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Dynamic Pricing Policies for an Inventory Model with Random

Windows of Opportunities

Arnoud den Boer∗ Ohad Perry† Bert Zwart‡

December 18, 2012

Abstract

We study a single-product pricing and inventory model in which the price of the cost price of the

product fluctuates according to a continuous time Markov chain. We assume that a fixed order price,

in addition to state-dependent holding costs are incurred, and that the depletion of inventory occurs at a

deterministic rate, which is determined by the sell price of the product. Hence, at any time, the controller

has to simultaneously decide the selling price of the product and whether to order or not, taking into

account the current cost price of the product and the inventory level. We consider two policies, derive

the associated steady state distributions and cost functionals, and apply these to study these policies.

1 Introduction

We consider a continuous review, single product, pricing-and-inventory problem, in a random environment.

The purpose of the seller is to maximize the expected profit, by determining both an order policy and sell

prices. At the procurement side, the seller faces randomly fluctuating cost prices at which he can acquire

new items, but also holding costs and fixed order costs. Based on these quantities, he needs to decide when

to order new items, and how many. At the sales side, the seller can change the sell price at any moment.
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This is in accordance with current practice of dynamic pricing, where sell prices are not fixed quantities, but

may change continuously.

Determining optimal order policies and sell prices are often treated as separate problems, but it is intu-

itively not difficult to see that it may be beneficial to consider these problems simultaneously. For example,

if the cost price of new items currently is high, it may be profitable to increase the sell price, such that the

moment at which all inventory is sold-out, is delayed. This increases the probability that in the mean time,

the cost price of new items decreases, such that new items can be ordered at considerable lower costs.

We study a model with continuous inventory, in continuous time. The seller needs to determine an order

policy (when to order new items, and how many), and a sell price policy (which sell price to charge at which

moment), in order to optimize the expected profit. The cost price at which new items can be acquired is

modeled as a finite-state Markov chain, where each state represents a different cost price. Every time an

order is placed the seller pays some fixed order costs K, and any moment that the inventory-level is x > 0,

the seller faces holding costs at a rate h(x). Ordered items are assumed to arrive instantaneously. The

inventory-level decreases at a deterministic demand rate, which depends on the sell price.

To maintain tractability, we make a number of assumptions on the cost price process, the order policy,

and the sell price policy. In particular, we initially assume that the cost price varies between two prices only,

a low and a high cost price. For the order policy, we study two variants of the well-known (s, S)-policy. In

the first order policy, OP1, S − x items are ordered if the inventory-level x is at or below s and at the same

time the cost price is low. If the inventory hits zero and the cost price is high, Q items are ordered. Here s,

S, Q are decision variables, with 0 ≤ s < S, 0 < Q ≤ S. The second order policy, OP2, is similar to OP1

except that never orders are placed when the cost price is high. If the inventory-level hits zero, the seller

waits until the cost price becomes low, at which moment he orders S items. We assume that the seller uses

a sell price policy of the following type: if the inventory-level exceeds q, a high sell price ph is charged.

Otherwise, a low sell-price pl is charged. Here q ≥ 0, 0 < pl < ph are decision variables.

We consider the pricing-and-inventory problem in stationarity. Under mild assumptions on the relation

between demand rate and sell price, we show that the joint process of inventory level and cost price admits

a unique stationary distribution. For a fixed order policy OP1 or OP2, we derive balance equations for

the stationary distribution of the inventory-level process, and calculate an explicit solution. This enables

us to calculate the long-run profit for both policies, as function of (s, S,Q, pl, ph, q) in case of OP1, and

(s, S, pl, ph, q) in case of OP2. To determine the optimal values of the decision variables, one needs to solve

2



a (rather complicated) non-convex non-linear optimization problem.

We conduct a numerical study to compare the performance of OP1 and OP2. We also compare them to

a standard (s, S)-policy OP0, which does not take into account the random nature of the cost price process.

By studying several instances, it turns out that OP1 in general performs better or equal than both OP2 and

OP0. The difference in performance, especially between OP1 and OP0, can be quite large. This shows that

it is beneficial to take into account random changes in the cost prices. The policies OP0 and OP2 have no

clear ’best’: for some instances, the first is outperformed by the latter, while for other instances it is the other

way around. We also study the sensitivity of the profit functions with respect to changes in the parameters.

The remainder of this paper is organized as follows: In §2 we describe the model and motivate the

structure of the (s, S) (or (s,Q, S)) control policies. In §3 we develop the steady-state equations for the

content level process. Those equations are then applied in §?? in a numerical study, as described above. In

§?? we extend the model and consider cases in which the cost price of the item changes after non-exponential

random time in states, and we also consider lead times.

2 Model and Assumptions

We consider a fluid inventory model of one product with zero lead time of the (s, S) type, operating in a

stochastically changing cost environment. Following the terminology in [?] and [?], we refer to cost price

as the “state of the world”. In particular, the cost price of the product changes according to a two-state

continuous-time Markov chain (CTMC) W := {W (t) : t ≥ 0}, with W attaining two values: wλ (high)

and wµ (low). Naturally, wλ is strictly larger than wµ. (Otherwise, the state of the world is irrelevant.) More

specifically, W moves between the two states wλ and wµ, and remains at wλ for an exponential amount of

time with rate λ, and in wµ for an exponential amount of time with rate µ. When W = wλ the controller

faces a regular (expensive) price, and when W = wµ the controller faces a discounted (cheap) cost price. It

is thus clear that the “state-of-the-world” process W may effect the decision of the controller whether or not

to buy at each decision epoch in order to replenish his inventory.

