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Abstract After surgery most of the surgical patients have to be admitted in a ward in
the hospital. Due to financial reasons and an decreasing number of available nurses
in the Netherlands over the years, it is important to reduce the bed usage as much
as possible. One possible way to achieve this is to create an operating room (OR)
schedule that spreads the usage of beds nicely over time, andthereby minimizes the
number of required beds. An OR-schedule is given by an assignment of OR-blocks
to specific days in the planning horizon and has to fulfill several resource constraints.
Due to the stochastic nature of the length of stay of patients, the analytic calculation
of the number of required beds for a given OR-schedule is a complex task involving
the convolution of discrete distributions. In this paper, two approaches to deal with
this complexity are presented. First, a heuristic approachbased on local search is
given, which takes into account the detailed formulation ofthe objective. A second
approach reduces the complexity by simplifying the objective function. This allows
modeling and solving the resulting problem as an ILP. Both approaches are tested
on data provided by Hagaziekenhuis in the Netherlands. Furthermore, several what-if
scenarios are evaluated. The computational results show that the approach that uses
the simplified objective function provides better solutions to the original problem.
By using this approach, the number of required beds for the considered instance of
HagaZiekenhuis can be reduced by almost 20%.
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1 Introduction

Due to an ageing population and increased health care costs,hospitals are forced to
use their resources more efficiently, meaning that the same amount of patients has to
be treated with less resources or more patients with the sameamount of resources.
One of the resources used in hospitals are the beds on the nursing wards. The cost for
acquiring these beds is not significant, however, the costs for maintaining and clean-
ing the beds, and the labour costs for treating the admitted patients are significantly
high. Also, more and more costly technical appliances, suchas interactive screens,
are available at each bed. In addition, the number of available nurses in the Nether-
lands has been decreasing significantly over the years and will further decrease the
coming years. Therefore, it is important to reduce the number of required beds as
much as possible.

The starting point of this research was a request from HagaZiekenhuis, a hospital
in the Netherlands, to get more insight in the factors that influence the bed occupancy.
The operating room (OR) schedule is one of the most importantfactors that influence
the bed occupancy, since most of the surgical patients have to be admitted at one
of the wards after surgery. Therefore, it is important to consider the required bed
capacity when creating the OR-schedule, which is the topic of this paper. First, we
analyze this problem and investigate several approaches tosolve it, and second, we
show what improvements can be made in HagaZiekenhuis.

There is a vast amount of literature on OR planning and scheduling. Hulshof et
al. [12] provide an overview of papers that consider this topic. Several of these papers
address the issue of considering the wards when creating an OR-schedule. The first
paper that addressed this topic is the work of Beliën and Demeulemeester [4]. They
schedule blocks of elective surgeries of the same type by assigning them to a day in
the planning horizon while minimizing the number of required beds. They assume
that the length of stay (LOS) is given by a multinomial distribution which differs
per surgery type. The number of required beds resulting froman OR-schedule is
approximated in several ways, however, no exact formulation is used. Beliën et al. [5]
extend this approach by including multiple wards instead ofone, allowing different
block lengths and by scheduling individual surgeons instead of surgeon groups. In
addition, they develop a decision support system which visualizes the OR-schedule
and the resulting bed occupancy.

Van Oostrum et al. [14] schedule surgical procedures instead of OR-blocks by
assigning the procedures to an OR and to a day in the planning horizon. The LOS
of the patients is assumed to be deterministic and by using this deterministic LOS,
the number of required beds is minimized. As Van Houdenhovenet al. [11] and Van
Oostrum et al. [14], Adan et al. [1], [2] schedule surgical procedures by assigning
them to a day in the planning horizon. But opposite to [11] and[14], they assume a
fixed amount of beds is available at the hospital and minimizethe over- and underuti-
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lization of these beds. Thus, the number of required beds is not minimized, but their
use is optimized.

Chow et al. [8] develop an integer linear programming model to generate im-
proved OR-schedules in terms of the maximum expected bed occupancy. This ex-
pected bed occupancy is calculated by using the expected LOSof surgery types and
after this, the average bed occupancy per day is determined by means of simulation.

As in [4], Vanberkel et al. [15], [16] schedule blocks of surgeries of the same
type and assume a multinomial distribution of the LOS which differs per surgery
type. However, in contrast to [4], they analytically determine the complete probability
distribution of the number of occupied beds for each day in the planning horizon. The
goal of this approach is not to minimize the number of required beds, but to develop
a model that can be used as an evaluation tool for the OR-schedule.

Bekker and Koeleman [3] apply a time-dependent analysis to determine the mean
bed occupancy per day. In addition, they use a quadratic programming model to deter-
mine the optimal number of elective admissions per day such that an average desired
bed occupancy per day is achieved.

For the operational planning level, Cardoen et al. [6], [7] propose a mixed integer
linear programming approach and a column generation approach to determine the
sequence in which patients must have surgery on a given day such that the peak use of
recovery beds is minimized. They assume the LOS on the recovery to be deterministic
and thus, no stochasticity is included. Fei et al. [9] also focus on the sequence in which
patients must have surgery, however, they consider the number of beds available at
the recovery to be fixed and therefore, do not focus on minimizing the peak use.

