
Confidentiality for Probabilistic Multi-Threaded
Programs and Its Verification
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Abstract. Confidentiality is an important concern in today’s informa-
tion society: electronic payment and personal data should be protected
appropriately. This holds in particular for multi-threaded applications,
which are generally seen the future of high-performance computing. Multi-
threading poses new challenges to data protection, in particular, data
races may be exploited in security attacks. Also, the role of the sched-
uler is seminal in the multi-threaded context.
This paper proposes a new notion of confidentiality for probabilistic
and non-probabilistic multi-threaded programs, formalized as scheduler-
specific probabilistic observational determinism (SSPOD), together with
verification methods. Essentially, SSPOD ensures that no information
about the private data can be derived either from the public data, or
from the probabilities of the public data being changed. Moreover, SS-
POD explicitly depends on a given (class of) schedulers.
Formally, this is expressed by using two conditions: (i) each publicly
visible variable individually behaves deterministically with probability
1, and (ii) for every trace considering all publicly visible variables, there
always exists a matching trace with equal probability. We verify these
conditions by a clever combination of new and existing algorithms over
probabilistic Kripke structures.

1 Introduction

Confidentiality plays a crucial role in the development of applications dealing
with private data, such as Internet banking, medical information systems, and
authentication systems. These systems need to enforce strict protection of private
data, like credit card details, medical records, etc. The key idea is that secret
information should not be derivable from public data. For example, the program
if (h > 0) then l := 0 else l := 1, where h is a private variable and l is a
public variable1, is considered insecure, because we can derive the value of h

from the value of l. If private data is not sufficiently protected, users refuse

1 For simplicity, throughout this paper, we consider a simple two-point security lattice,
where the data is divided into two disjoint subsets, of private (high) and public (low)
security levels, respectively.



to use such applications. Using formal means to establish confidentiality is a
promising way to gain the trust of users.

Possibilistic programs. With the trend of multiple cores on a chip and massively
parallel systems like general purpose graphic processing units, multi-threading
is becoming more standard. Existing confidentiality properties, such as nonin-
terference [12] and observational determinism [30, 15] are not suitable to ensure
confidentiality for multi-threaded programs. They only consider input-output
behavior, and ignore the role of schedulers, while multi-threaded programs allow
all interactions between threads and intermediate results to be observed [30, 15,
14]. Thus, new methods have to be developed for an observational model where
an attacker can access the full code of the program, observe the traces of public
data, and limit the set of possible program traces by selecting a scheduler.

Because of the exchange of intermediate results, to ensure confidentiality
for multi-threaded programs, it is necessary to consider the whole execution
traces, i.e., the sequences of states that occur during the execution of the pro-
gram [30, 23]. Besides, due to the interactions between threads, the traces of a
multi-threaded program depend on the scheduler that is used to execute the
program. Therefore, a program’s confidentiality is only guaranteed under a par-
ticular scheduler, while a different scheduler might make the program reveal
secret information, as illustrated by the following example.

{if (h > 0) then l1 := 1 else l2 := 1}
∣∣∣∣{l1 := 1; l2 := 1}

∣∣∣∣{l2 := 1; l1 := 1},

where
∣∣∣∣ is the parallel operator. Under a nondeterministic scheduler, the se-

cret information cannot be derived, because the traces in the cases h > 0 and
h ≤ 0 are the same. However, under a scheduler that always executes the left-
most thread first, the secret information is revealed by observing whether l1 is
updated before l2, i.e., when l1 is updated before l2, the attacker knows that
h > 0. However, this program is considered secure by observational determinism
[30, 15].

Taking into account the effect of schedulers on confidentiality, we proposed a
definition of scheduler-specific observational determinism (SSOD) for possibilistic
multi-threaded programs [14]. Basically, a program respects SSOD if (SSOD-1)
for any initial state, traces of each public variable are stuttering-equivalent, and
(SSOD-2) for any two initial states I and I ′ that are indistinguishable w.r.t.
the public variables, for every trace starting in I, there exists a trace that is
stuttering equivalent w.r.t. all public variables, starting in I ′.

SSOD is scheduler-specific, since traces model the runs of a program under
a particular scheduler. When the scheduling policy changes, some traces cannot
occur, and also, some new traces might appear ; thus the new set of traces may
not respect our requirements. For example, the above program is accepted by
SSOD w.r.t. the nondeterministic scheduler, but is rejected under the scheduler
that always executes the leftmost thread first.

Probabilistic programs. To extend our earlier results, this paper also considers
programs that have probabilistic behaviors. For probabilistic programs, some
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threads might be more likely to be executed than others. This opens up the
possibility of probabilistic attacks, as in the following example.

if (h > 0) then {l1 := 1 || l2 := 1} else {l1 := 1 || l2 := 1}.

This program is secure under a nondeterministic scheduler. However, consider
a scheduler that, when h > 0, picks thread l1:=1 first with probability 3/4;
otherwise, it chooses between the threads with equal probabilities. With this
scheduler, we can learn information about h from the probabilities of public
data traces. However, the program is still accepted by SSOD w.r.t. this scheduler,
because SSOD only considers the existence of traces, not its probability.