Let C := {C(t) : t ≥ 0} denote the content-level process. We assume that a holding cost is incurred at

rate h(x)dx whenever C(t) = x, t ≥ 0, and that a fixed set-up cost K is incurred when an order is placed,

independent of the order size.
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In addition, we assume that the demand rate is a known one-to-one and onto function of the sell price.

Under this assumption, the controller can dynamically regulate the release rate of inventory by changing the

sell price. There can be several policies for determining the sell price. In this study we focus on the state of

the content level C. More precisely, since the more inventory present, the higher instantaneous holding cost

is paid, the controller has an incentive to drain inventory at a higher rate when C is high, by lowering the

sell price. In the continuous settings, the optimal release rate may change continuously as a deterministic

function of C, so that infinitely many pricing policies can be applied. For practical purposes, the optimal

pricing policy can be approximated by searching for a finite set of sell prices p1 < p2 < · · · < pk (with k

fixed) and thresholds q1 < q2 < · · · < qk−1 = 0, such that the sell price is pi at time t if qi−1 < C(t) < qi,

i = 1, 2 . . . , k−1. Clearly, as the number of decision variables increases, the optimization problem becomes

more complicated.

For simplicity of the exposition, in this study we restrict attention to a model consisting of two sell

prices, so that only one threshold q should be determined, although we do not rule out the cases in which

q = S or q = 0, so that only one sell price is employed. Generalizing the problem to more sell prices

is straightforward. We are hence looking for a threshold q (that should be optimized) such that, whenever

C > q, the sale price is pl (low), and is ph (high) whenever C ≤ q. Letting dl and dh denote the demand

rate whenever the sale price is pl and ph, respectively, we have that C > q implies a demand rate dl, and

W ≤ q implies a demand rate dh.

In the simple (s, S) model, the optimal control is comprised of two factors: when to place an order (in

the sense of fixing s) and how much to order (fixing level S). Thus, if the cost price was always wµ we would

have been looking for a level s such that, whenever the content-level process C hits s, an order of size S− s

is placed. In light of the randomness of the cost price and zero lead-time assumptions, it is desirable to place

most of the orders, if not all of them, when the cost price is wµ. In particular, the distinction between “most”

and “all” depends on whether it is optimal to place an order whenever both C(t) = 0 and W (t) = wλ,

i.e., whenever the content level drops to zero at the time of an expensive cost-price period. In that case, one

should consider two options: (i) order up to level Q ≤ S or (ii) wait for the cost price to change from wλ to

wµ.

We thus consider two natural ordering policies:
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Order Policy 1 (OP1). Determine two levels s and S. If the content level C hits s and at the same time

the cost price is low, i.e., C(t−) = s and W (t−) = wµ, then place an order of size S−s (so that W (t) = S.

If, on the other hand, upon hitting level s the cost price is high, i.e., C(t−) = s and W (t−) = wλ, then wait

until either (i) the cost price changes to wµ, at which point order up to S, or (ii) the content level hits 0, at

which point order up to level Q, where Q ≤ S.

Order Policy 2 (OP2). Similarly to OP1, except that never place an order while the cost price is high, i.e.,

whenever W = wλ. When level 0 is hit (and it can only be reached during expensive periods) wait until the

cost price changes to cheap (wµ), at which point order up to level S. Note that, under OP2, there is no extra

level Q (alternatively, Q ≡ S).

We further assume that there is a cost incurred for letting C stay at state 0 for an interval. This cost can

be due to unsatisfied demand and loss of good will of customers, etc. In particular, if C(t) = 0 on some

interval [t1, t2], then a cost a(t2 − t1) is incurred.

To fully describe the control, we need also to characterize the threshold q and the sell prices pl and ph.

That is, under OP1 the control is determined by the decision variables (s, S, q,Q, pl, ph), while under OP2

the control is determined by the decision variables (s, S, q, pl, ph). Alternatively, because of the equivalence

between the sell prices and the demand rate, we can replace pl and ph by dl and dh, respectively.

To distinguish between the two policies, we let C1 := {C1(t) : t ≥ 0} denote the content-level process

under OP1, and C2 := {C2(t) : t ≥ 0}, denote the content-level process under OP2. We still use the

notation C in discussions in which no specific process is considered (if the same is true for both C1 and C2).

3 Steady-State Analysis

We will analyze the inventory system in stationarity. Hence, we need to argue that a unique stationary

distribution indeed exists for our system. We will analyze a system having a general demand-rate function,

which allows for a general pricing policy analysis in our setting. Let p1 : [0, S] → R+ and p2 : [0, S] → R+

be the pricing policies under OP1 and OP2, respectively. For x ∈ [0, S] let d1(p1(x)) and d2(p2(x)) denote

the respective demand functions. With an abuse of notation (based on our assumption about the relation

between the price and the demand), we treat di(·) as a function of x ∈ [0, S], denoted as di(x), i = 1, 2.
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We make the following assumption, which will be shown to ensure that the system possesses a unique

stationary distribution. Let

Di(x) :=

∫ x

0

1

di(y)
dy, 0 ≤ x ≤ S. (1)

Assumption 1. The pricing policy employed is such that Di(S) < ∞ for i = 1, 2.

Note that Di(x) is the time to reach level 0 from level x, for all 0 < x ≤ S, if the input is shut off,

i.e., if there are no new inventory orders during Di(x) time units. Then Assumption 1 simply states that

the content level can reach state 0 in finite time, provided no new orders are placed during the time interval

[0, Di(S)] and Ci(0) = S. This assumption holds trivially whenever di is a simple function, i = 1, 2, which

is the case amenable to numerical studies and optimizations.

