability
and availability recorded. Given enough simulations, rea-
sonable approximations can be obtained. Modifying the
method to record other failure measures is trivial.

For higher performance than conventional computer
simulation, Aliee and Zarandi [59] have developed a method
for programming a model of an FT into a special hardware
chip called a Field Programmable Gate Array, which can
perform each MC simulation very quickly.

2.4.83. Awvailability

Definition The availability of a system is the probability
that the system is functioning at a given time. Avail-
ability can also be calculated over an interval, where it

12

denotes the fraction of that interval in which the system
is operational [54]. Availability is particularly relevant for
repairable systems, as it includes the fact that the sys-
tem can become functional again after failure. For non-
repairable systems, the availability in a given duration may
still be useful. The long-run availability always tends to 0
for nontrivial non-repairable systems, as eventually some
cut set will fail and remain nonfunctional.

Definition 15. The availability of FT F at time t is de-
fined as Ap(t) = E(Xp(t)). The availability over the in-
terval [a, b] is defined as Ap([a,b]) = 71 fab Xp(t)dt. The
long-run availability is Ap = limy_,oo Ar([0,t]) or equiva-
lently, Ap = limy_, Ap(t) when this limit exists.

Analysis As the availability at a specific time is a simple
probability, it is possible to treat the FT as a discrete-
time F'T, by replacing the BE failure distribution with the
probability of being in a failed state at the desired time.
The discrete-time reliability of the resulting FT is then
the availability of the original. Failure probabilities of the
BE are usually easy to calculate, also for repairable sys-
tems [54].

Long-term availability of a system can be calculated
the same way, provided the limiting availability of each
BE exists. This is the case for most systems.

Availability over an interval cannot be calculated so
easily. Since this availability is defined as an integral over
an arbitrary expression, no closed-form expression exists
in the general case. Numerical integration techniques can
be used should this availability be needed.

2.4.4. Mean Time To Failure

Definition The Mean Time To Failure (MTTF) describes
the expected time from the moment the system becomes
operational, to the moment the system subsequently fails.

Formally, we introduce an additional random variable
Z(t) denoting the number of times the system has failued
up to time ¢.

Definition 16. To define Zp(t), we first define the failure
and repair times of the gate:

Qg,l =0
F,; =min{t > Qg:|X,(t) =1}
Qq,i = min{t > F,; 1|X,(t) = 0}

We then define Zy4(t) of a gate as:
Zy(t) =max i € N> (Qqj+ Fyj) <t

J<i

Now Zp(t) = Zp(t) with T being the TE of FT F.

The MTTF up to time ¢ is then MTTFp(t) = S50k

The long-run MTTF is MTTFp = limy,oo MTTFr(t).

In repairable systems the time to failure depends on the
system state when it becomes operational. The first time,
all components are operational, but when the system be-
comes operational due to a repair, some components may
still be nonfunctioning. This difference is made explicit by
distinguishing between Mean Time To First Failure (MT-
TFF) and MTTF.

To illustrate this difference, consider the FT in Figure
[0 Here, failures will initially be caused primarily by com-
ponent 3, resulting in an MTTFF slightly less than %.
In the long run, however, component 1 will mostly be in
a failed state, and component 2 will cause most failures.
This results in a long-run MTTF of approximately 1.

Figure 9: Example FT of a repairable system where MTTF and
MTTFF differ significantly. Failure rates are denoted by A, repair
rates by p.

While MTTF and availability are often correlated in
practise, only the MTTF can distinguish between frequent,
short failures and rare, long failures.

Analysis Many failure distributions have expressions to
immediately calculate the MTTF of components. For ex-
ample, a component with exponential failure distribution
with rate A has MTTF % For gates, however, the combi-
nation of multiple BE often does not have a failure distri-
bution of a standard type, and algebraic calculations pro-
duce very large equations as the FT's become more com-
plex.

Amari and Akers [60] have shown that the the Vesely
failure rate [66] can be used to approximate the MTTF,
and can do so efficiently even for larger trees.

2.4.5. Mean Time Between Failures

Definition For repairable systems, the Mean Time Be-

tween Failures (MTBF) denotes the mean time between
two successive failures. It consists of the MTTF and the
Mean Time To Repair (MTTR). In general, it holds that
MTBF = MTTR + MTTF.

The MTBF is defined similarly to the MTTF except
ignoring the unavailable times. Formally, MTBFp(t)

#(t), and in the long run MTBFp = limy_,oo MTBFp(T).

13

The MTBF is useful in systems where failures are par-
ticularly costly or dangerous, unlike availability which fo-
cuses more on total downtime. For example, if a railroad
switch failure causes a train to derail, the fact that an ac-
cident occurs is much more important than the duration
of the subsequent downtime.

The MTTR is often less useful, but may be of interest
if the system is used in some time-critical process. For
example, even frequent failures of a power supply may not
be very important if a battery backup can take over long
enough for the repair, while infrequent failures that outlast
the battery backup are more important.

Analysis An exact value for the MTBF may be obtained
using the polynomial form of the FT’s boolean expression,
as described by Schneeweiss [61]. The Vesely failure rate
approximation by Amari and Akers [60] can also be used.

2.4.6. Ezxpected Number of Failures

Definition Like in a discrete-time FT, the ENF denotes
the expected number of times the top event occurs within
a given timespan. For repairable systems, it is possible for
more than one failure to be expected.

Analysis The ENF of a nonrepairable system is equal to
its unreliability. The ENF of a repairable system can be
calculated from the MTBF using the equation ENF(t) =
WF@), or using simulation.

2.5. Sensitivity analysis

Quantitative techniques produce values for a given FT,
but it is often useful to know how sensitive these values
are to the input data. For example, if small changes in
BE probabilities result in a large variation in system reli-
ability, the calculated reliability may not be useful if the
probabilities are based on rough estimates. On the other
hand, if the reliability is very sensitive to one particular
component’s failure rate, this component may be a good
candidate for improvement.

If the quantitative analysis method used gives an al-
gebraic expression for the failure probability, it may be
possible to analyze this expression to determine the sensi-
tivity to a particular variable. One method of doing so is
provided by Rushdi [67].

In many cases, however, sensitivity analysis is per-
formed by running multiple analysis with slightly different
values for the variables of interest.

If the uncertainty of the BE probabilities is bounded,
an extension to FT called a Fuzzy Fault Tree can be used
to analyse system sensitivity. This method is explained in

Section (.11

2.6. Importance measures

In addition to computing reliability measures of a sys-
tem, it is often useful to determine which parts of a system
are the biggest contributors to the measure. These parts
are often good candidates for improving systme reliability.

In FTs, it is natural to compute the relative impor-
tances of the cut sets, and of the individual components.
Several measures are described below, and the applicabil-
ity of these measures is summarized in Table [4

MCS size An ordering of minimal cut sets can be made
based on the number of components in the set. This order-
ing approximately corresponds to ordering by probability,
since a cut set with many components is generally less
likely to have all of its elements fail than one with fewer
components. Small Cut sets are therefore good starting
points for improving system reliability.

Stochastic measures For a more exact ordering, the
stochastic measures described above can also be calculated
for each cut set, and used to order them.

For systems specified using exponential failure distri-
butions, the probability W (C, t)At of cut set C causing a
system failure between time ¢t and At is approximately the
probability that all but one BE of C have failed at time ¢
and that the final component fails within the interval At.
If we write the the failure rate of a component = as A,,
and we write Re,(t) for the reliability of « up to time ¢,
the probability of cut set C' causing a failure in a small
interval can be approximated as

W(C,t)At = Y | AAt

zeC

H Rey (1)

ye(C\{z})

Cancelling the At on both sides gives

H Rey(t)

ye(C\{z})

W(C,)~ | A

zeC

This approximation is only valid if the other cut sets have
low failure probabilities, but can then be used to order
cut sets by the rate with which they cause system failures.
The full derivation of this approximation is provided by
Vesely et al. [2§].

Structural importance Other than ranking by failure
probability, several other measures of component impor-
tance have been proposed. Birnbaum [68] defines a system
state as the combination of all the states (failed or not) of
the components. A component is now defined as critical
to a state if changing the component state also changes
the TE state. The fraction of states in which a compo-
nent is critical is now the Birnbaum importance of that
component.

Formally, an FT with n components has 2™ possible
states, corresponding to different sets x of failed compo-
nents. A component e is considered critical in a state y of
FT F if w(F,x U{c}) # n(F,x\{c}).

Jackson [69] extended this notion to noncoherent sys-
tems, in a way that does not lead to negative importances
when component failure leads to system repair. An addi-
tional refinement was made by Andrews and Beeson [70],

14

to also consider the criticality of a component being re-
paired.

The Vesely-Fussell importance factor VFp(e) is de-
fined as the fraction of system unavailability in which com-
ponent e has failed [75]. Formally, VFr(e) = P(e €
Slrr(S) 1). An algorithm to compute this measure
is given by Dutuit and Rauzy [76].

The Risk Reduction Worth RRF r(e) is the highest in-
crease in system reliability that can be achieved by increas-
ing the reliability of component e. It may be calculated
using the algorithm by Dutuit and Rauzy [70].

Initiating and enabling importance In systems where
some components have a failure rate and others have a fail-
ure probability, Contini and Matuzas [71] introduce a new
importance measure that separately measures the impor-
tance of initiating events that actively cause for the TE,
and enabling events that can only fail to prevent the TE.

To illustrate this distinction, consider an oil platform.
If the event of interest is an oil spill, the event ‘burst pipe’
would be an initiating event, since this event leads to an oil
spill unless something else prevents it. The event ‘emer-
gency valve stuck open’ is an enabling event. It does not
by itself cause an oil spill, it only fails to prevent the burst
pipe causing one. The distinction is not usually explicit in
the F'T, since both these events would simply be connected
by an AND gate.

Initiating events often occur only briefly, and either
cause the TE or are quickly ‘repaired’. Repair in this case
can also include the shutdown of the system, since that
would also prevent the catastrophic TE. In contrast, en-
abling events may remain in a failed state for along time.

Due to this difference, overall reliability of such a sys-
tem can be improved by reducing the failure frequency of
initiating events, or by reducing the frequency or increas-
ing the repair rate of enabling events. This is one reason
for the distinction between the two in the analysis.

Joint importance To quantify the interactions between
components, Hong and Lie [72] developed the Joint Reli-
ability Importance and its dual, the Joint Failure Impor-
tance. These measures place greater weight on pairs of
components that occur together in many cut sets, such as
a component and its only spare, than on two relatively
independent components. This may be useful to identify
components for which common cause failures are particu-
larly important.

Armstrong [73] extends this notion of the Joint Reli-
ability Importance to include statistical dependence be-
tween the component failures, and proves that the JRI is
always nonzero for certain classes of systems. Later, Lu
[74] determines that the JFI can also be used for nonco-
herent systems.

2.7. Commercial tools

In addition to the academic methods described in this
section, commercial tools exist for FTA. The algorithms
used in these tools are usually well documented. Several

Author

Measure

Remarks

Various
Various
Vesely et al. [60]

Cut set size
Cut set failure measure
Cut set failure rate

Very rough approximation
Specific to each failure measure
Applicable to exponential distributions

Birnbaum [6§]
Jackson [69]

Andrews at al. [70]

Structural importance
Structural importance
Structural importance

Based only on FT structure
Also for noncoherent systems
Also includes repairs

Contini et al. [71]

Init. & Enab. importance

For FTs with initiating and enabling events

Hong and Lie [72]
Armstrong [73]
Lu [74]

Joint Reliability Importance
Joint Reliability Importance
Joint Reliability Importance

Interaction between pairs of events
Also for dependent events
Also for noncoherent systems

Vesely-Fussell [75]
Dutuit et al. [76]

Risk Reduction Factor

Primary Event Importance

BE contribution to unavailability
Maximal improvement of reliability by BE

Table 4: Summary of importance measures for cut sets and components

of these programs also allow the analysis of dynamic FTs,
which will be explained in Section [3]

This subsection describes several commonly used com-
mercial FTA tools. This list is not exhaustive, nor in-
tended as a comparison between the tools, but rather to
give an overview of the capabilities and limitations of such
tools in general.

Isograph FaultTree+ The Isograph FaultTree+ program
[T7] is one of the most popular FTA tools on the market. It
performs quantitative and qualitative fault tree analysis.
It can analyze FTs with various failure distributions, and
can replace BEs by Markov Chains to allow the user to
arbitrarily closely approximate any distribution [78]. Dy-
namic FTs and Non-coherent FTs including NOT gates
can also be analyzed.

Qualitatively, the program supports minimal cut set
determination and the analysis of common cause failures.
A static analysis is also supported for errors such as circu-
lar dependencies.

All the quantitative measures described in Section
can be calculated by FaultTree+. The program can also
determine confidence intervals if uncertainties in the BE
data are known. Without such information, sensitivity
analysis can still be performed by automatic variation of
the failure and repair rates. Importance measures that
can be computed over the BE are the Fussell-Vesely, Birn-
baum, Balow-Proschan, and Sequential importances.

ITEM ToolKit The ITEM ToolKit by ITEM software [79]
supports FTA, as well as other reliability and safety anal-
yses, such as Reliability Block Diagrams [9].

This program uses Binary Decision Diagrams for its
analysis, but can also perform an approximation method.
The analysis supports non-coherent FTs, and several dif-
ferent failure models for BEs.

Qualitative analysis can determine minimal cut sets,
and has four methods for common cause failure analysis.

Quantitative analysis supports reliability and availabil-
ity computation. Uncertainty analysis of the results can be
performed if input uncertainties are known, and sensitivity

15

analysis even if they are not. The program can also com-
pute importance measures, although for which measures is
not specified.

ReliaSoft BlockSim ReliaSoft’s BlockSim program [80]
can analyze Reliability Block Diagrams [J] and FTs.

Quantitative analysis can determine exact reliability of
the system, including the changes in reliability over time.
If information about possible reliability improvements is
available, the program can compute the most cost-effective
improvement strategy to obtain a given reliability.

Availability of repairable systems can be approximated
using discrete event simulation. Given information about
repair costs and spare part availability, the analysis can de-
termine the most effective maintenance strategy for a cost
or availability requirement, as well as the optimal spare
parts inventory.

BlockSim supports the determination of minimal cut
sets, but does not appear to offer other quantitative anal-
ysis options.

PTC Windchill FTA The Windchill FTA program by
PTC [81] allows the design and analysis of fault trees and
event trees, including dynamic FTs. The program sup-
ports non-coherent FTs, as well as different failure distri-
butions for the BEs.

Windchill FTA can compute minimal cut sets, as well
as several methods for determining common cause failures.

Qualitative measures than can be computed include
reliability, availability, and failure frequency. These can be
determined using exact computations or by Monte Carlo
simulation. The Birnbaum, Fussell-Vesely, and Criticaly
importances of BEs can also be computed.

A.L.D. RAM Commander A.L.D. produces an FTA
program as part of its RAM Commander toolkit [82]. This
program can automatically generate FTs from FMECAs,
FMEAs, or RBDs, and allows the user to generate a new
FTA. It supports continuous and discrete-time FT, and
can combine different failure distributions in one FT. Re-
pairs are also supported.

Figure 10: Example of a dynamic fault tree, equivalent to subtree
G3 in Figure El

0 l
(a) PAND I I I
gate (b) FDEP gate (c) SPARE gate

Figure 11: Images of the new gates types in a dynamic fault tree

The only supported qualitative analysis is the grnera-
tion of minimal cut sets.

For qualitative analysis, the tool can compute reliabil-
ity and expected number of failures up to a specified time
bound, and availability at specific times as well as long-run
mean availability. Failure frequency up to a given time is
also supported. Moreover, the program can compute the
importances and sensitivities of the BEs.

OpenFTA The open-source tool OpenFTA [83] can per-
form basic FTA. It only supports non-repairable FTs, and
allows only discrete-time BEs and BEs with exponentially
distributed failure times.

OpenFTA supports minimal cut set generation, deter-
ministic analysis of system reliability, and Monte Carlo
simulation to determine reliability.

