On-the-fly Confluence Detection for
Statistical Model Checking (extended version)*

Arnd Hartmanns! and Mark Timmer?

! Saarland University — Computer Science, Saarbriicken, Germany
2 Formal Methods and Tools, University of Twente, The Netherlands

Abstract Statistical model checking is an analysis method that circum-
vents the state space explosion problem in model-based verification by
combining probabilistic simulation with statistical methods that provide
clear error bounds. As a simulation-based technique, it can only provide
sound results if the underlying model is a stochastic process. In verific-
ation, however, models are usually variations of nondeterministic trans-
ition systems. The notion of confluence allows the reduction of such
transition systems in classical model checking by removing spurious non-
deterministic choices. In this paper, we show that confluence can be adap-
ted to detect and discard such choices on-the-fly during simulation, thus
extending the applicability of statistical model checking to a subclass
of Markov decision processes. In contrast to previous approaches that
use partial order reduction, the confluence-based technique can handle
additional kinds of nondeterminism. In particular, it is not restricted to
interleavings. We evaluate our approach, which is implemented as part
of the modes simulator for the MODEST modelling language, on a set
of examples that highlight its strengths and limitations and show the
improvements compared to the partial order-based method.

1 Introduction

Traditional and probabilistic model checking have grown to be useful techniques
for finding inconsistencies in designs and computing quantitative aspects of sys-
tems and protocols. However, model checking is subject to the state space ex-
plosion problem, with probabilistic model checking being particularly affected
due to its additional numerical complexity. Several techniques have been intro-
duced to stretch the limits of model checking while preserving its basic nature
of performing state space exploration to obtain results that unconditionally,
certainly hold for the entire state space. Two of them, partial order reduction
(POR) and confluence reduction, work by selecting a subset of the transitions of
a model—and thus a subset of the reachable states—in a way that ensures that
the reduced system is equivalent to the complete system. POR was first general-
ised to the probabilistic domain preserving linear time properties [2,10], with a

* This work has been supported by the DFG/NWO Bilateral Research Program
ROCKS, by NWO under grant 612.063.817 (SYRUP), by the EU FP7-ICT project
MEALS, contract no. 295261, and by the DFG as part of SFB/TR 14 AVACS.

later extension to preserve branching time properties [1]. Confluence reduction
was generalised in [13,22], preserving branching time properties.

A much different approach for probabilistic models is statistical model check-
ing (SMC) [17,20,26]: instead of exploring—and storing in memory—the entire
state space, or even a reduced version of it, discrete-event simulation is used to
generate traces through the state space. This comes at constant memory usage
and thus circumvents state space explosion entirely, but cannot deliver results
that hold with absolute certainty. Statistical methods such as sequential hy-
pothesis testing are then used to make sure that the probability of returning
the wrong result is below a certain threshold. As a simulation-based approach,
however, SMC is limited to fully stochastic models such as Markov chains [14].

Previously, an approach based on POR was presented [6] to extend SMC and
simulation to the nondeterministic model of Markov decision processes (MDPs).
In that approach, simulation proceeds as usual until a nondeterministic choice is
encountered; at that point, an on-the-fly check is performed to find a singleton
subset of the available transitions that satisfies the ample set conditions of prob-
abilistic POR [2,10]. If such an ample set is found, simulation can continue that
way with the guarantee that ignoring the other transitions does not affect the
verification results, i.e., the nondeterminism was spurious. Yet, the ample set con-
ditions are based on the notion of independence of actions, which can in practice
only feasibly be checked on a symbolic/syntactic level (using conditions such as
J1 and J2 in [6]). This limits the approach to resolve spurious nondeterminism
only when it results from the interleaving of behaviours of concurrently executing
(deterministic) components.

In this paper, we present as an alternative to use confluence reduction, which
has recently been shown theoretically to be more powerful than branching time
POR [13]. It is absolutely vital for the search for a valid singleton subset to
succeed in the approach discussed above: one choice that cannot be resolved
means that the entire analysis fails and SMC cannot safely be applied to the
given model at all. Therefore, any additional reduction power is highly wel-
come. Furthermore, in practice, confluence reduction is easily implemented on
the level of the concrete state space alone, without any need to go back to the
symbolic/syntactic level for an independence check. As opposed to the approach
in [6], it thus allows even spurious nondeterminism that is internal to compon-
ents to be ignored during simulation. Of course, models containing non-spurious
nondeterminism can still not be dealt with.

Contributions and outline. After the introduction of the necessary preliminaries
(Section 2), we present the three main contributions of this paper: (1) Since
simulation works with a fully composed, closed system, we can relax the defin-
ition of confluence with respect to action labels compared to [13] (Section 3).
We thus achieve more reduction/detection power at no computational cost; yet,
we can prove that this adapted notion of confluence still preserves PCTL* for-
mulae [3] without the next operator. (2) We then introduce an algorithm for
detecting our new notion of probabilistic confluence on a concrete state space
and state its correctness (Section 4). The algorithm is inspired by, but different

Table 1. SMC approaches for nondeterministic models (with n states)

approach ‘ nondeterminism probabilities memory error bounds
POR-based [6] | spurious interleavings max =min s<n unchanged
confluence-based spurious max = min s<Kn unchanged
learning [16] any max only s —mn convergence

from, the one given in [12]; in particular, it does not require initial knowledge of
the entire state space and can therefore be used on-the-fly during simulation. (3)
Finally, we evaluate the new confluence-based approach to SMC on a set of three
representative examples using our implementation within the modes statistical
model checker [7] for the MODEST modelling language [8] (Section 5). We clearly
identify its strengths and limitations. Since the previous POR-based approach is
also implemented in modes, we compare the two in terms of reduction power and,
on the one case that can actually be handled by the POR-based implementation
as well, performance. Proofs for all our results can be found in Appendix A.

