Data Provenance Inference in Logic Programming:
Reducing Effort of Instance-driven Debugging

Mohammad Rezwanul
Huqg

Alessandra Mileo

Andreas Wombacher

Digital Enterprise Research

Dept. of Computer Science
University of Twente
Enschede, The Netherlands

m.r.hug@utwente.nl

ABSTRACT

Data provenance allows scientists in different domains val-
idating their models and algorithms to find out anomalies
and unexpected behaviors. In previous works, we described
on-the-fly interpretation of (Python) scripts to build work-
flow provenance graph automatically and then infer fine-
grained provenance information based on the workflow prove-
nance graph and the availability of data. To broaden the
scope of our approach and demonstrate its viability, in this
paper we extend it beyond procedural languages, to be used
for purely declarative languages such as logic programming
under the stable model semantics. For experiments and vali-
dation, we use the Answer Set Programming solver oClingo,
which makes it possible to formulate and solve stream rea-
soning problems in a purely declarative fashion. We demon-
strate how the benefits of the provenance inference over the
explicit provenance still holds in a declarative setting, and
we briefly discuss the potential impact for declarative pro-
gramming, in particular for instance-driven debugging of the
model in declarative problem solving.

Keywords

Data provenance, Logic programming, Provenance graph

1. INTRODUCTION

Data provenance is often used for auditing and debugging of
data intensive applications. Provenance-aware applications
automatically maintain data provenance which refers to the
derivation history of data starting from its input sources
[33]. Data provenance can be defined at different levels of
granularity [4]. Fine-grained data provenance is defined at
the value-level documenting the relationship among the in-
put values, the output value and the associated processes.
and it turned out to be very helpful for debugging purposes
[16].

Institute
National University of Ireland
Galway, Ireland
alessandra.mileo@deri.org

Dept. of Computer Science
University of Twente
Enschede, The Netherlands

a.wombacher@Qutwente.nl

Provenance-aware applications have been proposed on vari-
ous abstraction levels. In this paper, we are investigating the
potential of the fine-grained data provenance as a debugging
tool for a declarative programming language. A character-
istic of declarative languages is that the user is specifying
the property of the solution rather than the algorithm that
produces it. As a consequence, the user does not specify
a control flow along which the data is processed, but repre-
sents direct derivation rules for data, specifies a search space
for a solution, and constraints the solution based on specified
properties.

A class of these languages based on the stable model se-
mantics, namely Answer Set Programming (ASP), has been
intensively applied in the last decade to solve computation-
ally hard problems [10]. The ability to deal with incomplete
knowledge, conflicting and noisy input and common sense
reasoning made ASP applicable to domains such as civil en-
gineering, home healthcare, sensor networks, planning, bio-
informatics, phylogenesis, system biology, industrial applica-
tions and more [25, 22, 23, 6, 12]. Despite this wide applica-
bility, explaining unexpected outcome in an instance-driven
way, by detecting errors in the knowledge model or in the
inference rules related to a particular output, is still under
investigated.

In this paper, an ASP program is designed to deal with
online data. In the use case, different data streams such as
twitter, rss and weather information is aggregated to give
an indication on the accessibility rating of a particular road
segment/location. The accessibility rating of a road segment
is based on the traffic delay, i.e. whether it is expected that
traveling along this road will cause delays. Here the ASP
is beneficial due to the huge amount of combinations on
which data can be available and how they can be aggregated.
An explication of the current ASP program into a control-
flow based language providing the same functionality would
result in a multitude of the currently 120 lines of code.

In this paper, we discuss and compare two options to make
the ASP solver provenance aware. The first option is to
extend the logical programs to encode the provenance in-
formation explicitly as predicates. The second option is the
inference of the fine-grained data provenance based on an ex-
plication of the search space and the an provenance inference
method proposed in [18, 17, 15]. The option of extending

the reasoner to document explicit provenance has been over-
looked since it is then reasoner specific while the other option
of inferring provenance information is easily adaptable and
extensible for other reasoners. Thus, the later approach will
have more impact.

The difference to our previous work discussed in [16] is that
in this paper, we extend the technique of static analysis to
infer provenance based on a declarative language rather than
a control flow dominated one such as Python. Furthermore,
we also provide some basic formalisms to encode a logic pro-
gram in form of a workflow. We infer the fine-grained prove-
nance information based on the complete search space gen-
erated by the grounding of the logic program represented as
workflow provenance graph. In this paper, we will illustrate
how the proposed approach is complementary to ongoing ef-
forts in finding solutions for debugging ASP programs. This
will enable us to demonstrate how the benefits of the prove-
nance inference over the explicit provenance still holds in a
declarative setting.

2. BACKGROUND

2.1 Answer Set Programming and Streams
Answer Set Programming (ASP) [1, 20, 10] is a purely declar-
ative and non-monotonic logic programming paradigm di-
rected at solving computationally complex search problems
using the “generate and test” approach, based on the stable
model semantics [13] where solutions are represented by sets
of atoms (answer sets) for which all the rules in the program
are satisfied.

Among ASP’s distinguishing feature is its ability to derive
multiple answer sets. This is primarily achieved through
non-monotonicity and the use of Negation As Failure (NAF).
In general, this allows ASP to perform default reasoning as
well as the ability to non-deterministically derive solutions
even when reasoning under incomplete knowledge.

Given the expressivity of ASP in dealing with incomplete
information, conflict resolution, constraint-based reasoning,
non-deterministic choices and defaults, solutions to repur-
pose ASP reasoning for streaming data have been proposed
[5] to apply ASP to stream reasoning in scenarios like Inter-
net of Things, social networks, financial planning, resource
management, health monitoring and many more.

In this paper, we focus on solutions for complex stream rea-
soning capabilities based on ASP, which can offer these rea-
soning capabilities along with pure declarativity in the prob-
lem specification [8]. The current work by Gebser et al. [9]
provides an all encompassing software solution to ASP-based
stream reasoning. Oclingo is an Answer Set Programming
reasoner designed to work similarly with the normal syntax
and semantics of the language, but with the addition of new
functionality to allow for the streaming input of data.

Oclingo has the ability to reason upon different frames of
reference in addition to it’s powerful ASP-based reasoning.
This allows programmers to define reasoning tasks in which
temporal information can be deliberated upon and solutions
to frame-based problems (e.g. involving sliding windows of
knowledge) could be encoded. The Oclingo implementation
achieves this by extending the ASP language to deal with

Table 1: Relevant Oclingo ASP Syntax

Syntax Description

h < ai,...,am[,not am41,...,n0t a,]. | Logical rule

a < . Fact

— A1, ..o, A |, MOt Qppy1, ..., RO Qp]. Constraint

H{h1, ..., hn}u < Choice [rule]

lai,...,am[, not am41, ..., not ayl]. (I,u € N)

#Hexternal a. Indicates
Streamed Input

F#volatile t : N Indicates
time-decay rules

D

o o> O L]

Constants Source Processing Views Computing
Elements Processing Elements

Figure 1: Representation of logical rules in Graph Model

emerging and expiring knowledge, and to reason with time-
decaying logic programs. In Table 1, the part relevant to
this paper of Oclingo’s ASP syntax for stream reasoning
is shown. In the next section, we describe the the way of
representing a logic program in a data-dependent manner.