3. Dynamic Fault Trees

Traditional F'T can only model systems in which a com-
bination of failed components results in a system failure,
regardless of when each of those component failures oc-
curred. In reality, many systems can survive certain failure
sequences, while failing if the same components fail in a
different order. For example, if a system contains a switch
to alternate between a component and its spare, the fail-
ure of this switch after it has already activated the spare
does not cause a failure.

16

The most widely used way of including temporal se-
quence information in FT is the dynamic fault tree or
DFT [84]. The next subsection explains the DFT formal-
ism in detail.

Since a dynamic fault tree considers temporal behaviour,
the methods used for the analysis of static F'T cannot be
directly used to analyze DFT. An overview of the various
quantitative methods is shown in Table The qualita-
tive methods are listed in Table [6] Details of qualitative
and quantitative analysis methods are given in Sections[3.3]

and 3.4

3.1. DFT Structure

The structure of a DFT is very similar to an FT, with
the addition of several gate types shown in Figure The
new gates are:

PAND (Priority AND) Output event occurs if all inputs
occur from left to right.

FDEP (Function DEPendency) Output is a dummy and
never occurs, but when the trigger event on the left
occurs, all the other input events also occur.

SPARE Represents a component that can be replaced
by one or more spares. When the primary unit fails,
the first spare is activated. When this spare fails, the
next is activated, and so on until no more spares are
available. Each spare can be connected to multiple
Spare gates, but once activated by one it cannot be
used by another. By convention, spares components
are ordered from left to right.

Example 17. An example of a DFT is shown in Fig-
uwre L. This DFT has the same cut sets as the subtree
rooted at G3 of Figure |l but has a more intuitive infor-
mal description: Mjs is clearly shown as a shared spare for
My and Ms. Also, the system does not directly depend on
the power supply PS. Instead, the failure of PS triggers a
failure of both CPUs, which more accurately describes the
system and eliminates the shared event.

BEs can have an additional parameter « called the dor-
mancy factor. This parameter is a value between 0 and 1,
and reduces the failure rate of the BE to that fraction of
its normal failure rate if the BE is an inactive input to a
SPARE gate [85]. For example, a spare tire will not wear
out as fast as one that is in operation. For BEs that are
not inputs to a SPARE gate, a has no effect.

The introduction of the PAND gate means that a DFT
is not generally coherent: An increase in the failure rate of
the right input to a PAND can increase the reliability of
the gate. Since the inputs to PAND gates are commonly
also inputs to other subtrees, non-coherence is often in-
dicative of a modeling error or suboptimal system design.

In non-repairable DFTs the FDEP gate can be removed
by replacing its children by an OR gate of the child and
the FDEP trigger. In repairable DFT the applicability

of this approach depends on the definition of the FDEP
gate: If failures triggered by the FDEP require separate
repairs, the transformation is not correct. If repair of the
FDEP trigger also restores the triggered components to
operation, the transformation does preserve the behaviour.

Definition 18. A DFT is a tuple DF = (BE,G,T,I),
where BE and G are the same as in a static FT (and we
still write E = BEUG). The function T still denotes the
gate type, but now T : G — DGT, with the set of dynamic
gates DGT = GateTypes U {FDEP, PAND, SPAR}. I is
replaced by an input function: I : G — E* yielding an
ordered sequence of inputs to each gate.

Since the output of the FDEP gate is a dummy output
and not relevant to the behaviour of the FT, it is often use-
ful to use a pruned input function which does not include
FDEP inputs [86].

Some types of DFT have additional gates, which are
not included in the rest of this paper. Such gates are:

Hot spare Special case of SPARE gate, where the dor-
mance factor of the spares is 1, i.e. the spare failure
rate is the same as the normal failure rate [84].

Cold Spare Special case of SPARE, with a dormance fac-
tor of 0, i.e. spares cannot fail before activated [84].

Priority OR Fails when the leftmost input fails before
the others [87]. Can be replaced by a PAND and an
FDEP.

Sequence enforcing Prohibits failures of inputs until all
inputs to the left have failed [88]. Can be replaced
by (cold) SPARE provided the inputs are not shared
with other gates.

3.1.1. Stochastic Semantics

This section presents the formal semantics of DFTs in
terms of random variables, pinning down the stochastic be-
haviour of a DFT model in a mathematically precise way.
Such a semantics did not exist yet, which is surprising,
since it forms the basis of the analysis methods.

We focus on non-repairable DFTs where all children
of FDEP and SPARE gates are BEs: extensions with re-
pair or general FDEPs and SPARESs require novel research
and fall outside the scope of this survey. In particular, re-
pairable PAND gates can be interpreted in several ways
[89, @0]: If the second input to a PAND is repaired but
fails again it is unclear from the informal description if
the PAND should fail. Also, the semantics is not clearly
defined if the children of a SPARE or FDEP gate are (po-
tentially shared) subtrees.

We decorate every BE e with a failure distribution
D. : R* — [0,1] such that D.(t) yields the probability
that BE e fails within time ¢. Additionally each BE has
a dormancy factor a, which determines how much slower
the component degrades when it is an inactive spare. We
now define the independent event failure times just like

17

Gs G

(B |

Go

Figure 12: Example of a dynamic fault tree, failure of F; causes
nondeterministic allocation of Ej4.

for SFTs, namely F, ~ D.. Later, we will define F” to
be the actual failure time, which includes corrections for
time spent as a dormant space, and for failures caused by
functional dependencies.

If BEs simultaneously fail for multiple SPARE gates,
these gates may attempt to claim the same spare. In
this case, the activation order of the SPARE gates is non-
deterministic. In Figure [I2] the failure of E; causes the
failure of either GGy or G2, but does not specify which.

First we define the claiming semantics of the SPARE
gates. The goal here is twofold: (1) we need to determine
which set of inputs needs to fail for the gate to fail, since
the gate may fail when other inputs have not failed but are
claimed by other gates, and (2) we need to determine the
times at which each spare component is claimed, to com-
pute the correct failure times including dormancy factors.

Later, we will define Suc(e) to be the set of all BEs
that are claimed as an immediate result of the failure of e.
First, we define C : N x G — BEU {1} to be either the
BE claimed by a specific SPARE gate due to the failure of
one of its inputs, or L if the failure of this input causes the
gate to fail, and therefore not claim any other BE. C(i, g)
is a strategy that fixes a particular activation order and
claiming gate.

Intuitively, we distinguish tree cases resulting from the
failure of a spare BE e:

e If e is the rightmost input, no other BE can be acti-
vated

e If all BEs to the right of e are already claimed, i.e.
activated as a result of another BE that failed before
e, the gate cannot claim any BEs.

e Otherwise, there is a leftmost spare f that has not
yet been claimed, and this spare will be claimed
when e fails. Note that the failure time of f may
be before e, in which case yet another BE may be
claimed immediately upon claiming f.

Formally, C(i,g) =

L ifi=|I(g)—1
1 if for e = I(g);,

Vi>idrzel(9); € Suc(f) NFP < FP
I(g); if for e = I(g)i,

j= ar%ginﬂf;éel(g)j € Suc(f) NFP < FP

We now define the successor set Suc(e) and predecessor
Pre(e) of an event. Every spare component e has exactly
one predecessor, which is the BE whose failure immedi-
ately causes e to be claimed and activated by one of its
parent gates. For notational convenience, let us denote the
set of SPARE parent gates as PSP(e) = {g € G|T(g9) =
SPARE AN e € I(g)}. Now

Suc(e) ={C(i,g)|e=1(g); Ng € PSP(e) ANC(i,g) #L}
Pre(e) = f where e € Suc(f)

The actual failure time of a BE, possibly delayed from
the time predicted from its failure distribution due to dor-
mancy, can be computed depending on the failure time of
its predecessor as

Fe if ngPSP(e) e = I(g)o
s _ D e F, D
Fe - FPre(e) if @ < FPre(e)
F.+(1- a)FIQTE(E) otherwise

Moreover, the effect of possible early failures as a result
of FDEP gates needs to be considered:

For the sake of clarity, we do not consider FTs where BEs
are functionally dependent on themselves, directly or in-
directly.

For notational convenience, let C(g) = {ili = I(g)o V
3. :i € C(e,g)} denote the set of events that are claimed
by SPARE gate g at any time. Also, let Ord(s) = V,,<|s|—1 :
F SDn <F S’Z ., denote whether the failures of all events in
s occur in the order they are listed, with |s| denoting the
length of sequence s.

Finally, we can determine the failure times of the gates

T(g) = FDEP

Fot T At =TI(g)o Ae € I(g)

FP = min ({Ff U {Ft

max{FP e Rji € I(g)}
min{FP € R|i € I(g)}

if T(g) = AND
if T(g) = OR

min<t € R| > X;(t) >k
i€1(g)
00

max{FP € Rji € S(g)}

if T(g) = FDEP

if T(g) = SPARE
if T(g) = PAND
and Ord(I(g))

otherwise

max{FP e Rji € I(g)}

o

if T(g) = VOT(k/N)

18

= FS

g = F,. The state of an element can be

8.2. Analysis of DFT

The remainder of this section explains the various anal-
ysis techniques applicable to DFTs, and the measures they
compute.

and FgD
described as
1 if FP <t

X, (t
®) 0 otherwise

Measures of interest Most of the values that can be
computed for classic FT can still be used in the analysis
of DFT; the reliability, availability, and MTTF are still of
interest.

DFT are generally nonrepairable, so measures that are
only applicable to repairable systems are not generally ap-
plicable to DFT. Some extensions to DFT, such as that
by Boudali et al. [8§], do allow repairs, and then measures
such as MTBF become useful.

Cut set analysis is less useful for DFT, as CS do not
include sequence information. A variant of cut sets, called
cut sequences and explained below, can be used, but im-
portance measures over these are not well developed.

8.8. Qualitative analysis

Cut sets and sequences A simple form of qualitative
analysis of a DFT can be performed by employing the
same techniques as used for SFT; namely by replacing the
PAND and SPARE gates by AND gates, and the FDEP
gates by OR gates. This analysis will not capture the
temporal requirements of the tree. Nonetheless, the cut
sets can be used to improve system reliability, since at
least one cut set must completely fail for a system failure
to occur.

Example 19. In Figure[I3, this method replaces the PAND
gate on the right by an AND gate. The resulting cut sets
are {P, B} and {S,P}. These cut sets can be useful, as
preventing the failures of every cut set still prevents system
failure. However, unlike in the SFT, the failure of {S, P}
does not necessarily cause a system failure, depending on
the ordering of the failures.

To capture these temporal requirements, Tang et al.
[91] introduced the notion of ‘cut sequences’ as the dy-
namic counterpart to cut sets. A cut sequence is a se-
quence of failures which cause a system failure. Formally,
a sequence (eq, eq, ..., e,) is a cut sequence of the DFT D
if, given failure times F,, < F,, < --- < F,, Xp(F.,) =1
according to the semantics of Section [3.1.1

Tang et al. [91] also showed that these cut sequences
can be determined by replacing the dynamic gates by static
gates, determining the minimal cut sets, and then adding
any sequencing requirements to the cut sets.

For example, the DFT in Figure has cut sequence
set (CSS) {(S, P),(P,B),(B, P)}. The sequence (P, S) is

A
1N
®e6 @

Figure 13: Example of a dynamic fault tree with temporal sequence
requirements. The system fails if both the primary (P) and backup
(B) fail, or if the primary fails when the switch (S) to enable the
backup has already failed.

not a cut sequence since the failure of S after P does not
trigger the PAND gate.

Zhang et al. [92] offer a more compact way of represent-
ing cut sequences, by adding temporal ordering require-
ments to cut sets. This allows one representation to cover
multiple cut sequences at once, where some events are or-
dered independently of other events. This method would
represent the CSS of figure [13)as {{S, P, S < P},{P, B}}.

Liu et al. [93] provide an alternative method to deter-
mine cut sequences by composition of the cut sequences of
the subtrees. This method reduces the amount of repeated
work if the same components are present in multiple cut
sets. Additionally, they show [94] that the cut sequences
can be used to perform quantitative analysis.

A different definition of qualitative analysis for repairable
DFT is provided by Chaux et al. [95]. The complex-
ity of this method is based on the length of the longest
non-looped sequence of failures and repairs in the system.
This definition defines a language of failure and repair se-
quences, and provides a means for constructing a finite
automaton that generates all sequences of failures and re-
pairs in which the final state in a system failure. To keep
the language finite, only the sequence up to the first sys-
tem failure is considered.

Another algebraic method for determining and express-
ing cut sequences was developed by Merle et al., by ex-
tending the structure function used for static FTA (de-
scribed in section to first include the Priority-AND
gate [96] by allowing a ‘before’ relation as a boolean primi-
tive. This method is subsequently developed to include the
other DFT gates [97, 98] [99]. The structure function can
subsequently be used to perform quantitative analysis [98].

Considering again Figure the FT has the boolean
expression (PAB)V(SAPA(S < P)). This expression can
be simplified using the law A A (A < B) = (A < B) into
(PAB)V(PA(S < P)). This is the minimal disjunctive
normal form, showing that PA B and P A (S < P) are the
minimal sets of failures and sequence dependencies that
yield a top event failure.

More recently, Rauzy [100] proposed a variant of Mi-
nato’s Zero-Suppressed BDD [I0]] to include ordering in-

19

formation. This variant can be used to find the minimal
cut sequences of DFT, and the author believes that more
efficient algorithms for other analyses can be based on this
representation.

3.4. Quantitative analysis

This section describes analysis techniques for quanti-
tative measures of DFTs. The definitions of the measures
have already been explained in sections [2.3] and S0 we
will only state which measures can be computed by each
technique.

Algebraic analysis The structure function obtained by
qualitative analysis can also be used for quantitative anal-
ysis. Applying the inclusion-exclusion principle to the cut
sets, we obtain

P(T)= P(PAB)+P(PA(S<P))—P(PABA(S<P))
Now, expressions for the probabilities can be substi-
tuted [97], giving the failure probabilities at time ¢ in terms
of the BE failure distributions D.(t) and failure probabil-
ity density functions d.(t):
P(T)(t) = Dp(t) - Dp(t)
t t
4 / dp(u)Ds(w)du — Dy (t) - / dp () Ds (w)du
0 0

For larger DFTs, many repeated integrations make this
approach computationally impractical.

Analysis by Markov Chains

Figure 14: Example conversion of DFT to a Continuous Time
Markov Chain. States corresponding to system failures (goal states)
are indicated by a double circle. Transition f; denotes the failure of
BE E;, and occurs with rate \;.

The first method proposed to analyze DFT was by
Dugan et al. [84] [102], and computes the unreliability of
the system during a time window [0, ¢]. This method con-
verts the DFT into a Markov Chain, in which the states
represent the history of the DFT in terms of what compo-
nents have failed and, where needed, in what order. Since

the number of failed subsets grows exponentially in the
number of BEs, this method is not practical for very com-
plex systems.

Example 20. Figure shows a simple DFT converted
into a Markov Chain. From the starting state Sy, in which
all components are operational, three transitions are possi-
ble representing the failures of the three BFEs. After the
failure of the first BE, two more BFEs can fail, and fi-
nally the last BE fails. If all three BEs have failed, and
Es failed before Es, system failure occurs, which corre-
sponds to the circled (goal) states in the MC. In the other
states the system is still operational. FExisting tools such
as PRISM [103] can be used to compute the probability of
reaching a goal state within a certain time, corresponding
to system unreliability.

The MC in Figure could be reduced without affect-
ing the computed probabilities. For example, from S3 no
goal state can ever be reached. It is therefore acceptable
to replace S3 by an absorbing state to reduce the complez-
ity of further analysis. A full discussion of minimization
techniques is beyond the scope of this paper, but several are
listed in [T0)].

Modular analysis of DFT Boudali et al. [88] 85] use
a different method to calculate the reliability of a DFT,
which reduces the combinatorial explosion in many com-
mon cases. They provide a compositional semantics for
DFT, i.e. each DFT element is interpreted as an Interac-
tive Markov Chain [105] and the semantics of the DFT is
the parallel composition of the elements. The papers pro-
vide several reduction techniques to minimize the resulting
Markov Chain. In addition, it allows DFT to be extended
with repairable components and mutually exclusive events.