To detect vulnerabilities to probabilistic attacks, we define scheduler-specific
probabilistic-observational determinism (SSPOD). This formalizes the observa-
tional determinism property for probabilistic multi-threaded programs, executed
under a probabilistic scheduler. Basically, a program respects SSPOD if (SSPOD-
1) for any initial state, each public variable individually behaves deterministically
with probability 1, and (SSPOD-2) for any two initial states I and I ′ that are
indistinguishable w.r.t. the public variables, for every trace starting in I, there
exists a trace that is stuttering equivalent w.r.t. all public variables, starting in
I ′, and the probabilities of these two matching traces are the same.

The first condition of SSPOD requires that all public variable traces in-
dividually evolve deterministically. Requiring only that a stuttering-equivalent
public variable trace exists is not sufficient to guarantee confidentiality for multi-
threaded programs, as extensively discussed in [30, 14]. The first condition avoids
leakage of private information based on the observation of public data traces.
The second condition of SSPOD requires the existence of a public data trace with
equal probabilities. This existential condition avoids refinement attacks where
an attacker chooses an appropriate scheduler to control the set of possible traces.
The second condition is also sufficient to ensure that any difference in the relative
order of updates is coincidental, and thus no private information can be deduced
from it. In addition, SSPOD also guarantees that no private information can be
derived from the probabilistic distribution of traces, because indistinguishable
traces occur with the same probabilities.

Notice that the question which classes of schedulers appropriately model
real-life attacks is orthogonal to our results: our definition is parametric on the
scheduler. In Section 5, we compare SSPOD with the existing formalizations of
confidentiality properties for probabilistic programs [29, 23, 24], and argue that
they are either unsuitable to the multi-threaded context, or very restrictive.

Verification. Besides formalizing the property, the paper also discusses how to
verify SSPOD. The traditional way to check information flow properties is by
using a type system. However, as discussed in [14], type systems are not suited
to verify existential properties, as the one in SSPOD. Besides, type systems
that have been proposed to enforce confidentiality for multi-threaded programs
are often very restrictive. This restrictiveness makes the application program-
ming become impractical; many intuitively secure programs are rejected by this

3



approach, i.e., h := l; l := h. Instead, in [14], we proposed to use a different ap-
proach for SSOD, encoding the information flow property as a temporal logic
property. This idea is based on the use of self-composition [6, 15], and allows us
to verify the information flow property via model checking. However, the result
is rather complex, and thus its verification cannot be handled efficiently by the
existing model-checking tools.

Therefore, this paper proposes more efficient algorithms to verify our defini-
tion. For this purpose, programs are modeled as probabilistic Kripke structures.
For both conditions of SSPOD, we present a verification approach, a clever com-
bination of new and existing algorithms. The first condition is checked by remov-
ing all stuttering loops, except the self-loops in final states, and then verifying
stuttering equivalence. Verification of stuttering equivalence is implemented by
checking whether there exists a functional bisimulation between the executions
of the Kripke structure and a witness trace. This is a new algorithm, that is
also relevant outside the security context, e.g., as in partial-order reduction for
model checking, because stuttering equivalence is a fundamental concept in the
theory of concurrent and distributed systems. SSOD-1 can be also verified by
a variant of this algorithm. SSPOD-2 is implemented by removing stuttering
steps, thereby reducing the problem into an equivalence problem for probabilis-
tic languages [28, 11, 16]. This approach gives a precise verification method for
observational determinism. Furthermore, the model checking procedure is also
able to produce a counter-example to synthesize attacks for insecure programs,
i.e., for programs that fail either of the conditions of SSPOD (similar as in [20]).

Currently, we are implementing our verification techniques in the symbolic
model checker LTSmin [7]. SSPOD-1 has been implemented, and we will adapt
the existing implementation of [16] for SSPOD-2. Once the implementation is
finished, we will apply the tool to case studies.

Organization of the paper. Section 2 presents the preliminaries. Then, Sec-
tion 3 formalizes the SSPOD property, and Section 4 presents its verification.
Section 5 discusses related work. Section 6 concludes, and discusses future work.

2 Preliminaries

2.1 Basics

Sequences. Let X be an arbitrary set. The sets of all finite sequences, and all
sequences of X are denoted by X∗, and Xω, respectively. The empty sequence is
denoted by ε. Given a sequence σ ∈ X∗, we denote its last element by last(σ). A
sequence ρ ∈ X∗ is called a prefix of σ, denoted by ρ v σ, if there exists another
sequence ρ′ ∈ Xω such that ρρ′ = σ.

Probability distributions. A probability distribution µ over a set X is a function
µ ∈ X → [0, 1], such that the sum of the probabilities of all elements is 1, i.e.,∑
x∈X µ(x) = 1 over a set X. If X is uncountable, then

∑
x∈X µ(x) = 1 implies
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that µ(x) > 0 for countably many x ∈ X. We denote by D(X) the set of all
probability distributions over X. The support of a distribution µ ∈ D(X) is the
set supp(µ) = {x ∈ X | µ(x) > 0} of all elements with a positive probability.
For an element x ∈ X, we denote by 1x the probability distribution that assigns
probability 1 to x and 0 to all other elements.

2.2 Probabilistic Kripke Structures

We consider probabilistic Kripke structures (PKS) that can be used to model se-
mantics of probabilistic programs in a standard way [13]. PKSs are like standard
Kripke structures [17], except that each transition c → µ leads to a probability
distribution µ over the next states, i.e., the probability to end up in state c′ is
µ(c′). Each state may enable several probabilistic transitions, modeling different
execution orders to be determined by a scheduler. For technical convenience, our
PKSs label states with arbitrary-valued variables from a set Var , rather than
with Boolean-valued atomic propositions. Thus, each state c is labeled by a la-
beling function V (c) : Var → Val that assigns a value V (c)(v) ∈ Val to each
variable v ∈ Var . We assume that Var is partitioned into sets of low variables
L and high variables H , i.e., Var = L ∪H , with L ∩H = ∅.

