
Verifying Class Invariants in Concurrent
Programs

Marina Zaharieva-Stojanovski and Marieke Huisman

University of Twente, the Netherlands

Abstract. Class invariants are a highly useful feature for the verification
of object-oriented programs, because they can be used to capture all
valid object states. In a sequential program setting, the validity of class
invariants is typically described in terms of a visible state semantics,
i.e., invariants only have to hold whenever a method begins or ends
execution, and they may be broken inside a method body. However, in
a concurrent setting, this restriction is no longer usable, because due to
thread interleavings, any program state is potentially a visible state.
In this paper we present a new approach for reasoning about class invari-
ants in multithreaded programs. We allow a thread to explicitly break
an invariant at specific program locations, while ensuring that no other
thread can observe the broken invariant. We develop our technique in
a permission-based separation logic environment. However, we deviate
from separation logic’s standard rules and allow a class invariant to ex-
press properties over shared memory locations (the invariant footprint),
independently of the permissions on these locations. In this way, a thread
may break or reestablish an invariant without holding permissions to all
locations in its footprint. To enable modular verification, we adopt the
restrictions of Müller’s ownership-based type system.

1 Introduction

In object-oriented programs, class invariants are typically used to express prop-
erties about the object’s state that should hold throughout the object’s life cycle.
However, in practice it is often impossible to maintain the invariant continuously.
For example, for an invariant that expresses a relation between fields x and y,
x == y, when x is updated, y must also be updated, and both updates can not
be done atomically. Therefore, invariant theory should provide for the possibility
that a class invariant is temporarily broken at specific program parts.

In the sequential setting, the theory about invariant validity is well-developed;
in essence, class invariants only have to hold in the program’s visible states, i.e.,
in pre- and poststates of public methods [17]. In particular, if a class invariant
I holds in a method’s prestate, the method must end in a state satisfying I.

However, in the setting of multithreading programs, this approach can not
be carried over directly. Due to possible interference between parallel threads,
any program state may be visible. For example, when the field x in the invariant
above is updated, any other thread might observe this change and the broken
invariant. This problem is sometimes called a high-level data race [2].



2

Therefore, this paper defines an approach to define validity of class invariants
in a multithreaded setting. Our approach supports explicit breaking of invariants,
under the condition that other threads can not see that the invariant is broken.
We build our technique on permission-based separation logic [4], using a Java-like
language. However, in contrast to standard separation logic, we explicitly make
a distinction between state formulas, which describe a property about the shared
state, and resource formulas, which describe when a thread holds a permission to
access a certain location. We ensure modular verification using the restrictions
from ownership-based type systems [7].

Our approach works as follows. A class invariant is specified as a condition on
the shared memory. For each class invariant, we maintain a token that indicates
whether the class invariant can be inspected. This token can be split and com-
bined: if a thread has the complete token, it can break the invariant; otherwise
it can only use it. Breaking the invariant is done by executing a (specification-
only) unpack statement. When a thread reestablishes the invariant, the token
to inspect the invariant becomes available again for other threads to break or
inspect the invariant. This behaviour is modeled by a (specification-only) pack
statement. Thus, within the unpacked segment, a thread is free to do whatever
it wants with the class invariant, as our verification approach ensures that no
other thread can observe the invariant in parallel.

To guarantee that class invariants can be verified in a modular way, when a
class invariant is broken, a thread is not allowed to obtain any new permissions
anymore. In particular, if a thread requires a lock to change any of the fields
associated to the invariant, it should obtain this lock before breaking the invari-
ant. This requirement shows that there is close connection between the locking
strategy and the functional invariant properties that can be maintained in an
application. Further, it is important that with our approach, a thread does not
need to have all access permissions that are associated with the invariant, but
only the access permissions needed to break the invariant; all other variables are
implicitly assumed to be unchanged. Moreover, our technique does allow creat-
ing new (helper) threads when an invariant is broken; however, these threads
need to be finished and joined before the invariant is reestablished again.

The main contribution of this paper is a sound modular technique for verifi-
cation of class invariants in multithreaded programs, which:

– is flexible and permissive, because it allows a thread to break an invariant
without holding all permissions associated to the invariant property; and

– reveals the connection between locking policy and invariant properties that
can be maintained.

The motivation and applicability of our approach is illustrated on several exam-
ples. Its implementation as part of the VerCors tool set is under development.

Outline We begin by introducing a short overview of permissions in separation
logic, Sec. 2. Next, in Sec. 3 we present the main concepts of our approach, which
is further formalised in Sec. 4. Sec. 5 reviews others approaches that tie in with
our work. Finally, in Sec. 6 we summarise our work and discuss our future plans.



3

2 Background

This paper builds on Parkinson’s work on separation logic for Java-like pro-
grams [21], and its extension by Haack et al. [11] for concurrency.

Separation logic [23] is an extension of Hoare Logic [12] for reasoning about
separate parts of the heap. The base of this logic is the binary separating con-
junction operation: P*Q describes that P and Q hold for disjoint parts of the
heap. O’Hearn shows that separation logic is also convenient for reasoning about
multithreaded programs [19]. To allow parallel reads of the same data, basic sep-
aration logic is extended with fractional permissions [4]. Permission π is a value
in the domain (0, 1]. At any point in time, a thread holds a number of permissions
on locations. If a thread has a write permission for a certain location, i.e., the
value 1, it is allowed to change this location. If a thread has a fractional permis-
sion, i.e., a fraction less than 1, then it may only read this location. Permissions
can be split and combined, to change between read and write permissions. The
soundness of this logic ensures that the sum of all threads’ permissions for a cer-
tain location never exceeds 1, which guarantees data-race freedom. The predicate
Perm(x.f, π) indicates that x.f points to a location for which the actual thread
has a permission π. Permission expressions are combined with the separating
conjunction operation.

Parkinson adapts separation logic for object-oriented concepts in a Java-like
language [21]. He proposes abstract predicates [20] to provide abstraction. Later,
Haack et al. extended this logic to show how to reason about multithreaded Java-
like programs [11] that include reentrant locks and dynamic thread creation. For
each lock, a resource invariant is specified, i.e., an abstract predicate describing
which permissions are stored in the lock. A newly created lock is still fresh and
not ready to be acquired. The thread must first execute the commit command
on the lock, which transfers the permissions from the thread to the lock and
changes the lock’s state to initialized. Any thread then may acquire the initialized
lock to get the resource invariant (except for reentrant acquiring). Upon final
release of the lock, the thread returns the resource invariant back to the lock.

3 Verification Methodology for Class Invariants

This section gives a conceptual understanding of our methodology, presented
from two different aspects. First, we discuss how we model the invariant pro-
tocol, i.e., when an invariant may be assumed, and how it can be broken and
reestablished. Then, we describe how our method supports modular verification.