The analysis is performed by converting a DFT into
an Input/Output Interactive Markov Chain for analysis.
This model is constructed by computing the parallel com-
position of the I/O IMCs for parts of the tree, down to
individual gates and events. Since intermediate models
can be analyzed to remove unnecessary states, the total
I/O IMC can be much smaller than the Markov Chain
produced by earlier methods, and the combinatorial ex-
plosion is reduced.

The program DFTCalc was developed by Arnold et al.
[106] to analyse reliability and availability of DFT using
the I/O IMC methodology.

Example 21. Figure shows the 1/0 IMC' equivalents
of the basic event Fy and the gate A of the DFT in Fig-
ure [Ij} Below that, the parallel composition of the two
elements are shown. This composition behaves as if the
two separate elements are ran in parallel, with the output
signal of the BE (fg,!) permitting the transition with input
signal fg,? in the gate’s IMC.

Observe that input signal fg? s still present in the
composition, allowing this IMC' to be composed with gate B

20

Figure 15: Example conversion of part elements F; and A of the
DFT in ﬁgureto an I/O Interactive Markov Chain. Input signals
are denoted by a question mark, output signals by an exclamation
mark.

later. Similarly, output action Fg,! allows the later com-
position with other gates in which Ey is an input. If no
such gates exist, the IMC can be minimized by removing
these output transitions.

Unlike traditional Markov Chains, I/O IMC are capa-
ble of modeling nondeterminism between actions. Guck et
al. [90] use this approach to model maintenance strategies
where it is not specified which of multiple failed compo-
nents to repair first.

Pullum and Dugan [107] developed a program to divide
a DFT into independent submodules for computing relia-
bility. Submodules containing only static gates can then
be solved using a traditional BDD method, while submod-
ules containing dynamic gates can be solved using Markov
Chain analysis.

Example 22. Suppose we are computing the availability
at time t of the DFT in figure[IJ, We can convert the en-
tire DF'T into a Markov Chain such as the figure shows, but
only the subtree rooted at B is dynamic. We can therefore
replace this subtree by a fictional node B* and use a BDD
to determine the minimal cut sets of the tree, which is only
{E1,B*}. Following section [2.4.3, the availability of the
tree is given by Agr(t) = Ag, (t) - Ap-(t). Markov chain
analysis can now be used to compute the value Ap~(t), and
Ag, (1) is the same as for a static fault tree.

An algebraic method for quantitative analysis is intro-
duced by Long et al. [I08], which can compute availability
at a specific time and ENF per unit time. It uses a sys-
tem of logic called ‘Sequential Failure Logic’ to describe
the temporal restrictions within cut sets. Unfortunately,
the equations produced are difficult to solve due to many
multiple integrals, and only a special case where all failure
and repair rates are identical is presented.

Han et al. [I09] also modularize a DFT and use BDD
for the static submodules, but use the approximation by
Amari et al [T10] to solve the dynamic submodules. This
avoids the state-space explosion problem of analysis by
conversion to Markov Chain, while retaining a reasonable
degree of accuracy.

Later, Liu et al. [I11] proposed a method to modu-
larize DFT further, by also collapsing static subtrees of a
dynamic gate, but keeping additional information about
the probability distribution of these subtrees.

Yevkin [I12] provides additional modularization tech-
niques, which can convert static subtrees and some dy-
namic subtrees into equivalent BEs, reducing the complex-
ity of further analysis.

Analysis using Bayesian Networks The method by
Bobbio et al. [56] of converting an SFT into a Dynamic
Bayesian Network (described in Section was later
improved by Montani et al. [113] by using a time-sliced
DBN to analyze DFTs.

In this approach, the DBN is evaluated at many points
in time, with the state probability distributions carried
over from each timestep to the next. By also allowing
nodes to have probabilities conditional on their own state
in the previous timestep, dynamic behaviour can be in-
cluded in the analysis. Due to the discretization, results
from this method are not exact. Results can be made ar-
bitrarily accurate, but at the cost of a sharp increase in
computation time required. Only non-repairable FT are
analyzed by this method, although other extensions from
the earlier DBN work such as noisy gates remain applica-
ble.

The Bayesian Network method has been extended by
Boudali and Dugan [I14] to model DFT gates. This method
can produce results equivalent to solving a discretized ver-
sion of the Markov Chain corresponding to the DFT, but
can also be extended with dependent component failures

and multi-state components by changing the produced DBN.

No comparison between this method and the method by
Montani et al. [I13] is presently available.

e 0 P[E;[k] =1|E[k—1]=1] =1
P[E;[k] = 1|E;[k — 1] = 0] = 6
@ e]P[Bk]:uB[k—l] 1] =1
BIK] = 1|By[k] = Bslk] = 1] _,
@ AEslk—1]=0
IP[A[]=1|Ei[k] =1AB[k]=1] =1

Figure 16: Conversion of the FT in Figureto a Dynamic Bayesian
Network with timestep 6. Default rules with probability 0 have been
omitted.

Example 23. Figure[16 shows the dynamic bayesian net-
work of the DFT in figure [Ij} Gates {A, B} and basic

21

events {E1, Ea, E3} form the nodes of the network, while
input relations in the DF'T form one-way conditional prob-
abilities. Basic events are not repairable, and thus remain
failed if they were failed in the previous timestep. Other-
wise, the probability of their failure in the current timestep
depends on their failure rate. This explains the first two
conditional probability rules.

The next two rules give the behaviour of the PAND gate
B. If it was failed in the previous timestep (i.e. Blk—1] =
1, it remains failed (i.e. Blk] = 1). Otherwise, it fails if
both inputs are failed, and FE5 was not failed earlier. Note
that behaviour on simultaneous failure is deterministic in
this model (namely the PAND gate fails on simultaneous
failure of its inputs).

Finally, the state of and AND gate A is determined
purely by its inputs.

As for other analysis methods, computational require-
ments can be reduced by modularizing the FT and us-
ing more efficient methods for the static subtrees. Such
an approach combining BDD and DBN was proposed by
Rongxing et al. [115].

Since a BN allows arbitrary conditional probabilities
to be specified, it is possible to include failure rates of in-
termediate events in addition to that implied by the tree
structure. This improves accuracy and reduces the effect
of modeling errors. Such an approach was described by
Graves et al. [116]. This is useful, since many real-life sys-
tems record component failures at an intermediate level,
rather than diagnosing every fault to the level of the BE.

Other approaches Mo [I17] described a method for con-
verting a DFT into a multiple-valued decision diagram
(MDD) to compute the reliability of nonrepairable sys-
tems. In this approach, subtrees containing only static
gates are directly converted into MDDs, while subtrees
with dynamic gates are solved by conversion into a CTMC
before the results are included in the MDD. This approach
reduces the state-space explosion problem in many com-
mon cases, but in the worst case of a dynamic gate as the
TE a full CTMC still needs to be solved.

A purely algebraic approach is suggested by Amari et
al. [I10], which calculates the probability distribution at
every gate by appropriately combining the distributions of
the inputs. While this approach gives exact results and
does not suffer from the state-space explosion effect com-
mon when using Markov Chains, only a subset of trees
satisfying particular rules can be analyzed this way.

Ni et al. [II8] propose a different algebraic method for
describing the DFT structure, which produces a boolean-
like expression of the DFT. This method allows minimal
cut sequence determination as well as quantitative analy-
sis.

Simulation Quantitative analysis can be performed by
Monte Carlo simulation. Failures and/or failure times are
sampled from their respective distributions, and the effect
these failures have on the system are calculated.

Quantitative Monte Carlo analysis can be performed
using the method by Durga Rao et al. [58], which can
also be applied if the components are individually inde-
pendently repairable.

Boudali et al. [I19] developed a program to analyze
DFT using Monte Carlo simulation. It allows BE failure
distributions to change over time, and even based on dif-
ferent clocks for different BE, resulting in non-Markovian
models. This is useful when, for example, a system takes
time to warm up and this affects the failure rates.

If the minimal cut sets have already been determined,
Liang et al. [120] propose a Monte Carlo method for com-
puting the unreliability of an RFT. This approach allows
the failure and repair rates to follow arbitrary distribu-
tions, but still does not allow repair policies other than
independent component repair.

Zhang et al. [I21I] showed that it is possible to con-
vert a DFT to a Petri Net, on which quantitative analysis
can be performed by simulation. Exact analysis on Petri
Nets is normally done by conversion into Markov Chains,
still resulting in a state-space explosion. Simulation, how-
ever, can be performed directly on the Petri Net, although
the benefits compared to simulation of the untransformed
DFT are not stated.

If very high performance is required, it is possible to
construct a hardware circuit to perform Monte Carlo Sim-
ulations much faster than normal computer simulation.
Such an approach is described by Aliee and Zarandi [122].

Rajabzadeh and Jahangiry [123] propose a conversion
of a DFT into an analogue electronic circuit, which out-
puts a voltage corresponding to the system failure prob-
ability. This approach does require an approximation for
some of the gates, and the accuracy on larger models is
not demonstrated.

A method for the analysis of the sensitivity of various
model parameters is provided by Ou and Dugan [124].

4. Other Fault Tree extensions

While dynamic fault trees are the most popular exten-
sion to static fault trees, several other ways of extending
FTs have been proposed. The extensions can be approxi-
mately divided into several categories. (1) fault trees using
fuzzy numbers can be used in cases where failure proba-
bilities or behaviour are not known exactly. (2) Several
extensions allow fault trees to model systems where basic
events are stochastically dependent, such as when a fail-
ure of one component increases the failure rate of another
component. (3) Repairable Fault Trees can represent more
complex repairable systems than the simple repair rates
in classic FT. (4) The temporal relations between events
are important. Dynamic fault trees include certain tem-
poral dependencies, but other extensions have been pro-
posed as well. (5) In particular, State/Event Fault Trees
were introduced to model systems and components with
a state that varies over time, and where this state affects

22

low medium high

00 02 04 06 08 1

Figure 17: Example of fuzzy membership functions of the sets ‘low’,
‘medium’, and ‘high’

the consequences of component failures or the failure rates.
(6) Miscelleneous extensions, e.g. integrating Attack Trees
with FTs.

These extensions are discussed in sections 4.1 through
4.6, respectively. An overview of the extensions can be

found in Tables [7] (page and [§] (page [30).

4.1. FTA with fuzzy numbers

Fault trees using fuzzy numbers were introduced by
Tanaka et al. [I28] as a way to reduce the problem that
failure probabilities of components are often not exactly
known. Fuzzy numbers represent uncertainty by not spec-
ifying an exact number, but rather a range which contains
the true value. Alternatively, they can be used as input to
the FT, in which case they specify categories to which a
probability belongs, to a greater or lesser degree.

Example 24. For example, suppose we would like experts
to specify a failure probability using the categories ‘high’,
‘medium’, and ‘low’. It is possible to set exact endpoints
and ask the experts to rate any value between 0 and 0.2 as
low, this has two disadvantages: First, linguistic descrip-
tions are commonly used so that the expert does not need
to estimate an exact probability, and giving endpoints rein-
troduces that requirement. Second, if the expert estimates
a probability to be approximately 0.2, the expert must de-
cide whether this is low or medium, and the model does
not capture the uncertainty that the expert may have.

Alternatively, we can describe the categories as fuzzy
subsets of the interval [0,1]. Figure shows possible
membership functions for the categories. Here, for exam-
ple, the value 0.1 is said to be fully a member of ‘low’
and no member of either other category. Thus experts are
assumed to always classify 0.1 as low. The value 0.3 is
partly a member of ‘low’ with membership 0.5, signifying
that half of the experts would classify 0.3 as low.

Mahmood et al. [129] have conducted a literature re-
view exploring different variations of Fuzzy Fault Trees,
and various methods for their analysis. A brief overview
is provided below.

FTs are often specified using fuzzy numbers for the
probabilities or possibilities of basic events. A common

N
i) =y T
2 B b8
i 2 g
Author Method Remarks Tool support
Dugan et al. [84] Markov Chain 4+ + 4+ | Suffers from state-space explosion
Boudali et al. [88] I/0 IMC + 4+ 4+ + | Less state-space explosion for most models CORAL [125],
DFTCalc [106]
Pullum and Dugan [107] | Modularization + Fast when FT has small dynamic subtrees SHADE Tree
[107],
DIFTree [40]
Long et al. [108] SFL + 4+ | No practical algorithm for realistic DFT
Han et al. [109] Approximation + Reasonable accuracy based on experiments
Liu et al. [111] Prob. distr. + For DFT with large static subtrees, approx.
Yevkin [112] Modularization + Reduces complexity of some specific subtrees
Amari et al. [I10] Approximation + Requires tree following certain rules
Montani et al. [113] DBN + + Not exact, allows dependent BE DBNet [57],
Radyban [126]
[127]
Boudali and Dugan [114] | DBN + + Not exact, allows multi-state, dependent BE
Rongxing et al. [115] BDD & DBN + Efficient for DFT with static subtrees
Graves et al. [116] DBN + Incorporates intermediate event failure data
Mo [117] MDD —+ Reduces state-space explosion
Ni et al. [II§] Algebraic + Finds MCS and performs quantitative analysis
Durga Rao et al. [58] Monte Carlo 4+ 4+ 4+ + | Allows independently repairable components
Boudali et al. [I19] Monte Carlo + + + 4+ | Allows non-Markovian systems DFTSim [119]
Liant et al. [120] Monte Carlo 4+ 4+ + + | Requires cut sets, allows repairs
Zhang et al. [121] Monte Carlo + 4+ + + | Transforms to Petri Net DRSIM [58]
Aliee et al. [122] Monte Carlo + + + + | Hardware method for fast simulations
Rajabzadeh et al. [123] Hardware + + + | Not exact, untested for large models

Table 5: Overview of DFT quantitative analysis methods

23

Author Method Remarks
Tang et al. [91] Cut sets Postprocessing to convert cut sets to cut sequences
Liu et al. [93,094] | Composition Reduces work for shared components

Zhang et al. [92]
Chaux et al. [95]
Merle et al. [98]
Rauzy [100]

Cut sequences
Language theory
Algebraic

ZBDD

More compact representation of CSS
Allows repairs up to first TE occurrence
Also allows quantitative analysis
Starting point for other analyses

Table 6: Overview of DFT qualitative analysis methods

method is to use fuzzy set theory: A fuzzy set has a mem-
bership function which gives, for any argument, the degree
to which that argument is a member of the given fuzzy set.
In this context, BE probabilities are given as a fuzzy subset
of the interval [0, 1].

The membership function of a fuzzy subset of the real
numbers is similar to the probability density function of
a probability distribution. The difference is that where
a PDF gives the probability of a variable having a value
given the distribution this variable belongs to, the mem-
bership function gives the degree to which a value belongs
to a fuzzy set, without making a claim regarding the likely
values of variables given the fuzzy set.

If a fuzzy number contains only one possible value, it
is the same as a conventional or crisp number.

Singer [130] provides a method for computing the TE
fuzzy probability if the membership function can be speci-
fied in a special form called an L-R type. This is a function
that is symmetric about some point on the probability axis
except for a scaling factor, and can be represented by a
function of the form

() — L(p):f(%) ifp<ec
(v) {R(p) f(E2) ifp>=c

Where f : R — R is some function, ¢ is the point of
symmetry, and [and r are scaling factors.

This method is frequently applicable since many com-
mon probability distributions (including the normal, uni-
form, and triangular distributions) can be described in this
form.

An alternative method is described by Lin et al. [I31],
in which some of the BEs are described by multiple fuzzy
numbers obtained from different experts. These fuzzy
numbers could, for example, be derived from natural lan-
guage expressions describing the events from ‘very prob-
able’ to ‘very improbable’. This method combines these
multiple fuzzy probabilities into one crisp probability for
the BE, and then analyses the F'T as normal.

When multiple probability estimates are available, Kim
et al. [132] offer a method to use these to calculate ‘op-
timistic’ and ‘pessimistic’ fuzzy probabilities for the TE.
This approach may be useful when each expert gives only
small uncertainties due to natural variation in components,
but different experts give these uncertainties over different
ranges, for example due to different opinions of the likeli-
hood of human error.