Definition 1 (Probabilistic Kripke structure). A probabilistic Kripke struc-
ture A is a tuple 〈S, I,Var ,Val , V,→〉 consisting of (i) a set S of states, (ii) an
initial state I ∈ S, (iii) a finite set of variables Var, (iv) a countable set of values
Val, (v) a labeling function V : S → (Var → Val), (vi) a transition relation
→⊆ S×D(S). We assume that→ is non-blocking, i.e., ∀c ∈ S.∃µ ∈ D(S).c→ µ.

A PKS is fully probabilistic if each state has at most one outgoing transition,
i.e., if c→ µ and c→ µ′ implies µ = µ′. Given a set Var ′ ⊆ Var , the projection
A |Var′

of A on Var ′, restricts the labeling function V to labels in Var ′. Thus, we
obtain A |Var′

from A by replacing V by V |Var′
: S → (Var ′ → Val).

Semantics of probabilistic programs. A program C over a variable set Var can be
expressed as a PKS A in a standard way: The states of A are tuples 〈C, s〉 con-
sisting of a program fragment C and a valuation s : Var → Val . The transition
relation → follows the small-step semantics of C. If a program terminates in a
state c, we include a special transition c→ 1c, ensuring that A is non-blocking.

Paths and traces. A path π in A is an infinite sequence π = c0c1c2 . . . such
that (i) ci ∈ S, c0 = I, and (ii) for all i ∈ N, there exists a transition ci → µ
with µ(ci+1) > 0. We define Path(A) as the set of all infinite paths of A; and
Path∗(A) = {π′ v π | π ∈ Path(A)} as the set of all finite paths in Path(A).

The trace T of a path π records the valuations along π. Formally, T = trace(π)
= V (c0)V (c1)V (c2) . . .. Trace T is a lasso iff it ends in a loop, i.e., if T = T0 . . . Ti
(Ti+1 . . . Tn)ω, where (Ti+1 . . . Tn)ω denotes a loop. Let Trace(A) denote the set
of all infinite traces of A. Two states c and c′ are low-equivalent, denoted c =L c

′,
iff V (c) |L = V (c′) |L .
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2.3 Probabilistic schedulers

A probabilistic scheduler is a function that implements a scheduling policy [23],
i.e., that decides with which probabilities the threads are selected. To make our
security property applicable for many schedulers, we give a general definition.
We allow a scheduler to use the full history of computation to make decisions:
given a path ending in some state c, a scheduler chooses which of the probabilistic
transitions enabled in c to execute. Since each transition results in a distribution,
a probabilistic scheduler returns a distribution of distributions2.

Definition 2. A scheduler δ for PKS A = 〈S, I,Var ,Val , V,→〉 is a function
δ : Path∗(A)→ D(D(S)), such that, for all finite paths π ∈ Path∗(A), δ(π)(µ) >
0 implies last(π)→ µ.

The effect of a scheduler δ on a PKS A can be described by a PKS Aδ: the set
of states of Aδ is obtained by unrolling the paths in A, i.e., SAδ = Path∗(A) such
that states of Aδ contain a full history of execution. Besides, the unreachable
states of A under the scheduler δ are removed by the transition relation →δ.

Definition 3. Let A = 〈S, I,Var ,Val , V,→〉 be a PKS and let δ be a scheduler
for A. The PKS associated to δ is Aδ = 〈Path∗(A), I,Var ,Val , Vδ,→δ〉, where
Vδ : Path∗(A) × Var → Val is given by Vδ(π) = V (last(π)), and the transition
relation is given by π →δ µ iff µ(πc) =

∑
ν∈supp(δ(π)) δ(π)(ν) · ν(c) for all π, c.

Since all nondeterministic choices in A have been resolved by δ, Aδ is fully
probabilistic. The probability P (π) given to a finite path π = π0π1 . . . πn is
determined by δ(π0)(π1) ·δ(π0π1)(π2) · · ·δ(π0π1 . . . πn−1)(πn). The probability of
a finite trace T is obtained by adding the probabilities of all paths associated with
T . Based on this observation, we can associate a probability space (Ω,F ,Pδ)
over sets of traces. Following the standard definition, we set Ω = (Var → Val)ω,
F contains all measurable sets of traces, and Pδ : F → [0, 1] is a probability
measure on F . Thus, Pδ(X) is the probability that a trace inside set X ∈ F
occurs. We refer to [26] for technical details. Notice that Ω and F depend only
on A, not on Aδ.

2.4 Stuttering-free PKSs and Stuttering Equivalence

Stuttering steps and stuttering equivalence [21, 15] are the basic ingredients of
our confidentiality properties. In the non-probabilistic case, a stuttering step
is a transition c → c′ that leaves the labels unchanged, i.e., V (c′) = V (c). In
the probabilistic scenario, a transition stutters if, with positive probability, at
least one of the reached states has the same label. A stuttering-free PKS allows
stuttering transitions only as the self-loops in final states.