3.1 Class Invariant Protocol

We assume that class invariants express properties over non-static class fields.
Thus, a class invariant I defined in a class C is always associated with a particular
object v of class C, we write v.I. We call the set of locations referred to by an
invariant v.I the footprint of v.I, denoted fp(v.I) (formally defined in Sec. 4).



4

Assuming a Class Invariant Our technique should guarantee absence of high-
level data races; therefore, it should control access to the invariant’s footprint.
To provide this control, to every invariant v.I, we associate a special abstract
predicate holds(v.I, 1), distributed as a token among the threads. The intuitive
meaning of this predicate is the following: when a thread holds a predicate
holds(v.I, π), π > 0, it may assume that the invariant v.I holds; if π = 1, the
running thread may additionally break the invariant. The predicate might be
divided among different threads by using the following equivalence:

holds(v.I, π) ∗ − ∗ holds(v.I, π/2) ∗ holds(v.I, π/2)

This approach guarantees that: 1) a class invariant v.I is stable and all threads
that hold a token holds(v.I, π) may rely on v.I’s correctness; or 2) at most one
thread has the token holds(v.I, 1) and no other thread may assume v.I.

Breaking a Class Invariant Inspired by the work of Leino et al. [14], we explic-
itly specify the segment in the program where an invariant property might be
violated: for an invariant v.I, specification command unpack(v.I) must be exe-
cuted at the beginning of such a segment, and pack(v.I) at its end. The segment
between both commands is called an unpacked segment of v.I. A special case is
object initialisation: the program segment between the end of v’s construction
and the first execution of the pack(v.I) command is also v.I’s unpacked segment.

The unpack(v.I) command consumes the token holds(v.I, 1), and issues a
predicate unpacked(v.I, 1) (breaking token). This token serves as a license for the
thread to break the invariant v.I. Once all updates are done, the running thread
must reestablish the validity of v.I and call the pack(v.I) command, which
trades the unpacked(v.I, 1) token for the holds(v.I, 1) token. The unpack(v.I)
command is always followed by pack(v.I) within the same method and executed
by the same thread. This thread is called a holder of the unpacked segment.

Lst. 1 illustrates the use of an unpacked segment: a class Point, represents
a point lying on or above the line y = −x. Since method move() updates the
fields x and y to which invariant I refers, these updates must happen within an
unpacked segment of I. (The annotation safe at line 7 is discussed next.)

Restrictions to Unpacked Segments We showed how a thread obtains permission
to modify an invariant footprint location p.f . Once p.f is assigned, we say that
p.f is in a critical state until the end of the unpacked segment. More precisely:

Definition 1. (Critical state of a location) Let v.I be an invariant, p.f a loca-
tion, such that p.f ∈ fp(v.I), and let p.f be assigned inside an unpacked segment
of v.I. Then, any program execution state between the assignment and the end
of the unpacked segment is a critical state for p.f .

To prevent a thread to observe a broken invariant, a location in a critical
state must not be publicly exposed. Therefore, within an unpacked segment
we forbid the running thread to release permissions and make them accessible
to other threads. Concretely, within an unpacked segment, we allow only safe



5

class Point {
2 int x; int y;

//@ invariant I : this.x + this.y >= 0;
4 //...constructors

//@ requires holds(this.I,1) ∗ Perm(this.x,1) ∗ Perm(this.y,1);
6 //@ ensures holds(this.I,1) ∗ Perm(this.x,1) ∗ Perm(this.y,1);

/∗@ safe @∗/ void move() {
8 // the invariant I may now be assumed because of the holds token
{holds(this.I,1) ∗ Perm(this.x,1) ∗ Perm(this.y,1) ∗ this.I}

10 //@ unpack(this.I); // trades holds token for unpacked token
{unpacked(this.I,1) ∗ Perm(this.x,1) ∗ Perm(this.y,1) ∗ this.I}

12 this.x = this.x − 1; // the invariant I is broken
this.y = this.y + 1; // the invariant I can now be reestablished

14 {unpacked(this.I,1) ∗ Perm(this.x,1) ∗ Perm(this.y,1) ∗ this.I}
//@ pack(this.I); // trades unpacked token for holds token

16 {holds(this.I,1) ∗ Perm(this.x,1) ∗ Perm(this.y,1)}
}}

Lst. 1. Unpacked segment of a class invariant

commands, i.e., commands that exclude any lock-related operation (acquiring,
releasing or committing a lock). This means that all permissions used in the
unpacked segment must be obtained before the segment begins. A safe command
may call only safe methods, i.e., methods composed of safe commands only. These
methods are specified with the optional modifier safe (see Lst. 1, line 7).

We allow forking a safe thread, i.e., threads with a safe run() method, under
the condition that the thread must be joined within the unpacked segment. We
call these threads local to the segment. A safe thread may further fork other
safe threads. The breaking token might be shared among all local threads of the
unpacked segment, and thus, they might all update different locations of the
invariant footprint in parallel. For this purpose, we define the following axiom:

unpacked(v.I, π) ∗ − ∗ unpacked(v.I, π/2) ∗ unpacked(v.I, π/2)

Lst. 2 shows a modified version of the move method (from Lst. 1) that can not
be verified since acquiring/releasing a lock is used within the unpacked segment.

Object Initialisation In our language, object initialisation (the object construc-
tor) is divided into two steps: 1) object construction creates an empty object v
(all v’s fields get a default value), and gives the running thread write permission
for each of v’s fields and a token unpacked(v.I, 1) for each invariant v.I. 2) the
init method follows obligatorily after object construction, where object fields are
initialised. Additionally, for every invariant v.I, the pack(v.I) is called by de-
fault at the end of the init method. Hence, at the end of v’s initialisation, all v’s
invariants hold, and therefore, v is a valid object.

A verified program with our approach is free of high-level data races. This is
expressed by the following theorem:



6

Lock lock; // resource invariant: Perm(x, 1) ∗ Perm(y,1);
2 //@ requires holds(this.I,1);

//@ ensures holds(this.I,1);
4 void move(){

//@ unpack(this.I); //trades holds token for unpacked (breaking) token
6 lock.lock(); //invalid call (permissions to x and y must be gained before unpacking)

t.fork(); //another thread t may get half of the breaking token to modify x
8 updateY(); //for updating y another method is called, which must be safe

lock.unlock(); // invalid call, must happen after packing
10 t.join(); //t is a safe thread, thus joining must be before packing

//@ pack(this.I);
12 }

Lst. 2. Restrictions to unpacked segments

Theorem 1. (High-level data race freedom) If a value p.f is in a critical state
s of an unpacked segment S of an invariant v.I, then any thread that is neither
holder nor a local thread of S can not access p.f .