24

If the membership functions for the BE probabilities
are themselves uncertain, this may be included in the model
using ‘intuitionistic fuzzy set theory’, as described by Shu
et al. [133,[134]. In this model, two membership functions
describe an upper and lower bound on the membership.
This can be used if, for example, a probability is believed
to lie between 0.4 and 0.6, but it is not known what value
in this range is the most likely.

Ren and Kong [I35] provide a means for analyzing an
FT when not only the BE probabilities are uncertain, but
also the effects of component failure on the rest of the sys-
tem. In this framework, components can have multiple
states rather than only operational and failed. Each gate
can also have multiple states, and these states can be trig-
gered by various combinations of input states. This can
model a system which can continue operating after certain
component failures, but only in a degraded way. Such a
degradation can have other effects on the gates above it.

An alternative approach to uncertain network struc-
ture is the introduction of noisy gates [56]. These gates
have some probability of failing when the standard gate
would not, or vice versa. For example, a computer with
redundant hard drives may fail to detect and correct cer-
tain errors, leading to a system failure even though the
backup drive is perfectly functional.

In repairable FT's, uncertainty can exist not only in the
BE failure rate but also in the repair rate. A system for
accounting for this uncertainty in calculating the overall
system availability is given by El-Iraki and Odoom [136].

If the failure probabilities are very uncertain, Huang et
al. [I37] offer a method based on possibility measures that
may offer better results than probability-based fuzzy num-
ber approaches. In this method, basic events are specified
with possibilities representing estimated lower bounds on
the failure probabilities. In this context, the possibility of
the TE can be calculated quite efficiently.

It is also possible to model the probabilities as them-
selves being random variables with a normal distribution.
As Page and Perry [I38] showed, this allows a better quan-
tification of the uncertainty in the result, although it may
require more assumptions on the part of the FT designer.

More generally, Forster and Trapp [139] suggest that
BE probabilities can be specified as intervals, within which
the actual probabilities are sure to lie. Their method uses
Monte Carlo simulation treating these intervals as bounds
on a uniform distribution (although they mention that ar-

bitrary distributions may be used) to compute the second-
order probability mass function for the TE probability.

Importance measures for fault trees with fuzzy num-
bers Aside from the TE probability, it can also be useful
to determine which components have the greatest effect
on this probability. Several methods for determining this
have been developed.

Furuta et al. [140] suggested to extend the structural
importance to be calculated using fuzzy probabilities, and
named the resulting value the fuzzy importance.

Alternative measures were suggested by Suresh et al.
[141], which also include the amount of uncertainty con-
tributed by each component. The Fuzzy Importance Mea-
sure of a component i is defined as FIM (i) = ED [Qgi=1, Qqi=o0]
where ED denotes the Fuclidean distance between two
fuzzy numbers, Qq;—1 is the TE probability if event i has
an occurrence probability of 1, and Q4i—¢ is the TE prob-
ability if event 4 has a probability of 0.

Similarly, the Fuzzy Uncertainty Importance Measure
is defined as FUIM (i) = ED [Q, Qqi=0], where @ is the
TE probability. This measure ranks a component as more
important if its probability is less certain.

Finally, if the distributions of the BE probabilities can
be bounded with certainty, for example based on manu-
facturer specifications, it is possible to use Interval Arith-
metic to obtain exact bounds on the distribution of the
TE probability, as shown by Carreras and Walker [142].

Analysis methods measures for fault trees with
fuzzy numbers Since the structure of most fuzzy FT is
the same as that of classic FT, qualitative analysis can be
performed without change. Some extensions, such as the
multistate FT by Ren and Kong [I35], require different
methods.

One of the first methods proposed to analyze a Fuzzy
Fault Tree is to determine the minimal cut sets, and per-
form a standard quantitative analysis using the Extension
Principle developed by Zadeh [143] to perform arithmetic
on fuzzy numbers.

The use of the Extension Principle is computationally
intensive for larger trees, and cannot be applied if repeated
events are allowed in the tree. Soman and Misra [144] offer
an alternative method to calculate the top event probabil-
ity, called a ‘resolution identity’ using the ‘a-cut’ method,
which does allow repeated events and has lower computa-
tional requirements.

Guimarées and Ebecken [I45] present a computer pro-
gram named FuzzyFTA that can calculate the FIM and
FUIM of any gate using either the fuzzy logic approach
using a-cut or a Monte Carlo Simulation. The results of
these methods are in agreement, although the fuzzy ap-
proach provides more information and is quicker.

Another approach described by Wang et al. [146], [147]
is the conversion of the FT into a Bayesian Network and
performing analysis using fuzzy numbers on the resulting
BN. It is shown that this approach can give the same re-

25

| Coolant Failure |

DEFINE FAILDEP pumpl:

CAUSE = Pl.slow;

EFFECT = RATECHANGES P2:%2;
END
DEFINE FAILDEP pump2:

CAUSE = P2.slow;

EFFECT = RATECHANGES P1:%2;

END

Figure 18: Example of an extended FT. Pumps P1 and P2 have
failure modes ‘stopped’ and ‘slow’. Either pump stopping or both
pumps slowing leads to failure. FEither pump slowing accelerates
failure of the remaining pump.

sults as traditional F'T analysis, but it also has the addi-
tional flexibility provided by BN.

4.2. Fault Trees with dependent events

Classic FT assume that the BE are all statistically in-
dependent. This is often not true in practice, as events
can have common causes, or the failure of one component
can accelerate the failure of another.

Buchacker [I48|, [149] suggests to modify Fault Trees
into ‘extended Fault Trees’ that allow components to have
states other than fully operational and fully failed. This
allows the modeling of gradual degradation of a component
over time, as well as components that can fail in multiple
ways that have different interactions with other failures.
In addition, this model adds dependencies between com-
ponents affecting failure and repair rates. Figure[18|shows
an example of an extended FT with multi-state compo-
nents and dependent failure rates.

Another approach for systems with multistate compo-
nents is provided by Zang et al. [I50]. This approach
represents the overall system by multiple fault trees, each
of which is a fault tree for a particular failure state of
the overall system. These trees are then combined into a
single multistate decision diagram with dependent nodes,
and analyzed to determine the overall probability of the
system reaching each failure state.

Twigg et al. [T5] suggest a method to specify mutually
exclusive events. An example of a model where this is

useful, is a valve that can fail open or closed. Since these
failure modes cannot occur at the same time, a traditional
FT cannot correctly model this component.

Yet another design is provided by Vaurio [I52], in which
mutually dependent events are replaced by groups of in-
dependent events, such that a traditional analysis of the
FT gives the correct results. A drawback of this approach
is that each group of n dependent events is replaced by
2™ — 1 independent events, which results in a combinato-
rial explosion if many events depend on each other.

For models with particularly complex interdependen-
cies, Bouissou [153] [154] offers a formalism called Boolean
logic Driven Markov Processes (BDMP) as an extension
to fault trees. In this formalism, events are described by
Markov Processes with designated failure states. Then,
events in the FT can cause these events to switch to dif-
ferent processes, for example to increase the failure rate if
another component fails.

In addition to analyzing the resulting Markov Chains
to obtain reliability and availability, it is possible to ex-
tract cut sequences from a BDMP [I55], and to construct
a Finite State Automaton with equivalent behaviour to
the BDMP [156].

Besides Markov Processes, Bouissou [I57] also describes
the option to replace BEs with Petri Nets, although no
method is described for switching these due to external
events. This method can improve the modeling of DFT
spare gates with shared spare components.

4.3. Repairable Fault Trees

To analyze the reliability of a system over a long pe-
riod of time, it is often useful to include the possibility of
repairing or replacing failed components during this time.
These repairs may extend the time before a system failure
occurs, such as when a failed redundant part is replaced,
or they may return a failed system to normal operation.

If the simple repair rate model presented in section|2.4.1
is not sufficient, an alternative model called a Repairable
Fault Tree (RFT) was introduced by Bobbio et al. [89] as
a way of analyzing strategies for repairing systems after
failure. Raiteri et al. [32] provide a formal semantics for
RFT, and allow different repair policies to be used in the
model. Figure [[9shows an example of a repairable FT.

RFTs extend FTs by allowing repair bozes (RBs) in
the tree, which specify when a repair process begins, which
components are repaired, and what policy is used for the
repair.

In this formalism, each BE e has a failure rate FR(e),
which is the parameter of an exponential distribution that
determines the time until the component fails.

Each RB is connected to one or more BE to repair, and
one incoming BE or gate. When the incoming event oc-
curs, the repair box is activated and begins repairs on the
outgoing components according to the repair policy. Ev-
ery component also has a repair rate that is the parameter
of another exponential distribution modelling the time to
repair the component.

26

System Failure

Figure 19: Example of a repairable fault tree, repairs on the shared
components are only initiated when the entire system fails. CPUs 1
and 2 are repaired when their respective compute node fails.

Repair policies can be very simple, even equivalent to
the simple repair rates model, or more complex, for ex-
ample restricting the number of components that can be
repaired simultaneously.

The major advantage of this approach is that it al-
lows modelling of more realistic systems, and analysis of
what repair strategies are best. A disadvantage is these
trees cannot be quantitatively analyzed using combinato-
rial methods.

Flammini et al. [I58] added the possibility of giving
priority to the repair of certain components, based on the
repair rate, failure rate, or level of redundancy of the com-
ponents. Other priority schemes can also be implemented
within this system.

A different extension is provided by Beccuti et al. [159],
which adds nondeterminism to the repair policies. This
simulates cases where, for example, a mechanic individu-
ally decides which component to repair first. A later op-
timization [I60] reduces the state-space complexity of the
resulting system.

Leaving repair policies nondeterministic also allows the
computation of an optimal repair policy, by associating
costs with unavailability, failures and repairs. Becutti et
al. [I61] show that such an optimal policy can be com-
puted by converting the FT into a Markov Decision Pro-
cess.

Analysis RFTs can be analyzed to obtain the same mea-
sures that apply to classic FTs with repair rates.

Traditional qualitative analysis of an RFT is gener-
ally less useful, since such an analysis would ignore the
repairability aspect.

Quantitative analysis is more useful, but also more dif-
ficult: Combinatorial methods are no longer sufficient, as
the evolution of the system over time has to be considered.

For systems where each component can be individually
and simultaneously repaired at a constant rate, Balakrish-
nan and Trivedi [162] proposed to convert the model into
a Markov Chain, although this method uses an approxi-
mation to reduce computational requirements.

Another approximation is provided by Dutuit and Rauzy
[163], although this approximation can also only be used
in models with a constant repair rate. The approximation
is shown to give results close to the exact solution and
several other approximations.

The more general analysis method originally proposed
by Bobbio and Raiteri [89] is to convert the RFT into a
Generalized Stochastic Petri Net, and then translate this
into a Markov Model. Existing analysis tools for Markov
Models can then be applied. Flammini et al. [164] show
that this method can be used on parts of a system while
the nonrepairable parts can be analyzed using traditional
methods.

A later alternative is offered by Portinale et al. [165],
which translates an RFT into a Bayesian Net for analysis.
This method also allows complex repair policies, as well
as components with several different failure modes and
statistically dependent failure probabilities.

For performing very fast Monte Carlo simulations, Kara-
Zaitri and Ever [166] developed a method for generating a
hardware model of the system in a Field Programmable
Gate Array, which can perform each Monte Carlo run
many times faster than a conventional computer simula-
tion.

4.4. Fault trees with temporal requirements

Dynamic fault trees allow for the inclusion of certain
types of temporal information, but for some systems this
is not enough. Several other ways have been proposed that
offer more flexibility.

One way that has been proposed by Wijayarathna et
al. [167] is to add an AND-THEN gate. This gate’s output
event occurs if the second input occurs immediately after
the first. For example, a fire safety system might have
backup systems that take time to deploy, so a primary
system fault before a fire is not a failure, nor is a fault
after a fire has already been extinguished. Only a fault
immediately after a fire starts (perhaps caused by the fire)
causes a system failure.

Walker and Papadopoulos [168] [87] have suggested ex-
tending static FTs with Priority-AND, Priority-OR, and
Simultaneous-AND gates. These allow the same temporal
relations to be enforced as a dynamic fault tree, but also

27

allow a requirement for simultaneous faults. Such a simul-
taneous fault is most likely caused by a shared dependency.
This method can model any system that can be modeled
using the AND-THEN gate. A reduction procedure also
described by Walker and Papadopoulos [169] can be used
to simplify the analysis.

An advantage of this system is that it can still be qual-
itatively analyzed using algebraic methods, rather than
needing to be converted into a Markov Model or other
state-space system.

Another construction is described by Schellhorn et al.
[I70], which extends classic FTs with cause-consequence
OR- and Inhibit-gates, and synchronous and asynchronous
cause-consequence AND-gates. In this model, the classic
(called decomposition gates or D-gates) are true if their
condition is true at all times. The cause-consequence gates
(or C-gates) are true for some indeterminate period after
their condition is met.

This construction cannot be used for quantitative anal-
ysis, as the C-gates do not have well-defined times at which
they are true. Qualitative analysis is possible, as it is
proven that the prevention of at least one event from ev-
ery cut set prevents the TE in this model, just like in a
static F'T.

If timing information is needed beyond the sequence of
events, several other extensions can be used. Gluchowski
[I71] adds Duration Calculus [I72] to FT. This formalism
allows reasoning about situations where delays are impor-
tant. Unfortunately, it has not yet been proven that the
gate formulas are decidable, and automated analysis tools
cannot currently analyze the dynamic portion of these
trees.

Another formalism is the Temporal Fault Tree (TFT)
by Palshikar [I73]. This formalism adds several gates cor-
responding to operators in Propositional Linear Temporal
Logic (PLTLP), such as PREV n, which is true if the in-
put event has been true for the last n amount of time, and
the SOMETIME-PAST, which is true if its input has ever
been true.

TFT can impose many types of requirements on the
event sequence, but have the disadvantage of requiring the
user to understand the formalism of temporal logic.

Qualitative analysis of TF'Ts is performed by convert-
ing them into regular FTs with additional events for the
PLTLP gates, and post-processing the resulting cut sets
to recover the temporal requirements.

Codetta-Raiteri [I74] describes a combination of Para-
metric, Dynamic, and Repairable Fault Trees. This for-
malism allows the combination of these gates to be used,
so that repairable and dynamic systems can be described,
and repeated subtrees can be reduced into parametric in-
stantiations. Quantitative analysis can be performed by
conversion to a Stochastic Well-Formed net, and using ex-
isting tools to analyze the resulting model.

System Failure

W

Figure 20: State-event fault tree example of two computer processes
P1 and P2, which fail approximately once every 10 hours. The watch-
dog process W restarts any failed process once per hour. System
failure occurs when both P1 and P2 are down.

4.5. State-Event Fault Trees

Kaiser and Gramlich [I75, [I76] have proposed to ex-
tend Fault Trees by combining them with Finite State Ma-
chines. Such a State-Event Fault Tree (SEFT) allows for
greater modularity, and keeps the diagram more readable
than a traditional FT of a complex system. In addition,
it can model systems and components that have different
states with different failure modes. Computer programs
are good examples of such systems.

SEFT have states and events. States describe condi-
tions that last for some time, while events occur instanta-
neously. The two can be linked, as events can cause tran-
sitions between states, and a transition between states is
an event. Like in an FT, gates can be used to require
conditions before an event occurs. An SEFT distinguishes
between a History-AND gate and a Sequential-AND or
Priority-AND gate, in that the latter requires the input
events to occur in a given order.

A later paper by Kaiser [I77] adds delay gates, to model
events and state transitions that occur some time after an
initiating event, conditional probability gates, that cause
the output event to occur with some probability every time
the input event occurs, and a set of adapter gates that
allow certain translations between states and events.

Analysis of SEFT can be performed by translating them
into Deterministic and Stochastic Petri Nets, and using ex-
isting tools to analyze the resulting DSPN.

Forster and Kaiser [I78] provide a more efficient way
of performing this analysis, by dividing the SEFT into
modules, and converting any static modules found into

28

Component Fault Trees (CFT). A hybrid analysis can then
be performed combining BDD for the CFT and DSPN
for the dynamic submodules, which is more efficient than
using a DSPN for the entire tree.