Note that, for i = 1, 2, the content level Ci is not Markov, but Xi := {Xi(t) : t ≥ 0} := {(Ci(t),W (t)) :

t ≥ 0} is a two-dimensional Markov process with state space S := [0, S]×{wλ, wµ}. Since Xi is a Markov

process on a general state space, the existence of a unique stationary distribution is not immediate. However,

it is simple to show that X is regenerative and posseses a unique stationary distribution.

Let W (∞) denote a random variable having the stationary distribution of the process W , and let Ci(∞)

be a random variable having the stationary distribution of Ci, i = 1, 2. Then Xi(∞) := (Ci(∞),W (∞))

is a random variable with the stationary distribution of the process Xi, i = 1, 2. All these random variables

exist by the following theorem.

Proposition 3.1. If Assumption 1 holds, then for i = 1, 2, the joint process Xi = (Ci,W ) is regenerative

and admits a unique stationary distribution.

Proof. First, it is easy to see that X will return to state x∗ := (S,wµ) in finite time, given our assumptions

on the model. In particular, the expected return time to state x∗ is finite. Moreover, X has a nonlattice

distribution. That is easy to see in OP2, since X spends an exponential amount of time with mean 1/λ in

state (0, wλ) (and by Assumption 1, X will reach that state with probability 1). That is also easy to see if

OP1 is employed, since then there are random jumps each time C1 hits level s during an expensive period,

and W changes to “cheap” before C1 hits level 0.

Remark 3.1. It is clear from the arguments in the proof of Proposition 3.1 that it is sufficient to assume that

D1(y) < ∞ for some y > S − s, i.e., that the content level can go below level s. However, OP2 requires

that the content level can reach level zero in finite time.
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3.1 Steady-State Balance Equations

We now compute the unique stationary distribution of the processes C1 and C2. In some models simpli-

fications occur due to a form of asymptotic independence between the content level C and the “world”

process W (using our notation), i.e., C(∞) is independent of W (∞), so that the stationary distribution of

X is the product of the stationary distributions of C and W . Such is the case, for example, when W is a

“well-behaved” Markov process which determines the demand process; see, e.g., [?] and references therein.

However, such simplification cannot be expected to hold in our model, since the position of C(t) contains

significant information on the value of W (t) at each t, even when the joint process X is stationary (that is,

if X(t) is distributed as X(∞) for all t ≥ 0). For example, if C(t) < s, then necessarily W (t) = wλ. How-

ever, there is still simplification in our case, which stems from the fact that the world process W does not

depend on the content level C, and can be analyzed separately. We can thus find the stationary distribution

of C by computing relevant stationary quantities of W .

We next introduce integral representations for the steady-state density functions of the content level

process. Let f1 : [0, S] → R+ and f2 : [0, S] → R+ denote the steady-state density functions of C1 and C2,

respectively. The next theorem provides an integral representation for the steady-state densities f1 and f2.

We present two equations for the density under OP1, for the two cases s < Q and s ≥ Q.

Consider the case s < Q, and take x > s. Let k1 denote the long-run rate of upcrossings of level x,

i.e., the long-run average number of jumps from s to S. For the case s ≥ Q, let k̃1 denote the long-run rate

of upcrossing of level x, s ≤ x ≤ S. We denote by k2 the long-run rate of upcrossings of level x, x ≥ s,

caused by jumps from level s under OP2.

The main difficulty in our model is in determining the long-run rate of jumps from level s, i.e., the values

of k1, k̃1 and k2. We first present the integral equations for the steady-state densities without specifying these

constants: their values are computed in Lemma 3.2 below, after the solutions to the steady-state densities,

and their respective cdf’s are computed in terms of these constants.

Let π2 denote the atom at 0 of the stationary content level C2, i.e.,

π2 := P (C2(∞) = 0) > 0. (2)

Theorem 3.1. (balance equations) The steady state density f1(x) of C1 satisfies one of the following
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integral equations, depending on whether s ≤ Q or s > Q:

If s ≤ Q: d1(x)f1(x) =



































λ
∫ x

0 f1(w) dw + d1(0)f1(0), 0 ≤ x < s,

λ
∫ s

0 f1(w) dw + d1(0)f1(0) + k1, s ≤ x < Q,

λ
∫ s

0 f1(w) dw + k1, Q ≤ x ≤ S.

If s > Q: d1(x)f1(x) =



































λ
∫ x

0 f1(w) dw + d1(0)f1(0), 0 ≤ x < Q,

λ
∫ s

0 f1(w) dw, Q ≤ x < s,

λ
∫ s

0 f1(w) dw + k̃1, s ≤ x ≤ S.

(3)

The steady-state density f2(x) of C2 satisfies the integral equation

d2(x)f2(x) =























λ
∫ x

0 f2(w) dw + λπ2, 0 ≤ x < s,

λ
∫ s

0 f2(w) dw + λπ2 + k2, s ≤ x ≤ S.
(4)

Proof. We explain only the the integral equation for f1 in (3) for the case s ≤ Q. The other equations are

derived similarly. The steady state distribution of C1 is absolutely continuous in [0, S] with density f1(x),

and d1(x)f1(x) in the left-hand side is the long-run rate of downcrossings of level x. Thus, in steady state,

the right-hand side of (3) represents the long-run rate of upcrossings of level x. To see this, assume that