Related work. Aside from [6] and an approach that focuses on planning prob-
lems and infinite-state models [19], the only other solution to the problem of non-
determinism in SMC that we are aware of is recent work by Henriques et al. [16].
They use reinforcement learning, a technique from artificial intelligence, to ac-
tually learn the resolutions of nondeterminism (by memoryless schedulers) that
mazximise probabilities for a given bounded LTL property. While this allows SMC
for models with arbitrary nondeterministic choices (not only spurious ones),
scheduling decisions need to be stored for every explored state. Memory usage
can thus be as in traditional model checking, but is highly dependent on the
structure of the model and the learning process. As the number of runs of the
algorithm increases, the answer it returns will converge to the actual result, but
definite error probabilities are not given. The approaches based on confluence
and POR do not introduce any additional overapproximation and thus have no
influence on the usual error bounds of SMC. Table 1 gives a condensed over-
view of the three approaches (where we measure memory usage in terms of the
maximal number of states s stored at any time; see Section 5 for concrete values).

2 Preliminaries

Definition 1 (Basics). A probability distribution over a countable set S is a
function p: S — [0,1] such that) g u(s) = 1. We denote by Distr(S) the set
of all such functions. For S" C S, let u(S") = > . p(s). We let support(pu) =
{s € S| u(s) > 0} be the support of u, and write 15 for the Dirac distribution
for s, determined by 14(s) = 1.

Given an equivalence relation R C S x S, we write [s]r for the equivalence
class induced by s, i.e. [s|g = {s' € S| (s,8") € R}. We denote the set of all such
equivalence classes by S/R. Given two probability distributions u, p' over S, we
write p =g @' to denote that u([s|r) = p'([s|r) for every s € S.

Our analyses are based on the model of Markov decision processes (MDPs,
or equivalently probabilistic automata, PAs), which combines nondeterministic
and probabilistic choices. In the variant we use states are labelled by a set of
atomic propositions.

Definition 2 (MDPs). A Markov decision process (MDP) is a tuple A =
(S, %, P,s°, AP, L), where

— S is a countable set of states, of which s° € S is the initial state;
— XY is a finite set of action labels;

— P C S x X x Distr(S) is the probabilistic transition relation;

AP is the set of atomic propositions;

— L: S — P(AP) is the labelling function.

If (s,a,u) € P, we write s % p and mean that it is possible to take an a-action
from s and have a probability of u(s') to go to s'. Given a state s € S, we define
its set of enabled transitions en(s) = {(s,a,p) € {s} x X x Distr(S) | s & pu}.

We will use S, X4, ..., to refer to the components of an MDP A. If the
MDP is clear from the context, these subscripts are omitted.

We work in a state-based verification setting where properties only refer to
the atomic propositions of states. The action labels are solely meant for syn-
chronisation during parallel composition. Since we consider closed systems only,
we can therefore ignore them. We do care about whether or not transitions
change the observable behaviour of the system, i.e., the atomic propositions:

Definition 3 (Visibility and determinism). A transition s < p in an
MDP A is called visible if 3t € support(u): L(s) # L(t). Otherwise, it is invis-
ible. A transition s % u is deterministic if u(t) = 1 for some t € S, i.e., p = 1.

We write s = p to indicate that a transition is invisible. Transitions labelled
by a letter different from T can be either visible or invisible.

For a given MDP, a wide class of reductions can be defined using reduction
functions. Informally, such a function F' decides for each state which outgoing
actions are enabled in the reduced MDP. This MDP’s transition relation then
consists of all transitions enabled according to F', and the set of states consists
of all states that are still reachable using the reduced transition function.

Definition 4 (Reduction functions). For an MDP A = (S, X, Pa,s", AP,
L4), a reduction function is any function F: Sy — P(Pa) such that F(s) C
en(s) for every s € S4. Given a reduction function F, the reduced MDP for A
with respect to F is the minimal MDP Ap = (S, X, Pr,s°, AP, Lr) such that
— if s€ Sp and (s,a,pn) € F(s), then (s,a,u) € Pr and support(u) C Sp;
— Lp(s) = La(s) for every s € Sp,

where minimal should be interpreted as having the smallest set of states and the
smallest set of transitions.

Given a reduction function F' and a state s € Sp, we say that s is a reduced
state if F(s) # en(s). All outgoing transitions of a reduced state are called
nontrivial transitions. We say that a reduction function is acyclic if there are no
cyclic paths when only nontrivial transitions are considered.

3 Confluence for Statistical Model Checking

Confluence reduction is based on commutativity of invisible transitions. It works
by denoting a subset of the invisible transitions of an MDP as confluent. Basic-
ally, this means that they do not change the observable behaviour; everything
that is possible before a confluent transition is still possible afterwards. There-
fore, they can be given priority, omitting all their neighbouring transitions.

3.1 Confluent Sets of Transitions

Previous work defined conditions for a set of transitions to be confluent. In the
non-probabilistic action-based setting, several variants were introduced, ranging
from ultra weak confluence to strong confluence [4]. They are all given diagram-
matically, and define in which way two outgoing transitions from the same state
have to be able to join again. Basically, for a transition s = ¢ to be confluent,
every transition s % u has to be mimicked by a transition ¢ < v such that u and
v are bisimilar. This is ensured by requiring a confluent transition from u to v.

In the probabilistic action-based setting, a similar approach was taken [22].
For a transition s =+ 1; to be confluent, every transition s % pu has to be
mimicked by a transition ¢ % v such that p and v are equivalent; as usual in
probabilistic model checking, this means that they should assign the same prob-
ability to each equivalence class of the state space in the bisimulation quotient.
Bisimulation is again ensured using confluent transitions.

