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Abstract. Semi-structured processes are business workflows, where the
execution of the workflow is not completely controlled by a workflow
engine, i.e., an implementation of a formal workflow model. Examples
are workflows where actors potentially have interaction with customers
reporting the result of the interaction in a process aware information
system. Building a performance model for resource management in these
processes is difficult since the required information is only partially recorded.
In this paper we propose a systematic approach for the creation of an
event log that is suitable for available process mining tools. This event log
is created by an incrementally cleansing of data. The proposed approach
is evaluated in an experiment.

1 Introduction

Semi-structured processes are business workflows, the execution of which is not
entirely controlled by a workflow engine, i.e., an implementation of a formal
workflow model. Example of such processes are workflows in which people inter-
act with clients and/or paper documents in order to insert, approve, or validate
information in an (web-based) information system. Such an information systems
can be an application server or a service orchestration, e.g., using BPEL. To
support a better understanding of the management of such processes it is im-
portant to assess the performance of activities in the workflow and their relations
to available resources. Lacking such knowledge makes it hard to predict the uti-
lization of resources and to make a balanced resource planning. For example, it
is difficult to predict how well the business can cope with higher workload due
to, for example, activity peak, a promotion activity or to vacations.
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Independent of the workflow’s implementation, the underlying information
system may keep track of the completion time of an activity but cannot record
the start time of an activity. Such an information system cannot detect for in-
stance when a conversation with a client starts. Thus, it is not possible to build
a classical performance model and use existing process analysis techniques like
those described in [1] before enriching the data with the activities’ start times.
Therefore, in [2] we proposed an approach for cleansing the data and estimating
the activity start times based on the steps depicted in Fig 1. A first cleansing
step is performed on the raw event data eliminating data which are unusable due
to infrastructure problems (e.g., network problems). Next, the cleansed data is
used to infer an initial estimate of the start time for each activity. The initial
estimates may be overwritten in later cleansing steps. The following cleansing
step investigates special situations per process instance (also called case) like,
for example, system tests and dead-lock or live-lock instances. The last cleansing
step is the histogram based cleansing (per activity) that removes outliers, i.e.,
exceptionally high durations of an activity. The final step investigates dependen-
cies of activity durations cross process instances and categorical data (e.g., the
weekday or the experience of a user), thus checking whether the independence
assumption used in a performance model is actually supported by available data.
The final result is a cleansed event log, which can be used for the mining of a
control flow and for performance analysis.

In [2] we have reached the conclusion that the inferred performance estimates
for the case study were quite low compared to the expected performance mea-
sures. Therefore, in this paper we improve and extend the results of [2]. Thus, the
contribution of this paper is twofold. First, we present additional insights into
start time estimates including a mathematical description of the problem. Sec-
ond, a new approach for histogram based cleansing is proposed. Furthermore, the
findings will be evaluated on synthetic datasets. To the best of our knowledge,
our approach is the first to attempt the estimation of the duration distribution of
activities using logs that contain incomplete information regarding the process
execution.

The paper is organized as follows. We first present the context of the prob-
lem and its description (Section 2). The start time estimation approach and
histogram based cleansing are presented in Section 3 and Section 4 respectively,
followed by an evaluation (Section 5). We conclude the paper with related work
(Section 6) and conclusions (Section 7).

2 Problem Description

The proposed approach has been motivated by the semi-structured processes in
the front-office of a financial company. The service provider uses a web-based
application to quickly set up semi-structured financial processes without devel-
oping the same components repetitively. A typical front office employee handles
applications of clients for, e.g., a loan, insurance or savings account, at the office
counter, but also Internet and telephone applications. Typical activities in the



front office are talking to the client, collecting and verifying client documents,
do some automatic checks (e.g., a credit check), and sending the application to
the back office for further handling. The development environment uses a pro-
prietary process modeling language based on states, and manual and automatic
state changes, performed by an employee or by the software. The expressiveness
of the language is comparable to that of Finite State Automata, i.e., it sup-
ports loops but no parallelism. Thus, the system can only record an activity’s
completion time (state change), but not its start time.

The challenge posed by such semi-structured processes is that start times of
activities cannot be automatically logged. Another issue is that users often work
on more than one process and therefore the percentage of time a user is working
on the process under investigation is unknown. Furthermore, other activities like,
e.g., meetings, breaks, early departure of an employee are not documented and
therefore are not available for the start time estimation.