C1(0)
d
= C1(∞), namely, C1(0) has the steady-state distribution of the content level. That makes C1 a

stationary process, so that C1(t)
d
= C1(∞) for all t ≥ 0. Let τ be an arbitrary point of a jump. Since jumps

can only occur when 0 ≤ C1 ≤ s, we separate the analysis into three cases as follows:

(i) 0 ≤ C1(τ−) < x < s. The last jump in the cycle brings the content level up to level Q, and the other

jumps, if any, bring the content to level S (where S ≥ Q). Thus, if C1(τ−) > 0, τ is a beginning of a cheap

period and C1(τ) = S. If C1(τ−) = 0, then τ is a time of depletion and C1(τ) = Q. Both types of jumps

imply that the jump is an upcrossing of level x. Since the expensive period is exponentially distributed with

rate λ, it follows by PASTA that if C1(τ−) > 0, then C1(τ−) and C1 are equal in distribution, and the rate

at which level x is upcrossed is λ. The rate at which C1(τ−) = 0 is d(0)f1(0). Thus, the rate at which level

x is upcrossed is λ
∫ x

0 f1(w)dw + d(0)f1(0).
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(ii) 0 ≤ C1(τ−) ≤ s and s ≤ x < Q. Again, every jump is an upcrossing of level x. However, in

addition to the previous case (i), there is also a possibility to jump above level x from level s (when level s

is reached during a cheap period). That long-run rate is denoted by k1 (and will be computed in Lemma 3.2

below).

(iii) 0 ≤ C1(τ−) ≤ s and Q ≤ x ≤ S. In this case, level x cannot be upcrossed by a jump from level

0. Thus the rate d1(0)f1(0) is removed.

The arguments for f1 in the case s > Q and for f2 are similar. (Note however that f2 has an atom π2 at

level 0.)

3.2 Solutions to f1 and f2.

We solve for f1 and f2 in (3) and (4) in terms of the constants k1, k̃1 and k2. These constants are computed

in Lemma 3.2 below.

Solution of f1: Let F1(x) :=
∫ x

0 f1(s)ds denote the cumulative distribution function (cdf), related to the

density f1. Let c0 := d1(0)f1(0). For 0 ≤ x < s, we write f1(x) − λ/d(x)F1(x) = c0/d1(x). Then,

multiplying that equation by exp{−λD1(x)} and integrating (recall that d
dx
D1(x) = 1/d1(x)), we get

e−λD1(x)F1(x) =

∫ x

0

c0
d1(s)

e−λD1(s)ds = −
c0
λ
e−λD1(x) + C1, so that

F1(x) = −
c0
λ

+ C1e
λD1(x), x ∈ [0, s),

for some constant C1. Using the initial condition F1(0) = 0 (and D1(0) = 0), we see that C1 = c0/λ, so

that

F1(x) =
c0
λ
(eλD1(x) − 1), 0 ≤ x < s.

f1(s−) =
c0

d1(s)
e−λD1(s) and F1(s) =

c0
λ
[eλD1(s) − 1].

Next, consider x ∈ [s,Q). Then

d1(x)f1(x) = λF1(s) + c0 + k1

= c0e
λD1(s) + k1.

Now, for x ∈ [Q,S], d1(x)f1(x) in this region is constant.

Finally, the constant c0 is obtained by applying the normalization condition
∫ S

0 f1(x) dx = 1, and is

given in terms of the unknown constant k1.
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Solution of f2: Using simple arguments, as those for f1, we get:

f2(x) =







λπ2

d2(x)
eλD2(x), 0 < x < s,

(λF2(s) + λπ2 + k2)D2(x), s ≤ x < S,

where F2(s) = π2(e
λD2(s) − 1) and π2 is obtained via the normalizing condition

∫ S

0 f2(w) dw = 1− π2.

3.3 Jumps From Level s

It remains to find the constants k1, k̃1 and k2. To that end, we define the following conditional probabilities:

Let θ1(s, S) and θ2(s, S) denote the conditional probabilities that level s is downcrossed during a cheap

period, under OP1 and OP2, respectively, given that the last jump prior to hitting s was to level S. Let

γ1(s,Q) denote the conditional probability that level s is downcrossed during a cheap period under OP1,

given that the last jump prior to hitting s was to level Q (which under OP1 corresponds to the beginning

of a regenerative cycle). The closed-form expressions for θ1(s, S), θ2(s, S) and γ1(s,Q) are computed in

Lemma 3.1 below. These expressions depend only on the (known) parameters of the cost process C, and on

the function D.

Observe that γ1(s,Q) = 0 if Q < s. Let 1{s < Q} be the indicator function which equals 1 if s < Q

and 0 otherwise.

Lemma 3.1.

θ1(s, S) = θ2(s, S) =
λ

λ+ µ
+

µ

λ+ µ
e−(λ+µ)[D1(S)−D1(s)],

γ1(s,Q) =

(

λ

λ+ µ
−

λ

λ+ µ
e−(λ+µ)[D1(Q)−D1(s)]

)

1{s < Q}.

Proof. For simplicity, we say that W is at state 0 if W = wλ, and at state 1 if W = wµ, t ≥ 0. Since

the CTMC C has only two states, we can use the uniformization method; see, e.g., §II in [?], so that all

transitions are generated by a single Poisson process. In particular, we consider a uniformized version of C,

which spends an exponential amount of time with rate λ+µ in either state. Let Pt(i, j) denote the transition

operator of C, and P (i, j) the transition probabilities of the discrete-time Markov chain (DTMC) associated

with the uniformized version of C, i, j = 0, 1.