In this work we are dealing with a state-based context; only the atomic pro-
positions that are assigned to each state are of interest. Therefore, we base our
definition of confluence on the state-based probabilistic notions given in [13]. It
is still parameterised in the way that distributions have to be connected by con-
fluent transitions, denoted by p ~»7 v. We instantiate this later, in Definition 6.

Definition 5 (Probabilistic confluence). Let A be an MDP, then a subset T
of transitions from A is probabilistically confluent if it only contains invisible
deterministic transitions, and

Vs B 1, eT: Vs pu: (u=1,V3ItS v:pp~rv)

Additionally, if s LN w € T, then so should t < v be.
A transition is probabilistically confluent if there exists a probabilistically
confluent set that contains it.

Compared to [13], the definition is more liberal in two aspects. First, not ne-
cessarily b = ¢ anymore. In [13] this was needed to preserve probabilistic visible
bisimulation. Equivalent systems according to that notion preserve state-based
as well as action-based properties. However, in our setting the actions are only
for synchronisation of parallel components, and have no purpose anymore in the
final model. Therefore, we can just as well rename them all to a single action.
Then, if a transition is mimicked, the action will be the same by construction.
Even easier, we chose to omit the required accordance of action names altogether.

(a) Original system (b) Reduced system

Figure 1. An MDP to demonstrate confluence reduction.

Second, we only require confluent transitions to be invisible and deterministic
themselves. In [13], all transitions with the same label had to be so as well (for
a more fair comparison with POR). Here, this is not an option, since during
simulation we only know part of the state space. However, it is also not needed for
correctness, as a local argument about mimicking behaviour until some joining
point can clearly never be broken by transitions after this point.

In contrast to POR [2,10], confluence also allows mimicking by differently-
labelled transitions, commutativity in triangles instead of diamonds, and local in-
stead of global independence [13]. Additionally, its coinductive definition is well-
suited for on-the-fly detection, as we show in this paper. However, as confluence
preserves branching time properties, it cannot reduce probabilistic interleavings,
a scenario that can be handled by the linear time notion of POR used in [6].

3.2 Equivalence of Probability Distributions

Confluent transitions are used to detect equivalent states. Hence, two distribu-
tions are equivalent if they assign the same probabilities to sets of states that are
connected by confluent transitions. Given a confluent set 7, we denote this by
i ~7 v. For ease of detection, we only consider confluent transitions from the
support of p to the support of v. In principle, larger equivalence classes could
be used when also considering transitions in the other direction and chains of
confluent transitions. However, for efficiency reasons we chose not to be so liberal.

Definition 6 (Equivalence up-to 7-steps). Let A be an MDP, T a set of
deterministic transitions of A and p,v € Distr(S) two probability distributions.
Let R be the smallest equivalence relation containing the set

R ={(s,t) | s € support(u),t € support(v),Ja: s & t € T}
Then, 1 and v are equivalent up-to T-steps, denoted by p ~>7 v, if p =g v.

Ezample 1. As an example of Definition 6, consider Figure 1(a). Let 7 be the set
consisting of all a-labelled transitions. Note that these transitions indeed are all
deterministic. We denote by p the probability distribution associated with the
b-transition from sg, and by v the one associated with the c-transition from s;.

We find R’ = {(s2, 86), (83,55), (84,85)}, and so R = Id U {(s2, s6), (86, $2),
(83,54), (84, 83), (83, 85), (85, $3), (84, S5), (85, 84)} (with Id the identity relation).

Hence, R partitions the state space into {so}, {s1}, {s2, s6}, and {s3, 54, $5}. We
find u({s0}) = v({s0}) = 0, u({s1}) = v({s1}) = 0, ({52, 56}) = V({52 56}) = 4
and p({ss, s4,55}) = v({s3, 54, 85}) = 2. Therefore, p =g v and thus p ~>7 v.
Also note that 7 is a valid confluent set according to Definition 5. First, all its
transitions are indeed invisible and deterministic. Second, for the a-transitions
from so, s3 and s4, nothing interesting has to be checked. After all, from their
source states there are no other outgoing transitions, and every transition satis-
fies the condition p = 1; V 3t % v: p ~>7 v for itself due to the clause p = 1;.
For sg % 1,, we do need to check if the condition holds for sg LN . There is a
mimicking transition s; % v, and as we saw above p ~ v, as required. a

Our definition of equivalence up-to 7T-steps is slightly more liberal than the
one in [13]. There, the number of states in the support of p was required to
be at least as large as the number of states in the support of v, since no non-
deterministic choice between equally-labelled actions was allowed. Since we do
allow this, we take the more liberal approach of just requiring the probability
distributions to assign the same probabilities to the same classes of states with
respect to confluent connectivity. The correctness arguments are not influenced
by this, as the reasoning that confluent transitions connect bisimilar states does
not break down if these support sets are potentially more distinct.

3.3 Confluence Reduction

We now define confluence reduction functions. Such a function always chooses
to either fully explore a state, or only explore one outgoing confluent transition.

Definition 7 (Confluence reduction). Given an MDP A, a reduction func-
tion F' is a confluence reduction function for A if there exists some confluent

set T C P for which, for every s € S such that F(s) # en(s), it holds that
— F(s) ={(s,a,1})} for some a € X and t € S such that (s,a,1:) € T.
In such a case, we also say that F' is a confluence reduction function under 7 .

Confluent transitions might be taken indefinitely, ignoring the presence of other
actions. This problem is well known as the ignoring problem [11], and is dealt
with by the cycle condition of the ample set method of POR. We can just as easily
deal with it in the context of confluence reduction by requiring the reduction
function to be acyclic. Acyclicity can be checked in the same way as was done
for POR in [6]: always check whether in the last I steps at least one state was
fully explored (i.e., the state already contained only one outgoing transition).