Proof. See Sec. 4.4.

As discussed initially, a thread that holds a token holds(v.I, π), π > 0 may
use the invariant v.I. This is justified by the following theorem:

Theorem 2. (Use of a class invariant) An invariant v.I holds in a program
state in which the running thread t holds the predicate holds(v.I, π), π > 0.

Proof. See Sec. 4.4.

Lst. 3 extends the program with the Point class (see Lst. 1) to show how a
class invariant may be used for verifying a client class. The main thread creates
initially a valid Point object s for which the invariant s.I holds (s.x+s.y >= 0)
and obtains the token holds(s.I, 1) (lines 3,4). The thread then forks a set of
new threads (lines 5-9), passing each of them a reference to s and part of the
holds token. Each forked thread has a task to create a sequence of new points at
specific locations calculated from the location of s (line 21). To prove that each
new Point p is a valid object (p.x + p.y >= 0) (line 24), each thread uses the
class invariant s.I, which is guaranteed by the token holds(s.I, π).

To conclude, we summarise the rules that define the invariant protocol:

R1 (Assuming) A thread t may assume (use) a class invariant v.I if t holds
the predicate holds(v.I, π), π > 0.
R2 (Breaking) A thread t may write on a location p.f if apart from holding
a write permission to p.f , it holds a breaking token unpacked(v.I, π), π > 0
for each invariant v.I that refers to p.f , i.e., p.f ∈ fp(v.I).
R3 (Reestablishing) An invariant v.I must have been reestablished when
pack(v.I) is executed.
R4 (Exchanging tokens) The token unpacked(v.I, 1) is produced at v’s con-
struction; commands unpack(v.I) and pack(v.I) exchange the holds(v.I, 1)
token for the unpacked(v.I, 1) token, and vice versa.



7

class DrawPoints {
2 void create(){

Point s = new Point (0, 0);
4 //holds(s.I,1) is produced

for (int k = 1; k<=10; k++){
6 Task t = new Task(s, k);

//each t gets part of holds token
8 t.fork();

}
10 //join Task threads

} }
12

14 class Task {
Point s; int k;

16 // ... constructors
//@ requires holds(s.I. π) ∗ ... ;

18 //@ ensures holds(s.I. π) ∗ ... ;
void run(){

20 for (int i = 1; i < 10; i ++) {
int x = s.x+i; int y = s.y+ki;

22 //s.I holds (because of the holds token)
//use s.I to validate p.I

24 Point p = new Point(x, y);
draw(p);

26 } } }

Lst. 3. Using a class invariant for verifying a client class

3.2 Modular Verification

As a second step, we discuss the additional properties needed to support modular
verification. In the prestate of the assignment to a location p.f , rule R2 requires
a breaking token for all invariants that refer to p.f . However, in the context
(class) where the assignment happens, not all invariants in the program are
known. To support modularity, the breaking token is only explicitly checked for
the invariants of the object p. Additionally, it is guaranteed that this token is
implicitly held for all other invariants. We use Müller’s ownership type system [7],
which is strongly connected to modular verification of invariants [18, 3, 16, 8].

Ownership-Based Types The ownership type system organises the objects in the
heap in an ownership tree, where each object has one owner (either the root
of the tree, or another object in the heap). We say that each ancestor of an
object p in the tree is p’s transitive owner. The position of the object p in the
tree is determined on p’s creation, with an attached required modifier from the
set {rep, peer, rd} where: peer indicates that r has the same owner as the object
this; rep specifies that r is owned by this, and rd(readonly) is any other relation.
Additionally, the self modifier is used for references that point to the this object.
An array a of object references has an additional modifier to define the relation
of each element a[i] with the this reference (see Lst. 4, line 2). When an object
changes its context, for example, via transfer as a method parameter, the type of
the new reference is determined by applying the viewpoint adaptation function
(.), defined as:

r1 . r2 =


r2 if r1 = self

rep if r1 = rep, r2 = peer

peer if r1 = r2 = peer

rd otherwise



8

For example, if the this reference owns r, while r owns x, the type of the
reference r.x in the context of this is rep . rep = rd.

Additionally, the following discipline is imposed in the program: writing to a
field p.f or a call to a non-pure method (i.e. with side-effects) with a receiver p is
forbidden when p has a modifier rd. In this way, each object controls all updates
that happen in its transitively owned objects. This guarantees the following:

RO If a field p.f is modified in a method m, for each transitive owner o of
p, the call stack contains a method invocation where o is a receiver.

We require that all class invariants in the program are ownership admissible:

Definition 2. A class invariant v.I is ownership admissible if it expresses prop-
erties over fields p1.p2...pn.f , where n ≥ 1, v == p1 and pi is a rep field in the
class of pi−1 (i = 2..n).

Verification Technique via Ownership Types Based on Def. 2, we observe the
following: for a location p.f , an invariant v.I may refer to p.f only if v == p
or v is a transitive owner of p. Our verification technique suggests that before
assigning to a location p.f , it is enough to require a breaking token only for the
invariants of the object p (p.I) that refer to p.f . If an invariant v.I, where v is
a transitive owner of p, refers to p.f , then the rule RO ensures that assignment
of p.f is preceded by a method call where v is a receiver. To support modular
verification, the check that the actual thread holds a breaking token for v.I
should therefore be a requirement of the method call where object v is a receiver.
More precisely, we replace the rule R2 listed above with the following two rules:

R2’ A precondition for assigning a field p.f requires a token unpacked(p.I, π)
(π > 0) for each invariant I of the object p that refers to p.f .
R2” A precondition for invoking a method m that assigns a field p.f requires
the token unpacked(this.I, π)(π > 0) for each invariant I of the this object
that refers to p.f .