Note that P (0, 0) = P (1, 0) = λ/(λ+ µ), so that the transition probabilities to 0 are the same for all n;
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Pn(i, 0) = λ/(λ+ µ), n ≥ 1, i = 0, 1. Hence,

Pt(0, 0) =
∞
∑

n=0

Pn(0, 0)e−(λ+µ)t [(λ+ µ)t]n

n!
=

λ

λ+ µ
+

µ

λ+ µ
e−(λ+µ)t.

The result for θ1(s, S) follows by replacing t with D1(S)−D1(s), namely with the time it takes the content

level to reach s, starting in level S.

The proof for γ1(s,Q) is similar. However, level s can be reached, after starting at level Q, only if

s < Q. Hence, the indicator function in the expression.

In the next lemma we express the constants k1, k̃1 and k2.

Lemma 3.2. Consider x ∈ (s, S]. Then the long-run rate of upcrossings of level x under OP1 is given by

k1 if s ≤ Q and k̃1 if s ≥ Q. It is given by k2 under OP2, where

k1 := γ1(s,Q)d1(0)f1(0) + θ1(s, S)d1(S)f1(S) and k̃1 := θ1(s, S)d1(S)f1(S),

k2 := θ2(s, S)d2(s)f2(s).
(5)

Proof. We find k1. The computations of k̃1 and k2 are similar. (See also Remark 3.2 below.) Consider the

state of the content level immediately after a jump. Clearly, the process between jumps is a Discrete-Time

Markov Chain (DTMC) with two states – S and Q. The transition matrix of that DTMC at jump epochs is

P :=













PS,S PS,Q

PQ,S PQ,Q













=













θ1 + (1− θ1)(1− e−λD1(s)) (1− θ1)e
−λD1(s)

1− (1− γ1)e
−λD1(s) (1− γ1)e

−λD1(s)













. (6)

We now explain the entries of the transition matrix, starting with the first row. The content level jumps to

state S only when the environment is cheap. There are two possibilities to make a transition from S to S:

Either the content level started at S and arrived at level s during a cheap period, in which case there is a

jump immediately back to level S – this event occurs with probability θ1. Else, the content level arrives at

level s during an expensive period and there is no jump at s, but the expensive period is terminated before

the content level reaches level 0. The probability of that latter event is (1− θ1)(1− e−λD1(s)). This explains

the first row of the transition matrix (6).

Turning to the second row, recall that the content level reaches level 0 only when the environment is

expensive, in which case the content level jumps to level Q. Thus, the DTMC at jumps epochs moves from

Q to Q only if level s was reached during an expensive period, and the environment remained expensive till

11



the content level reached 0. The event occurs with probability PQ,Q = (1− γ1)e
−λD1(s). To see why, note

that 1 − γ1 is the probability of reaching s at “expensive”, given that the last jump was to Q, and e−λD1(s)

is the probability that the environment did not change to “cheap” after level s was downcrossed, and before

level 0 was reached.

We denote the stationary probabilities of the above Markov chain by νS and νQ, with ν := (νS , νQ).

Calculating νP = ν and νS + νQ = 1 gives

νS =
1− (1− γ1)e

−λD1(s)

1− (θ1 − γ1)e−λD1(s)
and νQ = 1− νS , (7)

where νS and νQ are interpreted as the limiting proportion of jumps to levels S and Q, respectively. Hence,

k1 = (νSθ1 + νQγ1)d1(s)f1(s) (8)

is the long run rate of jumps from level s.

We next show that the expression for k1 in (5) gives the same expression as in (8): From (3) (the case

s < Q) we see that d1(0)f1(0) = d1(S)f1(S) − d1(s)f1(s) =: c0, and from the solution to f1 we see that

d1(s)f1(s) = c0e
λD(s)+k1. Substituting for d1(0)f1(0) and d1(S)f1(S) in the expression for k1 in (5), we

rewrite k1 to get

k1 =
γ1c0 + θ1c0e

λD1(s) − θ1c0
1− θ1

. (9)

It is then a matter of simple algebra to show that the expression for k1 in (9) is equal to

(1− νSθ1 − νQγ1)
−1(νSθ1 + νQγ1)c0e

λD1(s),

for νS and νQ in (7). We now use the solution for f1 once more to replace c0e
λD1(s). In particular, from

c0e
λD1(s) = d1(s)f1(s) − k1 we get the desired equality, i.e., k1 in (9) is equal to the expression (8). This

proves the claim.

Remark 3.2. The terms for the constants in Lemma 3.2 can be guesses. To see that, consider k1 and note that

we can compute its value by conditioning on the last jump prior to hitting s (during a cheap period), namely

we condition on whether we started at level Q or S, where these conditional probabilities are γ1(s,Q) and

θ1(s, S), respectively. Then the long-run rate of hitting s, when starting in Q, is also the long-run rate of

hitting level 0 from above, which is equal to d1(0)f1(0). The long-run rate of hitting s when starting in S,

is the long-run rate of downcrossing S, which is equal to d(S)f1(S). This logic gives the expression for k1

in (5). Similar reasonings give us the expressions for k̃1 and k2.
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3.4 Profit Functions under OP1 and OP2

We can use the solutions for f1 and f2 and compute the long-run profit functions for both policies. We

denote by R1 := R1(s, S,Q, pl, ph, q) the long-run average profit function generated by OP1, and by R2 :=

R2(s, S, pl, ph, q) the long-run profit function generated by OP2. The expressions for the steady-state profit

functions R1 and R2 are as follows:

R1 =

∫ S

0
[p(w)d1(w)− h(w)]f1(w)dw − [K + wµ(S − s)]k1

− λ

∫ s

0
[K + wµ(S − w)]f1(w)dw − (K + wλQ)d1(0)f1(0)

(10)

and

R2 =

∫ S

0
[p(w)d2(w)− h(w)]f2(w)dw − [K + wµ(S − s)]k2

− λ

∫ s

0
[K + wµ(S − w)]f2(w)dw − (K + wµS)λπ2 − a

d(0)f2(0)

λ
.