Ezample 2. In the system of Figure 1(a), we already saw that the set of all a-
labelled transitions is a valid confluent set. Based on this set, we can define the
reduction function F given by F(sg) = {(s0,a,1s,)} and F(s) = en(s) for every
other state s. That way, the reduced system is given by Figure 1(b).

Note that the two models indeed share the same properties, such as that the
(minimum and maximum) probability of eventually observing r is % a

Confluence reduction preserves PCTLY ., and hence basically all interesting
quantitative properties (including LTL x, as was preserved in [6]).

Theorem 1. Let A be an MDP, T a confluent set of its transitions and F' an
acyclic confluence reduction function under T. Let Ar be the reduced MDP.
Then, A and Ap satisfy the same PCTLTX formulae.

4 On-the-fly Detection of Probabilistic Confluence

Non-probabilistic confluence was first detected directly on concrete state spaces
to reduce them modulo branching bisimulation [12]. Although the complexity
was linear in the size of the state space, the method was not very useful: it
required the complete unreduced state space to be available, which could already
be too large to generate. Therefore, two directions of improvements were pursued.

The first idea was to detect confluence on higher-level process-algebraic sys-
tem descriptions [4,5]. Using this information from the symbolic level, the re-
duced state space could be generated directly without first constructing any part
of the original state space. More recently, this technique was generalised to the
probabilistic setting [22].

The other direction was to use the ideas from [12] to on-the-fly detect non-
probabilistic weak or strong confluence [21,23] during state space generation.
These techniques are based on Boolean equation systems and have not yet been
generalised to the probabilistic setting.

We present a novel on-the-fly algorithm that works on concrete probabilistic
states spaces and does not require the unreduced state space, making it perfectly
applicable during simulation for statistical model checking of MDPs.

4.1 Detailed description of the algorithm

Our algorithm is presented on the next page. Given a deterministic transition
s % 1, the function call checkConfluence(s < 1) tells us whether or not this
transition is confluent. We first discuss this function checkConfluence, and then
the function checkEquivalence on which it relies (which determines whether or
not two distributions are equivalent up-to confluent steps).

These functions do not yet fully take into account the fact that confluent
transitions have to be mimicked by confluent transitions. Therefore, we have an
additional function checkConfluentMimicking that is called after termination of
checkConfluence to see if indeed no violations of this condition occur.

The function checkConfluence first checks if a transition is invisible and was not
already detected to be confluent before. Then, it is added to the global set of
confluent transitions 7. To check whether this is valid, a loop checks if indeed
all outgoing transitions from s commute with s < 1,. If so, we return true and
keep the transition in 7. Otherwise, all transitions that were added to T during
these checks are removed again and we return false. Note that it would not be
sufficient to only remove s % 1, from 7, since during the loop some transitions
might have been detected to be confluent (and hence added to 7) based on the
fact that s & 1, was in 7. As s % 1, turned out not to be confluent, we can
also not be sure anymore if these other transitions are indeed actually confluent.

Algorithm 1: Detecting confluence on a concrete state space.

global Set(Transition) T := &
global Set(Transition, Transition) M := @

bool checkConfluence(s % 1) {
if L(s) # L(t) then
return false
else if s % 1, € T then
return true

Set({ Transition) Tola := T
Set(Transition, Transition) Maa := M
T:=TU{s*% 1}
foreach s % u do
if 4 =1, then continue
foreach t % v do
if checkEquivalence(u,v) and
(s & ugT or (3u:v="1, and checkConfluence(t < 1,))) then
M:=MU{(s® utSv)}
continue outermost loop

end
T :="Toua
M = Moia

return false
return true

}

bool checkEquivalence(u,v) {
Q = {{p} | p € support(u) U support(v)}
foreach u % 1, such that u € support(p), v € support(v) do
if checkConfluence(u % 1,) then
Q:={qeQlugqrvgqgu{ |J dq}

9€Q
ueqVveqg

if u(q) = v(q) for every g € Q then
return true

else
return false

end

}

bool checkConfluentMimicking {
foreach (s % u,t % v) € M do
ifsb peT andt< v ¢ T then

if checkConfluence(t < v) then
return checkConfluentMimicking

else
return false

end

return true

The loop to check whether all outgoing transitions commute with s follows
directly from the definition of confluent sets, which requires for every s LN w that
either u = 1, or that there exists a transition ¢ < v such that u ~»7 v, where
t % v has to be in T if s % 1 is. Indeed, if p = 1; we immediately continue to
the next transition (this includes the case that s % p = s % 1,). Otherwise, we
range over all transitions ¢ < v to see if there is one such that p ~»7 v. For this,
we use the function checkFEquivalence(i, v), described below. Also, if s LN weT,
we have to check if also t < v € T. We do this by checking it for confluence,
which immediately returns if it is already in 7, and otherwise tries to add it.

If indeed we find a mimicking transition, we continue. If s LN 1 cannot be
mimicked, confluence of s % 1; cannot be established. Hence, we reset T as
discussed above, and return false. If this did not happen for any of the outgoing
transitions of s, then s % 1, is indeed confluent and we return true.

The function checkEquivalence checks whether p ~~7 v. Since T is constructed
on-the-fly, during this check some of the transitions from the support of p might
have not been detected to be confluent yet, even though they are. Therefore,
instead of checking for connecting transitions that are already in 7T, we try to
add possible connecting transitions to 7 using a recursive call.