Xu et al. [I79] introduce formal semantics for SEFT,
and provide a method based on these semantics to deter-
mine MCS. This method extends Interface Automata [I80]
to Guarded Interface Automata, and translates an SEFT
into a GIA Network. From this network the cut sequences
can be determined and reduced into a minimal cut se-
quence set.

Another method for qualitative analysis is provided by
Roth et al. [181], which converts the SEFT into an ez-
tended Deterministic and Stochastic Petri-Net (eDSPN),
on which a reachability analysis can be performed to iden-
tify event sequences that result in failure.

4.6. Miscelleneous F'T extensions

One particular extension that does not fit these cate-
gories was proposed by Fovino et al. [I82], and integrates
Attack Trees with FT. Attack Trees describe vulnerabili-
ties in a system that an attacker could exploit, and coun-
termeasures that could remedy these vulnerabilities.

Since an outside attack could cause a system failure,
the combination of AT with F'T may provide a better es-
timate of the system failure probability, assuming proba-
bilities for attack scenarios can be provided.

The integration is performed by designating certain
BEs as attack nodes, and decorating these BEs with at-
tack trees. The attack trees are then individually and sepa-
rately analyzed to determine the probability of a successful
attack. Once this analysis is complete, the F'T is analyzed
by substituting the computed probabilities into the BEs.

4.7. Comparison

Table [7] summarizes the strong and weak points of the
various extensions described above. Strong points are de-
noted with a plus, weak points with a minus. Areas where
the extension is not significantly different from traditional
methods are denoted with ~. The meaning of the headers
is as follows:

Uncertainty How well the formalism can describe sys-
tems with uncertain probabilities and/or structure.

BE Dependence How well the method can model sys-
tems in which the basic events are not statistically
independent.

Temporal Requirements How well the formalism can
include requirements on the sequences or durations
of events.

Repairable To what extent the method can include re-
pairable components and descriptions of repair strate-
gies.

Multi-state Whether the model can include components
with more states than just failed or not.

BE Prob. distribution Whether the model can describe
systems in which the basic events have failure distri-
butions other than constant probability and inverse
exponential failure rate.

5. Conclusions

We have given an extensive overview of fault tree anal-
ysis methods. Our exposé treated a wealth of available
modelling techniques, being static fault trees and their
extension; qualitative and quantitative analysis methods;
and commercial and academic tools.

This overview lead to several observations and direc-
tions for future research.

First of all, as is often the case with modelling lan-
guages, fault tree analysis suffers — mildly — from the
tower-of-babel-effect: whereas the (static) fault tree for-
malism was coined as a relatively simple and intuitive mod-
eling language, a “wild jungle” of different formalisms and
techniques nowadays exist: Therefore, it would be valu-
able to know which of the SFT extensions are most useful
in practice. Similarly, it would be useful to identify which
FT measures are most useful in practice. Also, a compara-
tive case study that compares F'T analysis with other risk
analysis methods such as reliable block diagrams, AADL,
UML/Marte provides useful insight in the capabilities and
limitations for fault tree analysis. Thus, we suggest exten-
sive field studies here.

In terms of tool support, an overarching and industry-
strength tool, that combines the most common SFT ex-
tensions, with the most common FT analysis measures is
a valuable addition.

Acknowledgements

This work has been supported by the STW-ProRail

partnership program ExploRail under the project ArRangeer

(122238) with participation by Movares. We thank Ed
Bouwman, Joris ter Heijne, Joost-Pieter Katoen, and Judi
Romijn for their useful comments on earlier versions of this

paper.

References

[1] M. Bozzano, A. Villafiorita, Design and Safety Assessment of
Critical Systems, CRC Press, 2010.

[2] M. Rausand, A. Hoylan, System Reliability Theory. Models,

Statistical Methods, and Applications, Wiley series in proba-

bility and statistics, Wiley, 2004.

M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll,

M. Roveri, Safety, dependability and performance analysis of

extended AADL models, The Computer Journal 54 (2011)

754-775. |[doi:10.1093/comjnl/bxq024l

U.S. Department of Defense, Procedures for performing a

failure mode, effects and criticality analysis (MIL-P-1629A)

(1949).

(3]

(4]

29

(5]

[6]

U. D. o. T. Federal Aviation Administration, Reusable launch
and reeintry vehicle system safery process (2005).
Automotive Industry Action Group, Potential Failure Mode &
Effects Analysis (2008).

T. A. Kletz, Hazop and Hazan, CRC Press, 1999.

M. Modarres, M. Kaminskiy, V. Krivtsov, Reliability Engi-
neering and Risk Analysis, CRC Press, 2009.

S. Distefano, A. Puliafito, Dynamic reliability block diagrams:
Overview of a methodology, in: Proc. European Safety and
Reliability Conf. (ESREL), Vol. 7, 2007, pp. 1059-1068.

M. Walter, M. Siegle, A. Bode, Opensesame: the simple but
extensive, structured availability modeling environment, Re-
liability Engineering & System Safety 93 (6) (2007) 857-873.
doi:10.1016/j.ress.2007.03.034.

A. Goyal, W. C. Carter, E. de Souza e Silva, S. S. Laven-
berg, K. S. Trivedi, The system availability estimator, in:
Proc. 25th Int. Symp. Fault-Tolerant Computing (FTCS),
Highlights from Twenty-Five Years, 1995, pp. 182-187. |doi:
10.1109/FTCSH.1995.532632.

Architecture, analysis and design language, aS5506 (2004).
M. Hecht, A. Lam, C. Vogl, C. Dimpfl, A tool set for generation
of failure modes and effects analyses from AADL models, in:
Presentation at Systems and Software Technology Conference
2012, 2012.

B. Ern, V. Y. Nguyen, T. Noll, Characterization of failure
effects on AADL models, in: Computer Safety, Reliability,
and Security, Vol. 8153 of Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, 2013, pp. 241-252. |doi:
10.1007/978-3-642-40793-2_22.

J. Rumbaugh, I. Jabobson, G. Booch, Unified Modeling Lan-
guage Referance manual, The (2nd Edition), Pearson Higher
Education, 2004.

A. Bondavalli, I. Majzik, I. Mura, Automatic dependability
analysis for supporting design decisions in UML, in: Proc.
4th Int. Symp. High Assurance Systems Engineering (HASE),
1999, pp. 64-71. ldoi:10.1109/HASE. 1999 . 809476|

P. Popic, D. Desovski, W. Abdelmoez, B. Cukic, Error propa-
gation in the reliability analysis of component based systems,
in: Proc. 16th Int. Symp. on Software Reliability Engineering
(ISSRE), 2005, pp. 52 — 62. |[doi:10.1109/ISSRE.2005.18.

D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi,
J. M. Doyle, W. H. Sanders, P. G. Webster, The Mobius frame-
work and its implementation, IEEE Trans. Softw. Eng. 28 (10)
(2002) 956-969. [doi:10.1109/TSE.2002.1041052.

W. H. Sanders, T. Courtney, D. Deavours, D. Daly, S. Derisavi,
V. Lam, Multi-formalism and multi-solution-method modeling
frameworks: The Mobius approach, in: Proc. Symp. Perfor-
mance Evaluation - Stories and Perspectives, Vienna, Austria,
2003, pp. 241-256.

Council directive 89/391/EEC of 12 June 1989 on the intro-
duction of measures to encourage improvements in the safety
and health of workers at work (1989).

IEC 61025: Fault tree analysis (2006).

Occupational Safety and Health Administration, U.S. Depart-
ment of Labor, OSHA 3133: Process Safety Management
Guidelines for Compliance (1994).

Directive 2006/42/EC of 17 May 2006 on machinery (2006).
P. Hoogerkamp, Praktijkgids Risicobeoordeling Machiner-
ichtlijn, Nederlands Normalisatie-instituur (2010).

Federal Aviation Administration, U.S. Department of Trans-
portation, FAA Order 8040.4: Safety Risk Management
(1998).

Federal Aviation Administration, U.S. Department of Trans-
portation, System Safety Handbook (2000).

C. A. Ericson, Fault Tree Analysis — a history, in: Proc. 17th
International System Safety Conference, Orlando, Florida,
USA, 1999, pp. 1-9.

W. E. Vesely, F. F. Goldberg, N. H. Roberts, D. F. Haasl, Fault
Tree Handbook, Office of Nuclear Regulatory Reasearch, U.S.
Nuclear Regulatory Commision, 1981.

[29] W.-S. Lee, D. L. Grosh, F. A. Tillman, C. H. Lie, Fault tree

[7]
(8]
(9]

(10]

(11]

[12]
(13]

(14]

(15]

[16]

(17]

(18]

19]

20]

[21]
(22]

23]
(24]

25]

[26]

27]

28]

http://dx.doi.org/10.1093/comjnl/bxq024
http://dx.doi.org/10.1016/j.ress.2007.03.034
http://dx.doi.org/10.1109/FTCSH.1995.532632
http://dx.doi.org/10.1109/FTCSH.1995.532632
http://dx.doi.org/10.1007/978-3-642-40793-2_22
http://dx.doi.org/10.1007/978-3-642-40793-2_22
http://dx.doi.org/10.1109/HASE.1999.809476
http://dx.doi.org/10.1109/ISSRE.2005.18
http://dx.doi.org/10.1109/TSE.2002.1041052

[Z8] e1opue :[003 sisd[euy,
[€8T] dINag 1009 stsdreuy,

SUOTSU9)X0 9919 9ney jo uostredwoy) :), d[qeR],

SurepoN

NS PU® I souiquioy) + |+ |+]+ ([ZZ1 [€Z1] "1e 90 Tosrey]) L4 ULAH-0}e)S
o[qearedar pue drwreui ([+ | + ([FZT] 109rey-e190p0))) T4 POUIqUIO))
01807 Terodure) sopnyouf + | + ([eZ1] reqqryssed) T4 Teiodway,
syuowarmbai -durey xeyduro)) + | + + A T m: I{SMOTON[Y)) SNMOTR)) UOTJRIN YNM T
sAelop sepnuf + | + + AR po WIOY[[OYOS) SOIJUROS T, [RULIO]
A)ToUrR)NUILS JO JUOWAIMbIY] + w [ROT] 'Te 10 T10%[eAN) AyoUrRynUULS YIM T,1J
Aoerpowrut Jo juowaIinboyy + ([Z97] ‘1R 10 euyyeredelipn) NHHI-ANYV UM T4
sopuspuadop xopdwoy || + | + | + | + | + E EH [ZGT) [€CT] nossmog) JINAI
syuaAd quapuadep 1e)g + ([zgT] oumep) syuene quapuadep Yym T,
STUOAD DAISN[OXO A[[enIinyy + ([1ST] ‘Te 1o 88mT,) worsn{oxa Teninu YIm T,
T oreis-impy + + ([0gT] ‘e 90 Suey) L4 orersnmy
SHd 9S-I + 0+ + ([671 [8¥T] 1oxpreyong) L4 POPUIXH
sojel pojnquysip AfewioN || + + | ([R€T] A10g pue a8ed) 1.4 Azzng
serjuTe)I9OUN 9310 10 || + + | ([Z€71] ‘Te 1o Suenyy) 1.0 £zzng
soyer aredar urejreoun) || + + + | ([9g1] woopQ pue wyeI-[q) 1.4 £zzng
sig oyeIs-mN || + | + + | ([mm: 8uoy] pue uey) I Azzng
suorjouny drysioquiow ureyradup) || + + | ([FETfeeT] Te 90 nyg) I Azzng
seyewtryse j1odxa ofdiyny + | ([zeT] e 9o wry) 1.9 £zzng
uorydriosep o1ysmsurg + | ([T€1] Te 30 ury) 1.9 Lzzng
suorjounj drysroquiowt [eadg || + + | (fog 1 108uIg) T £zzng
‘qoad ¢ UrejIddun S[PPOIN + | ([RZT] Te 10 eyeuey) 1.4 Azzng
syor))e 91RISQIAP S[OPOIN || + ([ZRT] ‘Te 10 outaoq) o017, YoeIIY UMM T4
somrfod aredox xorduo)) + ([Zgl [68] ‘T 10 oqqog) I o[qeiredoy]
, 2
=)
2 S o
o = |9
z Ak
Cle e |E [|E
.b.] Q8 .ﬂ.a Q =
S % |% |5 |8 |8
AIE R (B R |(8
= = Q Q = =]
M2 | =@ P
sy reway

30

Measures

sjos Ny

Ayriqerey

Ayiqerreay

19710

Repairable FT (Bobbio et al. [89] [32])

FT with Attack Tree (Fovino et al. [I82])

+

+

Fuzzy FT (Tanaka et al. [128])

Fuzzy FT (Singer [130]

Fuzzy FT (Lin et al. [I3T]

Fuzzy FT (Kim et al. [132]

Fuzzy FT (Shu et al. [I33] [134]
Fuzzy FT (Ren and Kong [135]
Fuzzy FT (El-Iraki and Odoom [136]
Fuzzy FT (Huang et al. [137]

Fuzzy FT (Page and Perry [138]

+|+

e S

+|+

+

31

Extended FT (Buchacker [148] [149]
Multistate FT (Zang et al. [150]

FT with dependent events (Vaurio [152]
BDMP (Bouissou [153] [157] [154]

++

4+ +H+++++

+

+ +

FT with AND-THEN (Wijayarathna et al. [167]
DFT with simultaneity (Walker er al. [I68] [87]
Formal FT Semantics (Schellhorn et al. [I70]
FT with Duration Calculus (Gluchowski [I71]
Temporal FT (Pakshikar [173]

Combined FT (Codetta-Raiteri [174]

)
)
)
)
)
)
)
)
W
FT with mutual exclusion (Twigg et al. [I51])
)
)
)
)
)
)
)
)
)

State-Event FT (Kaiser et al. [I75] [177]

Table 8: Analysis and tool support for fault tree extensions

JFATAEE AEEEAAEE AEEEARAEREEE o

(30]

31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

(45]

[46]

(47]
(48]

[49]

analysis, methods, and applications — A review, IEEE Trans.
Rel. R-34 (3) (1985) 194—203. doi:10.1109/TR.1985.5222114/
M. Malhotra, K. S. Trivedi, Dependability modeling using

Petri-nets, IEEE Trans. Rel. 44 (3) (1995) 428-440. |doi:
10.1109/24.406578.
K. Bénsch, A. Hein, M. Malhotra, K. Trivedi, Com-

ment/correction: Dependability modeling using Petri nets,
IEEE Trans. Rel. 45 (2) (1996) 272-273. doi:10.1109/24.
510814.

D. Codetta-Raiteri, G. Franceschinis, M. lacono, V. Vittorini,
Repairable fault tree for the automatic evaluation of repair
policies, in: Proc. Int. Conf. Dependable Systems and Net-
works (DSN), IEEE, 2004, pp. 659-668.

J. B. Fussell, E. B. Henry, N. H. Marshall, MOCUS: a com-
puter program to obtain minimal sets from fault trees, Tech.
rep., Aerojet Nuclear Co., Idaho Falls (1974).

P. K. Pande, M. E. Spector, P. Chatterjee, Computerized fault
tree analysis: TREEL and MICSUP, Tech. rep., Operation
Research Centre, University of California, Berkeley (1975).
O. Coudert, J. C. Madre, Fault tree analysis: 102° Prime im-
plicants and beyond, in: Proc. Reliability and Maintainability
Symposium (RAMS), 1993, pp. 240-245. doi:10.1109/RAMS.
1993.296849.

O. Coudert, J. C. Madre, MetaPrime: An interactive fault-tree
analyzer, IEEE Trans. Rel. 43 (1994) 121-127. doi:10.1109/
24.285125.

A. B. Rauzy, New algorithms for fault tree analysis, Reliability
Engineering & System Safety 40 (3) (1993) 203-211. |doi:
10.1016/0951-8320(93)90060-Cl.