To establish R2”, the contract of the called method m should provide in-
formation to the caller about the locations it assigns to. In permission-based
separation logic, assigning to a location p.f in m requires a write permission
π = 1 for p.f . The caller can identify the locations assignable by m from the
precondition formula Prem: this is the set of locations for which Prem requires a
write permission, denoted wrt(Prem) (see formal definition in Sec. 4). However,
π might also be obtained by acquiring a lock during the execution of m. We
ensure that this scenario is not possible. In particular, if a location p.f is in the
footprint of an invariant v.I, p.f should not be protected by a lock object that
is transitively owned by v, because this would mean that other threads might
observe a broken invariant (see the example below). This restriction is imposed
by the following rule (the formall definition of the functions used is presented
later, see Sec. 4):

RL ∀I ∈ inv(C); ∀f ∈ relFld(C); fld(I) ∩ fldResInv(classOf(f)) = ∅



9

class PointsSet {
2 rep rep Point[] points = new rep rep Point[100];

//@ Invariant I1: (∀int i: 0 <=i<100) (points[i].x <= 10) ∗ (points[i].y <= 10);
4 //@ requires holds(this.I1, 1) ∗ Perm(points[i].x, 1) ∗ Perm(points[i].y, 1)

//@ ensures holds(this.I1, 1) ∗ Perm(points[i].x, 1) ∗ Perm(points[i].y, 1)
6 void moveAt(int i) {

//@ unpack(this.I1); // trades the holds token for unpacked token
8 if (points[i].y <= 9) {

//required unpacked token for I1 (as points[i].x, points[i].y ∈ wrt(Premove)∩fp(I1))
10 points[i].move(); }

//@ pack(this.I1); // trades the unpacked token for holds token
12 } }

Lst. 4. Modular verification

The rule is translated as: for any invariant I defined in a class C, and a field
f relevant to C, the set of fields that appear in I is disjoint from the set of fields
that appear in the resource invariant definition in the class of f . A field f is
relevant to a class C if it may be expressed as a p1.p2., ...pn.f , where p1 is a rep
field defined in C, and pi is a rep or peer field in the class of pi−1, i = 2..n, n >= 1.

In Lst. 4, we extend our program (from Lst. 1) to illustrate modular verifica-
tion. Class PointsSet represents a set of points that lie within a predefined area.
When calling the method move()(line 10), the caller provides a breaking token
for its own invariants that move() might break (in this case invariant I1). After
the call to move(), invariant I1 is reestablished (line 11), even though the actual
thread has permissions to the ith array element only; our approach ensures that
the other locations in fp(I1) are stable until the end of the unpacked segment.

Fields x and y from class Point are relevant to the PointsSet class and used
in I1; hence, Rule RL forbids a lock that protects x and/or y to be transitively
owned by a PointsSet object. This is necessary: if permissions to x and y could
be obtained by a lock in Point, other threads might observe that I1 is broken.
To avoid this, the lock would have to be already acquired before the unpacked
segments for I1, but this would violate modularity. The example shows that the
invariants that can be maintained strongly depend on the locking strategy used.

4 Formalisation

We formalise our approach using a Java-like concurrent language. The formal-
isation is mainly inspired by Haack et al. [11]. We concentrate on those points
that are relevant for class invariants. For other concepts, e.g., those associated
to locks, we only provide some basic intuition to make the paper self-contained.

4.1 Language

Fig. 1 shows the grammar of our language. With x we define sequences of x,
while x? represents an optional x. A class is composed of fields, methods, predi-



10

cl ∈ Class ::= class C {fd ∗ md ∗ inv ∗ pd∗}
fd ∈ Field ::= Tf

md ∈ Method ::= spec T m(V x){c}
spec ∈ MethSpec ::= requires F ensures F pure? safe?
pd ∈ Predicate ::= pred P = Fres(P 6= res inv) | pred res inv = Fres

inv ∈ Invariant ::= Invariant I : Finv

c ∈ Command ::= v (return value or null in case of type void)
| T x; c | x = v; c | x = op(v); c | x = v.f ; c
| x = new rtype C; c | (x = v.m(v); c | if v then c else c; c
| v.f = v; c | v.lock(); c | v.commit(); c | v.unlock(); c
| v.fork(); c | v.join(); c | unpack(v.I); c | pack(v.I); c

F ∈ Formula ::= e | Perm(v.f, π) | π.P | F ⊕ F | (qt T α)F
| holds(v.I, π) | unpacked(v.I, π) | e.fresh() | e.initialized()

Fres ∈ Formulares ::= e | Perm(v.f, π) | π.P | Fres ⊕ Fres | (qt T α)(Fres) | holds(v.I, π)
Finv ∈ Formulainv ::= einv | (qt T α)(Finv) | Finv ⊕ Finv

e ∈ Exp ::= π | v.f | v | op(e)
einv ∈ Expinv ::= v1.v2...vn.f | op(einv)
T,U, V ∈ Type ::= void | int | bool | perm | (rtype, C)
rtype ∈ RefType ::= rep | peer | self | rd
π ∈ SpecVal ::= α | v | 1 | split(π) (1/2 of a fractional permission π)
u, v, w ∈ Val ::= null | n | b | o | x

⊕ ∈ {∗,∧,∨} op ∈ Op ⊇ {==, !,∧,∨,⇒} qt ∈ {∃, ∀}
n ∈ int b ∈ {true, false} x, y, z ∈ Variables o, p ∈ ObjectId

Fig. 1. Language Syntax

cates, and class invariants. The special predicate res inv is associated to a lock
object, and is used to describe the resources that the lock protects. Methods
may be declared as pure and/or safe, as explained below. The set of commands
is extended with the specification commands pack(v.I) and unpack(v.I).

Specification Formulas We distinguish three types of specification formulas:
i) Standard formulas F , expressed in permission-based separation logic and used
to specify methods. Predicates holds and unpacked, and fresh and initialized are
special tokens that describe the state of a class invariant or a lock, respectively.
ii) Resource invariant formulas Fres, used to express the res inv predicate. They
are more restrictive than F : Fres must not use the special tokens unpacked, fresh
and initialized.

iii) State formulas Finv, first-order logic formulas, used to specify class in-
variants and describe properties over shared memory locations only. Thus, their
syntax does not include the predicate Perm(v.f , π) or any of the special tokens.

Invariant Footprint We define the invariant footprint fp(v.I) by induction of
the structure of v.I:

fp(v1.v2..vn.f) = {v1, v1.v2, ..., v1...vn.f} fp(op(einv)) =
⋃
e∈einv

fp(e)

fp(Finv1 ⊕ Finv2) = fp(Finv1) ∪ fp(Finv2) fp((qt αT)(Finv)) =
⋃
v∈T\{α} fp(Finv[v/α])



11

(new)
Γ ` l : rtype C rtype ∈ {rep, peer, rd}

Γ ` wf(l = new rtype C)
(get)

Γ ` v, f, l : T,U, U f ∈ fld(T 2
)

Γ ` wf(l = v.f)

(meth call)

md ::= requires F ensures G safe? T m(V̄ ī){c}
Γ ` u, w̄, l : U, W̄ , T U1 ∈ {peer, rep, self}

Γ ` wf(l = u.m(w̄))

(meth call pure)

md ::= requires F ensures G pure safe? T m(V̄ ī){c}
Γ ` u, w̄, l : U, W̄ , T U1 ∈ {peer, rep, self, rd}

Γ ` wf(l = u.m(w̄))

(set)
Γ ` v, u, f : T,U, U f ∈ fld(T 2

) T 1 ∈ {peer, rep, self}
Γ ` wf(v.f = u)