In accordance to Definition 6, we first determine the smallest equivalence
relation that relates states from the support of p to states from the support of v
in case there is a confluent transition connecting them. We do so by constructing
a set of equivalence classes @, i.e., a partitioning of the state space according to
this equivalence relation. We start with the smallest possible equivalence relation,
in which each equivalence class is a singleton. Then, for each confluent transition
u % 1,, with u € support(u) and v € support(v), we merge the equivalence
classes containing v and v. Finally, we can easily compute the probability of
reaching each equivalence class of @) by either u or v. If all of these probabilities
coincide, indeed p =g v and we return true; otherwise, we return false.

The function checkConfluentMimicking is called after checkConfluence desig-
nated a transition to be confluent, to verify if 7 satisfies the requirement that
confluent transitions are mimicked by confluent transitions. After all, when a
mimicking transition for some transition s LN 1 was found, it might have been
the case that s 2 1 was not yet in 7 while in the end it is. Hence, checkConflu-
ence keeps track of the mimicking transitions in a global set M. If a transition
s % 1, is shown to be confluent, all pairs (s % u,t < v) of other outgoing
transitions from s and the transitions that were found to mimic them from ¢ are
added to M. If s & 1, turns out not to be confluent after all, the mimicking
transitions that were found in the process are removed again.

Based on M, checkConfluentMimicking ranges over all pairs (s LN wyt 5 v),
checking if one violates the requirement. If no such pair is found, we return true.
Otherwise, the current set 7 is not valid yet. However, it could be the case that
t % v is not in 7, while it is confluent (but since s % u was not in 7 at the
moment the pair was added to M, this was not checked earlier). Therefore, we
still try to denote t % v as confluent. If we fail, we return false. Otherwise, we
check again for confluent mimicking using the new set 7.

10

4.2 Correctness

The following theorem states that the algorithm is sound. We assume that M
and T are not reset to their initial value @ after termination of checkConfluence.

Theorem 2. Given a transition pi> 1,, checkConﬂuence(p% 1,) and check-
ConfluentMimicking together imply that pi> 1, is confluent.

Note that the converse of this theorem does not always hold. To see why,
consider the situation that checkConfluentMimicking fails because a transition
s 1 was mimicked by a transition ¢ < v that is not confluent, and s LN [was
added to 7 later on. Although we then abort, there might have been another
transition ¢ 2 p that could also have been used to mimic s LN w and that is
confluent. We chose not to consider this due to the additional overhead of the
implementation. Additionally, in none of our case studies this situation occurred.

5 Evaluation

The modes tool® provides SMC for models specified in the MODEST language [7].
It allowed SMC for MDPs using the POR-based approach of [6]. We have now
implemented the confluence-based approach presented in this paper in modes as
well. In this section, we apply it to three examples to evaluate its applicability
and performance impact. They were selected so as to allow us to clearly identify
its strengths and limitations. For each, we (1) give an overview of the model, (2)
discuss, if POR fails, why it does and which, if any, modifications were needed to
apply the confluence-based approach, and (3) evaluate memory use and runtime.

The performance results are summarised in Table 2. For the runtime assess-
ment, we compare to simulation with uniformly-distributed probabilistic resol-
ution of nondeterminism. Although such a hidden assumption cannot lead to
trustworthy results in general (but is implemented in many tools), it is a good
baseline to judge the overhead of confluence checking. We generated 10000 runs
per model instance to compute probabilities psy, for case-specific properties. Us-
ing reasoning based on the Chernoff-Hoeffding bound [24], this guarantees the
following probabilistic error bound: Prob(|p — psme| > 0.01) < 0.017, where p is
the actual probability of the property under consideration.

We measure memory usage in terms of the maximum number of extra states
kept in memory at any time during confluence (or POR) checking, denoted
by s. We also report the maximum number of “lookahead” steps necessary in the
confluence/POR checks as k, which is equivalent to kmyin — 1 in [6], as well as
the average length ¢ of a simulation trace and the average number ¢ of nontrivial
confluence checks, i.e., of nondeterministic choices encountered, per trace.

To get a sense for the size of the models considered, we also attempt model
checking (using mcpta [15], which relies on PRISM [18]). Note that we do not
intend to perform a rigorous comparison of SMC and traditional model checking
in this paper and instead refer the interested reader to dedicated comparison

3 modes is part of the MoDEST TOOLSET, available at www.modestchecker.net.

11

Table 2. Confluence simulation runtime overhead and comparison

uniform: | partial order: confluence: model checking:

model params time time k s | time k s c t states time
o (3) 1s - - — | 35 4 9 40 80 609 1s
C(im‘if_ (4) 1s - - —|11s 6 25 6.0 10.0| 3841 2s
granhors (9) 1s | 44s 8 67 80 120| 23809 7Ts
(V) (6) 1s ~ — — |229s 10 177 10.0 14.0 | 144705 265
(7 1s - - - — timeout — 864 257 80s

(2,1) 2s - - — | 4s 3 46 54 164 15283 1ls

CSMA/CD (1,1) 2s - - — | 4s 3 46 5.4 16.4| 30256 49s
(RF, BCrmaz) (2,2) 2s - - — | 10s 3 150 5.1 16.0| 98533 52s
(1,2) 2s - - 10s 3 150 5.1 16.0 | 194818 208s

(4,3,3) 1s 3s 3 1s 3 7 33 11.6| >10° >0s

BEB (8,7,4) 2s 7s 4 8 | 4s 4 15 5.6 16.7| >107 >7s
(K,N,H) (16,15,5) 3s 18s 5 16 | 11s 5 31 83 21.5 — memout —
(16,15,6) 3s 40s 6 32| 34s 6 63 11.2 26.2| — memout —

studies such as [27]. Model checking for the BEB example was performed on a
machine with 120 GB of RAM [6]; all other measurements used a dual-core Intel
Core 15 M450 system with 4 GB of RAM running 64-bit Windows 7.