(11)

We now explain the expressions in (10) and (11):

• The first terms on the right hand sides,
∫ S

0 [p(w)di(w) − h(w)]fi(w)dw, i = 1, 2, are the average

income flowing into the system, since [p(w)di(w)−h(w)]dw is the infinitesimal flow into the system

whenever the content level is w.

• The cost [K+wµ(S− s)] is incurred every time level s is downcrossed and C(t) = wµ, i.e., the state

of the world is “cheap”. Conditioning on the state of the content level just after the last jump, gives

the long-run rate of downcrossing level s during a cheap period, as explained in the proof of Theorem

3.1.

• The average ordering costs λ
∫ s

0 [K + wµ(S − w)]fi(w)dw, i = 1, 2, are paid after level s is down-

crossed during an expensive period and the next cheap period starts before the content level drops to 0.

The fact that the expensive period is exponentially distributed with rate λ implies that cheap periods

arrive in accordance with a Poisson process with rate λ. Hence, the conditional ordering cost, given

that the state is w, is K + wµ(S − w) and the deconditioning is taken with respect to the steady state

density by PASTA.

• The last term on the right hand side of R1 is the ordering cost when the content level drops to 0 during

an expensive period and an immediate order of size Q is placed. Again, d(0)f1(0) is the long-run

average number of hitting level 0 from above.
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The last two terms on the right-hand side of R2 are associated with the atom of C at state 0. First,

under OP2 the controller will wait for the next cheap period to arrive, and then will place an order

of size S. The rate of those ordering costs is λπ2 by PASTA. Second, there is a cost a(t2 − t1) for

staying at state 0 over the interval [t1, t2]. Since the long-run average time between two hits of level 0

is d(0)f2(0), we have by renewal reward that

1/λ

1/(d(0)f2(0))
=

d(0)f2(0)

λ

is the long-run proportion of time spent in state 0.

Under OP1, the average ordering cost is K + wµE(S − C1) when W = wµ, but the last order of each

cycle is placed in an expensive period with the ordering cost being K + wµE(S − C1). Under OP2, all

orders are placed in cheap periods with the expected ordering cost being K + wµE(S − C1). In particular,

the set-up cost of the last order in the cycle is K + wµS.

4 Numerical Study

We conduct numerical experiments to assess the behavior of different order policies. We use a linear demand

model d(p) = 50− p, with pl = 0 and ph = 50− 10−3, and linear holding costs h(x) = h · x, for h > 0.

In the following plots we visualize the sensitivity of the optimal profit with respect to changes in

one of the parameters (h,K,wµ, wλ, µ, λ, a). For different parameter values we calculate the optimal

(ph, pl, q, s,Q, s) under OP0, OP1, and OP2.

Scenario 1: (h,K,wµ, wλ, µ, λ, a) = 7, 233, 3.4, 43, 0.7, 0.05, 5.

In this scenario the cheap periods are relatively rare, with a very cheap price. OP2 performs slightly better

than OP1, and both outperform OP0. Table ?? lists the optimal profit and decision variables for the order

policies OP0, OP1, and OP2. Figure ?? shows sensitivity of the optimal profits w.r.t. changes in the param-

eters (h,K,wµ, wλ, µ, λ, a). For all policies, the profit is decreasing in h, K, wµ, wλ, and µ, and increasing

in λ. The profit of OP0 and OP1 does not depend on a; for OP2, the optimal profit is decreasing in a.

Scenario 2: (h,K,wµ, wλ, µ, λ, a) = 5, 100, 20, 25, 0.1, 0.05, 1. Here the difference between cheap

and expensive price is less extreme, and cheap periods last longer. OP1 performs slightly better than OP0,

and both outperform OP2. Table ?? lists the optimal profit and decision variables for the order policies
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Figure 1: Sensitivity analysis for scenario 1
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Table 1: Profit and optimal solution under different order policies, for scenario 1

Order Policy Profit pl ph q s Q S

OP0 -1.75936 46.7862 49.999 0.251794 5.4192 E-10 3.20171

OP1 37.9172 33.0997 49.999 0.0865384 6.00827 0.0865491 61.0472

OP2 38.4475 33.0997 49.999 0.0104782 5.9419 60.9695

OP0, OP1, and OP2. Figure ?? shows sensitivity of the optimal profits w.r.t. changes in the parameters

(h,K,wµ, wλ, µ, λ, a). For all policies, the profit is decreasing in h, K, wµ, wλ, and µ, and increasing in λ.

The profit of OP0 and OP1 does not depend on a; for OP2, the optimal profit is decreasing in a.

Table 2: Profit and optimal solution under different order policies, for scenario 2

Order Policy Profit pl ph q s Q S

OP0 68.9299 37.9017 40.3715 9.51125 0 21.4643

OP1 69.1156 37.7775 40.3724 9.99395 3.7814 E-9 20.5741 23.5341

OP2 38.8532 37.3205 49.999 0.00756244 0.00756244 25.0628

5 Generalizations

In this section we present two generalizations for the basic model analyzed above. We first consider a model

having the same structure as the basic model, but with a random environment process that is more general.

We then consider a model with exponential lead times, i.e., when there is a positive random time from the

moment an order is made by the controller until the commodity arrives.