(class)

Γ ` wf(fd∗,md∗, pd∗, inv∗); ∀(Invariant I) ∈ inv∗; ∀(Tf) ∈ relFld(C);
fldResInv(T 2) ∩ fld(I) = ∅

Γ ` wf(cl ::= class C fd∗,md∗, pd∗, inv∗)

(inv exp)
Γ ` ei : Ti(i = 1..n) T 1

i ∈ {self, rep}
Γ ` wf(einv) ::= e1, e2, .., en.f)

Fig. 2. Type rules

Types A type of an object reference in our language is represented as a tu-
ple T = (rtype, C). The first component, T 1, is a type modifier from the set
RefType = {rep, peer, self, rd}, while the second, T 2, represents the object’s class.
Consequently, two references pointing to the same object might have different
reference types if they are in a different context. Fig. 4.1 shows the typing rules
that represent constraints imposed by the ownership type system:

We use a function df : Type 7→ Val, which maps each type to a corresponding
default value:

df(rtype C)
4
= null df(bool)

4
= false df(int)

4
= 0 df(void)

4
= null

Fields and Invariants in a Class We define functions fld(C), relFld(C) and
inv(C) to represent respectively a set of fields defined in a class C, the set of
fields relevant to C, and the set of invariants in C. For a class C with a definition
class C{ T f md∗ pd∗ Invariant I}, we have:

fld(C) = (T f)
relFld(C) =

⋃
Tf |Tf∈Tf,T1=rep relAux(T 2) where

relAux(C) =
⋃
Tf |Tf∈Tf,T1∈{self,rep,peer}(Tf) ∪ relFld(T 2)

inv(C) = (Invariant I)

Fields in a Resource Invariant Furthermore, a function fldResInv(C) is defined
to represent the fields used in the special resource invariant predicate res inv
defined in a class C. The fldResInv(C) function is defined by induction of the
structure of the res inv formula:



12

class C{ fd∗ md∗ pred res inv = Fres; pd∗ inv∗} ⇒ fldResInv(C) = fld(Fres)

fld(Fres) =



∅ if Fres ∈ {e, holds(v.I, π)}
(T f) if Fres ::= Perm(e.f , π), f : T

fld(F ′
res) if Fres ::= π.P (pred P = F ′

res)

fld(Fres1) ∪ fld(Fres2) if Fres ::= Fres1 ⊕ Fres2

fld(Fres1) if Fres ::= (qt αT)(Fres1)

Fields in a Class Invariant In a similar way, fld(I) function is defined by induc-
tion of the structure of a State Formula, Finv: it represents the fields used in the
definition of the invariant I.

Invariant I : Finv ⇒ fld(I) = fld(Finv)

fld(Finv) =


(Ti ei) ∪ (U f) if Finv ::= e1.e2...en.f (ei : Ti, i = 1..n; f : U)⋃
einv∈einv

fld(einv) if Finv ::= op(einv)

fld(Finv1) ∪ fld(Finv2) if Finv ::= Finv1 ⊕ Finv2

fld(Finv1) if Finv ::= (qt αT)(Finv1)

Writable Locations Above, in Sec. 3.2, we introduced the wrt(F) function: it
returns the set of locations for which the formula F expresses a write permis-
sion. Below, we show the formal definition of wrt(F). The auxiliary function
permL(F , e.f) returns the value of the permission contained in F for the loca-
tion e.f , while locs(F) returns the set of all locations in F .

wrt(F) = {e.f | e.f ∈ locs(F), permL(F , e.f) ≥ 1}

F ∈ {e1, holds(v.I, π), unpacked(v.I, π), e1.fresh(), e1.initialized()}
permL(F , e.f) = 0

F = Perm(e.f , π)

permL(F , e1.f1) =

{
π, if e1.f1 == e.f

0, if e1.f1 6= e.f

F = F1 ⊕ F2

permL(F , e.f) =


permL(F1, e.f) + permL(F2, e.f), if ⊕ == ∗
max(permL(F1, e.f), permL(F2, e.f)), if ⊕ == ∧
min(permL(F1, e.f), permL(F2, e.f)), if ⊕ == ∨

F = (qt αT)(F)

permL(F , e.f) = permL(
∧

v∈T\{α}

F [v/α], e.f)

F = π.P (pred P = F ′)
permL(F , e.f) = permL(F ′, e.f)

locs(F) =



∅ if F ∈ {e1, holds(v.I, π), unpacked(v.I, π),

e1.fresh(), e1.initialized()}
e.f if F ::= Perm(e.f , π)

locs(F1) ∪ locs(F2) if F ::= F1 ⊕ F2⋃
v∈T\{α} locs(F [v/α]) if F ::= (qt αT)(F)

locs(π.F ′) if F ::= π.P (pred P = F ′)



13

Safe and Pure Commands Above, we introduced the notion of safe commands.
For a safe command c the predicate safe(c, V ) holds, where V is a set that keeps
track of all identifiers of threads that are forked and expected to be joined. The
V parameter is used to capture that threads forked within a safe command c,
must also be joined within c. For a method m defined as safe T m(V i) {c}, the
relation safe(m) holds iff safe(c, []) holds. A safe method is annotated with the
optional modifier safe. We define inductively the set of safe commands:

safe(v, V ) ⇔ true
safe(c, V ) ⇔ false, if c ∈ {v.lock(), v.unlock(), v.commit()}
safe(c; c1, V ) ⇔ safe(c1, V ), if c ∈ {T x, x = v, x = v.f, v.f = v,

x = op(v), new rtype C, unpack(v.I), pack(v.I)}
safe(x = v.m(v); c, V ) ⇔ safe(m) ∧ safe(c, V )

safe(v.fork(); c, V ) ⇔ safe(c, V ∪ {v})
safe(v.join(); c, V ) ⇔ safe(c, V \ {v})
safe(if v then c1 else c2; c, V ) ⇔ safe(c1, []) ∧ safe(c2, []) ∧ safe(c, V )

Our method uses also the notion of pure commands, i.e., commands that
do not make any changes to the shared state. Pure methods are composed of
pure commands and specified with the optional modifier pure. Below, we define
inductively the set of pure commands:

pure(v) ⇔ true
pure(c) ⇔ false, if c ∈ {v.lock(), v.unlock(), v.commit()

v.fork(), v.join(), v.f = v, new rtype C}
pure(c; c1) ⇔ pure(c1), if c ∈ {T x, x = v, x = v.f, x = op(v),

unpack(v.I), pack(v.I)}
pure(if v then c1 else c2; c) ⇔ pure(c1) ∧ pure(c2) ∧ pure(c)
pure(x = v.m(v); c) ⇔ pure(m) ∧ pure(c)
pure(m), (pure T m(V i) {c}) ⇔ pure(c)

4.2 Hoare Triples

Fig. 3 shows the Hoare triples relevant to our approach (for the complete list of
rules see [11]). We use: ~iFi to abbreviate a separation conjunction of all for-
mulas Fi; PointsTo(v.f , π, w) to abbreviate Perm(v.f , π)∧ v.f == w; functions
fld(C) and inv(C) to represent respectively the set of fields and invariants in
the class C; df(T) for the default value of type T ; wrt(F) for the set of locations
for which F expresses a write permission.