2 Thus, we assume a discrete probability distribution over the uncountable set D(S);
only the countably many transitions occurring in A can be scheduled with a positive
probability.
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Definition 4 (Stuttering-free PKS). A stuttering step is a transition c→ µ
with V (c) = V (c′) for some c′ ∈ supp(µ). A PKS is called stuttering-free if for
all stuttering steps c → µ, we have that µ = 1c and no other transition leaving
from c, i.e., if c→ µ′, this implies µ = µ′.

Two sequences are stuttering equivalent if they are the same after we remove
adjacent occurrences of the same label, e.g., (aaabcccd)ω and (abbcddd)ω.

Definition 5 (Stuttering equivalence). Let X be a set. Stuttering equiva-
lence, denoted ∼, is the largest equivalence relation over Xω ×Xω such that for
all T, T ′ ∈ Xω,a, b ∈ X: aT ∼ bT ′ ⇒ a = b ∧ (T ∼ T ′ ∨ aT ∼ T ′ ∨ T ∼ bT ′).
A set Y ⊆ X is closed under stuttering equivalence if T ∈ Y ∧ T ∼ T ′ imply
T ′ ∈ Y .

3 Scheduler-Specific Probabilistic-Observational
Determinism

A program is confidential w.r.t. a particular scheduler iff no secret information
can be derived from the observation of public data traces, the order of public
data updates, or from the probabilities of traces. This is captured formally by
the definition of scheduler-specific probabilistic-observational determinism.

As shown in [30, 14], to be secure, a multi-threaded program must enforce
an order on the accesses to a single low variable, i.e., the sequence of operations
performed at a single low variable is deterministic. Therefore, SSPOD’s first
condition requires that for any initial state, traces of each low variable that do
not end in a non-final stuttering loop are stuttering equivalent with probability
1. This condition ensures that no secret information can be derived from the
observation of public data traces, because when all low variables individually
evolve deterministically, the values of low variables do not depend on the values
of high variables. However, a consequence of SSPOD’s first condition is that
harmless programs such as l:=0||l:=1 are also rejected.

SSPOD also requires that, given any two initial low-equivalent states I and
I ′, for every trace starting in I, there exists a trace that is stuttering equivalent
w.r.t. all low variables, starting in I ′, and the probabilities of these two matching
traces are the same. This condition ensures that secret information cannot be
derived from the relative order of updates of any two low variables, or from any
probabilistic attack, because there is always a matching trace with the same
probability of occurrence.

Let (Ω,F ,Pδ) denote the probability space of Aδ with an initial state I.
Notice that the probability of a trace to end up in a non-final stuttering loop
is 0, because a non-final loop must contain at least one state with a transition
that goes out of the loop; thus, it contains a transition with a probability less
than 1. Thus, if X is a set of traces that ends in a non-final stuttering loop and
are closed under stuttering equivalence, Pδ[X] might be 0. Therefore, SSPOD is
formally defined as follows.
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Definition 6 (SSPOD). Given a scheduler δ, a program C respects SSPOD
w.r.t. L and δ, iff for any initial state I,

SSPOD-1 For any l ∈ L, let X ∈ F be any set of traces closed under stuttering
equivalence w.r.t. l, we have Pδ[X] = 1 or Pδ[X] = 0.

SSPOD-2 For any initial state I ′ that is low-equivalent with I, for all sets of
traces X ∈ F that are closed under stuttering equivalence w.r.t. L, we have
Pδ[X] = P′δ[X], where (Ω,F ,P′δ) denote the probability space of Aδ with I ′.

Program C is scheduler-specific probabilistic-observational deterministic w.r.t. a
set of schedulers ∆ if it is so w.r.t. any scheduler δ ∈ ∆.

4 Verification of SSPOD

This section discusses how we algorithmically verify the two conditions of SS-
POD. As mentioned above, we use a combination of new and existing algorithms.
Moreover, the new algorithm is general, and also applicable in other, non-security
related contexts. We assume that data domains are finite and schedulers use fi-
nite memory. Therefore, the algorithms work only on finite fully probabilistic
PKSs, which can be viewed as finite Markov Chains.

4.1 Verification of SSPOD-1

Algorithm. Given a program C, and a scheduler δ, SSPOD-1 requires that
after projecting Aδ on any low variable l, all traces that do not stutter forever
in a non-final stuttering loop must be stuttering equivalent with probability 1.
To verify this, we pick one arbitrary trace and ensure that all other traces are
stuttering equivalent to this trace. Concretely, for each l ∈ L, we carry out the
following steps.

SSPOD-1 on l
1: Project Aδ on l, yielding Aδ |l .
2: Remove all stuttering loops in Aδ |l .
3: Re-establish the self-loops for final states of Aδ |l . This yields a

stuttering-loop free PKS, denoted Rδ |l .
4: Check whether all traces of Rδ |l are stuttering equivalent by:

4.1: Choose a witness trace by:
4.1.1: Take an arbitrary lasso T of Rδ |l .
4.1.2: Remove stuttering steps and minimize T .

4.2: Check stuttering trace equivalence between Rδ |l and T by check-
ing if there exists a functional bisimulation between them.

This algorithm works, since we transform the probabilistic property SSPOD-1
into a possibilistic one. Key insight is that the probability of a trace that stutters
forever in a non-final stuttering loop is 0. Therefore, after removing all non-final
stuttering loops, it is sufficient to determine whether all traces are stuttering
equivalent.
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To perform Step 1, we label every state with the value of l in that state. To
remove the stuttering loops in Step 2, we use a classical algorithm for finding
strongly connected components w.r.t. stuttering steps [1], and collapse these
components into a single state. To ensure that the transition relation remains
non-blocking, Step 3 re-establishes the self-loops for final states.