5.1 Phase-type Expensive Periods.

We now consider the case in which one of the periods, either the cheap or the expensive period, follows a

phase-type distribution. For simplicity of exposition, we take the exact distribution to have two exponential

phases, but our arguments extend directly to more general phase-type distributions. The model can be

extended by considering expensive non-exponential periods, or cheap non-exponential periods. Here, we

will consider the latter case. Specifically, assume that the cheap period is exponentially distributed with rate

µ, but the law of the expensive period is Erlang(2, λ). Our analysis for this case is different than before:
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Figure 2: Sensitivity analysis for scenario 2
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Instead of equalizing the number of up and down crossings for each level x, we compare the number of

downcrossings of a certain level with the number of downcrossings of another level.

We designate the probabilities that level s is downcrossed by the first phase and the second phase of the

expensive period, respectively, by p1 and p2. In the next theorem we introduce the balance equation of the

content level where p1 and p2 will be computed in the sequel.

Theorem 5.1.

a(x)f(x) =







a(s)f(s)
[

(1 + λ[D(s)−D(x)]) e−λ[D(s)−D(x)]p1 + p2e
−λ[D(s)−D(x)]

]

0 < x < s,

a(S)f(S) s ≤ x < S,

Proof. (i) s < x < S. In this region every downcrossing of level x is followed by a downcrossing of level

S with no jump in between. Thus, the long run average number of downcrossings of level x is equal to that

of the long run average number of downcrossings of level x, so that a(x)f(x) = a(S)f(S).

(ii) 0 < x < s. For every x we mark a downcrossing of level s as a downcrossing of type 1 if no jump

occurs after the latter downcrossing, and a downcrossing of level x. Otherwise, the latter downcrossing is

of type 2. It is clear that the long-run average number of downcrossings of level x is equal to the long-run

average number of downcrossings of type 1. The probability of a type-1 downcrossing is

[

p1 (1 + λ[D(s)−D(x)]) e−λ[D(s)−D(x)] + p2e
−λ[A(s)−A(x)]

]

,

since with probability p1 level s is downcrossed during the first phase of the expensive period, and with

probability

(1 + λ[D(s)−D(x)])

no jump occurs between the latter two downcrossings. Multiplying together, we get that the latter probability

is

p1 (1 + λ[D(s)−D(x)]) e−λ[D(s)−D(x)].

Similarly, with probability p2 level s is downcrossed during the second phase of the expensive period, and

with probability e−λ[D(s)−D(x)] no jump occurs between the latter two downcrossings.

It remains to compute p1 and p2. To that end, we construct an auxiliary process χ := {χ(t) : t ≥ 0},

where

χ(t) := t+ S1 + · · ·+ SN(t), χ(0) = 0,
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where the Si’s are iid random variables having Laplace transforms

G̃(α) =
µ

µ+ α
·

λ

λ+ α

and {N(t) : t ≥ 0} is a Poisson process with rate µ. In particular,
∑N(t)

j=1 Sj is a compound Poisson

process and χ is a non-decreasing process that increases either linearly, at rate 1, between jumps, or by

positive jumps of (random) size S, where S is distributed as a sum of two independent exponential random

variables: one with rate µ and the other with rate λ.

We can think of each jump of χ as having two phases: The first phase is distributed exponentially with

rate µ, and the second exponentially with rate λ. The process χ can thus leave the interval [0, D(S)−D(s))

in three ways: (i) attaining the boundary point D(S)−D(s) on a linear segment of the path, (ii) upcrossing

level D(S) − D(s) by the first phase of the jump and (iii) upcrossing level D(S) − D(s) by the second

phase of the jump. Define the stopping time

τ := inf{t > 0 : χ(t) ≥ D(S)−D(s)}

and consider the well-known Wald’s martingale

Mα(t) :=
e−αχ(t)

E[e−αχ(t)]
= e−αχ(t)−ϕ(α)t, α > max(−λ,−µ) (12)

where

ϕ(α) := −

[

α+ µ[1−
µ

µ+ α
·

λ

λ+ α
]

]

. (13)

Clearly Mα(t) is bounded, so the optional stopping theorem can be applied, yielding E[Mα(0)] =

E[Mα(τ)], i.e.,

1 = E[e−αχ(τ)−ϕ(α)τ ]. (14)

It follows from the memoryless property of the exponential random variable that the stopping time τ

and the martingale Mα(τ) are conditionally independent given the phase in which level D(S) − D(s) is

upcrossed. Specifically, if level D(S) − D(s) is upcrossed by the first phase of the jump, then Mα(τ) =

D(S)−D(s)+Xµ +Xλ, where Xλ and Xµ denote two independent exponential random variables having

respective rate λ and µ. If level D(S) − D(s) is upcrossed by the first phase of the jump, then Mα(τ) =

D(S)−D(s)+Xλ. Finally, if level D(S)−D(s) is upcrossed by the continuous drift of χ, then Mα(τ) =

D(S)−D(s).
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Let B0, B1 and B2 be the events that level D(S) −D(s) is reached by the drift, upcrossed by the first

phase of the jump and upcrossed by the second phase of the jump, respectively. Then by (??),

1 = E[e−αY (τ)−ϕ(α)τ
1B0

] + E[e−αY (τ)−ϕ(α)τ
1B1

] + E[e−αY (τ)−ϕ(α)τ
1B2

]

= e−α(D(S)−D(s))E[e−ϕ(α)τ
1B0

]

+ µ
µ+α

· λ
λ+α

· e−α(D(S)−D(s))E[e−ϕ(α)τ
1B1

]

+ λ
λ+α

· e−α(D(S)−D(s))E[e−ϕ(α)τ
1B2

]

(15)

where the second step is implied by the above conditional independence and the memoryless property.