5.1 Dining Cryptographers

As a first example, we consider the classical dining cryptographers problem [9]:
N cryptographers use a protocol that has them toss coins and communicate the
outcome with some of their neighbours at a restaurant table in order to find
out whether their master or one of them just paid the bill, without revealing
the payer’s identity in the latter case. We model this problem as the parallel
composition of N instances of a Cryptographer process that communicate via
synchronisation on shared actions, and consider as properties the probabilities
of (a) protocol termination and (b) correctness of the result.

The model is a nondeterministic MDP. In particular, the order of the syn-
chronisations between the cryptographer processes is not specified, and could
conceivably be relevant. It turns out that all nondeterminism can be discarded
as spurious by the confluence-based approach though, allowing the application
of SMC to this model. The computed probability psmc is 1.0 for both properties,
which coincides with the actual probabilities.

The POR-based approach does not work: Although the nondeterministic or-
dering of synchronisations between non-neighbouring cryptographers is due to
interleaving, the choice of which neighbour to communicate with first for a given
cryptographer process is a nondeterministic choice within that process.

Concerning performance, we see that runtime increases drastically with the
number of cryptographers, N. An increase is expected, since the number of steps
until independent paths from nondeterministic choices join again (k) depends
directly on N. It is so drastic due to the sheer amount of branching that is
present in this model. At the same time, the model is extremely symmetric and
can thus be handled easily with a symbolic model checker like PRISM.

12

5.2 IEEE 802.3 CSMA /CD

As a second example, we take the MODEST model of the Ethernet (IEEE 802.3)
CSMA/CD approach that was introduced in [15]. It consists of two identical
stations attempting to send data at the same time, with collision detection and
a randomised backoff procedure that tries to avoid collisions for subsequent re-
transmissions. We consider the probability that both stations eventually manage
to send their data without collision. The model is a probabilistic timed auto-
maton (PTA), but delays are fixed and deterministic, making it equivalent to an
MDP (with real variables for clocks, updated on transitions that explicitly rep-
resent the delays; modes does this transformation automatically and on-the-fly).
The model has two parameters: a time reduction factor RF' (i.e., delays of ¢ time
units with RF = 1 correspond to delays of % time units with RF = 2), and the
maximum value used in the exponential backoff part of the protocol, BC, ...

Unfortunately, modes immediately reports nondeterminism that cannot be
discarded as spurious. Inspection of the reported lines in the model quickly shows
a nondeterministic choice between two probabilistic transitions—which conflu-
ence cannot handle. Fortunately, this problem can easily be eliminated through
an additional synchronisation, leading to psme = 1.0 (which is the correct result).
POR also fails, for reasons similar to the previous example: initially, both stations
send at the same time, the order being determined nondeterministically. In the
process representing the shared medium, this must be an internal nondetermin-
istic choice. In contrast to the problem for confluence this cannot be fixed.

In terms of runtime, the confluence checks incur a moderate overhead for
this example. Compared to the dining cryptographers, the slowdown is much
less even where more states need to be explored in each check (s); performance
appears to more directly depend on k, which stays low in this case.

5.3 Binary Exponential Backoff

The previous two examples clearly indicate that the added power of confluence
reduction pays off, allowing SMC for models where it is not possible with POR.
Still, we also need a comparison of the two approaches. For this purpose, we
revisit the MDP model of the binary exponential backoff (BEB) procedure that
was used to evaluate the POR-based approach in [6]. The probability we compute
is that of some host eventually getting access to the shared medium, for different
values of the model parameters K (maximum backoff counter value), N (number
of tries per station before giving up) and H (number of stations/hosts involved).
Again, for the confluence check to succeed, we first need to minimally modify
the model by making a probabilistic transition synchronise. This appears to be a
recurring issue, yet the relevant model code could quite clearly be identified as a
modelling artifact without semantic impact in both examples where it appears.
We then obtain pgme = 0.91 for model instance (4, 3, 3), otherwise psme = 1.0.
The runtime overhead necessary to get trustworthy results by enabling either
confluence or POR is again moderate. This is despite longer paths being ex-
plored in the confluence checks compared to the CSMA/CD example (k). The

13

confluence-based approach is somewhat faster than POR in this implementation.
As noted in [6], large instances of this model cannot be solved with classical
model checking due to the state space explosion problem.

6 Conclusion

We defined a more liberal variant of probabilistic confluence, tailored for the
core simulation step of statistical model checking. It has more reduction poten-
tial than a previous variant at no extra computational cost, but still preserves
PCTL’< - We provided an algorithm for on-the-fly detection of confluence during
simulation and implemented this algorithm in the modes SMC tool. Compared to
the previous approach based on partial order reduction [6], the use of confluence
allows new kinds of nondeterministic choices to be handled, in particular lifting
the limitation to spurious interleavings. In fact, for two of the three examples we
presented, SMC is only possible using the new confluence-based technique, show-
ing the additional power to be relevant. In terms of performance, it is somewhat
faster than the POR-based approach, but the impact relative to (unsound) sim-
ulation using an arbitrary scheduler largely depends on the amount of lookahead
that needs to be performed, for both approaches. Again, on two of our examples,
the impact was moderate and should in general be acceptable to obtain trust-
worthy results. Most importantly, the memory overhead is negligible, and one of
the central advantages of SMC over traditional model checking is thus retained.

As confluence preserves branching time properties, it cannot handle the in-
terleaving of probabilistic choices. Although—as we showed—these can often be
avoided, for some models POR might work while confluence does not. Hence,
neither of the techniques subsumes the other, and it is best to combine them: if
one cannot be used to resolve a nondeterministic choice, the SMC algorithm can
still try to apply the other. Implementing this combination is trivial and yields
a technique that handles the union of what confluence and POR can deal with.