A. Rauzy, Y. Dutuit, Exact and truncated computations of
prime implicants of coherent and non-coherent fault trees
within Aralia, Reliability Engineering & System Safety 58 (2)
(1997) 127-144. |doi:10.1016/50951-8320(97) 00034-3|

Y. Dutuit, A. B. Rauzy, A linear-time algorithm to find
modules of fault trees, IEEE Trans. Rel. 45 (1996) 422-425.
do0i:10.1109/24.537011l

J. B. Dugan, B. Venkataraman, R. Gulati, DIFtree: A software
package for the analysis of dynamic fault tree models, in: Proc.
Reliability and Maintainability Symposium (RAMS), IEEE,
1997, pp. 64-70. [doi:10.1109/RAMS . 1997 .571666|

R. Remenyte, J. D. Andrews, A simple component connection
approach for fault tree conversion to binary decision diagram,
in: Proc. 1st Int. Conf. Availability, Reliability and Security
(ARES), 2006, pp. 449-456. |doi:10.1109/ARES.2006. 17,

R. Remenyte-Prescott, J. Andrews, An enhanced component
connection method for conversion of fault trees to binary deci-
sion diagrams, Reliability Engineering & System Safety 93 (10)
(2008) 1543-1550. doi:10.1016/j.ress.2007.09.001.

D. Codetta-Raiteri, BDD based analysis of parametric fault
trees, in: Proc. Reliability and Maintainability Symposium
(RAMS), IEEE, 2006, pp. 442-449. |doi:10.1109/RANS . 2006.
1677414.

J. Xiang, K. Yanoo, Y. Maeno, K. Tadano, F. Machida,
A. Kobayashi, T. Osaki, Efficient analysis of fault trees with
voting gates, in: Proc. 22nd Int. Symp. on Software Reliability
Engineering (ISSRE), 2011, pp. 230-239. doi:10.1109/ISSRE.
2011.23.

J. A. Carrasco, V. Suné, An algorithm to find minimal cuts
of coherent fault-trees with event-classes using a decision tree,
IEEE Trans. Rel. 48 (1999) 31-41. doi:10.1109/24.765925|
W. E. Vesely, R. E. Narum, PREP and KITT: computer codes
for the automatic evaluation of a fault tree, Tech. rep., Idaho
Nuclear Corp., Idaho Falls (1970).

S. B. Akers, Binary decision diagrams, IEEE Trans. Comput.
C-27 (6) (1978) 509-516. |doi:10.1109/TC.1978.1675141]

E. M. Clarke, O. Grumberg, D. Peled, Model checking, MIT
Press, 1999.

R. M. Sinnamon, J. D. Andrews, Fault tree analysis and binary
decision diagrams, in: Proc. Reliability and Maintainability
Symposium (RAMS), IEEE, 1996, pp. 215-222. doi:10.1109/
RAMS.1996.500665.

32

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

(63]

[64]

(65]

[66]

[67)

(68]

[69]

D. E. Ross, K. M. Butler, M. R. Mercer, Exact ordered binary
decision diagram size when representing classes of symmetric
functions, Journal of Electronic Testing 2 (3) (1991) 243-259.
doi:10.1007/BF00135441.

B. Bollig, I. Wegener, Improving the variable ordering of OB-
DDs is NP-complete, IEEE Trans. Comput. 45 (9) (1996) 993—
1002. doi:10.1109/12.537122.

Y.-S. Way, D.-Y. Hsia, A simple component-connection
method for building binary decision diagrams encoding a fault
tree, Reliability Engineering & System Safety 70 (1) (2000)
59-70. doi:10.1016/50951-8320(00) 00048-X.

Z. Miao, R. Niu, T. Tang, J. Liu, A new generation algorithm
of fault tree minimal cut sets and its application in CBTC
system, in: Proc. Int. Conf. Intelligent Rail Transportation
(ICIRT), IEEE, 2013, pp. 221-226. |doi:10.1109/ICIRT.2013.
6696297

R. E. Barlow, F. Proschan, Statistical Theory of Reliability
and Life Testing, Holt, Rinehart, & Winstron, 1975.

K. Stecher, Evaluation of large fault-trees with repeated events
using an efficient bottom-up algorithm, IEEE Trans. Rel. 35
(1986) 51-58. doi:10.1109/TR.1986.4335344.

A. Bobbio, L. Portinale, M. Minichino, E. Ciancamerla, Im-
proving the analysis of dependable systems by mapping fault
trees into Bayesian networks, Reliability Engineering & System
Safety 71 (3) (2001) 249-260. |doi:10.1016/50951-8320(00)
00077-6.

S. Montani, L. Portinale, A. Bobbio, M. Varesio, D. Codetta-
Raiteri, DBNet, a tool to convert dynamic fault trees into
dynamic Bayesian networks, Tech. rep., Dip. di Informatica,
Univ. del Piemonte Orientale (Aug. 2005).

K. Durga Rao, V. Gopika, V. V. S. Sanyasi Rao, H. S. Kush-
waha, A. K. Verma, A. Srividya, Dynamic fault tree analysis
using monte carlo simulation in probabilistic safety assessment,
Reliability Engineering & System Safety 94 (4) (2009) 872-883.
doi:10.1016/j.ress.2008.09.007.

H. Aliee, H. R. Zarandi, A fast and accurate fault tree analysis
based on stochastic logic implemented on field-programmable
gate arrays, IEEE Trans. Rel. 62 (2013) 13-22. doi:10.1109/
TR.2012.2221012.

S. V. Amari, J. B. Akers, Reliability analysis of large fault
trees using the vesely failure rate, in: Proc. Reliability and
Maintainability Symposium (RAMS), IEEE, 2004, pp. 391-
396. doi:10.1109/RAMS.2004.1285481.

W. G. Schneeweiss, On the polynomial form of boolean func-
tions: Derivations and applications, IEEE Trans. Comput. 47
(1998) 217-221. |doi:10.1109/12.663768.

W. Schneeweiss, SyRePa’89-a package of programs for sys-
tems reliability evaluations, Tech. rep., Informatik-Rep. 91,
Fern Universitat (1990).

M. Stamatelatos, W. Vesely, J. B. Dugan, J. Fragola, J. Mi-
narick, J. Railsback, Fault Tree Handbook with Aerospace Ap-
plications, Office of safety and mission assurance NASA head-
quarters, 2002.

I. Ben-Gal, Bayesian networks, Encyclopedia of Statistics
in Quality and Reliability I. |doi:10.1002/9780470061572.
eqr089.

P. A. Crosetti, Fault tree analysis with probability evaluation,
IEEE Trans. Nucl. Sci. 18 (1) (1971) 465-471. doi:10.1109/
TNS.1971.4325911.

W. E. Vesely, A time-dependent methodology for fault tree
evaluation, Nuclear Engineering and Design 13 (2) (1970) 337—
360. doi:10.1016/0029-5493(70)90167-6.

A. M. Rushdi, Uncertainty analysis of fault-tree outputs, IEEE
Trans. Rel. R-34 (5) (1985) 458-462. doi:10.1109/TR.1985.
5222232,

Z. W. Birnbaum, On the importance of different components
in a multicomponent system, Tech. rep., Department of Math-
ematics, University of Washington (1968).

P. S. Jackson, On the s-importance of elements and prime im-
plicants of non-coherent systems, IEEE Trans. Rel. R-32 (1)
(1983) 21-25. |doi:10.1109/TR.1983.5221464!

http://dx.doi.org/10.1109/TR.1985.5222114
http://dx.doi.org/10.1109/24.406578
http://dx.doi.org/10.1109/24.406578
http://dx.doi.org/10.1109/24.510814
http://dx.doi.org/10.1109/24.510814
http://dx.doi.org/10.1109/RAMS.1993.296849
http://dx.doi.org/10.1109/RAMS.1993.296849
http://dx.doi.org/10.1109/24.285125
http://dx.doi.org/10.1109/24.285125
http://dx.doi.org/10.1016/0951-8320(93)90060-C
http://dx.doi.org/10.1016/0951-8320(93)90060-C
http://dx.doi.org/10.1016/S0951-8320(97)00034-3
http://dx.doi.org/10.1109/24.537011
http://dx.doi.org/10.1109/RAMS.1997.571666
http://dx.doi.org/10.1109/ARES.2006.17
http://dx.doi.org/10.1016/j.ress.2007.09.001
http://dx.doi.org/10.1109/RAMS.2006.1677414
http://dx.doi.org/10.1109/RAMS.2006.1677414
http://dx.doi.org/10.1109/ISSRE.2011.23
http://dx.doi.org/10.1109/ISSRE.2011.23
http://dx.doi.org/10.1109/24.765925
http://dx.doi.org/10.1109/TC.1978.1675141
http://dx.doi.org/10.1109/RAMS.1996.500665
http://dx.doi.org/10.1109/RAMS.1996.500665
http://dx.doi.org/10.1007/BF00135441
http://dx.doi.org/10.1109/12.537122
http://dx.doi.org/10.1016/S0951-8320(00)00048-X
http://dx.doi.org/10.1109/ICIRT.2013.6696297
http://dx.doi.org/10.1109/ICIRT.2013.6696297
http://dx.doi.org/10.1109/TR.1986.4335344
http://dx.doi.org/10.1016/S0951-8320(00)00077-6
http://dx.doi.org/10.1016/S0951-8320(00)00077-6
http://dx.doi.org/10.1016/j.ress.2008.09.007
http://dx.doi.org/10.1109/TR.2012.2221012
http://dx.doi.org/10.1109/TR.2012.2221012
http://dx.doi.org/10.1109/RAMS.2004.1285481
http://dx.doi.org/10.1109/12.663768
http://dx.doi.org/10.1002/9780470061572.eqr089
http://dx.doi.org/10.1002/9780470061572.eqr089
http://dx.doi.org/10.1109/TNS.1971.4325911
http://dx.doi.org/10.1109/TNS.1971.4325911
http://dx.doi.org/10.1016/0029-5493(70)90167-6
http://dx.doi.org/10.1109/TR.1985.5222232
http://dx.doi.org/10.1109/TR.1985.5222232
http://dx.doi.org/10.1109/TR.1983.5221464

[70]

(71]

(72]

(73]

(74]

[75]

[76]

[77]

(78]

[79]
(80]
(81]
(82]

(83]
(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

J. D. Andrews, S. Beeson, Birnbaum’s measure of compo-
nent importance for noncoherent systems, IEEE Trans. Rel.
52 (2003) 213-219. |doi:10.1109/TR.2003.809656!

S. Contini, V. Matuzas, New methods to determine the im-
portance measures of initiating and enabling events in fault
tree analysis, Reliability Engineering & System Safety 96 (7)
(2011) 775-784. |[doi:10.1016/j.ress.2011.02.001,

J. S. Hong, C. H. Lie, Joint reliability-importance of two edges
in an undirected network, IEEE Trans. Rel. 42 (1993) 17-23.
doi:10.1109/24.210266.

M. J. Armstrong, Joint reliability-importance of components,
IEEE Trans. Rel. 44 (1995) 408-412. doi:10.1109/24.406574.
L. Lu, J. Jiang, Joint failure importance for noncoherent fault
trees, IEEE Trans. Rel. (2007) 435-443doi:10.1109/TR.2007.
898574.

J. B. Fussell, How to hand-calculate system reliability and
safety characteristics, IEEE Trans. Rel. R-24 (3) (1975) 169—
174.|d0i:10.1109/TR.1975.5215142.

Y. Dutuit, A. B. Rauzy, Efficient algorithms to assess com-
ponent and gate importance in fault tree analysis, Relia-
bility Engineering & System Safety 72 (2) (2001) 213-222.
do0i:10.1016/350951-8320(01)00004-7.

Isograph, FaultTree+, www.isograph.com/software/
reliability-workbench/fault-tree-analysis/|

M. A. Johnson, M. R. Taaffe, The denseness of phase distri-
butions, Tech. rep., School of Industrial Engineering Research
Memoranda 88-20, Purdue University (1988).

1. Software, ITEM Toolkit: Fault Tree Analysis (FTA), www.
itemsoft.com/fault_tree.html.

ReliaSoft, BlockSim, www.reliasoft.com/BlockSim/index.
html.
PTC, Windchill FTA, www.ptc.com/product/relex/

fault-tree.

A. L. Development, Fault Tree Analysis (FTA) Software, http:
//aldservice.com/en/reliability-products/fta.html.
OpenFTA, www.openfta.com/.

J. B. Dugan, S. J. Bavuso, M. A. Boyd, Fault trees and
sequence dependencies, in: Proc. 1990 Annual Reliability
and MaintainabilitySymp., IEEE, 1990, pp. 286—293. doi:
10.1109/ARMS.1990.67971.

H. Boudali, P. Crouzen, M. Stoelinga, Dynamic fault tree anal-
ysis using input/output interactive Markov chains, in: Proc.
37th Int. Conf. Dependable Systems and Networks (DSN),
IEEE, 2007, pp. 708-717. [doi:10.1109/DSN.2007.37.

H. Boudali, P. Crouzen, M. Stoelinga, A rigorous, composi-
tional, and extensible framework for dynamic fault tree anal-
ysis, IEEE Trans. Dependable Secure Comput. 7 (2) (2010)
128-143. [doi:10.1109/TDSC.2009.45.

M. Walker, Y. Papadopoulos, Qualitative temporal analysis:
Towards a full implementation of the Fault Tree Handbook,
Control Engineering Practice 17 (10) (2009) 1115-1125. doi:
10.1016/j . conengprac.2008.10.003.

H. Boudali, P. Crouzen, M. Stoelinga, A compositional se-
mantics for dynamic fault trees in terms of interactive Markov
chains, in: Proc. 5th Int. Conf. Automated Technology for
Verification and Analysis (ATVA), Vol. 4762 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2007, pp.
441-456. |doi:10.1007/978-3-540-75596-8_31.

A. Bobbio, D. Codetta-Raiteri, Parametric fault trees with
dynamic gates and repair boxes, in: Proc. Reliability and
Maintainability Symposium (RAMS), IEEE, 2004, pp. 459—
465. [doi:10.1109/RAMS.2004.1285491.

D. Guck, J.-P. Katoen, M. Stoelinga, T. Luiten, J. Romijn,
Smart railroad maintenance engineering with stochastic model
checking, in: Proc. 2nd Int. Conf. Railway Technology:
Reseach, Development and Maintenance (Railways), Saxe-
Coburg Publications, Ajaccio, Corsica, France, 2014. |doi:
10.4203/ccp.104.299.

Z. Tang, J. B. Dugan, Minimal cut set/sequence generation for
dynamic fault trees, in: Proc. Reliability and Maintainability
Symposium (RAMS), IEEE, 2004, pp. 207-213. doi:10.1109/

33

(92]

(93]

[94]

[95]

[96]

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

RAMS.2004.1285449.

H.-L. Zhang, C.-Y. Zhang, D. Liu, R. Li, A method of quan-
titative analysis for dynamic fault tree, in: Proc. Reliabil-
ity and Maintainability Symposium (RAMS), 2011, pp. 1-6.
doi:10.1109/RAMS.2011.5754471,

D. Liu, W. Xing, C. Zhang, R. Li, H. Li, Cut sequence set
generation for fault tree analysis, in: Embedded Software
and Systems, Vol. 4523 of Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, 2007, pp. 592-603. |doi:
10.1007/978-3-540-72685-2_55|

D. Liu, C. Zhang, W. Xing, R. Li, H. Li, Quantification of
cut sequence set for fault tree analysis, in: High Performance
Computing and Communications, Vol. 4782 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2007, pp.
755-765. doi:10.1007/978-3-540-75444-2_70.

P.-Y. Chaux, J.-M. Roussel, J.-J. Lesage, G. Deleuze,
M. Bouissou, Towards a unified definition of minimal cut se-
quences, in: Proc. 4th IFAC Workshop on Dependable Con-
trol of Discrete Systems (DCDS), Vol. 4, 2013, pp. 1-6. |doi:
10.3182/20130904-3-UK-4041.00013.

G. Merle, J.-M. Roussel, Algebraic modelling of fault trees
with priority AND gates, in: Proc. 1st IFAC Workshop on
Dependable Control of Discrete Systems (DCDS), 2007, pp.
175-180.