2.2 Provenance Graph Model

The core concept of this paper is to infer provenance infor-
mation in a logic program. Provenance information can be
represented as a graph and referred to as provenance graph.
Therefore, it is necessary to transform a logic program into
a data-dependent provenance graph. A provenance graph
G, is a set of (V, E) where V denotes the set of vertices or
nodes and F denotes the set of directed edges. We introduce
a provenance graph model to distinguish different types of
nodes. These are:

e Constants: represents a base fact mentioned in a logic
program.

e Source Processing Element: represents an opera-
tion/rule that either assigns a constant/fact or reads
data from a source.

e Computing Processing Element: represents an op-
eration/rule that either computes a value/predicate
based on its parameters.

e View: represents either a variable/predicate defined
in the program or an intermediate result generated by
a processing element.

A directed edge connecting two nodes represents the data
dependence in the provenance graph. In the provenance
model, every source and computing processing element gen-
erates a view. Further, a view node can be used as an input
to multiple source and computing processing elements.

Assuming that, we have three rules in a logic program: i)
f « ., saying f is a fact (always true), ii) a1 < f, using
fact f to derive predicate a1 and ii) h < a1, a2, having two
(or more) predicates in the body, used to produce predi-
cate h. Fig. 1 shows the provenance graph representing the

aforesaid rules. The first rule introduces a base fact f, rep-
resented by a constant node in the provenance graph. Later,
this fact has been used to produce predicate a1, represented
by a view node and the rule itself is encoded in form of a
source processing element SP;. The next rule is represented
by the computing processing element P; which has two body
predicates a1 and az. Both of them are considered as views
in the provenance graph and they contribute to produce the
predicate h, another view node in Fig. 1.

There are a few properties of both source and computing
processing elements which are listed below:

e Windows: A window specifies a subset of data prod-
ucts/predicates used by an operation to produce an
output data product/predicate. Therefore, a window
with a predefined size is applied over the stream of in-
put data products to limit the number of data products
to be considered by the processing element.

e Trigger: In stream data, a source or computing pro-
cessing element is repeatedly executed after elapsing a
predefined interval, also known as trigger period.

e Input-output ratio: It refers to the ratio of the num-
ber of the data products/predicates contributed in a
processing element to the number of the data prod-
ucts/predicates produced by the same processing el-
ement during the execution phase. As an example,
an aggregate operation like #count considers all in-
put data products to produce an output data product
and thus, the ratio is n : 1 where n is the number of
input data products in the window. There are a few
operations where the ratio keeps changing. As an ex-
ample, a select operation might take an n number of
tuples as input and produce the tuples satisfying the
condition. Therefore, The input-output ratio cannot
be determined prior to the actual execution and these
operations are referred to as variable mapping opera-
tions.

3. RELATED WORK

In the past few years some effort have been put against the
design of debugging tools to promote widespread use of ASP
in real world applications. Initial efforts would tackle cat-
egorization of logical errors to provide justifications [3]. [2,
11] propose the use of a debugging language to specify de-
bugging statements, and rewrite them as an ASP program.
More general approaches go beyond the propositional case,
with particular attention to the complexity issues of ground-
ing [30, 26]. Recent work proposes stepping techniques for
ASP [27], relying on the intuition of a programmer on the
applicability of rules. The integration of engineering tools
in an IDE for ASP has also been put forward in the last
few years, but works are still preliminary and mainly tar-
geted to programmers, with graphical tools, spell checking
and tracking mechanism [7, 19].

In our approach, we target both ASP programmer and do-
main experts in bridging the gap between practical experi-
ence in writing logic programs and domain expertise, used
to go from a description of a problem to a logical model that
can be validated over instances of interest.

This provides a complementary approach to debugging declar-
ative programs which targets early stages of the modeling
phase, from a problem domain to a program description.
This steps are carried over incrementally, starting from easy
formulation towards rules that can deal with more complex
cases. In this process, the correctness of a logical model
might turn out to be inaccurate when domain properties are
expanded or if we omit some aspects of the domain of in-
terest, which would require new rules and constraints. This
dynamic aspect is even more important when the input se-
ries are partially unknown, like in streaming systems with
unexpected chains of input and realize only later that our
initial ASP formalization was not correct.

We believe a continuous graph-based view of how dynamic
data provenance can explain outcome of streaming ASP for-
malizations at any of these stages, might help domain ex-
perts and ASP programmers spotting modeling issues earlier
on and get to the intended characterization faster.

To the best of our knowledge, the use of data provenance for
purely declarative languages has not been explored. Prove-
nance aware workflow engines such as Kepler [21], Karma2
[34], Taverna [28] can help maintaining data provenance with
some limitations. One of these limitations is that scientists
have to learn the semantics of that particular workflow en-
gine they facilitate and secondly, there is a possibility to have
less expressiveness than in the native language, in which sci-
entists might feel more comfortable. However, neither of
these workflow engines can handle declarative languages.

In [32, 29], authors provide a complete DBMS with explicitly
recorded provenance data, applicable to only subset of logic
inference. In [14], authors proposed an approach that can
reconstruct provenance of the manipulations done over the
data in an open system like excel sheet or a programming
tool like R. This approach used a library of basic transfor-
mations to infer and reconstruct provenance for a particular
value. Work in [24] documents provenance by modifying the
source code of a program automatically. It provides fine-
grained data provenance after executing the script. In [31],
authors instrumented Xlog, a logic programming language,
by writing a Xlog interpreter known as PAXlog, to collect
provenance. However, to collect provenance, a user guide-
line must be followed. In [16], we proposed an approach that
can generate provenance graphs of a Python script by static
code analysis.

We want to use provenance graphs over streaming ASP pro-
grams to be able to i) detect what data produced a particular
fact in a solution at a particular time, and ii) visually rep-
resent the complete search space that might contribute to
obtaining a particular literal in an answer set.

4. USE CASE DESCRIPTION

In this paper, we consider the problem of determining the
accessibility of a particular road segment/location in a spe-
cific area (e.g London, UK). We take into account available
data from various sources, namely i) the traffic conditions
on major arterial roads, ii) the weather conditions being re-
ceived from various stations within the area, and iii) Twitter
status updates from users, specific to the geo-location and
using some particular keywords or hashtags for filtering.

These sources provide streaming data, i.e. data tuples sent
to the destination as soon as they are generated. To build
an application that can constantly update the accessibility
status of different road segments, we need to be able to pro-
cess and reason about knowledge produced by the sources in
a streaming fashion, based on some intelligent aggregation
and reasoning over the information being received. For ex-
ample, in worst case scenario, the program would infer that
the location is very inaccessible if all three streams reports
that it is difficult to enter or exit the area (e.g. slow traffic
due to an accident; a snow blizzard hindering travel; and
twitter status updates corresponding and/or confirming the
same information). When streaming information is lacking
or contradictory, the program would need to combine avail-
able knowledge in a qualitative ranking, in order to decide
a suitable accessibility rating to aid in informing potential
travelers. Contextual information or user preferences can
also be used to guide the final results. The possibility of
having multiple possible solutions supported by subsets of
the available input streams can also be desirable when the
qualitative metrics do not lead to any actual winning out-
come.