Step 4.1.1 is implemented via a classical cycle-detection algorithm based on
depth-first search (Appendix A). The initial state of a lasso is also the initial
state of PKS. The algorithm essentially proceeds by picking arbitrary next steps,
and terminates when it hits a state that was picked before. Step 4.1.2 is done
via the standard strong bisimulation reduction. For example, the minimal form
of a lasso abb(cb)ω is a(bc)ω. This minimal lasso is called the witness trace.

Step 4.2 checks stuttering trace equivalence between a PKSA and the witness
trace T by checking if there exists a functional bisimulation between them, i.e.,
a bisimulation that is a function, thus mapping each state in A to a single state
in T . This is done by exploring the state space of A in a breadth-first search
(BFS) order and building the mapping Map during exploration. We name each
state in T by a unique symbol u ∈ U , i.e., ui denotes Ti. Let succ(T, u) denote
the successor of u on T .

We map theA’s initial state to u0, i.e., Map[init state] = u0. Each iteration of
the algorithm examines the successors of the state stored in the variable current .
Assume that Map[current ] is u, consider a successor c ∈ succ(A, current). The
potential map of c is u if current → c is a stuttering transition; otherwise,
it is succ(T, u). The algorithm returns false, i.e., continue = false, if (i) c
and potential map have different valuations, (ii) c is a final state of A, while
potential map is not the final state of T , or (iii) c has been checked before, but
its mapped state is not potential map.

If none of these cases occurs and c was not checked before, c is added to
Q , and mapped to potential map. Basically, a state c of A is mapped to u, i.e.,
Map[c] = u, iff the trace from the initial state to state c in A and the prefix of
T upto u are stuttering equivalent.

Let c ∼V c′ denote that c and c′ have the same valuation, i.e., V (c) = V (c′);
final(A, c) denote that c is a final state in A; and final(T, u) denote that u is the
final state in T . The algorithm also uses a FIFO queue Q of frontier states. The
termination of Algorithm 4.2 follows from the termination of BFS over a finite
A.

4.2: Stuttering Trace Equivalence(A, T )
for all states c ∈ S do Map[c] := ⊥;
continue := true;
Q := empty queue(); enqueue(Q , init state);
Map[init state] := u0; // u0 is T0
while !empty(Q) ∧ continue do

current := dequeue(Q);
u := Map[current ];
for all states c ∈ succ(A, current) do

potential map := (c ∼V current) ? u : succ(T, u);
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Fig. 1: Step 1 - Step 4.1

case c 6∼V potential map � continue := false;
[] final(A, c) ∧ ¬final(T, potential map) � continue := false;
[] Map[c] = ⊥ � enqueue(Q , c);

Map[c] := potential map;
[] Map[c] 6= potential map � continue := false;

return continue;

Example 1. Figure 1 illustrates Step 1 - Step 4.1 on a PKS A consisting of 10
states. Step 1 projects A on a low variable l. The symbols a, b, c etc. denote
state contents, i.e., states with the same value of l are represented by the same
symbol. Step 2 removes all stuttering loops, while Step 3 re-establishes the self-
loops for final states. Step 4.1 takes an arbitrary trace of A and then minimizes
it. Each state of the witness trace T is denoted by a unique symbol ui. Figure 2
illustrates Step 4.2. Initially, all states of A are mapped to a special symbol ⊥
that indicates unchecked states. To keep states readable, we skip the valuation.
Next, state 0 is enqueued, and mapped to u0. Next, the algorithm examines all
unchecked successors of state 0, i.e., states 1, 2, 3. Each of them follows a non-
stuttering step, thus their potential maps are all u1. Since states 1, 2, and 3 have
the same valuation as potential map, i.e., b, they are all enqueued, and mapped
to u1. Next, the successor of state 1, i.e., state 4, is considered. The transition
1→ 4 is non-stuttering, thus potential map = u2. State 4 has the same valuation
as potential map, but it is a final state of A, while potential map is not the final
state of T . Thus, continue = false. The PKS A and the witness trace T are not
stuttering trace equivalent, because there exists a trace that stutters in state 4
forever. The algorithm terminates.

Theorem 1. Algorithm 4.2 returns true iff there exists a bisimulation between
A and T .

Proof. See Appendix B.
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Overall Correctness. Step 1 only changes the labels of states of a PKS. Thus,
the probability space of the PKS is unchanged. Hence, after projecting Aδ on
l, we can reformulate SSPOD-1 in terms of Aδ |l . Let (Ω,F ,Pδ,l) denote the
probability space of Aδ |l . First, we reformulate SSPOD-1, which talks about
projected traces in A, in terms of the traces in the projected Aδ,l

Theorem 2. For any l ∈ L, and for a set of traces X ∈ F that are closed under
stuttering equivalence, if Pδ,l[X] = 1 or Pδ,l[X] = 0, then SSPOD-1 holds.

Proof. See Appendix C.