In this paper we assume the existence of a process execution log file, which
contains information about the case ID, the State Change ID, the Completion
Time, the ID of the user performing the state change, and the name of the
activity being completed. The State Change ID provides a complete order on all
state changes. The Completion Time provides a partial order of state changes.
An example of a log file is depicted in Fig 2, which will be also used later in the
paper, and is partly visualized in Fig 3.

Case |State |Complet.|User |Completed
1D Change | Time ID  |Activity
1D
2 3 9:44:14 |Andy|Process Waiting
Start 75 )
T |4 9:49:54 |Andy|Send Re- cm
| Execution ume\r/ Execution time
quest H | 540 H 25:06 H
1 5 10:15:00 |Peter |Control Pigfgfﬁ:}lsz:zz andy @'9: waa Ay coaoss andy @10:1500
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T |6 09:05:00 |Andy |Credibility cz.@
Check
Fig. 2. Example State Transition Log Fig. 3. Start time inference

In the following we assume that the process involves, potentially, multiple
systems each providing part of the log information. However, we are not ad-
dressing neither data integration problems (e.g., entity resolution problems of
event log information) nor syntactic or semantic data integration problems. In
particular, in the following sections, we are discussing start time estimation and
histogram based cleansing.



3 Start Time and Duration Distribution Estimation

In this section we propose an approach for estimating the start time of activities,
which is required to determine the duration of an activity. In this section, we
extend the basic idea presented in [2] by explaining the chunks of time a user has
worked on an activity. Further, potential issues are discussed and a mathematical
model capturing these issues is proposed.

3.1 Approach

Estimating the start time of an activity is based on a complete order of state
changes (activities), which is consistent with the partial order of the Comple-
tion Time. First, the control flow dependencies in a workflow ensure that an
activity can only start after the preceding activity has been completed. Thus,
by determining the Completion Time of the preceding activity an estimate of
the start time of the activity can be inferred. With regard to the example in Fig
2 the activity Control Opening has the preceding activity Send Request. Thus,
an estimate for the start time of the Control Opening activity is the completion
time of the Send Request activity. This results in an estimated processing time
or duration of 25 minutes and 6 seconds as depicted in Fig 3.

Second, we make the assumption that a user can only perform one activity
at the time. Thus, an activity performed by a user can only start after another
activity performed by the same user has been completed. With regard to the
example in Fig 2 the activity Send Request of case 1 performed by user Andy is
preceded by the completion of activity Process Start of case 2. Thus, an estimate
for the start time of the Send Request activity is the completion time of the
Process Start activity. This results in an estimated processing time or duration
of 5 minutes and 40 seconds as depicted in Fig 3.

Thus, the estimated start time of an activity is the minimum of the comple-
tion time of the preceding activity of the same process, and the completion time
of the preceding activity of the same user. Consequently, the start time of the
first activity in a process can only be estimated based on the preceding activity
of the same user since there is no preceding activity in the process. Applying
this definition, as also given in [2], results in significantly underestimating the
processing times of activities. This is due to the possible interweaving of the
execution of activities performed by the same user. Therefore, the approach is
adjusted as follows.

The initial start time estimate is the completion time of the preceding activity
of the same process. If no such activity exists the completion time of the preced-
ing activity of the same user is chosen. From this initial start time estimate the
estimated processing times of preceding activities performed by the same user
in the time span of the initial start estimate and the known completion time are
subtracted. This provides a more accurate processing time/duration estimate.

The proposed approach is illustrated in Fig 4. The start time of activity 2
(Act 2) is initially estimated by the completion time of the preceding activity
of the same process, which is activity 1. Thus the duration of the activity is the



difference between completion and start time. From this initial duration estimate
the duration of chunks are removed, which fall into this processing time interval
and which have been associated to executing other activities by the same user.
A chunk is represented by a gray box in the figure. In this case, the processing
of activity 2 is performed in two chunks: the first one is the non assigned time
of user 2 between activity 5 and 3 and the second one is the non assigned time
between activity 4 and 2. The more processes are interwoven the higher the
number of chunks.