G. Merle, J.-M. Roussel, J.-J. Lesage, A. Bobbio, Probabilistic
algebraic analysis of fault trees with priority dynamic gates
and repeated events, IEEE Trans. Rel. 59 (1) (2010) 250—261.
doi:10.1109/TR.2009.2035793.

G. Merle, Algebraic modelling of dynamic fault trees, contri-
bution to qualitative and quantitative analysis, Ph.D. thesis,
Ecole normale supérieure de Cachan (2010).

G. Merle, J.-M. Roussel, J.-J. Lesage, Dynamic fault tree
analysis based on the structure function, in: Proc. Reliabil-
ity and Maintainability Symposium (RAMS), 2011, pp. 1-6.
doi:10.1109/RAMS.2011.5754452,

A. B. Rauzy, Sequence algebra, sequence decision diagrams
and dynamic fault trees, Reliability Engineering & System
Safety 96 (7) (2011) 785-792. doi:10.1016/j.ress.2011.02.
005.

S. ichi Minato, Zero-suppressed BDDs for set manipulation
in combinatorial problems, in: Proc. 30th ACM/IEEE Design
Automation Conf., ACM New York, 1993, pp. 272-277. |doi:
10.1145/157485.164890.

J. B. Dugan, S. J. Bavuso, M. A. Boyd, Dynamic fault-tree
models for fault-tolerant computer systems, IEEE Trans. Rel.
(1992) 363-377doi:10.1109/24.159800.

M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verifi-
cation of probabilistic real-time systems, in: Computer Aided
Verification, Vol. 6806 of LNCS, Springer Berlin Heidelberg,
2011, pp. 585-591. |doi:10.1007/978-3-642-22110-1_47.

C. Baier, J.-P. Katoen, Principles of Model Checking, MIT
Press, 2008.

H. Hermanns, Interactive Markov chains: and the quest for
quantified quality, Springer-Verlag Berlin, 2002.

F. Arnold, A. Belinfante, D. G. Freark van der Berg,
M. Stoelinga, DFTCalc: A tool for efficient fault tree anal-
ysis, in: Proc. 32nd Int. Conf. Computer Safety, Reliability
and Security (SAFECOMP), Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, Toulouse, Fance, 2013, pp.
293-301. doi:10.1007/978-3-642-40793-2_27.

L. L. Pullum, J. B. Dugan, Fault tree models for the analysis
of complex computer-based systems, in: Proc. Reliability and
Maintainability Symposium (RAMS), IEEE, 1996, pp. 200
207. |doi:10.1109/RAMS.1996.500663.

W. Long, Y. Sato, M. Horigome, Quantification of sequen-
tial failure logic for fault tree analysis, Reliability Engineer-
ing & System Safety 67 (3) (2000) 269-274. doi:10.1016/
S0951-8320(99)00075-7.

W. Han, W. Guo, Z. Hou, Research on the method of dy-
namic fault tree analysis, in: Proc. 9th Int. Conf. Reliability,
Maintainability and Safety (ICRMS), IEEE, 2011, pp. 950—

http://dx.doi.org/10.1109/TR.2003.809656
http://dx.doi.org/10.1016/j.ress.2011.02.001
http://dx.doi.org/10.1109/24.210266
http://dx.doi.org/10.1109/24.406574
http://dx.doi.org/10.1109/TR.2007.898574
http://dx.doi.org/10.1109/TR.2007.898574
http://dx.doi.org/10.1109/TR.1975.5215142
http://dx.doi.org/10.1016/S0951-8320(01)00004-7
www.isograph.com/software/reliability-workbench/fault-tree-analysis/
www.isograph.com/software/reliability-workbench/fault-tree-analysis/
www.itemsoft.com/fault_tree.html
www.itemsoft.com/fault_tree.html
www.reliasoft.com/BlockSim/index.html
www.reliasoft.com/BlockSim/index.html
www.ptc.com/product/relex/fault-tree
www.ptc.com/product/relex/fault-tree
http://aldservice.com/en/reliability-products/fta.html
http://aldservice.com/en/reliability-products/fta.html
www.openfta.com/
http://dx.doi.org/10.1109/ARMS.1990.67971
http://dx.doi.org/10.1109/ARMS.1990.67971
http://dx.doi.org/10.1109/DSN.2007.37
http://dx.doi.org/10.1109/TDSC.2009.45
http://dx.doi.org/10.1016/j.conengprac.2008.10.003
http://dx.doi.org/10.1016/j.conengprac.2008.10.003
http://dx.doi.org/10.1007/978-3-540-75596-8_31
http://dx.doi.org/10.1109/RAMS.2004.1285491
http://dx.doi.org/10.4203/ccp.104.299
http://dx.doi.org/10.4203/ccp.104.299
http://dx.doi.org/10.1109/RAMS.2004.1285449
http://dx.doi.org/10.1109/RAMS.2004.1285449
http://dx.doi.org/10.1109/RAMS.2011.5754471
http://dx.doi.org/10.1007/978-3-540-72685-2_55
http://dx.doi.org/10.1007/978-3-540-72685-2_55
http://dx.doi.org/10.1007/978-3-540-75444-2_70
http://dx.doi.org/10.3182/20130904-3-UK-4041.00013
http://dx.doi.org/10.3182/20130904-3-UK-4041.00013
http://dx.doi.org/10.1109/TR.2009.2035793
http://dx.doi.org/10.1109/RAMS.2011.5754452
http://dx.doi.org/10.1016/j.ress.2011.02.005
http://dx.doi.org/10.1016/j.ress.2011.02.005
http://dx.doi.org/10.1145/157485.164890
http://dx.doi.org/10.1145/157485.164890
http://dx.doi.org/10.1109/24.159800
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-40793-2_27
http://dx.doi.org/10.1109/RAMS.1996.500663
http://dx.doi.org/10.1016/S0951-8320(99)00075-7
http://dx.doi.org/10.1016/S0951-8320(99)00075-7

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

953. [doi:10.1109/ICRMS.2011.5979422,

S. Amari, D. Glenn, H. Eileen, A new approach to solve dy-
namic fault trees, in: Proc. Reliability and Maintainability
Symposium (RAMS), 2003, pp. 374-379. |doi:10.1109/RAMS.
2003.1182018.

D. Liu, L. Xiong, Z. Li, P. Wang, H. Zhang, The simplification
of cut sequence set analysis for dynamic systems, in: Proc. 2nd
Int. Conf. Computer and Automation Engineering (ICCAE),
Vol. 3, 2010, pp. 140-144. |doi : 10. 1109/ICCAE.2010.5451831|
O. Yevkin, An improved modular approach for dynamic fault
tree analysis, in: Proc. Reliability and Maintainability Sym-
posium (RAMS), 2011, pp. 1-5. |doi:10.1109/RAMS.2011.
5754437.

S. Montani, L. Portinale, A. Bobbio, Dynamic Bayesian net-
works for modeling advanced fault tree features in dependabil-
ity analysis, in: Proc. European Safety and Reliability Conf.
(ESREL), 2005, pp. 1415-1422.

H. Boudali, J. B. Dugan, A new Bayesian network approach
to solve dynamic fault trees, in: Proc. Reliability and Main-
tainability Symposium (RAMS), 2005, pp. 451-456. |doi:
10.1109/RAMS.2005.1408404.

D. Rongxing, W. Guochun, D. Decun, A new assessment
method for system reliability based on dynamic fault tree, in:
Proc. Int. Conf. Intelligent Computation Technology and Au-
tomation (ICICTA), IEEE, IEEE, 2010, pp. 219-222. |doi:
10.1109/ICICTA.2010.237.

T. L. Graves, M. S. Hamada, R. Klamann, A. Koehler, H. F.
Martz, A fully Bayesian approach for combining multi-level
information in multi-state fault tree quantification, Reliability
Engineering & System Safety 92 (10) (2007) 1476-1483. |doi:
10.1016/j.ress.2006.11.001,

Y. Mo, A multiple-valued decision-diagram-based approach to
solve dynamic fault trees, IEEE Trans. Rel. 63 (1) (2014) 81—
93.|d0i:10.1109/TR.2014.2299674.

J. Ni, W. Tang, Y. Xing, A simple algebra for fault tree analy-
sis of static and dynamic systems, IEEE Trans. Rel. 62 (2013)
846-861. |doi:10.1109/TR.2013.2285035.

H. Boudali, A. P. Nijmeijer, M. I. A. Stoelinga, DFTSim: A
simulation tool for extended dynamic fault trees, in: Proc.
42nd Annual Simulation Symposium (ANSS), San Diego, Cal-
ifornia, USA, 2009.

X. Liang, H. Yi, Y. Zhang, D. Li, A numerical simulation
approach for reliability analysis of fault-tolerant repairable
system, in: Proc. 8th Int. Conf. Reliability, Maintainabil-
ity and Safety (ICRMS), IEEE, 2009, pp. 191-196. |doi:
10.1109/ICRMS.2009.5270210.

X. Zhang, Q. Miao, X. Fan, D. Wang, Dynamic fault tree anal-
ysis based on Petri nets, in: Proc. 8th Int. Conf. Reliability,
Maintainability and Safety (ICRMS), IEEE, IEEE, 2009, pp.
138—-142. |[doi:10.1109/ICRMS.2009.5270223.

H. Aliee, H. R. Zarandi, Fault tree analysis using stochastic
logic: A reliable and high speed computing, in: Proc. Reliabil-
ity and Maintainability Symposium (RAMS), 2011, pp. 1-6.
doi:10.1109/RAMS.2011.5754466.

A. Rajabzadeh, M. S. Jahangiry, Hardware-based reliability
tree (HRT) for fault tree analysis, in: Proc. 15th CSI Int.
Symp. Computer Architecture and Digital Systems (CADS),
IEEE, 2010, pp. 171-172. [doi:10.1109/CADS.2010.5623587.
Y. Ou, J. B. Dugan, Sensitivity analysis of modular dynamic
fault trees, in: Proc. IEEE Int. Computer Performance and
DependabilySymp. (IPDS), 2000, pp. 35-43. doi:10.1109/
IPDS.2000.839462.

H. Boudali, P. Crouzen, M. Stoelinga, CORAL - a tool for
compositional reliability and availability analysis, in: ARTIST
workshop, presented at the 19th Int. Conf. Computer Aided
Verification, 2007.

L. Portinale, A. Bobbio, D. Codetta-Raiteri, S. Montani, Com-
piling dynamic fault trees into dynamic Bayesian nets for re-
liability analysis: the RADYBAN tool, in: Proc. 5th UAI
Bayesian Modeling Applications Workshop (UAI-AW), 2007.
S. Montani, L. Portinale, A. Bobbio, C. Codetta-Raiteri,

34

[128]

[129]

[130]

[131]

[132]

[133]

[134)

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146)

[147]

Radyban: A tool for reliability analysis of dynamic fault trees
through conversion into dynamic Bayesian networks, Relia-
bility Engineering & System Safety 93 (7) (2008) 922-932.
doi:10.1016/j.ress.2007.03.013,

H. Tanaka, L. Fan, F. Lai, K. Toguchi, Fault-tree analysis
by fuzzy probability, IEEE Trans. Rel. 32 (5) (1983) 453-457.
doi:10.1109/TR.1983.5221727.

Y. A. Mahmood, A. Ahmadi, A. K. Verma, A. Srividya, U. Ku-
mar, Fuzzy fault tree analysis: a review of concept and appli-
cation, Int. J. System Assurance Engineering and Management
4 (1) (2013) 19-32. |doi:10.1007/s13198-013-0145-%,

D. Singer, A fuzzy set approach to fault tree and reliability
analysis, Fuzzy Sets and Systems 34 (2) (1990) 145-155. doi:
10.1016/0165-0114(90)90154-X.

C.-T. Lin, M.-J. J. Wang, Hybrid fault tree analysis using fuzzy
sets, Reliability Engineering & System Safety 58 (3) (1997)
205-213. doi:10.1016/50951-8320(97)00072-0.

C. Kim, Y. Ju, M. Gens, Multilevel fault tree analysis us-
ing fuzzy numbers, Computers & Operations Research 23 (7)
(1996) 695-703. [doi:10.1016/0305-0548 (95) 00070~ 4l

M.-H. Shu, C.-H. Cheng, J.-R. Chang, Using intuitionistic
fuzzy sets for fault-tree analysis on printed circuit board as-
sembly, Microelectronics Reliability 46 (12) (2006) 2139-2148.
do0i:10.1016/j.microrel.2006.01.007.

D.-F. Li, A note on “using intuitionistic fuzzy sets for fault-tree
analysis on printed circuit board assembly”, Microelectron-
ics Reliability 48 (10) (2008) 1741. |doi:10.1016/j.microrel.
2008.07.059.

Y. Ren, L. Kong, Fuzzy multi-state fault tree analysis based
on fuzzy expert system, in: Proc. 9th Int. Conf. Reliability,
Maintainability and Safety (ICRMS), IEEE, 2011, pp. 920-
925. [doi:10.1109/ICRMS.2011.5979415.

A. El-Iraki, E. R. Odoom, Fuzzy probist reliability assessment
of repairable systems, in: Proc. Conference of the North Amer-
ican Fuzzy Information Processing Society (NAFIPS), 1998,
pp. 96-100.

H.-Z. Huang, X. Tong, M. J. Zuo, Posbist fault tree analysis
of coherent systems, Reliability Engineering & System Safety
84 (2) (2004) 141-148. |doi:10.1016/.ress.2003.11.002.

L. B. Page, J. E. Perry, Standard deviation as an alternative to
fuzziness in fault tree models, IEEE Trans. Rel. 43 (3) (1994)
402-407. |[doi:10.1109/24.326434.

M. Forster, M. Trapp, Fault tree analysis of software-controlled
component systems based on second-order probabilities, in:
Proc. 20th Int. Symp. on Software Reliability Engineering (IS-
SRE), IEEE, 2009, pp. 146-154.|doi: 10. 1109/ISSRE. 2009. 22
H. Furuta, N. Shiraishi, Fuzzy importance in fault tree anal-
ysis, Fuzzy Sets and Systems 12 (3) (1984) 205-213. |doi:
10.1016/0165-0114(84)90068-X.

P. V. Suresh, A. K. Babar, V. V. Raj, Uncertainty in fault tree
analysis: A fuzzy approach, Fuzzy Sets and Systems 83 (2)
(1996) 135-141. |doi:10.1016/0165-0114(95)00386-X.

C. Carreras, I. D. Walker, Interval methods for fault-tree
analysis in robotics, IEEE Trans. Rel. 50 (2001) 3-11. doi:
10.1109/24.935010.

L. A. Zadeh, The concept of a linguistic variable and its ap-
plication to approximate reasoning, Information Sciences 8 (3)
(1975) 199-249. doi:10.1016/0020-0255(75)90036-5.

K. P. Soman, K. B. Misra, Fuzzy fault tree analysis using res-
olution identity, J Fuzzy Math 1 (1993) 193-212.

A. C. F. Guimarées, N. F. F. Ebecken, FuzzyFTA: A fuzzy
fault tree system for uncertainty analysis, Annals of Nuclear
Energy 26 (6) (1999) 523-532. |doi:10.1016/50306-4549 (98)
00070-X.

Y. F. Wang, M. Xie, K. M. Ng, Y. F. Meng, Quantitative risk
analysis model of integrating fuzzy fault tree with Bayesian
network, in: Proc. Int. Conf. Intelligence and Security In-
formatics (ISI), IEEE, 2011, pp. 267-271. |doi:10.1109/ISI.
2011.5984095.