In order to be able to deal with these different aspects, we
declaratively encoded our problem in ASP. The logic pro-
gram consists of two primary processes: a) generating the
search space of plausible answer set solutions based on the
input streaming data, and b) infer answer sets relevant only
to the streaming data by navigating and pruning the search
space. Grounding techniques for ASP generate a complete
and defined search space domain and the ASP solver ex-
plores and prunes the search space (via heuristics) to find
the desired solutions.

S. EXPLICIT PROVENANCE

The first approach proposed in this paper is to extend the
logical program with additional logical rules to represent the
fine-grained data provenance information explicitly encoded
as predicates. The augmentation of the logical program with
these additional logical rules can be done manually (as done
for this paper) or be automated, by parsing and analyz-
ing the logical program. For the purpose of investigating
the usefulness of fine-grained provenance graphs for debug-
ging ASPs and the pros and cons of explicit and inferred
provenance information discussed in this paper, the way of
augmenting the logical program is not relevant. We refer to
the set of extra logical rules as explicit provenance rules. In
this section, we describe the construction of the provenance
rules per class of ASP rules, illustrate it with an example
from the scenario and provide the translation of the derived
provenance predicate into a graphical representation based
on provenance graph model discussed in Sec. 2.2. In par-
ticular, the different rule types as indicated in Table 1 are
clustered into the following classes: i) logic rule, ii) logic
rule with equivalent head predicate, iii) choice rule with con-
straints and iv) logic rule with aggregation functions.

5.1 Logical Rule

In general, a rule R in a logical program has two parts: head
and body. If the predicates in the body are satisfied then the
predicate in the head of the rule can be inferred. The struc-
ture of a logical rule is given below, which extends the ver-
sion in Table 1 by explicating the arguments of the involved

predicates as a vector araai = (argsi,a;,---,0rgSn,, a;) Te-
spectively:

h((ﬂh) e al(mal)v ...,G,M(CWJGM)
[, not CL]\4+1(G@1L1+1), ...,TLOt aN((ﬁaN)].

The predicate h(args) in the aforesaid rule R constitutes
the head of the rule, where as the body of the rule R is
comprised of the predicates a1, ... , ay. Each predicate in
both head and body of the rule may have several arguments
represented by the vector cﬂh and cﬂai respectively. The
number of arguments for each predicate may vary.

5.1.1 Provenance extension

To document explicit provenance, it is necessary to encode
all predicates and argument bindings of the logical rule used
to derive the predicate h into a provenance predicate. This
is done by adding an extra logical rule for rule R to the orig-
inal logic program. The construction of the corresponding
provenance rule is quite straightforward. The provenance
rule is a copy of the logical rule R with a modified head
predicate.

To formulate the head predicate of the provenance rule Rprov,
the keyword ‘Prov’ is added as a suffix to the name of the
predicate in the head part of rule R, thus hProv. The pred-
icate hProv has the following arguments:

1. arguments of the head predicate of rule R: cﬁh
2. a user defined rule identifier: rule_id
3. for each positive predicate, a; in the body of rule R:

(a) name of the predicate: a;

(b) arguments of the predicate a;: arga,

Negated predicates are not encoded, since in a provenance
graph enumerating negated predicates may explode the graph
and the negation is intended as Negation as Failure (NaF),
which means that they have not been observed. As an ex-
ample, for the aforesaid rule R, we add the following rule,
RProv, which is used to capture the explicit provenance
information.

hProv((W]h, rule_id, al,cﬁjal, ...,an, CWJGM)
I al(cﬁal), .. .,CLM(CW]QM),

[nOtaA4+1(aF§aM+l)w"7nOtaﬁda?ZaN)y

5.1.2 Example

As an example Listing 1, lines 1 and 6 show two rules which
are excerpted from the logic program of the use case (see Sec.
4). Both of these rules follow the aforesaid basic structure
of a logical rule and therefore, an extra provenance rule per
logical rule will be added to document provenance explicitly.
Based on the provenance rule formulation discussed above,
Listing 1, lines 4 and 9 show the provenance rules.

Listing 1: An example of a logical rule with it’s correspond-
ing provenance rule

1 riskvalue(rss, high, LOCATION) :- rss(
STATUSTYPE, LOCATION, SEVERITY, TIME),
negative (STATUSTYPE), SEVERITY>1.

negative(rss(brokencar, roadsegments
brokencar) sThree 24) (sThree)
Ioglc rule Ioglc rule
P5 P8

riskvalue(rss,

riskvalue(rss,
high,sThree) low,sThree)

Figure 2: Example provenance graph for logical rule

o

% explicit provenance

4 riskvalueProv(rss, high, LOCATION, p5, rss,
STATUSTYPE, LOCATION, SEVERITY, TIME,
negative, STATUSTYPE) :- rss(STATUSTYPE,
LOCATION, SEVERITY, TIME), negative(
STATUSTYPE), SEVERITY>1.

6 riskvalue (rss, low, LOCATION) :- roadsegments (
LOCATION), not riskvalue(rss, high,
LOCATION) .

8 % explicit provenance

9 riskvalueProv(rss, low, LOCATION, p8,
roadsegments, LOCATION, null, null, null,
null, null) :- roadsegments (LOCATION), not
riskvalue (rss, high, LOCATION) .

The riskvalueProv predicate in line 4 and 9 have different
arity. Since a predicate in a logical program must always
have the same arity, the remaining arguments of the predi-
cate in line 9 are filled with null values. When constructing
the provenance graph the null values are ignored.

5.1.3 Provenance Graph

To construct the provenance graph, we interpret the prove-
nance predicates as found in the answer set of the logical
program. Inverse to its construction the head and the pos-
itive body predicates can be derived knowing the arity of
each predicate. The arity can either be derived from the
remaining content of the answer set or be specified in a con-
figuration file. The relation between input predicates and
output predicate of the processing element is derived from
the fact that the head predicate of the rule is defined by a
single logical rule respectively. Thus the processing element
is a logical rule.

Examples of the provenance predicates as derived from the
use case are given below resulting in the provenance graph
depicted in Fig. 2. Squares represent processing elements
and ovals represent views. The logical rule processing ele-
ment has a many to one input-output ratio (see Sec. 2.2),
which means that all input views must contain a tuple to
actually derive the output view.

riskvalueProv(rss,high,sThree,p5,
rss,brokencar,sThree,2,4, negative,brokencar)

riskvalueProv(rss,low,sThree,p8,
roadsegments,sThree,null,null,null,null;null)

The logical rule discussed in the previous section is the basic
building block of a logical program. In the following some
more complex constructions are discussed.

5.2 Projection Rule

A projection rule is a logical rule where the body of the rule
contains a predicate which has at least one argument which
is neither constrained by another predicate nor used in the
head predicate. The schema of a projection rule is given
below. Please note that for readability, we do not add the
optional negated predicates in the body of the production
rule as in the previous section.

h(&?}h): —-a1(5F§a1)7 -»GA4(5?3aAf)

where there exists an unbound arg; x € LW);C
with k € {a1,...am} and 1 < j < ny

The predicate h in the aforesaid rule R constitutes the head
of the rule, where as the body of the rule R is comprised
of the predicates a1, ... , ap. There must be at least one
argument arg;r which is unbounded, i.e. not used by any
other predicate in this rule. The determination of argument
argj,r in a logical rule is simply checking all variables for
their occurrences in the head and the remaining body pred-
icates. If there is no match for an argument, the condition
for a projection rule is fulfilled.