3.2 Potential Issues

In this section several issues are raised that can not be resolved by the start time
estimate. They are dealt with by histogram based cleansing (see Section 4) by
making sure that they do not influence the performance estimates significantly.

Working Hours of Users. A challenge for start time estimation of activities
is that working hours are not precisely fixed. Let’s say Jim completed the last
activity on Tuesday at 17:00 and the next activity completion is Wednesday at
9:05. This doesn’t mean that Jim took 16 hours and five minutes to complete a
task. Since there is no information about the start and end time of an employee’s
working day, there is no possibility to provide a better start time estimate.
However, it is reasonable to assume that activity durations influenced by this
issue are longer than at least 8 hours.

Non-visible Activities. In the proposed approach we implicitly assume
that a user is only working on the system under investigation. However, a person
also performs other tasks in addition to working in this particular system. For
example, when user Jim completes the state change ’send request’ at 09:48,
then attends a meeting till 11:00, and then completes the state change 'control
opening’ at 11:05, the system will assume that it took Jim 65 minutes to execute
state change ’control opening’, instead of the actual five minutes work. We call
such activities non visible activities, since they are activities of the user, but they
are not documented in the event log. Since there is no information available on
how much of its time a user is working on the system under investigation, it is
not possible to improve the start time estimates. However, it is reasonable to
assume that the number of activities performed in the system under investigation
is sufficiently high to be able to perform statistical investigations. Furthermore, it
is assumed that there is a sufficient number of activities which are not influenced
by non-visible activities, otherwise the non-visible activities become so dominant
that the performance model describes the non-visible activities rather than the
activity under investigation.

Preemption of Activities. The example used in Section 2 for determining
the start time works fine if the activities are not preempted, i.e., interrupted to
perform another activity. Examples of preemption are a call from your supervi-
sor to drop everything and perform another activity, as depicted in Fig 5. The
activity ‘Send Request’ of case 1 is interrupted by activity 'Process start’ of case
2. As a consequence, the estimated processing time of activity ’Send Request’
of case 1 is 5:40 (see Fig 3) rather than the actual 7:30. It seems safe to assume
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that the probability of preemption is rather low and that the point in time of
the preemption to happen is equally distributed.

3.3 Mathematical Model

The basic idea is to describe the duration of an activity as a mixture model
combining several distributions with different characteristics and different prob-
abilities of occurrence into a single distribution model. In general, if the number
and type of used models and their characteristics is known it is possible to infer
the characteristics of these models. However, this is not the case in the problem
addressed in this paper. Nevertheless, if the duration of the activity is the dom-
inant distribution and the characteristics of the distributions describing issues
addressed above are sufficiently different, it is possible to infer the characteristics
of the dominant distribution with an acceptable error.
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As an example, Fig 6 depicts two normal distributions where the duration of
the activity is modeled as the main distribution and an issue is modeled as a noise
distribution. The main distribution has a mean of 275 and the noise distribution



a mean of 500. Both are normal distributions with a standard deviation of 275.
The probability of noise is 40%. Fig 7 depicts the resulting mixed model, where
the peak is around 300 and a small second peak is observable at around 750.

Since no assumptions are made on the type and number of distributions used
in the mixed model, the aim is to determine the mean of the most dominant
distribution. With regard to the example, the aim is to determine the peak in
Fig 7. In general it can be stated that the dominant mean estimation is most
precise if the influence of the noise distribution is minimal. This is guaranteed
in case the noise probability is low or the noise distribution has a significantly
different mean value. An example for a low noise probability is that the number
of coffee breaks a clerk has per day is at least a magnitude lower than the number
of performed activities in the system. An example for a significant different mean
value is the working hours of users, i.e., the durations of activities started on one
day and completed on the following day have a noise of at least 8 hours which
is at least a magnitude higher than the actual duration of the activity.

For a given main distribution @(p,...) with a mean p and some other pa-
rameters, and a set of error distributions 6;(u;,...), i = 1,...,n, the mixed
distribution @’ can be defined as

o' :=06(u,...) +Zp¢ *0; (i ... ),

where 0 < p; < 1 is the probability of an error distribution ;. Since no further
assumptions are made on the distributions and of the error probabilities, the
formula stays this general. Further, the mixed distribution is only characterized
by the mean p/, since this is the parameter inferred in the following section.