Acknowledgments. We thank Luis Maria Ferrer Fioriti (Saarland University) for
his help in analysing the behaviour of the partial order check on the case studies.

References

1. Baier, C., D’Argenio, P.R., Grofer, M.: Partial order reduction for probabilistic
branching time. ENTCS 153(2) (2006)

2. Baier, C., Grofier, M., Ciesinski, F.: Partial order reduction for probabilistic sys-
tems. In: QEST. pp. 230-239. IEEE Computer Society (2004)

3. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)

4. Blom, S.C.C.: Partial T-confluence for efficient state space generation. Tech. Rep.
SEN-R0123, CWI (2001)

5. Blom, S.C.C., van de Pol, J.C.: State space reduction by proving confluence. In:
CAV. LNCS, vol. 2404, pp. 596-609. Springer (2002)

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Bogdoll, J., Fioriti, L.M.F., Hartmanns, A., Hermanns, H.: Partial order methods
for statistical model checking and simulation. In: FMOODS/FORTE. LNCS, vol.
6722, pp. 59-74. Springer (2011)

Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and statistical model check-
ing for Modestly nondeterministic models. In: MMB/DFT. LNCS, vol. 7201, pp.
249-252. Springer (2012)

Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A
compositional modeling formalism for hard and softly timed systems. IEEE Trans-
actions on Software Engineering 32(10), 812-830 (2006)

. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-

ent untraceability. Journal of Cryptology 1(1), 65-75 (1988)

D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic
programs. In: QEST. pp. 240-249. IEEE Computer Society (2004)

Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduc-
tion. Int. Journal on Software Tools for Technology Transfer 12(2), 155-170 (2010)
Groote, J.F., van de Pol, J.C.: State space reduction using partial tau-confluence.
In: MFCS. LNCS, vol. 1893, pp. 383-393. Springer (2000)

Hansen, H., Timmer, M.: A comparison of confluence and ample sets in probabil-
istic and non-probabilistic branching time. Submitted to TCS. (2013)
Hartmanns, A.: Model-checking and simulation for stochastic timed systems. In:
FMCO. LNCS, vol. 6957, pp. 372-391. Springer (2010)

Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed
automata. In: QEST. pp. 187-196. IEEE Computer Society (2009)

Henriques, D., Martins, J., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical model
checking for Markov decision processes. In: QEST. pp. 84-93. IEEE Computer
Society (2012)

Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: VMCAI LNCS, vol. 2937, pp. 73-84. Springer (2004)
Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabil-
istic real-time systems. In: CAV. LNCS, vol. 6806, pp. 585-591. Springer (2011)
Lassaigne, R., Peyronnet, S.: Approximate planning and verification for large
Markov decision processes. In: SAC. pp. 1314-1319. ACM (2012)

Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
RV. LNCS, vol. 6418, pp. 122-135. Springer (2010)

Mateescu, R., Wijs, A.: Sequential and distributed on-the-fly computation of weak
tau-confluence. Science of Computer Programming 77(10-11), 1075-1094 (2012)
M.Timmer, Stoelinga, M.I.A., van de Pol, J.C.: Confluence reduction for probab-
ilistic systems. In: TACAS. LNCS, vol. 6605, pp. 311-325. Springer (2011)

Pace, G.J., Lang, F., Mateescu, R.: Calculating-confluence compositionally. In:
CAV. LNCS, vol. 2725, pp. 446-459. Springer (2003)

PRISM manual: The APMC method, http://www.prismmodelchecker.org/
manual/RunningPRISM/ApproximateModelChecking

Stoelinga, M.I.LA.: Alea jacta est: verification of probabilistic, real-time and para-
metric systems. Ph.D. thesis, University of Nijmegen (2002)

Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: CAV. LNCS, vol. 2404, pp. 223-235. Springer (2002)
Younes, H.L..S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. stat-
istical probabilistic model checking: An empirical study. In: TACAS. LNCS, vol.
2988, pp. 46-60. Springer (2004)

15

A Proofs

Theorem 1. Let A be an MDP, T a confluent set of its transitions and F an
acyclic confluence reduction function under T . Let Agr be the reduced MDP.
Then, A and Ap satisfy the same PCTLT y formulae.

Proof. This theorem precisely corresponds to Corollary 26 of [13]. That corol-
lary is based on Theorem 25 of that paper, which states that A =, Ap.
Although those results were for MDPs where each state can have only one out-
going transition for each action label, this property is not used in any of the
proofs. Hence, the results apply just as well for our type of MDPs. Additionally,
we allow countable state spaces, while in [13] finiteness was assumed. However,
as we only consider finite subparts of an MDP during simulation, this also does
not matter. More importantly, the results are for the old definitions of conflu-
ent sets and equivalence of distributions. Hence, we discuss to what extent the
results still hold for our adapted definitions.

We first discuss the influence of our new definition of equivalence of distribu-
tions (Definition 6). It appears that this change does not influence the correctness
of the old results in any way. To see why, note that the definition of equivalence
is only used in [13] in Lemma 22, Lemma 24 and Theorem 25. In Lemma 22
and Theorem 25, the definition of equivalence is used to show that 1, ~>4 1,
implies that either s =t or there is a transition from s to ¢ in 7. This also still
directly follows from our Definition 6. After all, 1, =g 1; holds only if s and
t are in the same equivalence class of R. This is indeed only the case if either
s =t or if there is a T-transition from s to ¢ (since support(u) and support(v)
are singletons, no transitivity can be involved). In Lemma 24 it is shown that
u ~»7 v implies u =g v for the set R that relates all states that can join while
only following confluent transitions. Since that set R can easily be seen to be a
superset of the set R from Definition 6 if 7 is a confluent set (using Lemma 22
of [13]), the result still holds by Proposition 5.2.1.5 from [25].