The key step (Step 2) in our algorithm is the reduction of a probabilistic
property to a non-probabilistic property: after removing all stuttering loops, if all
traces of Aδ |l are stuttering equivalent, then Pδ,l[X] = 1. Thus, SSPOD-1 holds.
The correctness of this step follows from a result from Baier and Kwiatkowska [5]:
whenever all fair traces of a PKS fulfill a certain property ϕ, then ϕ holds
with probability 1. In our context, we define the fairness of traces w.r.t. non-
stuttering transitions. A non-stuttering transition is enabled in a state Ti iff
there exists a finite sequence of transitions from Ti that leads to Tj such that
V (Tj) 6= V (Ti). A non-stuttering transition is said to be taken in a state Ti of
T iff ∃j > 0. Ti 6= Ti+j . A trace is strongly fair w.r.t. non-stuttering transitions
if given that a non-stuttering transition is enabled infinitely often, it is taken
infinitely often. Thus, a trace that stutters in a non-final stuttering loop forever
is unfair. Let Fair(A) denote the set of fair traces of Trace(A). Applying the
result from [5], we obtain:

Theorem 3. Given a finite Aδ |l and a set of traces X ∈ F that are closed
under stuttering equivalence and do not stutter forever in a non-final stuttering
loop, if ∀T, T ′ ∈ Fair(Aδ |l). T ∼ T ′, then Pδ,l[X] = 1.

We show that after removing all stuttering loops, and re-establishing the
self-loops for final states, the set of fair traces of A is preserved.
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Theorem 4. Given a PKS A, let R denote the PKS that is obtained after re-
moving all stuttering loops and re-establishing the self-loops for final states. Then
Fair(A) = Trace(R).

Proof. See Appendix D.

Combining these results, we obtain.

Theorem 5. For any l ∈ L, if all traces of Rδ |l are stuttering equivalent, then
SSPOD-1 holds.

Overall Complexity. Step 1 labels every state of A by the value of l in that
state. This is done in time complexity O(n), where n is the number of states of
A. Step 2 uses an O(m)-algorithm to find the strongly connected components,
where m is the number of transitions of A. The time complexity of Step 4.1 is
also O(m). The core of Step 4.2 is the BFS algorithm, whose running time is
O(n+m). Therefore, for a single low variable l, the total time complexity of the
verification is linear in the size of A, i.e., O(n+m), and for any initial state, the
total complexity of the verification of SSPOD-1 (for all l ∈ L) is |L|O(n+m).

4.2 Verification of SSPOD-2

Algorithm. SSPOD-2 states that, given a program C, for any two initial low-
equivalent states I and I ′, if we project on the set of low variables L, the prob-
abilistic languages arising from the executions of I and I ′ should be the same.
A number of efficient algorithms for checking equivalence between probabilistic
languages have been developed, the classical ones in [10, 28], and the improved
variants in [11, 16]. However, none of the existing algorithms exactly fit our pur-
poses, since either they do not abstract from stuttering steps [28, 11, 16], or they
consider a different variation of probabilistic language inclusion [10].

Therefore, to verify SSPOD-2, our algorithm first transforms the PKS into
an equivalent one, without stuttering steps, and then we use the latest and most
efficient algorithm from Kiefer et al. [16] to check equivalence of these proba-
bilistic languages. The basic idea of this algorithm is to present the language
of a PKS by a polynomial in which each monomial presents an input word of
the language and the coefficient of the monomial represents the weight of the
word, i.e., the probability of the execution of the word. This method reduces the
language equivalence problem to polynomial identity testing.

SSPOD-2
1: Project both Aδ and A′δ (modeling the executions starting in I and I ′)

on the set L, yielding Aδ |L and A′δ |L .
2: Remove all stuttering steps from Aδ |L and A′δ |L , yielding stuttering-

free PKSs Rδ |L and R′δ |L .
3: Check the equivalence of the stuttering-free probabilistic languages

between Rδ |L and R′δ |L , using Kiefer et al. [16].
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Overall Correctness. After projecting both Aδ and A′δ on L, we can refor-
mulate SSPOD-2 in terms of Aδ |L and A′δ |L . Let (Ω,F ,Pδ,L) and (Ω,F ,P′δ,L)
denote the probability space of Aδ |L and A′δ |L , respectively.

Theorem 6. SSPOD-2 holds iff for all sets of traces X ∈ F that are closed
under stuttering equivalence, we have Pδ,L[X] = P′δ,L[X].

Proof. See Appendix E.

Let R denote a stuttering-free PKS that is obtained by applying Step 2 on
a given A. Let PA and PR be the probabilistic transition functions of A and R,
respectively. Step 2 removes all stuttering steps by changing PA to PR given by
the following equations.

PR(c, c′) =

{
PA(c, c′) if V (c) 6= V (c′)∑
c′′:V (c)=V (c′′) PA(c, c′′) PR(c′′, c′) otherwise.

Thus, for non-stuttering steps, PA and PR are the same; for stuttering steps,
PR accumulates the probabilities of moving to c′ via some stuttering steps c→
c′′. Thus, PR accounts for the transition probabilities of stuttering steps in A
into the transition probabilities of non-stuttering steps inR. Therefore, removing
stuttering steps does not change the probabilities of sets of traces that are closed
under stuttering equivalence.

Theorem 7. Let X ∈ F be a set of traces that are closed under stuttering
equivalence, then PA[X] = PR[X].

Combining all results, it is obvious that to check SSPOD-2, we can check for
probabilistic language equivalence between Rδ |L and R′δ |L .