4 Histogram based Cleansing

In this step of the process presented in Fig 1 the histograms of activity durations
with the same label over all process instances are investigated. The duration is
defined as the difference between the Completion Time of an activity and its
estimated start time. The basic idea is that the distribution of durations per
activity is a mixed model (see Section 3.3). The aim is to find the mean of the
dominant distribution. Therefore, the observed durations of an activity - ordered
by durations - have to be clustered. In particular, the duration of the centroid of
the biggest cluster corresponds to the mean of the dominant distribution. In the
remainder of this section three potential methods are presented and compared.

k-Means Clustering. A well known clustering approach is k-means cluster-
ing [3], which consists of the following steps: 1) estimate the number of clusters
which should be considered, 2) perform a k-means clustering, and 3) determine
the largest cluster and use the cluster centroid as a mean of the dominant dis-
tribution. The first challenge is to estimate the number of clusters to be used.
Different approaches are proposed in literature, such as, the elbow method, where
the smallest number of clusters is chosen, which does not improve a cluster qual-
ity measure. Other approaches are either based on internal or external measures



of the clusters. In the following (and especially in the evaluation) the optimal
number of clusters is derived from the construction of the evaluation data set.
The mean of the main distribution is determined by the centroid of the largest
cluster determined by k-means. The largest cluster is chosen since the assumption
is that the main distribution is dominant and therefore the number of durations
around the mean of the main distribution is much bigger than for the means of
the error distributions in the mixed model.

Kernel Density Estimation. The basic idea is to build a histogram of all
observed durations of an activity and to use the bin in the histogram with the
highest frequency as the mean of the main distribution. Since such an approach
is dependent on the definitions of the bins in the histogram, an approach for
estimating the probability density function is used, which is called kernel density
estimation [4, 5]. The inferred kernel can then be used to create the density value
for the complete domain. The mean of the dominant distribution is the maximum
in the probability density function. Please note that this approach does not use
the estimates of the mixed model but the resulting estimated distribution created
by the mixed model.

Slope based Clustering.The basic idea is that the dominant distribution
has the strongest representation in the observed durations. Therefore, the aim
is to find the largest subset of observed durations where the slope or gradient
between two subsequent durations does not exceed a specific value. Further, the
subset must contain at least 5% of all observed durations.

Formally, this can be described as follows: The observed durations can be
described as an ordered set X = {xy, ..., 2y }. The mean of the main distribution
corresponds to the mean of the largest subset X’ C X with X' := {«f,..., 2], €
X|Vje{l,...,n},a}—a_; < e} of observed durations with the lowest threshold
e €{0.1,..., 5}, where the size of the subset X' must be significant, thus it must
contain more than 5% of the total size of the data set n > 0.05 % N.

Discussion. The initial testing and comparison of the different approaches
indicate that all of them are sensitive to the actual observed durations. There-
fore the evaluation was repeated 20 times and the average errors were considered.
Each experiment was based on 10000 observed durations, where the probability
of noise has been kept constant (40%), while the noise and main distribution
means vary. The evaluation has been performed for a Normal distribution with
a fixed standard deviation of 275 and a Poisson distribution. The results are
given in Table 1. It turns out that the differences in the test using Poisson dis-
tribution are smaller and very different from the test with Normal distribution.
For the Poisson distribution the slope based clustering performs best, closely
followed by the kernel density estimation. The k-means clustering is in most
cases comparable to kernel density estimate and slope based clustering, and in
a few cases it is quite off. There is no apparent reason behind the distribution
of the higher error cases. In case of a Normal distribution, the average absolute
errors are depicted in Fig 8. It shows that the kernel density estimate approach
outperforms the other two approaches as it can also be seen in Table 1. The
slope based approach has always the worst results, while the k-means clustering
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Fig. 8. Contour plots of the absolute errors of the k-means and the clustering method
for varying mean values of the main and error distribution

Approach Normal Distribution||Poisson Distribution
Min|Mean Max Min|Mean Max
slope based clustering 22.0] 31.7 46.3 0.1] 0.2 0.3
k-means clustering 1.8 19.8 39.4 0.1| 1.2 24.2
kernel density estimation|| 7.5 | 12.0 22.8 0.4 0.9 3.1

Table 1. Summary of Estimated and Guessed Durations

approach performs well with very low and very high means of the noise dis-
tribution. Further evaluation will use the kernel density estimate approach for
arbitrary distributions and the slope based approach for Poisson distributions
only.