The second change we made was to use a more liberal version of the notion of
confluent sets (Definition 5). Although technically probabilistic visible bisimula-
tion is not preserved anymore under this new definition, the bisimulation notion
could be altered to also just require invisible transitions instead of invisible ac-
tions, and also allow transitions to be mimicked by transitions with a different
action. As discussed in detail in Section 3.1, this would not change anything to
the fact that PCT L< « properties are preserved.

Hence, the old proofs from [13] can be used practically unchanged to show
that our new definitions preserve the adjusted variant of probabilistic visible
bisimulation, and thus that indeed a reduced system based on confluence satisfies
the same PCTLi « formulae as the original system. a

Lemma 1. Given two distributions u, v,
checkEquivalence(p,v) = p~~gv

where T is the set of confluent transitions at termination of checkEquivalence.

16

Proof. First of all, note that 7 only grows during checkEquivalence. After all,
each call to checkConfluence might add transitions to it, or leave it unchanged.

Assume that checkEquivalence(u,v) yields true. Hence, u(q) = v(q) for every
q € @, using the set @ after the loop. Note that @ is a partitioning of the set
support(u) U support(v), since initially it contains all singletons, and the loop
only merges some of its elements. Now let Q' = Q U {{q} | ¢ & support(n) U
support(v)} be a partitioning of the complete set of states S. We also have
w(q) = v(q) for every ¢ € @', as both p and v assign probability 0 to all
newly added classes. Let Q" be the equivalence relation associated with @', i.e.,
(s,t) € Q" if and only if there is a set ¢’ € @' such that s,t € ¢'. Since the
function returns true, by definition we have u =g~ v.

It remains to show that Q” C R; by Proposition 5.2.1.5 of [25], then indeed
i =g v. Recall that R is the smallest equivalence relation containing the set

R' ={(s,t) | s € support(u),t € support(v),Ja: s & t € T}

where we chose 7 to be the set at termination of checkFEquivalence. Hence,
(s,t) € R if and only if s = ¢ or there are states sg, $1,. .., Sp such that sg = s,
s, =t and either (s;,8,41) € R or (s;+1,8;) € R’ for every 0 <14 < n.

So, let (s,t) € Q". We show that also (s,t) € R. If s = ¢, this is immediate, so
assume that s # t. By construction, there is a set ¢’ € Q such that s,¢ € ¢’. For
s and t to be in the same set, some merges must have taken place in the loop.

If s € support(), s; € support(v) and s % s; € T (at some point, so
since 7 only grows also at the end), then {s} and {s;} are merged. Hence,
this corresponds to (s,s1) € R’. Alternatively, the same merge also happens if
s € support(v), s; € support(y) and s; % s € T, hence, (s1,5) € R'. The set
{s,s1} can grow further in the same way, until it at some point contains ¢. This
procedure corresponds exactly to the requirement that (s,t) € R.

(In this proof we used s % p € T and checkConfluence(s %) inter-
changeably; after all, if checkConfluence(s < u) returns true then indeed also
s peT,andif s % pe T then checkConfluence(s % p) returns true.) O

Theorem 2. Given a transition pi> 1,, checkConﬂuence(p—l> 1,) and check-
ConfluentMimicking together imply that p 1, is confluent.

Proof. We need to show that there exists a confluent set of transitions containing
pH 1,. We show that, upon termination of the algorithm and returning true,
the set 7 fulfills this condition. Clearly, p 4 1, € T, since it is always added
immediately at the beginning of checkConfluence (except in case that false is
returned due to it being visible), and only removed before returning false. Since
we assumed that true is returned, indeed p—l> 1,€T.

To show that 7 is a confluent set, let s < 1, € 7 be an arbitrary element.
Note that indeed any element of 7 is deterministic, since the inner foreach loop
of checkConfluence ascertains that only for such transitions the function check-
Confluence is called (and hence only they are potentially added to 7). We have
to prove that s % 1, is invisible and that, for every s % p we have either y = 1,

17

or there exists a transition ¢ % v such that u ~»7 v. Also, we need to show that
tS visin T if s 1 is. We postpone this last part to the end.

Since s % 1; € T, at some point checkConfluence(s < 1;) must have been
called, s & 1; was added to 7 and subsequently not removed. This implies
that L(s) = L(t) (and hence indeed the transition is invisible) and that the
algorithm terminated with the final return true statement. Hence, the outermost
foreach loop never reached the end of its body, but was always cut short before
by a continue statement. So, for each s LN w it holds that either p = 1; or
there exists a transition ¢ < v for which the second foreach loop reached its
continue statement. In the second case, checkEquivalence(p,v) yielded true, and
by Lemma 1, this implies that u ~~7 v was true at the end of each iteration
of the loop. Since T can only grow during the loop, and also afterwards no
transitions are removed from 7 anymore (because otherwise p—l> 1, would have
been removed too), the set 7 at the end of the algorithm is a superset of the set
T at the moment that p ~»7 v was established. Hence, we also have y ~»7 v for
the final 7 (based on Proposition 5.2.1.5 of [25]), as required.

Finally, we show that if s & y is mimicked by ¢ % v and s & p € T,
then so is ¢ = v. This follows from checkConfluentMimicking. After all, each
transition and its mimicking transition that are found, are added to M in the
body of checkConfluence. Only when T is reset also M is, since the mimickings
that were found in that call are then clearly not relevant anymore. At the end,
checkConfluentMimicking checks all of the mimicking pairs. If one fails the test,
the function checks to see if it can still add ¢ < v to T to make things right. Since
we assumed that it returns true, apparently no irreparable violation was found,
and indeed all confluent transitions are mimicked by confluent transitions. O

18