The rule (New) shows that construction of object v produces an unpacked
token for each invariant of v, and a write permission for each field of v. Rules
(Set) and (MethCall) encode R2’ and R2” (see Sec. 3.2); they ensure that the
breaking token is a condition for breaking the invariant v.I. Rules (Pack) and
(Unpack) describe the invariant protocol and encode R3 and R4 (see Sec. 3.1).
Finally, the rule (RuleInv) shows that the token holds(v.I, π) provides the actual
thread the right to use the invariant v.I (as justified by Theorem 2 in Sec 3.1).



14

(New) {true}
v = new rtype C

{~Tf∈fld(C)PointsTo(v.f, 1, df(T 1)) ∗~I∈inv(C)unpacked(v.I, 1)}

(Set)
v : V

{v 6= null ∗ PointsTo(v.f, 1, u) ∗~I∈inv(V 2),v.f∈fp(v.I)unpacked(v.I, π)}
v.f = w;

{PointsTo(v.f, 1, w) ∗~I∈inv(V 2),v.f∈fp(v.I)unpacked(v.I, π)}

(MethCall)
md ::= requires F ensures F ′ safe? pure? T m(U u){c} this : V

{u 6= null ∗ F ∗~I∈inv(V 2),wrt(F )∩fp(this.I) 6=∅unpacked(this.I, π)}
x = u.m(i){

∃ Tα)(α == x ∗ F ′) ∗~I∈inv(V 2),wrt(F )∩fp(this.I)6=∅unpacked(this.I, π)
}

(Unpack) {holds(v.I, 1)} unpack(v.I){unpacked(v.I, 1) ∗ v.I}

(Pack) {unpacked(v.I, 1) ∗ v.I} pack(v.I) {holds(v.I, 1)}

(RuleInv)
{holds(v.I, π) ∗ v.I} c {F}
{holds(v.I, π)} c {F}

Fig. 3. Hoare triples

4.3 Semantics

We define a program state as: st ∈ State = Heap × ThreadPool × LockTable. A
Heap models the shared memory: h ∈ Heap = ObjId 7→ Type×(FieldId 7→ Value).
The ThreadPool component describes all threads that operate on the heap:
ts ∈ ThreadPool = ObjId 7→ Thread, where each thread contains its own local
memory and a command to execute, t ∈ Thread = Stack× Cmd. The LockTable
expresses for every lock whether it is free, or it is acquired by a thread a certain
number of times: l ∈ LockTable = ObjId 7→ free](ObjId×N). Operationally, the
two specification commands unpack(v.I) and pack(v.I) are no operations. The
small-step operational semantics of the other commands is standard, see [11].

Semantics of Formulas The specification formulas are interpreted using the se-
mantics relation Γ ` E ,R, s |= F , which expresses validity of the formula F in a
type environment Γ , a predicate environment E and a stack s, given a resource
R. Type environment Γ is a partial function of type ObjId ∪ Var 7→ Type that
maps each object or variable to its type, while E maps each predicate symbol to
an appropriate relation that represents its definition. For details see [11].

The resourceR is an abstraction of a program state represented by an 8-tuple,
R = (h,P,J ,L,F , I,U , T ), where each component describes part of the state:
i) h represents the heap: ObjId 7→ Type×(FieldId 7→ Val) ii) P is a permission table
that stores permissions to object fields from the heap (ObjId× FieldId 7→ [0, 1]);
iii) J is a join table (ObjId 7→ [0, 1]), where J (t) represents how much of the
postcondition of a thread t is given to other forked threads; iv) L is an abstraction



15

of the lock table, which maps each thread to the set of locks that it holds; v) F
keeps a set of fresh locks; vi) I keeps a set of initialized locks; vii) U keeps the parts
of the unpacked tokens for each invariant; and analogously viii) T keeps the holds
tokens. Both components U and T are defined as functions ObjId× InvId 7→ [0, 1].

We define a compatibility binary relation (#) and a resource joining opera-
tion (∗) over resources. Compatibility ensures that two different threads always
observe the abstract state as two compatible resources, R#R′: the object fields
that are common for the heaps in R and R′ are mapped to the same value; the
sum of permissions for a location in R and R′, or the sum of the parts of the spe-
cial tokens (holds and unpacked) for an invariant in both resources never exceeds
1; etc. The intuitive meaning of the operation R∗R′ is joining (summing) both
resources. For example, R ∗ R′ contains all permissions from both resources or
all tokens from both resources. The definition of the # and ∗ is component-wise.
We give the formal definitions for the structure (#, ∗) for the components U and
T , while for the others we refer to [11].

U#U ′ ⇔ ∀i ∈ dom(U) ∩ dom(U ′). U(i) + U ′(i) ≤ 1 (U ∗ U ′)(i) = U(i) + U ′(i)
T#T ′ ⇔ ∀i ∈ dom(T ) ∩ dom(T ′). T (i) + T ′(i) ≤ 1 (T ∗ T ′)(i) = T (i) + T ′(i)

Below we define that the specification formula holds(v.I, π) holds for a re-
source R if the part of the holds token for the invariant v.I in R is at least π. The
validity of the unpacked(v.I, π) formula is defined analogously. The semantics
of a class invariant v.I is expressed as a validity of the representation formula of
v.I, i.e., Finv.

Γ ` E , (h,P,J ,L,F , I,U , T ), s |= holds(v.I, π) ⇔ T (v.I) ≥ π
Γ ` E , (h,P,J ,L,F , I,U , T ), s |= unpacked(v.I, π) ⇔ U(v.I) ≥ π
Γ ` R = E , (h,P,J ,L,F , I,U , T ), s |= v.I(I = Finv) ⇔ Γ ` E ,R, s |= Finv

As our language contains state formulas, not all locations in the partial heap
must be ’framed’ by a positive permission (unlike in standard permission-based
separation logic). For a sound resource R = (h,P,J ,L,F , I,U , T ) we require:

∀p ∈ dom(h), f ∈ dom(h(p)2),P(p, f) > 0 ∨
(∃v.I ∈ dom(T ) p.f ∈ fp(v.I) ∧ (T (v.I) > 0 ∨ U(v.I) > 0)

The rule states that if a location p.f is not protected by a read permission
(P(p, f) = 0), then it must be protected by (a part of) the holds or unpacked to-
ken (T (v.I) > 0∨U(v.I) > 0), for an invariant v.I that refers to p.f . This ensures
that the location p.f is stable and might not be modified by other threads.