5.2.1 Provenance extension

The provenance rule follows the construction of the produc-
tion rule. Please note that if there is a predicate h in the
answer set for the head of the projection rule, there may be
multiple instances of the provenance predicate hProv - one
for each instance of argument arg;“.

hProv(cﬂh, rule_id, a1, c@al R

:_'adanm)a

5.2.2 Example

As an example, for the aforesaid rule R, listing 2 line 1 shows
an example of a projection rule taken from our scenario. The
variables R and N are unbounded in this example. Listing
2, line 4 shows the explicit provenance rule related to the
projection rule. Please be aware that the provenance rules
for projection and logical rules do not deviate with regard
to the provenance rule, but they potentially deviate in the
number of instances in the answer set and therefore in the
provenance graph.

7aMﬁa?ZaM)
- an (@ day,)-

Listing 2: Example of a projection rule with explicit prove-
nance.

1 has_support (LOC)

2

3 % explicit provenance

4 has_supportProv (LOC, pll, support, RISC, LOC, N
) :— support (RISC,LOC,N) .

:— support (RISC,LOC,N) .

5.2.3 Provenance Graph

Examples of the provenance predicates as derived from the
use case are given below resulting in the provenance graph
as depicted in Fig. 3. The projection processing element
differs from the logical rule processing element descried in
Sec. 5.1.3 by having a single input only. Here the input-
output ratio of the projection processing element means that
each tuple in the input view is consumed into a single tuple
in the output view. The union processing element deviates

<support(low,> <support(high,
sThree,1) sThree,1)

intermediate

projection
P11

has_support(
sThree)

Figure 3: Example provenance graph for projection rule

from a logical rule processing element since it has an input-
output ratio of one to one, thus every tuple in an input
view is directly transformed into a tuple in the output view
without correlating it with tuples from the remaining input
views. As a consequence, the union in Fig. 3 introduces two
tuples in the intermediate view, which are then projected
into a single tuple in the has_support predicate.

has_supportProv(sThree,pl1,support,low,sThree,1)
has_supportProv(sThree,pl1,support,high,sThree,1)

5.3 Choice Rule with Constraints

A logic program might also include choice rules where the
non deterministic choice in the head of the rule generates the
search space and associated constraints reduce the search
space again. The structure of a choice rule is given in Table
1 which is a short-hand notation of the following:

Hh@rgn), ..., h(@rgi)yu : — a1(@rda,), .- ant (@ ay,)-

where [, u € N and the choice rule says that the solver must

choose at least [predicates from the set of h(argp), ..., h(argy)

predicates but not more than u predicates. A choice rule is
often associated with constraints. Constraints are used to
minimize the search space by excluding certain combinations
of predicates that do not satisfy a particular condition. The
basic structure of a constraint in relation with a choice rule
is given below:

:— h(argy), bi(ardgs,),. .. ba(ardgs,,), not bM-&-l(mbMH)-

It is important to understand that the core information is
the h(cﬂi) predicate and the negated predicate bas41. Since
the body of a constraint must always evaluate to false, it
actually means that the negated predicate bys+1 must always
evaluate to true if the predicate h(cﬁ]}i) evaluates to true.
This information must be added to the provenance graph.

5.3.1 Provenance extension

To document explicit provenance for choice rules with con-
straints, we add one explicit provenance rule for each pred-
icate in the head of the corresponding choice rule. The
formulation of the provenance rule hProv follows the same
procedure as discussed in Sec. 5.1.3. However, the body
of the provenance rule contains now an additional predicate
h(cﬁ]}l) to ensure that the right instances of the provenance
predicate hProv are available in the answer set. To repre-
sent the constraints an additional provenance rule is added
hProvConstr which contains as arguments the arguments of
the chosen head predicate h((ﬁi) as well as the name and

the arguments of the negated predicate bar+1. The body
of this additional rule consists out of the head predicate of
the choice rule h((ﬁ]}b) and the negated predicate basy1.
Please be aware that there can be multiple instances of the
hProfConstr provenance rules for a single head predicate
h(ardi). The formulation of the provenance rule for the
aforementioned choice rule with constraints is given below
where ¢ € [1,n]:

hProv(cﬁﬁL, rule_id, a1, (ﬂal, ooy M, CWJGM)
:— h(@rgh), a1(arda,), - - - ant (@ fay,).
hProvConstr(argy,, rule_id, bar 11, W]bMH)
s — h(@r), bars1 (@ o, ,)-

5.3.2 Example

Listing 3, lines 1 and 2 show a choice rule with constraint
from the use case. Please be aware that the enumeration of
all choices is done by providing the domain of variable RI.S K
which is given by the predicate accessibilityrisk(RISK).
For the provenance rules in line 5 and 6 of Listing 3, the
enumeration of all possible arguments of choicerisk can also
be avoided by using variables RISK and LOC'. Please note
that the answer set may contain multiple instances of the
choicerisk ProvConstr constraint - one for each constraint
related to the choice rule.

Listing 3: Example of a choice rule with constraints with
it’s corresponding provenance rule

1 1{choicerisk (RISK,LOC): accessibilityrisk (RISK)
}1:- roadsegments (LOC), has_support (LOC) .
:—choicerisk (RISK,LOC),not aux (RISK,LOC) .
% explicit provenance
choiceriskProv (RISK, LOC, pl3,
accessibilityrisk, RISK, roadsegments, LOC,
has_support, LOC) :- choicerisk (RISK,LOC),
roadsegments (LOC), has_support (LOC) .
6 choiceriskProvConstr (RISK, LOC, pl3, aux, RISK,
LOC) :— choicerisk (RISK,LOC), aux(RISK,LOC
) -

2
3
4
5

5.3.3 Provenance Graph

Examples of the provenance predicates as derived from the
use case are given below resulting the provenance graph de-
picted in Fig. 4. The logical rule processing element has
been explained in Sec. 5.1.3. The constraint processing
element has similar to the logical rule processing element
a many to one input-output ratio and therefore they pro-
vide actually the same semantics. We use anyway different
names in the provenance graph to increase the usability for
the user, thus, ease the mapping back to the source code.

choiceriskProv(low,sThree,pl3, accessibilityrisk,low,
roadsegments,sThree, has_support,sThree).
choiceriskProvConstr(low,sThree,p13,aux,low,sThree).

5.4 Logic Rule with Function
In logical programming languages, there are basic built-in
support for operations on data types like e.g. the numerical

60

cessibilityris roadsegments(has support(aux(low
(low) sThree) sThree) sThree)

logic rule
P13 4—<|ntermed|ate><—m

choicerisk(low,
sThree)

Figure 4: Provenance graph for choice rule with constraint

functions #count, #min, #max etc. A logic rule, Rr, using
built-in functions has the following form:

a_ﬁh»(jﬂllj - al 5_3a1 ‘7aA4(aFZﬂAI%

CMP = #functzon{aMH(W]aMH)v

The difference between a basic logic rule, R (see Sec. 5.1)
and a logical rule with a function, R is that in Rp, there
is one extra argument in the head of the rule, i.e. CMP,
which value has been calculated using # function over a set

of predicates arst1,...,an.