5 Evaluation

In this paper we focus on an evaluation with synthetic data since this allows us to
evaluate our approach in various situations. In [2] and [6] we have reported two
case studies illustrating that our approach can also be applied in real situations.

The evaluation with synthetic data requires a generic method for generating
log information for arbitrary workflows with varying noise conditions. Therefore,
the Colored Petri Net Tool (CPNTool![7]) is used with an extension to log
process execution information in a file [8]. The logged information can then
be used to reconstruct the exact execution of the workflow for all cases. By
using a subset of the data as input for the presented approach, the estimated

! nttp://cpntools.org/
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performance information can be compared with the actually used mixed model,
encoded in the workflow specification. Next, we first explain the used hierarchical
Petri Net and then we present the evaluation results.

5.1 Workflow Specification as a hierarchical timed Colored Petri
Net

A Petri Net [9] is based on transitions (squares) and places (circles) which are
connected as a bipartite graph. A Colored Petri Net allows to assign types to
places and variables of those types to arcs which are connecting places and
transitions. A hierarchical Petri Net allows to define subnets where executing
a transition (represented by a square with double border) on the higher level
means executing the subnet on the lower level. The input and output places of
the higher level transition have to be mapped to the input and output places of
the subnet. A timed Petri Net allows to specify a delay for the execution of a
transition based on a time model followed during the execution of the net. An de-
lay of 12 time units is represented in the model by annotating an arc with @+412.
Examples of these nets are depicted in Fig 9, and 10 representing the modeling
of a single activity, and an execution engine processing scheduled activities. The
used Petri Net consists out of four hierarchical levels. The generator creates a
specified number of instances and provides a randomly distributed initialization
of workflow instances. The workflow consists of four sequential activities, which
is a simple example, but represents the current state of our research. In future
work we will investigate more complex workflows. An activity transition is an-
notated with the activity ID used in the further processing (idl variable). The
id variable contains the workflow instance ID. Arbitrary workflows can be re-
alized. Each activity transition executes the activity subnet depicted in Fig 9.
The Act start transition determines the mean processing time (at), the name of
the activity (an), the actor executing the activity (Roles.ran()), and the actual
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processing time of the activity (procTime(at)) and schedules the activity. The
process activity executes the process subnet.

The process subnet (representing a workflow engine) (see Fig 10) ensures that
an actor can only perform an activity at a time. Further, it documents state
changes of an activity execution (document transition) and the completion of
an activity (Activity complete transition) using the addATE function described
in [8]. The nextStep transition determines in which state the execution of an
activity continues. States are actually executing the activity at hand (running’),
having a break ("break’), attending a meeting ("meeting’), and working outside
the system under investigation ("external’) with clear defined probabilities. These
states have been chosen because all states have different characteristics: breaks
are usually shorter than meetings, which are shorter than external activities.
In case there are breaks which have a length of a meeting, this means that the
probability of having a meeting should be increased. The core is that the reason
for the interruption of an activity execution is irrelevant as long as a specific
characteristics of a case is preserved. In terms of the mixed model described in
Section 3.3, the activity processing is the main distribution and breaks, meetings
and external activities are noise distributions.

5.2 Experiment Design

The two approaches for histogram based cleansing - slope based and kernel
density estimate based approach (see Section 4) - are evaluated based on the
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above workflow, in order to test their performance. Different combinations of
mean processing, break, meeting, and external times are used as well as varying
probabilities for the different states. Each experiment is executed several times
and the means of the results are compared. Table 2 specifies the different pa-
rameters for each experiment. The processing times for the activities follow the
Normal distribution in these tests, where procTime(u) := max(1, N(p, u)). The
five experiments are given in the next table. The processing times of activities
are chosen in different sizes to investigate the effect on the estimate. Further,
the probabilities of noise is varied, where the mean times of the noise has been
chosen to be much smaller, equal to and much bigger than the processing times
of activities. Scenarios 4 and 5 deviate most from a normal operation, since the
user only works one fifth of her time on activities in the system.