4.4 Soundness

Below we present the proof of Theorem 1 and Theorem 2, both discussed in Sec.
3.1.

We use notations s < s′ (or s > s′) to express that program state s precedes
(or follows) program state s′.

Lemma 1. In a state s, where the running thread is t, we have:



16

(i) if t holds a predicate holds(v.I, π), π > 0, then s is preceded by at least one
execution of the command pack(v.I).

(ii) if t holds a predicate holds(v.I, π), π > 0, then s is not an internal state of
an unpacked segment of v.I.

(iii) if t holds a predicate unpacked(v.I, π), π > 0, s is an internal state of an
unpacked segment of v.I.

Proof. All statements follow from the defined invariant protocol:

(i) the predicate holds(v.I, π) is produced only by executing the pack(v.I)
command. This ensures that s is preceded by a pack(v.I) command.

(ii) the predicate holds(v.I, π) is produced for the first time at the end of the
object v’s initialisation, when the initial unpacked segment of v.I is fin-
ished. Afterwards, when an unpacked segment of v.I starts, the predicate
holds(v.I, π) is consumed, and might only be obtained back when the un-
packed segment finishes. Therefore, in any state s within the unpacked
segment of v.I, no thread holds a predicate holds(v.I, π).

(iii) The predicate unpacked(v.I, π) is produced in a poststate of an unpack(v.I)
command, or a poststate of object v’s construction. In both cases s is an in-
ternal state of an unpacked segment of v.I. Once the segment finishes (with
the execution of the pack(v.I) command), the unpacked(v.I, 1) predicate
is lost and might not be obtained until a new unpacked segment of v.I
starts. Therefore, no thread might hold unpacked(v.I, π) predicate in a
state s that is not an internal state of v.I’s unpacked segment.

Lemma 2. If s is a prestate of an assignment p.f ′ = w, where the running
thread is t, for any invariant v.I that is dependent on p.f ′, s is an internal state
of an unpacked segment of v.I.

Proof. We will prove that in the state s, there is a thread that holds the predicate
unpacked(v.I, π), π > 0. Then from Lemma 1(iii), we will directly conclude that
s is an internal state of an unpacked segment of v.I.

From the definition of admissible invariant (Def. 2) (Sec. 3.2), since v.I is
dependent on the assigned location p.f ′, then p.f ′ is represented as p1.p2...pn.f ,
where n >= 1, v = p1 and pi is owner of pi+1, i = 1..n − 1. We consider two
cases:

(i) n = 1, then p1 = p = v. From the Hoare triple (Set), in the prestate of
p.f ′ = w, the running thread holds the predicate unpacked(v.I, π), π > 0.

(ii) n > 1, then v is a transitive owner of p. We denote with m the method
of execution of the assignment p.f ′ = w. From the rule RO (Sec. 3.2), for
each pi, the path to the invocation of m is preceded by a method call for
which pi is a receiver. Denoting mx as a method with receiver x, we define
the path of m’s invocation as:

mp1 ... mp2 ... mpn ... m, where n > 1,



17

where each method mpi
is called by a method with a receiver pi−1. Note

that between mpi
and mpi+1

there might be other method calls where the
receiver object is a peer of pi.
In the state s (which is an internal state of the method m), the running
thread holds a write permission π = 1 for p.f ’. Let s1 be the prestate of
the invocation of the method mp2 . We distinguish 3 cases:
(a) the permission π is required in the precondition of the method mp2 .

Then, the triple (MethCall) ensures that in s1 the running thread holds
the predicate unpacked(p1.I, 1), where p1 = v. This predicate is not lost
until the execution of the pack(v.I) command. Since the syntax ensures
that pack(v.I) happens after the method mp2

is finished, then, in the
state s there is still a thread that holds a predicate unpacked(v.I, π).

(b) The permission π is obtained between the states s1 and s by acquiring a
lock l and obtaining its lock invariant, the res inv predicate. Then, the
field f ∈ fldResInv(L), where L is the class of l. Because acquiring the
lock (the call to l.lock() method) happens after the state s1, the object
l must be descendant of p1 = v. Therefore, the field l ∈ relFld(C),
where C is the class of v. Since f ∈ fld(I) and thus, f ∈ fld(I) ∩
fldResInv(L), this contradicts the rule RL (Sec. 3.2), which requires
fld(I) ∩ fldResInv(L) = ∅.

(c) The location p1.p2...pn.f does not exist in the state s1 and permission
π to it is obtained in a state s2, s1 < s2 < s, by creating the object
pn. In this case, at least one reference pi, i = 2..n exists in s1, which is
assigned in a state s3, where s1 < s3 < s2. In the state s3, the running
thread holds write permission for pi. Since the location pi ∈ fp(v.I),
permission to pi is not obtained by a lock between the states s1 and
s3 (this follows from the discussion in the previous case). Therefore, a
permission to pi must be held in the state s1. Then, the Hoare triple
(MethCall) ensures that in the prestate s1 of the invocation of the
method mp2 , the running thread holds the predicate unpacked(v.I, 1).

Theorem 1 (High-level data race freedom) If a value p.f is in a critical state
s of an unpacked segment S of an invariant v.I, then any thread that is neither
holder nor a local thread of S can not access p.f .

Proof. From the definition of a critical state (Def. 1), p.f ∈ fp(v.I) and p.f
is assigned by a thread t within the segment S. Let s′ be the prestate of this
assignment and therefore, s′ < s. From the Hoare triple (Set), the thread t holds
write permission, π = 1, for the location p.f in the state s′, and thus, in s′ no
other thread holds any read permission on p.f . Further, each command c within
the segment S is safe, and therefore: for all states of execution between s′ and
s, either t keeps the permission π, or t transfers (part of) π to another thread
that is local to the segment S. Within S, no part of the permission π could leak
to a thread t′ 6= t if t′ is not local to S; thus, p.f is not accessible by t′.

Theorem 2 (Use of a class invariant) An invariant v.I holds in a program state
in which the running thread t holds the predicate holds(v.I, π), π > 0.



18

Proof. Let s be a program state in which t holds a predicate (token) holds(v.I, π).
We assume that s1 is the latest program state that is a prestate of a pack(v.I)
command, for which s1 < s. Existence of s1 follows directly from Lemma 1(i).
The precondition of pack(v.I) (see Hoare triple (Pack)) ensures that v.I holds
in the state s1. We prove by contradiction that v.I can not be broken in any
state between s1 and s.