Overall Complexity. Step 1 is done in time complexity O(n), where n is
the number of states of two PKSs. Step 2 essentially calculates a reachability
probability, and is defined as a system of n linear equations over n variables.
This equation system can be solved in O(n3). Step 3 can be done in O(nm),
where m is the number of transitions [16]. Thus, the overall complexity is O(n3)
for each pair I and I ′.

5 Related Work

The idea of observational determinism originates from Roscoe [22], who was the
first to identify the need for determinism to ensure confidentiality for concurrent
processes. This observation has resulted in several subtly different definitions of
observational determinism for possibilistic multi-threaded programs (e.g., [30,
15, 27, 14]), see [14] for a detailed comparison. Notice that, SSOD is the only one
to consider the effect of schedulers on confidentiality.

When programs have probabilistic behaviors, to prevent information leakage
under probabilistic attacks, several notions of probabilistic noninterference have
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been proposed [29, 23, 24]. The first is from Volpano and Smith [29]. It is based
on a lock-step execution of probability distributions on states, i.e., given any
two initial states that are indistinguishable w.r.t. low variables, the executions
of the program from these two initial states, after projecting out high variables,
are exactly the same. As shown by Sabelfeld and Sands [23], this definition is
not precise, and overly restrictive. Sabelfeld and Sands’s definition of probabilis-
tic noninterference is based on a partial probabilistic low-bisimulation [23], which
requires that given any two initial states that are indistinguishable w.r.t. low vari-
ables, for any trace that starts in an initial state, there exists a trace that starts
in the other initial state and passes through the same equivalence classes of states
at the same time, with the same probability. This definition is restrictive w.r.t.
timing, i.e., it cannot accommodate threads whose running time depends on high
variables. Thus, it rejects many harmless programs, while SSPOD accepts, such
as if (h > 0) then {l1 := 3; l1 := 3; l2 := 4} else {l1 := 3; l2 := 4}.

To overcome these limitations, Smith proposes to use a weak probabilistic
bisimulation [24]. Weak probabilistic bisimulation allows two traces to be equiv-
alent when they reach the same outcome, but one runs slower than the other.
However, this still demands that any two bisimilar states must reach indistin-
guishable states with the same probability. This condition of probabilistic bisim-
ulation is more restrictive than SSPOD, because when trace occurrences do not
depend on high variables, probabilistic noninterference still rejects the program.

Moreover, all bisimulation-based definitions mentioned above do not require
the deterministic behavior of each low variable. However, we insist that a multi-
threaded program must enforce a deterministic orderings on the accesses to low
variables, see [14]. Finally, probabilistic noninterference [23, 24] also put restric-
tions on unreachable states, e.g., l := 1; if (l == 0) then l := h else skip is
secure but rejected, because the bisimulation also considers the case when the
conditional statement is executed from an unreachable state where l equals 0,
see [8]. Mantel et al. [18] overcome this limitation by explicitly using assump-
tions and guarantees about how threads access the shared memory. Notice that
SSPOD does not have this property, thus SSPOD is less restrictive.

Mantel et al. [19] also consider the effect of schedulers on confidentiality.
However, their observational model is different from ours. They assume that the
attacker can only observe the initial and final values of low variables on traces.
Thus, their definitions of confidentiality are noninterference-like.

Palamidessi et al., Chen et al., Smith, and Zhu et al. [2–4, 9, 25, 31] investigate
a quantitative notion of information leakage for probabilistic systems. Quanti-
tative analysis offers a method to compute bounds on how much information is
leaked. This information can be used to compare with the threshold, and thus
suggesting whether the program is accepted or not. Therefore, we can tolerate
the minor leakage. Thus, this line of researches is complementary to ours.
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6 Conclusion

Summary. This paper introduces the notion of scheduler-specific probabilistic
observational determinism, together with an algorithmic verification technique.

SSPOD captures the notion of confidentiality for probabilistic multi-threaded
programs. The definition extends an earlier proposal for possibilistic confiden-
tiality of such programs, and makes it usable in a larger context. It is important
to consider probabilistic multi-threaded programs, because this captures the re-
alistic behavior of programs.

We also propose an algorithmic verification technique for it. The verification
is using a combination of new and existing algorithms. The new algorithm solves
a standard problem, which makes it applicable also in a broader context. We
believe that the idea of adapting known model checking algorithms will also be
appropriate for other security properties, such as integrity and availability.

Future work. We see several directions for future work. We plan to continue
the study of other security properties, i.e., anonymity, integrity, and availability.
We believe that our algorithmic approach is also appropriate to efficiently and
precisely verify these security properties.

Further, we also plan to relax our definitions of confidentiality by quantifying
the information flow and determining how much information is being leaked.
The existing models of quantitative analysis do not address which measure is
suitable to quantify information leakage for multi-threaded programs, thus a new
approach has to be developed.

Acknowledgment: Our work is supported by NWO under grant 612.067.802
(SLALOM) and grant Dn 63-257 (ROCKS).
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A Algorithm to take a lasso of a PKS

The following appendices are for reviewing only. This appendix introduces the
algorithm that implements Step 4.1.1.

4.1.1: Lasso T of A
for all states c ∈ S do Visit [c] := 0;
index := 0;
current := init state;
for (; ; ) do

T [index ] := current ; // Implement T as an array

index := index + 1;
if Visit [current ] = 1 then break;
Visit [current ] := 1;
current := some state c ∈ succ(A, current);

return(T , position of current in T );

In this algorithm, we use an array Visit to indicate visited states of A, i.e.,
Visit [current ] = 1 indicates that current has been visited before. Clearly, this
algorithm returns a trace of A. Moreover, it always terminates, because A is
finite and there is a self-loop in every final state.