5.4.1 Provenance extension

RF is executed in two steps — first applying # function over
the set of predicates arr+1,-..an, and second executing the
entire logical rule. Since in the first step a set of predicates is
used, a representation of the set as arguments in the prove-
nance predicate results in an arbitrary number of arguments.
Therefore, the provenance rule is split into two pieces. The
first one addresses the entire logical rule, Ry Prov, which is
formulated following the same procedure discussed in Sec.
5.1.1. However, the head of the RrpProv does not contain
the predicates used by the function, i.e. aa+1,...,an, as
it’s arguments. The structure of the rule RrProv is given
below:

hProv(argn, CMP, rule_id, a1, arda, , . .-
L — a1(573a1), .,aﬂ4(673aA4L
CMP = # function{anr+1(ar§ay,)}

7aMamﬂM)

The second one addresses the set of predicates used to eval-
uate the function, where one predicate is created for each
element of the set to capture explicit provenance informa-
tion. The head predicate hProv# function of this prove-
nance rule is named after the original rule appended with
the key word ‘Prov’ and as the suffix the name of function
function. Adding the name of the function in the predi-
cate encodes the type of function used and therefore gives an
indication on how to translate this information into a prove-
nance graph later on. The head predicate hProv# function
of this rule also contains the predicates aar41,...an used as
input to the function. The body of the rule is formulated
following the procedure discussed in Sec. 5.1.1. Further-
more, it contains one extra predicate which is the head of
the original rule which ensures that the exact relationship
is maintained between predicates once the rule is inferred.
Finally, the body of the rule contains the predicates used
inside the function, but does not apply the function to these

< G’N(WGN)}

predicates. The structure of the rule is given below:
hProv#function(cﬂh, CMP,rule_id, a, aﬁal ey
an, cﬂaM,aMH, cﬂGM“, ...,anN, aWJEN)
. — h(@rgn, CMP), a1 (arga,), - - -
an (@ gayy)y ant+1(@fan 1),

5.4.2 Example

Listing 4, line 1 shows a logic rule with the numerical func-
tion #count taken from our scenario. Based on the proce-
dure to formulate provenance rules discussed above, Listing
4, lines 4 and 5 show the extended program containing the
provenance rules. Please note that the answer set may con-
tain multiple instances of the supportProvCount predicate
- one for each predicate used for evaluating the function
F#count.

'7aN(aF§aN)'

Listing 4: Example of a logic rule with aggregation and it’s
corresponding provenance rules

1 support (RISK, LOCATION, N) :- accessibilityrisk
(RISK), roadsegments (LOCATION), N=#count{
riskvalue (STREAMTYPE, RISK, LOCATION) :
streamtype (STREAMTYPE) }, N>O.

3 % explicit provenance

4 supportProv (RISK, LOCATION, N, plO,
accessibilityrisk, RISK, roadsegments,

LOCATION) :- accessibilityrisk (RISK),
roadsegments (LOCATION), N=#count{riskvalue (
STREAMTYPE, RISK, LOCATION) : streamtype (

STREAMTYPE) }, N>O0.

5 supportProvCount (RISK, LOCATION, N, plO,
accessibilityrisk, RISK, roadsegments,
LOCATION, riskvalue, STREAMTYPE, RISK,
LOCATION, streamtype, STREAMTYPE) :-—
support (RISK, LOCATION, N),
accessibilityrisk (RISK), roadsegments (
LOCATION), riskvalue (STREAMTYPE, RISK,
LOCATION), streamtype (STREAMTYPE) .

5.4.3 Provenance Graph

Examples of the provenance predicates as derived from the
use case are given below resulting in the provenance graph
depicted in Fig 5. The logical rule processing element has
been explained in Sec. 5.1.3. The graph consists of using
all related predicates for the evaluation of the function as
input for the count processing element, which counts the
number of tuples accessible in the input view and outputs
this number in the output view, i.e., the intermediate view.
The processing element uses a many to one input-output
ratio. The intermediate view in addition with other pred-
icates in the body of the logical rule are used as input for
the logical rule processing element resulting in the interme-
diate2 output view. The intermediate2 view contains now
implicitly the counted value, but it is not explicated in the
name of a view. To explicate this information, the content
of the view must be analyzed by the select processing ele-
ment. This is the first processing element, which actually
considers the value of the tuples in a view. Therefore we
characterize the select processing element as a variable map-
ping processing element, while all others have been classified
as constant mapping processing elements. While the latter
one allow easy inference, the variable mapping processing
elements require a special inference per processing element,

riskvalue(rss,
low,sThree)

ccessibilityrisl roadsegments
(low) sThree)
i

logical rule . .
*{ P10 }<—<|ntermed|ate>
' lect rt(l
. . selec support(low,
Gntermematez }—b{ (value== h sThree,1) /

Figure 5: Provenance graph for logic rule with function

thus is less generic. The output view of the select predicate
explicates the count result again in the name of the view,
thus corresponds to the head predicate of the logical rule
with functions.

supportProv(low,sThree,1,p10,
accessibilityrisk,low,roadsegments,sThree).

supportProvCount(low,sThree,1,p10,
riskvalue,rss,low,sThree).

6. INFERRED PROVENANCE

An alternative approach to obtain provenance information
is to infer this information rather than explicating it as dis-
cussed in Sec. 5. The inference based approach consists out
of a static code analysis part producing a workflow prove-
nance graph, which is pruned on being requested to infer the
fine-grained provenance information. As discussed in Sec. 1,
workflow provenance explicates the relationship among the
operations within a scientific model. In a logic program,
it is used to capture the relationship among the predicates
constituting the complete search space. Fine-grained data
provenance documents the relationship among input data
products, output data products and the associated oper-
ations in a model. In a logic program, fine-grained data
provenance represents the causality between the predicates
through the logic rules for a particular answer in a answer
set.

To realize the inference mechanism, first, workflow prove-
nance graph of a logic program has to be built. Afterward,
based on the provenance finding request for a particular an-
swer in an answer set, we can infer fine-grained provenance
graph facilitating the existing workflow provenance graph of
that logic program.

6.1 Workflow Provenance

The inference of the workflow provenance is based on a static
analysis of the logical program. The oClingo tool expli-
cates the search space for streaming logical programs, called
grounding, where all possible instances of logical rules and
constraints are explicated. The static inferences in the log-
ical program are optimized and therefore are no longer ex-
plicated.

The inference of the workflow provenance analyzes the ground-
ing of the logical program, clusters the rules according to the
four classes mentioned in Sec. 5: logical rules, projection
rules, choice rules with constraints, and logical rules with
function. Based on these clusters a workflow provenance
graph can be inferred consisting out of the basic building
blocks described in Sec. 5. The mapping of the cluster to
the provenance graphs is not repeated in this section.

In this sub section we discuss on how these cluster can be
derived from the information provided by the grounding of
the logical program. The grounding of the logical program is
the explication of the search space, which can not be limited
due to the usage of volatile predicates, i.e., the handling of
streaming information. In the grounding logical rules and
constraints containing non volatile predicates are not rep-
resented but only the result of the logical rule since it is
static. However, the volatile part of logical rules and con-
straints remain as rules in the grounding. In the following
we cluster rules and constraints contained in the grounding,
thus logical rules and constraints with volatile predicates.