Let v.I be broken in a state s2, s1 < s2 < s. Since validity of the invariant v.I
might be changed only by assignment operation p.f = w, where p.f ∈ fp(v.I),
then s2 is a poststate of p.f = w. From Lemma 2, we conclude that the prestate
of p.f = w, and thus s2 also, is an internal state of an unpacked segment of v.I.
Then, Lemma 1.ii ensures that in s2 no thread holds the token holds(v.I, π).
Since in the state s the running thread holds holds(v.I, π), this token must have
been obtained by executing the pack(v.I) command between s2 and s. Let s3
is the prestate of this pack(v.I) command. Then s1 < s2 < s3 < s, which
contradicts the assumption that s1 is the latest prestate of pack(v.I) which
preceeds s.

5 Related Work

The early work on verification of class invariants in sequential programs [17, 15]
is unsound for more complex data structure, for example if an invariant captures
properties over different objects. Later, Poetzsch-Heffter [22] and Huizing et al.
[13] presented sound techniques that do not restrict the invariant definition or
the program itself; however, both approaches are not modular.

Müller et al. [18] propose two sound techniques for modular reasoning: the
ownership technique and the less restrictive visibility technique. Both concepts,
as well as Lu et al.’s modular technique [16], are designed for ownership-based
type systems. These techniques are captured in Drossopoulou et al.’s abstract
unified framework [9]. Although it is stated that this abstract framework should
be suitable to model class invariants in a concurrent setting, the framework has
never been applied on a concrete verification technique for concurrent programs.

Weiß models class invariants with a boolean model field inv [24]. Their va-
lidity is checked only on demand. Specifications use inv explicitly where needed,
while this.inv is implicitly generated in each method pre- and postcondition.

We are not aware of much work done on verification of class invariants for
multithreaded programs. Comparable to our approach is Jacobs et al.’s tech-
nique [14] for verifying multithreaded programs with class invariants, using the
Boogie methodology [3] for sequential programs. However, this technique allows
a thread to break an invariant of an object only if it completely owns this object.
Instead, with our technique, breaking a class invariant is independent of permis-
sions on heap memory. This ensures a broader applicability of our technique.

A different approach for modular verification of object invariants in concur-
rent programs is proposed by Cohen [6], implemented in VCC [5]. Each object
is assigned a two-state invariant expressing the required relation between any
two consecutive states of execution that has to be respected by every state up-



19

date in the program. Modular verification of multithreaded programs with class
invariants is also supported by the static checker Calvin [10]. However, both
methodologies do not allow breaking of a class invariant in the program.

6 Conclusion and Future Work

We introduced a sound and modular approach for verifying class invariants in
multithreaded Java-like programs in a permission-based separation logic setting.
We do, however, deviate from the standard rules in separation logic: we impose
that class invariants may express properties only over state and thus, their defi-
nition is free of permission expressions. We allow a thread to explicitly break an
invariant, and we ensure that no other thread can observe the invalidated object’s
state. Moreover, breaking and reestablishing an invariant is allowed without hold-
ing all permissions associated to the invariant. This makes our technique broadly
applicable. To achieve modularity, we restrict our technique to ownership-based
type systems only. The method requires simple specifications support.

For future work, we plan to integrate our technique in the VerCors tool [1],
and to use it to verify data structures from the java.util.concurrency package.
We plan to extend the concept to support class inheritance, to allow more per-
missive invariants with model methods and/or abstract predicates, to allow more
fine-grained permission handling. as well as to support history constraints.

Acknowledgments We thank Christian Haack and Stefan Blom for their useful
feedback. This work was supported by ERC grant 258405 for the VerCors project.

References

1. A. Amighi, S. Blom, M. Huisman, and M. Zaharieva-Stojanovski. The VerCors
project: setting up basecamp. In PLPV, pages 71–82, 2012.

2. C. Artho, K. Havelund, and A. Biere. High-level data races. Softw. Test., Verif.
Reliab., 13(4):207–227, 2003.

3. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. Journal of Object Technology, 3(6):27–
56, 2004.

4. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting
in separation logic. In J. Palsberg and M. Abadi, editors, POPL, pages 259–270.
ACM, 2005.

5. E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In TPHOLs, pages 23–42, 2009.

6. E. Cohen, M. Moskal, W. Schulte, and S. Tobies. Local verification of global
invariants in concurrent programs. In CAV, pages 480–494, 2010.

7. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology, 4(8):5–32, 2005.

8. W. Dietl and P. Müller. Object ownership in program verification. In D. Clarke,
J. Noble, and T. Wrigstad, editors, Aliasing in Object-Oriented Programming,
LNCS. Springer-Verlag, 2012.



20

9. S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers. A unified frame-
work for verification techniques for object invariants. In Types, Logics and Seman-
tics for State, 2008.

10. C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modular verification of
multithreaded programs. Theor. Comput. Sci., 338(1-3):153–183, 2005.

11. C. Haack, M. Huisman, C. Hurlin, and A.Amighi. Permission-based separation
logic for Java, 201x. Conditionally accepted for LMCS.

12. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

13. K. Huizing and R. Kuiper. Verification of object oriented programs using class
invariants. In FASE, pages 208–221, 2000.

14. B. Jacobs, F. Piessens, K. R. M. Leino, and W. Schulte. Safe concurrency for
aggregate objects with invariants. In SEFM, pages 137–147, 2005.

15. B. Liskov and J. Guttag. Abstraction and specification in program development.
MIT Press, Cambridge, MA, USA, 1986.

16. Y. Lu, J. Potter, and J. Xue. Validity invariants and effects. In ECOOP, pages
202–226, 2007.

17. B. Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall,
1997.

18. P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered
object structures. Sci. Comput. Program., 62(3):253–286, 2006.

19. P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007.

20. M. Parkinson and G. Bierman. Separation logic, abstraction and inheritance. In
Principles of programming languages (POPL ’08), pages 75–86. ACM, 2008.

21. M. J. Parkinson. Local reasoning for Java. Technical Report UCAM-CL-TR-654,
University of Cambridge, Computer Laboratory, Nov. 2005.

22. A. Poetzsch-Heffter. Specification and Verification of Object-Oriented Programs.
PhD thesis, Habilitation thesis, Technical University of Munich, 1997.

23. J. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th
IEEE Symposium on LICS 2002, pages 55–74. IEEE Computer Society, 2002.

24. B. Weiß. Deductive Verification of Object-Oriented Software: Dynamic Frames,
Dynamic Logic and Predicate Abstraction. PhD thesis, Karlsruhe Institute of Tech-
nology, 2011.