Experiment Processing Break Meeting | External
Act 1|Act 2|Act 3|Act 4|Prob|Mean|Prob|Mean|Prob|Mean|Prob
300 | 750 | 450 | 150 [80% | 20 |10% | 300 | 5% | 4000 | 5%
300 | 750 | 450 | 150 [50%| 20 [10% | 300 | 5% |4000 |35%
300 | 750 | 450 | 150 |50% | 20 |[10% | 300 |20% | 4000 |20%
300 | 750 | 450 | 150 [20% | 20 |10% | 300 |35% | 4000 |35%
300 | 300 | 250 | 150 [20%| 20 |10% | 300 |35% | 4000 |35%

Table 2. Summary of the different experiment parameters

U W DN =

5.3 Experiment Results

The results of the different experiments are summarized in Table 3. The table
contains the experiment number as well as the processing time estimates for the
different activities using the slope and the kernel density estimation (kde) based
approach. Furthermore, columns with remarks and a filter disregarding activities
with a duration smaller than the specified number of time units are included.
The estimates significantly deviating from the processing times are highlighted
in gray. From the table it results that all estimates for activity 3 and 4 are
reliable and correct, thus, errors only happen for activity 1 and 2. Also, in all
experiments the processing time estimate for activity 1 is significantly underes-
timating the processing time. Underestimation of the first activity of a workflow
is a consequence of the start time estimation approach: since there is no pre-
ceding activity of the workflow, the best estimate is the closest completion time
of another activity performed by the same user. Thus, as soon as the execution
of activities interleaves the estimate will be significantly underestimated. Thus,
the first activity in a workflow requires a special treatment, e.g., by adding a
filter to cut off the significant underestimation. When applying a filter of at least
40 time units for a valid processing time, the correct results are derived for all
experiments.
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Experiment |Filter|Activity 1| Activity 2 |Activity 3|Activity 4 Remark
slope | kde |slope| kde |slope| kde
446 | 448 | 149 | 148 |.
1 196 148 149 | 148 input delay 500
451 | 452 | 148 | 146 | .
151 [ 452 | 148 [ 146 | mput delay 500
2 451 | 456 | 154 | 151 |.
151 [ 455 [ 154 [ 150 | mput delay 800
438 | 445 | 151 | 151 |input delay 1000
449 | 458 | 150 | 150 |.
149 [ 457 [ 150 [ 150 | nput delay 400
3 449 | 458 | 150 | 150 |.
149 [ 457 [ 150 [ 150 | mput delay 600
451 | 452 | 149 | 151 |.
151 [ 452 [ 149 [ 151 | mput delay 800
463 | 452 | 160 | 151 |.
163 1451 T 160 1 153 input delay 1000
4 455 | 445 | 151 | 150 |input delay 1500
456 | 452 | 157 | 150 |.
6 453 T157 | 152 input delay 2000
267 152 | 151 run 1
5 0 309 142 | 147 run 2
156 | 150 run 3

ble 3. Estimates for the different experiments

The errors in activity 2 are due to significantly overestimating the processing
time. The reason here for overestimation is a system overload. Since activities
are queuing up, the chance of adding one or multiple times a noise contribution
increases significantly. Therefore, noise can become a dominant distribution re-
sulting in the overestimation. During normal operation this effect can not be
observed and therefore the described approach provides good estimates. This
statement is supported by the results of experiments 2, 3 and 4 which are exe-
cuted with different mean delays between the triggering of subsequent process
instances, thus influencing the system load. The lower the mean delay, the more
the process instances are interwoven with each other, resulting in overestimating
the processing time.

The three runs of experiment 5 with exactly the same settings give an in-
dication that the actual estimation result for this particular experiment varies
significantly depending on the actual executions of the workflows. While in the
first run activity 1 is underestimated and activity 2 is overestimated, in the sec-
ond run only the kde approach underestimates activity 1 and overestimates less
drastically activity 2. Finally in the third run all estimates provide good results.
This indifferent experiment result is due to the fact that this experiment is close
to an overload situation and, depending on the assignment of tasks to users, an
overload is observed or not. It should be noted that the other results given in
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Table 3 do not exhibit this behavior and are stable also when repeated several
times.