6.1.1 Logical Rule

The basic building block of a logical program is the logical
rule which has been described in detail in Sec. 5.1. Listing 5
provides an example of logical rules contained in the ground-
ing of the logical program which is related to the example
given in Sec. 5.1.3.

Listing 5: An example of the grounding of a logical rule

1 riskvalue (rss,high, sThree) :—rss(accident, sThree
,2,4).

2 riskvalue (rss,high, sThree) :-rss (brokencar,
sThree,2,4).

3 riskvalue (rss,high, sThree) :-rss(accident, sThree
,2,5).

4 riskvalue (rss,high, sThree) :-rss (brokencar,
sThree, 2,5) .

5 riskvalue (rss,low,sThree) :-not riskvalue (rss,

high, sThree) .

Each of these rules contained in the listing is transformed
into a provenance graph. The provenance graph for line 2
is comparable to the left explicit provenance graph in Fig 2,
except that the static predicate negative(brokencar) is not
contained in the grounding and therefore not contained in
the inferred provenance graph (see Fig 6).

The right side of the explicit provenance graph in Fig 2 con-
tains as input predicate only a static predicate. However,
the grounding in line 5 of Listing 5 contains the volatile ex-
pression of not having a high riskvalue. Negated predicates
are excluded in the explicit provenance but are modeled in
the inferred provenance as a 'not’ processing element. This
processing element has variable mapping and therefore re-
quires for the inference special consideration. The resulting
provenance graph is depicted on the right hand side of Fig
6.

6.1.2 Projection Rule

The second class of rules are projection rules as discussed in
detail in Sec. 5.2. Listing 6 provides an example of reduc-
tion rules contained in the grounding of the logical program
which is related to the example given in Sec. 5.2.3.

Listing 6: An example of the grounding of a reduction rule

has_support (sThree) : —support (low, sThree, 3) .
has_support (sThree) : —support (low, sThree, 2) .
has_support (sThree) : —support (low, sThree, 1) .

has_support (sThree) : —support (high, sThree, 3) .
has_support (sThree) : —support (high, sThree, 2) .
has_support (sThree) : —support (high, sThree, 1) .

L S

riskvalue(rss,
high,sThree

rss(brokencar,
<5Three 2,4 > (‘mermedlate>

‘ Ioglc rule ‘

r|skva|ue (rss, rlskvalue(rss
high,sThree) low,sThree)
Figure 6: Example inferred provenance graph for logical rule

‘ Ioglc rule ‘

Line 3 and 6 in Listing 6 describe the information visualized
in the explicit provenance graph in Fig 3. The actual in-
ferred provenance graph extends the explicit one by adding
more input views, in particular, one view per predicate in
the body of the logical rules in Listing 6.

6.1.3 Choice Rule with Constraints

Another class of rules are logical rules with a non determin-
istic choice in the head of the rule and associated constraints
to reduce the generated space of options. Choice rules have
been discussed in detail in Sec. 5.3. Listing 7 provides an
example of choice rules with related constraints as they are
contained in the grounding of the logical program. The ex-
amples are related to the example given in Sec. 5.3.3. In
particular, a single logical rule is associated with a set of con-
straints, where the negated predicates in the constraints are
added to the provenance graph via a constraint processing
element.

Listing 7: An example of the grounding of a choice rule with
constraints

1 1l{choicerisk (high, sThree),choicerisk (low, sThree
) }1:-has_support (sThree) .

2 :—-choicerisk (low,sThree),not aux(low,sThree).

3 :—choicerisk (high, sThree),not aux(high, sThree) .

The explicit provenance graph depicted in Fig 4 is very sim-
ilar to the inferred provenance graph for line 1 and 3 of
Listing 7. The inferred provenance graph does not contain
the static predicates accessibilityrisk and roadsegments.

6.1.4 Logical Rule with Function

The last class are logical rule with functions which has been
described in detail in Sec. 5.4. Listing 8 provides an exam-
ple of logical rules contained in the grounding of the logical
program which is related to the example given in Sec. 5.4.3.
In the grounding functions are represented based on their
semantics, thus no generic statement can be made. For the
#count function as used in the example, the aggregates are
represented as choices without additional constraints except
a lower and upper bound which corresponds to the result of
the count argument in the head predicate of the rule. In par-
ticular, there is one logical rule per count value. The lack of
additional constraints can be explained by the oClingo solver
applying a specialized macro on this part of the grounding
to prune the search space. However, this special behavior is
not represented in the grounding.

To detect the count function in the grounding during the
static analysis, it is necessary to know that the support pred-
icate has as the third argument a numerical value derived by
a count operation. This information can be either configured
or derived from the original logical program. In our current
implementation we have used a configuration. The inferred
provenance graph equals the explicit provenance graph as
depicted in Fig 5.

Listing 8: An example of the grounding of a logical rule with
function

1 support (low, sThree, 1) :-1{riskvalue (weather, low,
sThree), riskvalue (rss, low,sThree),riskvalue
(tweet, low, sThree) } 1.

2 support (low, sThree, 2) :-2{riskvalue (weather, low,
sThree), riskvalue (rss, low, sThree), riskvalue
(tweet, low, sThree) }2.

3 support (low, sThree, 3) : -3{riskvalue (weather, low,
sThree), riskvalue (rss, low, sThree), riskvalue
(tweet, low, sThree) } 3.

6.2 Fine-grained Provenance Inference
Fine-grained provenance inference facilitates the generated
workflow provenance of a given model, i.e. a logic program,
and the available input and output data tuples, i.e. input
and output predicates in the answer set. Previously, we pro-
posed several methods to infer fine-grained provenance data
[18, 17, 15]. In [18], we proposed an approach that can infer
fine-grained provenance in an environment with a constant
delay for the processing. Later, we extended this approach
and proposed a probabilistic inference mechanism that can
address variable delays in processing in [17]. However, this
approach can work for a single processing step. To address
this issue, recently we have proposed probabilistic inference
for multiple processing steps, i.e. a complete workflow [15].
In this paper, we apply this technique on the scenario de-
scribed in Sec. 4 since there are multiple rules in a logic pro-
gram which are transformed into a set of processing steps.

In this sub section, we discuss briefly the working mechanism

of the multi-step inference approach. The inference tech-

nique has two phases: i)backward computation and ii) forward

computation. To retrieve actual data tuples, the algorithm

requires to have only the output data products, i.e. choicerisk
predicates, and the input data products such as input_weather,
input_tweet and input_rss predicates persistent. The other

views generated by the intermediate processing steps are

considered as transient views. We create a SQLite! database

that contains tables for each persistent view found in the

workflow provenance graph and then populate these tables

during the execution of the logic program.