Y. Wang, M. Xie, Approach to integrate fuzzy fault tree with
Bayesian network, Procedia Engineering 45 (2012) 131-138.

http://dx.doi.org/10.1109/ICRMS.2011.5979422
http://dx.doi.org/10.1109/RAMS.2003.1182018
http://dx.doi.org/10.1109/RAMS.2003.1182018
http://dx.doi.org/10.1109/ICCAE.2010.5451831
http://dx.doi.org/10.1109/RAMS.2011.5754437
http://dx.doi.org/10.1109/RAMS.2011.5754437
http://dx.doi.org/10.1109/RAMS.2005.1408404
http://dx.doi.org/10.1109/RAMS.2005.1408404
http://dx.doi.org/10.1109/ICICTA.2010.237
http://dx.doi.org/10.1109/ICICTA.2010.237
http://dx.doi.org/10.1016/j.ress.2006.11.001
http://dx.doi.org/10.1016/j.ress.2006.11.001
http://dx.doi.org/10.1109/TR.2014.2299674
http://dx.doi.org/10.1109/TR.2013.2285035
http://dx.doi.org/10.1109/ICRMS.2009.5270210
http://dx.doi.org/10.1109/ICRMS.2009.5270210
http://dx.doi.org/10.1109/ICRMS.2009.5270223
http://dx.doi.org/10.1109/RAMS.2011.5754466
http://dx.doi.org/10.1109/CADS.2010.5623587
http://dx.doi.org/10.1109/IPDS.2000.839462
http://dx.doi.org/10.1109/IPDS.2000.839462
http://dx.doi.org/10.1016/j.ress.2007.03.013
http://dx.doi.org/10.1109/TR.1983.5221727
http://dx.doi.org/10.1007/s13198-013-0145-x
http://dx.doi.org/10.1016/0165-0114(90)90154-X
http://dx.doi.org/10.1016/0165-0114(90)90154-X
http://dx.doi.org/10.1016/S0951-8320(97)00072-0
http://dx.doi.org/10.1016/0305-0548(95)00070-4
http://dx.doi.org/10.1016/j.microrel.2006.01.007
http://dx.doi.org/10.1016/j.microrel.2008.07.059
http://dx.doi.org/10.1016/j.microrel.2008.07.059
http://dx.doi.org/10.1109/ICRMS.2011.5979415
http://dx.doi.org/10.1016/j.ress.2003.11.002
http://dx.doi.org/10.1109/24.326434
http://dx.doi.org/10.1109/ISSRE.2009.22
http://dx.doi.org/10.1016/0165-0114(84)90068-X
http://dx.doi.org/10.1016/0165-0114(84)90068-X
http://dx.doi.org/10.1016/0165-0114(95)00386-X
http://dx.doi.org/10.1109/24.935010
http://dx.doi.org/10.1109/24.935010
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1016/S0306-4549(98)00070-X
http://dx.doi.org/10.1016/S0306-4549(98)00070-X
http://dx.doi.org/10.1109/ISI.2011.5984095
http://dx.doi.org/10.1109/ISI.2011.5984095

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

doi:10.1016/j.proeng.2012.08.133.

K. Buchacker, Combining fault trees and Petri nets to model
safety-critical systems, in: Proc. High Performance Comput-
ing Symposium (HPC), The Society for Computer Simulation
International, 1999, pp. 439-444.

K. Buchacker, Modeling with extended fault trees, in: Proc.
5th Int. Symp. High Assurance Systems Engineering (HASE),
2000, pp. 238-246. |doi:10.1109/HASE.2000. 895468,

X. Zang, D. Wang, H. Sun, K. S. Trivedi, A BDD-based
algorithm for analysis of multistate systems with multistate
components, IEEE Trans. Comput. 52 (12) (2003) 1608-1618.
doi:10.1109/TC.2003.1252856.

D. W. Twigg, A. V. Ramesh, U. R. Sandadi, T. C. Sharma,
Modeling mutually exclusive events in fault trees, in: Proc.
Reliability and Maintainability Symposium (RAMS), IEEE,
2000, pp. 8 — 13. doi:10.1109/RAMS.2000.816276.

J. K. Vaurio, Treatment of general dependencies in system
fault-tree and risk analysis, IEEE Trans. Rel. 51 (2002) 278—
287.doi:10.1109/TR.2002.801848.

M. Bouissou, Boolean logic Driven Markov Processes: a power-
ful new formalism for specifying and solving very large Markov
models, in: Proc. 6th Int. Conf. Probabilistic Safety Assess-
ment and Management (PSAM), San Juan, Puerto Rico, USA,
2002.

M. Bouissou, BDMP (Boolean logic Driven Markov
Processes)® as an alternative to Event Trees, in: Proc. Euro-
pean Safety and Reliability Conf. (ESREL), 2008.

P-Y. Chaux, J.-M. Roussel, J.-J. Lesage, G. Deleuze,
M. Bouissou, Systematic extraction of minimal cut sequences
from a BDMP model, in: Proc. European Safety and Reliabil-
ity Conf. (ESREL), Vol. 4, 2012, pp. 3344-3351.

P.-Y. Chaux, J.-M. Roussel, J.-J. Lesage, G. Deleuze,
M. Bouissou, Qualitative analysis of a BDMP by finite automa-
ton, in: Proc. European Safety and Reliability Conf. (ESREL),
2011, pp. 2050-2057.

M. Bouissou, A generalization of dynamic fault trees through
boolean logic driven Markov processes (BDMP)®), in: Proc.
16th European Safety and Reliability Conf. (ESREL), Sta-
vanger, Norway, 2007.

F. Flammini, N. Mazzocca, M. lacono, S. Marrone, Using re-
pairable fault trees for the evaluation of design choices for
critical repairable systems, in: Proc. Int. Symp. High Assur-
ance Systems Engineering (HASE), IEEE, 2005, pp. 163-172.
doi:10.1109/HASE.2005.26.

M. Beccuti, D. Codetta-Raiteri, G. Franceschinis, S. Hadded,
Non deterministic repairable fault trees for computing optimal
repair strategy, in: Proc. 3rd Int. Conf. Performance Evalua-
tion, Methodologies and Tools, 2008.

M. Beccuti, G. Franceschinis, D. Codetta-Raiteri, S. Haddad,
Parametric NARFT for the derivation of optimal repair strate-
gies, in: Proc. Int. Conf. Dependable Systems and Networks
(DSN), 2009, pp. 399-408. |doi:10.1109/DSN.2009.5270312.
M. Becutti, G. Franceschinis, D. Codetta-Raiteri, S. Haddad,
Computing optimal repair strategies by means of NdARFT mod-
eling and analysis, The Computer Journal Available online, to
be published. doi:10.1093/comjnl/bxt134.

M. Balakrishnan, K. Trivedi, Componentwise decomposition
for an efficient reliability computation of systems with re-
pairable components, in: 25th Int. Symp. Fault-Tolerant Com-
puting (FTCS), Digest of Papers, IEEE, 1995, pp. 259-268.
do0i:10.1109/FTCS.1995.466972.

Y. Dutuit, A. B. Rauzy, Approximate estimation of system
reliability via fault trees, Reliability Engineering & System
Safety 87 (2) (2005) 163-172. |doi:10.1016/j.ress.2004.02.
008.

F. Flammini, S. Marrone, M. Iacono, N. Mazzocca, V. Vit-
torini, A multiformalism modular approach to ERTMS/ETCS
failure modelling, Int. J. Reliability, Quality and Safety Engi-
neering 21. doi:10.1142/S0218539314500016.

L. Portinale, D. Codetta-Raiteri, S. Montani, Supporting reli-
ability engineers in exploiting the power of dynamic Bayesian

35

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

networks, International Journal of Approximate Reasoning
51 (2) (2010) 179-195. |doi:10.1016/].1jar.2009.05.009.

C. Kara-Zaitri, E. Ever, A hardware accelerated semi analytic
approach for fault trees with repairable components, in: Proc.
11th Int. Conf. Computer Modelling and Simulation (UKSIM),
IEEE, 2009, pp. 146-151. |doi:10.1109/UKSIM.2009.83.

P. G. Wijayarathna, M. Maekawa, Extending fault trees with
an AND-THEN gate, in: Proc. 11th Int. Symp. on Software
Reliability Engineering (ISSRE), 2000, pp. 283-292. doi:10.
1109/ISSRE.2000.885879.

M. Walker, L. Bottaci, Y. Papadopoulos, Compositional tem-
poral fault tree analysis, in: Computer Safety, Reliability,
and Security, Vol. 4680 of Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, 2007, pp. 106-119. |doi:
10.1007/978-3-540-75101-4_12,

M. Walker, Y. Papadopoulos, A hierarchical method for the
reduction of temporal expressions in pandora, in: Proc. First
Workshop on Dynamic Aspects in Dependability Models for
Fault-Tolerant Systems (DYADEM-FTS), ACM New York,
2010, pp. 7-12. |doi:10.1145/1772630.1772634.

G. Schellhorn, A. Thums, W. Reif, Formal fault tree semantics,
in: Proc. 6th World Conf. on Integrated Design and Process
Technology, 2002.

P. Gluchowski, Duration calculus for analysis of fault trees with
time dependencies, in: Proc. 2nd Int. Conf. on Dependability
of Computer Systems (DepCoS-RELCOMEX), 2007, pp. 107—
114. |doi:10.1109/DEPCOS-RELCOMEX. 2007 .19.

Z. Chaochen, C. A. R. Hoare, A. P. Ravn, A calculus of du-
rations, Information Processing Letters 40 (5) (1991) 269-276.
doi:10.1016/0020-0190(91)90122-X.

G. K. Palshikar, Temporal fault trees, Information and Soft-
ware Technology 44 (3) (2002) 137-150. |doi:10.1016/
S0950-5849(01)00223-3,

D. Codetta-Raiteri, Integrating several formalisms in order to
increase fault trees’ modeling power, Reliability Engineering
& System Safety 96 (5) (2011) 534-544. doi:10.1016/j.ress.
2010.12.027.

B. Kaiser, C. Gramlich, State-event-fault-trees - a safety analy-
sis model for software controlled systems, in: Computer Safety,
Reliability, and Security, Vol. 3219 of Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 2004, pp. 195-209.
doi:10.1007/978-3-540-30138-7_17.

B. Kaiser, C. Gramlich, M. Forster, State/event fault trees —
a safety analysis model for software-controlled systems, Relia-
bility Engineering & System Safety 92 (11) (2007) 1521-1537.
doi:10.1016/j.ress.2006.10.010.

B. Kaiser, Extending the expressive power of fault trees, in:
Proc. Reliability and Maintainability Symposium (RAMS),
IEEE, 2005, pp. 468-474. |[doi:10.1109/RANS. 2005 . 1408407,
M. Forster, B. Kaiser, Increased efficiency in the quantita-
tive evaluation of state/event fault trees, in: Information
Control Problems in Manufacturing, Vol. 12 of Proc. 12th
IFAC Symp., Elsevier Science Ltd, 2006, pp. 255—-260. |doi:
10.3182/20060517-3-FR-2903.00143.

B. Xu, Z. Huang, J. Hu, O. Wei, Y. Zhou, Minimal cut se-
quence generation for state/event fault trees, in: Proc. 2013
Middleware Doctoral Symposium, ACM New York, 2013, p.
Article No. 3. |doi:10.1145/2541534.2541592.

L. de Alfaro, T. A. Henzinger, Interface automata, in: Proc.
Joint 8th European Software Engineering Conference and 9th
ACM SIGSOFT Int. Symp. Foundations of Software Engineer-
ing, ACM Press, 2001, pp. 109-120. doi:10.1145/503209.
503226.

M. Roth, P. Liggesmeyer, Qualitative analysis of state/event
fault trees for supporting the certification process of software-
intensive systems, in: Proc. Int. Symp. on Software Reliability
Engineering Workshops(ISSREW), 2013, pp. 353-358. |doi:
10.1109/ISSREW.2013.6688920.

I. N. Fovino, M. Masera, A. D. Cian, Integrating cyber attacks
within fault trees, Reliability Engineering & System Safety
94 (9) (2009) 1394-1402. |[doi:10.1016/j.ress.2009.02.020,

http://dx.doi.org/10.1016/j.proeng.2012.08.133
http://dx.doi.org/10.1109/HASE.2000.895468
http://dx.doi.org/10.1109/TC.2003.1252856
http://dx.doi.org/10.1109/RAMS.2000.816276
http://dx.doi.org/10.1109/TR.2002.801848
http://dx.doi.org/10.1109/HASE.2005.26
http://dx.doi.org/10.1109/DSN.2009.5270312
http://dx.doi.org/10.1093/comjnl/bxt134
http://dx.doi.org/10.1109/FTCS.1995.466972
http://dx.doi.org/10.1016/j.ress.2004.02.008
http://dx.doi.org/10.1016/j.ress.2004.02.008
http://dx.doi.org/10.1142/S0218539314500016
http://dx.doi.org/10.1016/j.ijar.2009.05.009
http://dx.doi.org/10.1109/UKSIM.2009.83
http://dx.doi.org/10.1109/ISSRE.2000.885879
http://dx.doi.org/10.1109/ISSRE.2000.885879
http://dx.doi.org/10.1007/978-3-540-75101-4_12
http://dx.doi.org/10.1007/978-3-540-75101-4_12
http://dx.doi.org/10.1145/1772630.1772634
http://dx.doi.org/10.1109/DEPCOS-RELCOMEX.2007.19
http://dx.doi.org/10.1016/0020-0190(91)90122-X
http://dx.doi.org/10.1016/S0950-5849(01)00223-3
http://dx.doi.org/10.1016/S0950-5849(01)00223-3
http://dx.doi.org/10.1016/j.ress.2010.12.027
http://dx.doi.org/10.1016/j.ress.2010.12.027
http://dx.doi.org/10.1007/978-3-540-30138-7_17
http://dx.doi.org/10.1016/j.ress.2006.10.010
http://dx.doi.org/10.1109/RAMS.2005.1408407
http://dx.doi.org/10.3182/20060517-3-FR-2903.00143
http://dx.doi.org/10.3182/20060517-3-FR-2903.00143
http://dx.doi.org/10.1145/2541534.2541592
http://dx.doi.org/10.1145/503209.503226
http://dx.doi.org/10.1145/503209.503226
http://dx.doi.org/10.1109/ISSREW.2013.6688920
http://dx.doi.org/10.1109/ISSREW.2013.6688920
http://dx.doi.org/10.1016/j.ress.2009.02.020

(183] M. Bouissou, BDMP knowledge base for KB3,
http://sourceforge.net/projects/visualfigaro/files/
Doc_and_examples/English/| (2012).

36

Appendix A. Glossary

Availability Fraction of time a system is in a functioning
state.

BE Basic Event; Leaf node of an FT, typically denoting
a component or a specific failure mode of one com-
ponent.

Coherent system System where the failure of a compo-
nent never prevents a system failure.

CCF Common Cause Failure; Event where a single cause
results in multiple BEs failing.

Cut Set Set of BEs such that, if all events in a cut set
occur, the top event will occur.

DFT Dynamic Fault Tree; FT with additional gates for
dynamic behaviour.

FT Fault Tree; Graphical model describing failure prop-
agation behaviour through a system.

FTA Fault Tree Analysis; The computation of measures
of interest from an FT.

Gate Intermediate node in an FT, describing how failures
of its children combine.

Intermediate Event Event caused by one or more BEs,
see also ‘Gate’.

Reliability Probability of system failure before a specific
time.

SFT Static (or Standard) Fault Tree; Fault tree with only
boolean gates.

TE Top Event; Root node of an FT, representing the fail-
ure of the system being analyzed.

http://sourceforge.net/projects/visualfigaro/files/Doc_and_examples/English/
http://sourceforge.net/projects/visualfigaro/files/Doc_and_examples/English/

	Introduction
	Research Methodology
	Related work
	Legal background

	Standard Fault Trees
	Fault Tree Structure
	Gates
	Formal definition
	Semantics

	Qualitative analysis of SFTs
	Minimal cut sets
	Minimal path sets
	Common cause failures

	Discrete-time quantitative analysis
	Preliminaries
	BE failure probabilities
	Reliability
	Expected Number of Failures

	Continuous-time quantitative analysis
	Modeling failure probabilities
	Reliability
	Availability
	Mean Time To Failure
	Mean Time Between Failures
	Expected Number of Failures

	Sensitivity analysis
	Importance measures
	Commercial tools

	Dynamic Fault Trees
	DFT Structure
	Stochastic Semantics

	Analysis of DFT
	Qualitative analysis
	Quantitative analysis

	Other Fault Tree extensions
	FTA with fuzzy numbers
	Fault Trees with dependent events
	Repairable Fault Trees
	Fault trees with temporal requirements
	State-Event Fault Trees
	Miscelleneous FT extensions
	Comparison

	Conclusions
	Glossary