Since overestimation of processing times can not be eliminated the aim is to
find a measure of the quality of the processing time estimate of an activity. From
the experiments we conclude that there is a correlation between the absolute
error of the start time estimate and the number of chunks used in the start time
estimate. Thus, the mean number of chunks and the corresponding standard
deviation can be used as a quality indicator. Fig 11 depicts the scatter plot for
activity 2 of experiment 5 for the three runs. Run 3 produces the best results
indicated by most of the dots being in the lower left quadrant of the figure. Run
1 and 2 result in overestimations of the processing time and have data in the
upper right quadrant of the figure. The correlation is observable since the cloud
of dots approximates a diagonal. Since this graphical representation is hard to

Experiment|Run|Activity 1|Activity 2|Activity 3|Activity 4

Mean| Std |Mean| Std |Mean| Std |Mean| Std
5 1 1.0 | 0.0 | 48.3 |54.6|18.9|23.2|26.4 |35.4
5 2 1.0 | 0.0 | 46.5 | 59.5|23.9|30.3| 15.3 | 22.0
5 3 1.0 | 0.0 | 24.4|34.7|22.4]31.2|20.3|26.0

Table 4. Mean and st. dev. of number of chunks in the estimated data for different
runs of experiment 5

interpret, Table 4 contains the mean and standard deviation of the number of
chunks in the estimated data for the three runs of experiment 5. The activity 2
column is based on the data depicted in Fig 11. The mean and standard deviation
of activity 2 of run 3 are comparable to the means and standard deviations of
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activities 3 and 4. The mean and standard deviation of activity 2 for run 1 and 2
are much higher, indicating the lower quality of the estimate. The measure is not
applicable to activity 1 since the estimate for the start activity of a workflow will
always depend on the completion of the previous activity by the same user. One
can infer whether a mean and standard deviation combination give an indication
of an unreliable processing time estimate by comparing them with the same
measures of different activities and different workflows. An independent decision
criterium is subject to future work.

6 Related Work

Several approaches on performance model mining are relevant as related work.
Some are related to ProM [10] and are based on event logs provided in the Min-
ing Extensible Markup Language (MXML) [11]. Rozinat et al. [11] present an
approach to mine simulation models from MXML event logs. The idea is to gen-
erate a process model, represented as a Colored Petri Net (CPN). Depending on
the event log’s richness, the resulting CPN may cover not only the control-flow
perspective, but also the resource and performance perspective. However, the es-
sential difference between our approach and all the above-mentioned approaches,
is that all of them assume the event log contains both start and end times of an
activity, which is not the case in our scenario.

There is also some literature making less assumptions on the available event
logs. For example, in [12] the authors try to derive the relation between events
and process instance assuming there is no explicit data available to make the
link. In [13] the authors address noisy event logs and ways of dealing with it.
However, the focus there is not on performance models.

Classical performance models, such as, Queuing Networks [14] or stochastic
Petri Nets [15] assume that the complete system is modeled. The models can
then be used either to perform an equilibrium analysis or a transient analysis.
In our situation the event log does not capture the complete system but only a
part of it. To be able to apply classical performance models we have to make
strong assumptions on the non-represented (parts of) the system(s).

It should be also noted that not all event logs are focusing on control flow
performance mining. For example, in [16] the authors base their work on change
logs, documenting ad-hoc changes performed on process instances. These change
logs are then used to mine reference models.

7 Conclusion

In this paper we propose a systematic approach to prepare event log data from
semi-structured processes. In particular, the main goal is to estimate duration
distribution and the start time of an activity in the process. This is necessary,
since in a semi-structured process, activities are not always performed solely
in one computer system and therefore the start time of an activity cannot be
acquired automatically. The resulting event log can then be further used in
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combination with process mining techniques to actually infer a performance
model. Thus, the main contribution of this paper consists of the mathematical
formulation of the problem and the new approach for histogram based cleansing.
Future work will strengthen the evaluation of our approach (using more complex
processes), and will focus on better approximating the mixed model by assuming
that noise distributions are constant for all activities. Also, since in this paper
we have assumed that a user can only perform one activity at the time (which
excludes parallel execution of activities), in future work we will investigate to
what extent our approach should change in order to accommodate concurrency.
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