6.2.1 Backward Computation

This phase is executed once a user requests provenance of
an answer/predicate from the available answer sets. This
predicate is known as chosen predicate/tuple. The times-
tamp associated with this predicate is referred to as reference
point. Based on this reference point, the inference mecha-
nism calculates the window boundary which is fixed over all

http://www.sqglite.org/

SP630:
input_weather(snow,sThree,1)
tssnow,sThree, 1361845754

<V253: weather(snow,sThree, 1)

P247: Union

V249: int

(V267: riskvalue(rss high,sThree))

P262: Projection P301: Not

(V263: riskvalue(weatner,highsThree))

P409: Select

(V207: riskvalue(rss high sThree))

P427: Count

P430: Select

(V373: support(high,sThree,1 <V370: support (Iow,sThree,1)>

P365: Union

P383: Union

V367: int

P374. Projection

V385: int

P386: Projection

(V28: has_support(sThree)) @29: aux(low,sThreeD

P32: Constraints

V31:int

P27: Production

V26: choicerisk(low,sThree)
[1, low, sThree, 1361845754]

Figure 7: Fine-grained provenance graph for a chosen pred-
icate

the input views. The equations to calculate the upper bound
and the lower bound of a window boundary are given below:

upper Bound = reference point (8.1)

lower Bound = reference point — window size (8.2)

These formulas are slightly adjusted from the original for-
mulas what have been proposed in [15] because of the fact
that, the entire workflow is executed at once and therefore,
there is no accumulated execution delay in this case.

6.2.2 Forward Computation

After defining the window boundary, the inference algorithm
reconstructs the windows in the forward computation phase.
In this phase, the inference mechanism establishes the rela-
tionship between the data products in the input views to the
subsequent view until it reaches the chosen predicate in the
output view. It also fetches the stored tuples corresponding
to the input views only from the database. While executing
this phase, a few of the branches which are not directing
towards the chosen predicate are pruned from the graph.

6.2.3 Post-processing

It is possible that a group of selection operators would ap-
pear in the provenance graph indicating the different pos-
sibilities of the count value in the support predicates as
discussed in Sec. 5.4. Therefore, in the post processing
phase, the inference mechanism determines exactly which
of the selection operation satisfies the condition and thus
contributing to the generation of the chosen predicate. The
other branches having non-satisfiable selection operators are
pruned from the graph. Furthermore, there exists an as-
sumption in the logic program indicating that if there is

no riskvalue with high for streamtype rss, the program as-
sumes that there is a riskvalue with low for streamtype rss
contributing to the output predicate. It is realized via not
construct. This not construct is also explicated in the fine-
grained provenance graph by checking the existence of any
not processing element in the provenance trace generated
during the backward phase.

Fig. 7 shows an example of a fine-grained provenance graph
for the chosen predicate choicerisk(low,sThree). The prove-
nance graph explains the complete derivation history for the
chosen output predicate. The source processing elements
shows the actual input tuple which contributes to produce
the chosen predicate represented by the view node V26. It
also shows that there exists no input predicate for riskvalue
with high for streamtype rss and hence the program assumed
the existence of the predicate riskvalue(rss,low,sThree).

7. EVALUATION

7.1 Evaluation Criteria

The aim of the evaluation is to see whether the fine-grained
provenance graph is useful for debugging logic programs.
Further the explicit and inferred provenance approach (see
Sec. 5 and 6.1 respectively) are compared using the follow-
ing evaluation criteria: i) accuracy of the inferred prove-
nance graph, ii) execution time of the logic program ex-
tended with provenance information, and iii) storage space
consumption. We execute the logic program designed for
our scenario described in Sec. 4 for 100, 200, 300 and 500
steps with randomly generated synthesized data sets.

7.2 Accuracy of Provenance Graphs

The accuracy of the inferred provenance graph is measured
against the explicit provenance graph which represents the
ground truth. The explicit provenance graph contains the
base facts, that is constants based on the provenance graph
model, which are not contained in the inferred provenance
graph since the grounding mechanism does not explicate any
base facts. Constants could be added to the inferred prove-
nance based on a static analysis of the logical program. Due
to lack of time, we have not done this step. Therefore, we
do not consider constants for determining the accuracy of
the inferred provenance graph.

The accuracy of the inferred provenance graph for a single
output predicate acc; is considered one if the set of source
processing elements of the explicit and the inferred prove-
nance graph are equivalent. The average accuracy of the
experiment is the sum of the accuracy of a single output
predicate over the number of output predicates investigated.

Thus, average accuracy = (M x 100)%.

In all test cases, the output predicates of the inferred prove-
nance graph has an accuracy of 100%, thus all inferred prove-
nance graphs match exactly the corresponding explicit prove-
nance graph. This accuracy value was expected since there
are no options for errors during the inference due to the
fact that the logical program is executed at once and there-
fore all predicates are available at the same time. Thus, no
processing delay can be accumulated to cause a subsequent
processing element to shift window boundaries producing
€rTors.

Table 2: Comparison of Execution Time (in seconds)

Number | Program without | Program with Ratio
of provenance rules | provenance rules

steps (Inference) (Explicit)

100 18.2 58.1 1:3.2
200 57.4 166.9 1:2.9
300 115.1 329.6 1:2.9
500 280.3 out of memory -

Table 3: Comparison of Storage space consumption (in KB)

Number | Inferred Explicit Ratio
of steps | Provenance | Provenance

100 14 181 1:13
200 23 354 1:15.3
300 29 533 1:18
500 57 out of memory | -

7.3 Execution Time

Execution time of a logic program depends on the num-
ber and complexity of the rules, thus the complexity of the
search space. The inferred provenance mechanism does not
require to include extra provenance rules like the explicit
provenance approach. Hence, the later incurs overhead in
terms of execution time due to the augmentation of extra
provenance rules. Table 2 reflects this statement showing
the execution times of the logic program with and without
explicit provenance rules, which are used by explicit tech-
nique and inference technique respectively.

For the test cases with 100, 200 and 300 logical time steps,
the execution time of the program with the provenance rules
takes around 3 times more time than the one without the
provenance rules. For the last test case with 500 steps, only
the logic program without the provenance rules can finish
the execution. Thus, the execution of the logic program
without provenance rules as used by the proposed inference
mechanism is much faster and for a higher number of steps
it is simply not possible to document explicit provenance
information.

7.4 Storage Space Consumption

The storage space consumption is measured by comparing
the size of the SQLite databases that hold the predicates of
the answer set of the logical program in form of relational
data tuples. Both approaches require to materialize all input
and output predicates. Furthermore, the explicit provenance
approach materializes all provenance predicates as tuples in
the database. As a consequence, the storage overhead of the
explicit approach is dependent on the required provenance
predicates.Table 3 shows the disk space consumed by these
two methods.

From Table 3, it is evident that the explicit provenance has
several magnitudes of storage overhead compared to the in-
ferred provenance. The explicit method takes at least 13
times more storage than the proposed inferred provenance
approach. The ratio comparing storage consumed by these
two methods keeps increasing with the increase in number
of steps because of the accumulated data which is the nature
of stream data processing.

7.5 Applicability to Debugging

The opinions presented in this section are provided by two
ASP domain experts. We are aware that this is not a rep-
resentative usability evaluation, but it gives an indication
on the applicability of provenance graphs for debugging. In
future work, we will conduct an extensive usability study.