B Proof of Correctness of Algorithm 4.2

B.1 Loop Invariant of Algorithm 4.2

We first discuss the loop invariant of Algorithm 4.2.

Theorem 8. Algorithm 4.2 preserves the following loop invariant:
If continue then ∀c ∈ S such that Map[c] = u, the trace from init state to c
and the prefix of T upto u are stuttering equivalent, and if ¬continue then there
exists a trace of A that is not stuttering equivalent to T .

Proof. Clearly, the invariant holds upon first entry of the loop, since initially,
continue holds, and only init state is mapped to the initial state of T , i.e., u0.

We show that the invariant is preserved by every iteration of the loop. Assume
the invariant holds before the loop body. If continue does not hold, then the loop
is not executed, and the algorithm ends. The invariant is preserved.

Otherwise, continue holds. The invariant before the loop body states that
the trace from init state to current and the prefix of T upto u are stuttering
equivalent. Now consider a successor c of the current state. We distinguish the
following cases:

Case c 6∼V u and c 6∼V succ(T, u). In our algorithm, potential map denotes the
candidate mapping of c. It is u if c ∼V current ; otherwise, it is succ(T, u).
If c 6∼V u and c 6∼V succ(T, u), then c 6∼V potential map. Thus, continue
becomes false. The invariant is preserved, because any trace that goes from
current to c is not stuttering equivalent to T .
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Case c ∼V u or c ∼V succ(T, u). Thus, c ∼V potential map. Now, we consider
the following cases:
Case final(A, c) ∧ ¬final(T, potential map). Thus, continue becomes false.

The invariant is preserved, because if c is a final state of A, then there
must be a trace that stutters in c forever, while T can make a step from
potential map to another state with a different valuation due to the fact
that T is stuttering-free.

Case ¬(final(A, c) ∧ ¬final(T, potential map)).
Case c is unchecked. Thus, Map[c] = ⊥. State c is added to Q , and

becomes a frontier state. Moreover, it is mapped to potential map.
It is easy to see that the trace from init state to c and the prefix of
T upto potential map are stuttering equivalent. Hence, the invariant
is preserved.

Case c is checked before. Thus, Map[c] 6= ⊥.
Case Map[c] = potential map. State c has been explored before; the

algorithm does not explore it further. Since continue and Map
are not updated, the invariant is preserved.

Case Map[c] 6= potential map. Thus, continue becomes false. The
invariant is preserved, because there exist two traces that both
lead to c and in these two traces, c is mapped to two different
states of T ; thus, one of these two trace is not stuttering equiv-
alent to T . �

B.2 Proof of Theorem 1

Proof. The algorithm preserves the following loop invariant: If continue, then
∀c ∈ S such that Map[c] = u, the trace from init state to c in A and the prefix
of T upto u are stuttering equivalent, and if ¬continue then there exists a trace
of A that is not stuttering equivalent to T (see Appendix B.1).

If the algorithm returns false, it follows directly from the invariant that no
functional bisimulation exists. If it returns true, we can conclude that for any
trace of A, e.g., T1, there exists a prefix of T that is stuttering equivalent to T1.
We show that T1 is actually stuttering equivalent to the whole T .

Case T1 ends with a final state c. Assume that c is mapped to potential map.
Since the algorithm is termination-sensitive, potential map is also the final
state of T . Thus, T1 and T are stuttering equivalent.

Case T1 ends with a non-stuttering loop that starts and ends in c. A-
ssume that c is mapped to potential map. State c is investigated twice, and
during the second visit, its mapped state is also potential map; otherwise,
the algorithm returned false. Hence, potential map is also the start and end
of a loop that terminates T . Thus, T1 and T are stuttering equivalent. �

C Proof of Theorem 2

Proof. Let T be a trace of Aδ and let T |l denote the projection of T on l. First,
notice that {T |l | T ∈ Trace(Aδ)} = Trace(Aδ |l). Let X ⊆ Trace(Aδ) such that
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X is closed under stuttering equivalence w.r.t. l. Clearly, also X ⊆ Trace(Aδ |l),
and X is closed under stuttering equivalence. Moreover, the probability space of
Aδ is preserved by projection on l. Thus, if for any l, Pδ,l[X] = 1 or Pδ,l[X] = 0,
then Pδ[X] = 1 or Pδ[X] = 0, respectively. Thus, SSPOD-1 holds. �

D Proof of Theorem 4

Proof. Let L be a non-final stuttering loop of A. Since L is non-final, it con-
tains at least a state with an outgoing transition that leads to a non-stuttering
transition. From the definition of fair traces, any T that is trapped in L forever
is unfair. Hence, removing all stuttering loops, and re-establishing the self-loops
for final states, preserve the set of fair traces of A. �

E Proof of Theorem 6

Proof. Step 1 labels states of a PKS by the set of values of L. This preserves
the probability space of the PKS. Let X ⊆ Trace(Aδ) such that X is closed
under stuttering equivalence w.r.t. L. Clearly, also X ⊆ Trace(Aδ |L), and X is
closed under stuttering equivalence. Moreover, Pδ,L[X] = Pδ[X]. Thus, SSPOD-
2 holds. �
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