Lemma 5.1. We have

E[1B0
] = 1− p1 − p2, E[1B1

] = p2 and E[1B2
] = p1.

Proof. Take the projection of χ on the process axis. Then, 1−p1−p2 is the conditional probability that level

s will be reached during a cheap period, given the period is cheap at level S; p1 is the conditional probability

that level s will be reached during the second phase of the expensive period given the same event; and if at

level S the period is cheap, level s will be reached during the first phase of the expensive period. p2 is the

conditional probability that level s will be reached during the first phase of the expensive period given the

same event.

As τ is bounded (0 < τ < D(S)−D(s)) the restricted transforms E[e−ϕ(α)τ
1B0

], E[e−ϕ(α)τ
1B1

] and

E[e−ϕ(α)τ
1B2

] are analytic functions on the entire complex plane. Obviously, we want to pick those value

of α in (??) for which ϕ(α) = 0. By (??), ϕ(α) = 0 holds for α = 0 and the roots of the quadratic equation

α2 + α(2λ+ µ) + λµ+ λ+ µ = 0. (16)

Inserting the roots of (??) into (??) yields the two equations for i = 1, 2.

1 = e−αi(D(S)−D(s))(1− p1 − p2)

+ µ
µ+αi

· λ
λ+αi

e−αi(D(S)−D(s))p1

+ λ
λ+αi

e−αi(D(S)−D(s))p2.

To solve for f according to the balance equation in Theorem 1, we use the normalizing condition and

the fact that d(x)f(x) is a continuous function at x = s.
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Remark 5.1. Clearly, computing the probability that, at the downcrossing of level s at a specific future time

the state of the world W is at a particular state, becomes hard as the number of states of the process W

increases. However, even if explicit computations are impossible, one can solve the Kolmogorov backward

or forward equations for the generator matrix of W numerically to compute the desired probabilities.

5.2 Exponential Lead Times

We assume exponential leadtime with parameter η. When there are positive leadtimes, it makes sense to

modify the control by considering two levels in which, when downcrossed, the controller should place an

order. We thus have three critical levels 0 < s0 < s1 < S. The cycle starts with C(0) = S. Then, the

content level decreases at rate d(x) without any jumps until it reaches level s1. If level s1 is reached during a

cheap period an order is placed and it takes an exp(η) period until it arrives. Otherwise, if level s1 is reached

during an expensive period, no order is placed and the content level decreases until the expensive period is

terminated and replaced by a cheap period or until level s0 is reached. In any case, when level s0 is reached

(either during a cheap period or an expensive period) an order is placed and arrives after an exp(η) period.

Theorem 5.2. Let f(x) denote the steady state density of the content level C, and let F (x) denote the

corresponding cumulative distribution function. Then f(x) satisfies the integral equation

d(x)f(x) =



















ηF (x), 0 ≤ x < s0,

ηF (s0) + η[γ + (1− γ)(1− e−λ[D(s1)−D(x)])][F (x)− F (s0)], s0 ≤ x < s1,

ηF (s0) + η[γ + (1− γ)(1− e−λ[D(s1)−D(s0)])][F (s1)− F (s0)], s1 ≤ x ≤ S,

where γ is the probability that level s1 is downcrossed during the cheap period.

Proof. (i) 0 ≤ x < s0. In this region the order is on its way. Since the leadtime is exponentially distributed

the arrival process can be interpreted as a Poisson process with rate η.

(ii) s0 ≤ x < s1. The jump may occur below s0 or above s0. If the content level is below s0, jumps

arrive with rate ηF (s0). If the content level is above s0, then there are two possibilities: With probability

γ level s1 is downcrossed during a cheap period and an order is placed immediately; it will arrive after an

exp(η) period of time. With probability 1 − γ level s1 is downcrossed during an expensive period and no

order is placed. However, if during the time period from downcrossing of level s1 until level x is reached

the cost price is changed from expensive to cheap an order will be placed and it will take an exp(η) period
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until the order arrives (the probability of the latter event is 1 − e−λ[D(s1)−D(x)]). For either possibility, the

probability that the jump occurs at some level between s0 and x is F (x)− F (s0).

(iii) s1 ≤ x < S. In this region we note that no jumps starts when the content level is above level

s1. We thus have to distinguish between two possibilities. If the content level is below level s0 the rate

of the jumps is ηF (s0). If the content level is above level s0 the rate of the jumps is η[γ + (1 − γ)(1 −

e−λ[D(s1)−D(s0)])][F (s1)− F (s0)].

To compute γ we extend the argument of the previous section. Level S can be reached either during a

cheap period or an expensive period. Since after every jump the content level is equal to S we define the

embedded chain

P =





pcc 1− pcc

1− pee pee



 ,

where pcc is the conditional probability that the next jump occurs during a cheap period given that the present

cost price is cheap and the state is S. Similarly, pee is the conditional probability that the next jump occurs

during an expensive period given that the present cost price is expensive and the state is S. Then the solution

(α1, α2) to the equations

(α1, α2)





pcc 1− pcc

1− pee pee



 = (α1, α2) and α1 + α2 = 1,

is the solution of the conditional steady state probability - α1 (α2) that level s1 is downcrossed during a

cheap period (expensive period), given that at the starting point, i.e., at level S, the cost price is cheap

(expensive). Finally

γ = α1pcc + α2(1− pee).

Computing pcc and pee is similar to the computations in Lemma 3.1.
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