The workflow and fine-grained provenance graphs provide
useful insights to both the logic programmer and the do-
main expert. The workflow provenance graph captures the
way data is related in the search space and facilitates the
understanding of these connections. It also helps identify-
ing how constraints should be added or removed to reduce or
expand the set of correct solutions. The fine-grained prove-
nance graph is a subset of the workflow provenance graph
that explains the complete derivation history of a chosen fact
in an answer set. It allows to verify the correctness of the
rules for modeling a particular domain. All these insights
facilitate early-stage instance-driven debugging of an ASP
program.

The presented approach addresses many core elements of
the logical programs, however, Negation as Failure (NAF)
is not completely addressed in explicit provenance graphs.
Handling NAF in logical rules for explicit provenance can be
done by introducing a new provenance predicate hProvIN AF
documenting the NAF provenance information. Based on
this additional information, the provenance graph can be
extended. We have not done this due to a lack of time.

Fine-grained provenance provides the complete derivation
history of an out-coming fact. Therefore, this graph can be
useful to achieve reproducible results at the instance-level.
Another interesting possibility is to make the provenance
graphs more compact by grouping several steps together.
Currently, we group any intermediate step with its successor
to have a more compact representation of the graph as well
as to provide transparency of the transformation from logical
rules to a set of nodes in the graph. However, it would be
worth investigating options to customize this compacting
process based on the semantics of the program.

8. CONCLUSION AND FUTURE WORK

In this paper, we introduce the way of collecting provenance
information in the context of a logic program. Further, we
discuss two approaches - explicit and inference method and
their pros and cons. Our evaluation shows that the prove-
nance inference approach is better suited to extract prove-
nance information of a logic program. The use we make
of data provenance in this paper should be considered as
an additional tool for debugging ASP program in the initial
modeling phase, when domain experts and ASP program-
mers sit together to formulate a problem description. The
mutual understanding of how and why certain inputs gener-
ate a certain output can produce better formulation faster,
in this crucial phase. However, we acknowledge the benefits
of ongoing work on ASP debugging from a semantic per-
spective and the added value of IDE tools, and we will be
exploring how data provenance can be embedded in those
for the next phases of ASP development.

[10]

[11]

[12]

[13]

[14]

REFERENCES

C. Baral. Knowledge representation, reasoning and
declarative problem solving. Cambridge University
Press, 2003.

M. Brain et al. Debugging ASP programs by means of
asp. In LPNMR, pages 31-43, 2007.

M. Brain and M. D. Vos. Debugging logic programs
under the answer set semantics. In Answer Set
Programming, 2005.

P. Buneman and W. C. Tan. Provenance in databases.
In SIGMOD, pages 1171-1173, 2007. ACM.

T. Do, S. Loke, and F. Liu. Answer set programming
for stream reasoning. Advances in Artificial
Intelligence, pages 104-109, 2011.

E. Erdem, Y. Erdem, H. Erdogan, and U. Oztok.
Finding answers and generating explanations for
complex biomedical queries. In AAAI 2011.

O. Febbraro, K. Reale, and F. Ricca. Aspide:
Integrated development environment for answer set
programming. In LPNMR, pages 317-330, 2011.

M. Gebser, T. Grote, R. Kaminski, P. Obermeier,

O. Sabuncu, and T. Schaub. Stream reasoning with
answer set programming: Extended version.
Unpublished draft., 2012.

M. Gebser et al. Stream reasoning with answer set
programming: Preliminary report. In Proc. Int’l Conf.
on Principles of Knowledge Representation and
Reasoning (KR 2012), 2012.

M. Gebser, R. Kaminski, B. Kaufmann, and

T. Schaub. Answerset solving in practice. 2012.

M. Gebser, J. Piihrer, T. Schaub, and H. Tompits. A
meta-programming technique for debugging
answer-set programs. In AAAI pages 448-453, 2008.
M. Gebser, T. Schaub, S. Thiele, and P. Veber.
Detecting inconsistencies in large biological networks
with answer set programming. TPLP,
11(2-3):323-360, 2011.

M. Gelfond and V. Lifschitz. The stable model
semantics for logic programming. In Proc. of Int’l
Conf. on Logic programming, volume 161, 1988.

P. Groth et al. Automatic metadata annotation
through reconstructing provenance. In Semantic Web
in Provenance Management, CEUR Workshop, 2012.
M. R. Hugq et al.. Fine-grained provenance inference
for a large processing chain with non-materialized
intermediate views. In SSDBM, LNCS volume 7338,
pages 397-405. Springer, 2012.

M. R. Huq et al. From scripts towards provenance
inference. In IEEE Conference on eScience, pages 1-8,
2012.

M. R. Huq, P. M. G. Apers, and A. Wombacher.
Probabilistic inference of fine-grained data
provenance. In DEXA (1), LNCS volume 7338, pages
296-310, 2012.

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

M. R. Hug, A. Wombacher, and P. M. G. Apers.
Inferring fine-grained data provenance in stream data
processing: Reduced storage cost, high accuracy. In
DEXA (2), LNCS volume 6861, pages 118-127, 2011.
C. Kloimiillner et al. Kara: A system for visualising
and visual editing of interpretations for answer-set
programs. CoRR, abs/1109.4095, 2011.

V. Lifschitz. Answer set programming and plan
generation. Artificial Intelligence, 138(1):39-54, 2002.
B. Ludascher et al. Scientific workflow management
and the Kepler system. Concurrency and
Computation: Practice and Ezxperience,
18(10):1039-1065, 2006.

A. Mileo, D. Merico, and R. Bisiani. Reasoning
support for risk prediction and prevention in
independent living. TPLP, 11(2-3):361-395, 2011.

A. Mileo, T. Schaub, D. Merico, and R. Bisiani.
Knowledge-based multi-criteria optimization to
support indoor positioning. Ann. Math. Artif. Intell.,
62(3-4):345-370, 2011.

S. Miles. Automatically adapting source code to
document provenance. In Provenance and Annotation
of Data and Processes, LNCS volume 6378, pages
102-110. 2010.

V. Novelli et al. Log-ideah: Asp for architectonic asset
preservation. In ICLP (Technical Communications),
pages 393-403, 2012.

J. Oetsch, J. Piithrer, and H. Tompits. Catching the
ouroboros: On debugging non-ground answer-set
programs. TPLP, 10(4-6):513-529, 2010.

J. Oetsch, J. Piithrer, and H. Tompits. Stepping
through an answer-set program. In LPNMR, pages
134-147, 2011.

T. Oinn et al. Taverna: a tool for the composition and
enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045-3054, June 2004.

U. Park and J. Heidemann. Provenance in sensornet
republishing. Provenance and Annotation of Data and
Processes, pages 280-292, 2008.

E. Pontelli, T. C. Son, and O. El-Khatib.
Justifications for logic programs under answer set
semantics. TPLP, 9(1):1-56, 2009.

C. F. Reilly et al. Instrumenting a logic programming
language to gather provenance from an information
extraction application. In WWW ’12 Companion,
pages 589-590, 2012. ACM.

A. Sarma et al. LIVE: A Lineage-Supported Versioned
DBMS. In SSDBM, pages 416-433, 2010.

Y. L. Simmhan, B. Plale, and D. Gannon. A survey of
data provenance in e-science. SIGMOD Rec.,
34(3):31-36, 2005.

Y. L. Simmhan et al. Karma2: Provenance
management for data driven workflows. International
Journal of Web Services Research, 5:1-23, 2008.