Many of the discussed papers consider the expected LOS of patients instead of
the LOS probability distribution or focus on minimizing themaximum expected bed
occupancy without considering the bed occupancy probability distribution. However,
in practice, the LOS of patients is stochastic, and thus, it is important to also consider
the variance in the bed occupancy. In this paper, we both incorporate the stochasticity
of the LOS and of the bed occupancy to account for these variances. As in practice
most hospitals use a cyclic OR-schedule, we develop an OR-schedule by assigning
OR-blocks to a day in the planning horizon. We assume an OR-block consists of
not only one but several surgical procedure types to make theproblem more suitable
for application. Because we schedule surgery types and not individual patients, this
scheduling problem is considered to be on the tactical level. As in [4] and [16], we as-
sume the LOS to be multinomial distributed. This distribution can easily be obtained
from historical data. We use the analytical formulation of Vanberkel et al. [16] to
determine the number of required beds, and minimize this number while taking into
account several restrictions on the OR-schedule such as OR,surgeon, and instrument
availability. As the problem originated in HagaZiekenhuis, we focus on resource con-
straints that are relevant in the setting of this hospital. However, it is possible to add
additional constraints without destroying the structure of the developed model. Note
that we only consider the scheduling of elective surgeries,but it is quite easy to also
include emergency surgeries when determining the number ofrequired beds.

The developed model is discussed in Section 2 and it consistsof linear constraints
and a complex non-linear objective function which involvesthe convolution of dis-
crete distributions. To deal with this complexity, we introduce in Section 3 two dif-
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ferent approaches to approximate the optimal solution. Thefirst approach is a local
search approach, which takes into account the complex formulation of the objec-
tive function. We have chosen to use Simulated Annealing (SA) since this approach
is easy to implement and has proven to be succesful for other combinatorial opti-
mization problems. The second approach reduces the complexity of the problem by
linearizing the objective function. Although we prove the resulting problem to be
NP-hard, we model and solve the resulting problem as an ILP, because our consid-
ered instances are small enough to be solved within a reasonable amount of time. By
comparing these two different approaches, we can determinewhether it is better to
not fully search the solution space with a complete evaluation of the objective func-
tion or to approximate the objective function and search thecomplete solution space.
In fact, it is investigated if it is necessary to model the problem in full detail to be
able to achieve a good solution.

The comparison is performed on data provided by HagaZiekenhuis. However,
we use this data not just for comparing the two contrasting approaches, but we also
aim to support HagaZiekenhuis by determining which resources are a bottleneck for
minimizing the number of required beds. We do this by considering several what-if
scenarios that relax some or all of the resource constraints. The computation results
of the comparison and the what-if scenarios are given in Section 4. Section 5 presents
conclusions and gives recommendations for further research.

2 Problem Formulation

Hospitals aim to use as few beds as possible. When less beds are used, as a conse-
quence less personal is needed and less money is spent on cleaning and maintaining
these beds. Another effect of using less beds is that also thebed occupancy during
the week is better levelled and this reduces stress on the wards.

In hospitals, the number of beds occupied during the week is mostly determined
by the OR-schedule. In general, a patient is admitted on the day of surgery, and after
surgery, the patient must stay in the hospital for a few extradays. Thus, in order to
influence the number of beds used, we should create an OR-schedule which mini-
mizes the number of required beds, and thereby levels the amount of occupied beds
as much as possible. HagaZiekenhuis, like many other hospitals, uses a cyclic OR-
schedule which repeats everyT days. This means that we have to develop such a
cyclic OR-schedule forT days and not an OR-schedule for a whole year.

An OR-schedule consists of OR-blocks which are assigned to days of the plan-
ning cycle. Each OR-block is dedicated to a specific specialism or specialist and is
filled with several surgery types chosen by this specialism or specialist. Thus, each
specialism or specialist provides a list containing as manyOR-blocks as this spe-
cialism or specialist gets during a period ofT days. It only remains to assign these
OR-blocks to a specific day in the planning horizon to create an OR-schedule.
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2.1 Restrictions

In this section, we discuss several restrictions on the OR-schedule that are relevant for
HagaZiekenhuis. Although we only provide these specific constraints, it is possible
to add additional constraints without destroying the structure of the chosen approach.

Let K be the given set of OR-blocks. To each OR-blockk ∈ K we have to assign
to a specific dayt ∈T = {1, . . . ,T}. For this, we define binary decision variablesXkt

which are one when OR-blockk ∈ K is assigned to dayt ∈ T , and zero otherwise.
Then, the following constraints ensure that all OR-blocksk ∈ K are assigned to a day
in the OR-schedule:

∑
t∈T

Xkt = 1, ∀k ∈ K. (1)

The assignment of OR-blocks to days is limited by several constraints. First, some
OR-blocks can only be performed in a subset of the available ORs, because, for ex-
ample, special equipment is needed which is not available inall ORs. To model this,
we define a setJ of different OR types and for OR typej ∈ J, we denote by the
subsetK j ⊆ K the OR-blocks that can be performed in OR typej ∈ J. In addition,
the number of available ORs of typej ∈ J on dayt ∈ T is limited and denoted by
a jt . The following constraints ensure that the assignment of OR-blocks to days fulfils
these limitations:

∑
k∈K j

Xkt ≤ a jt , ∀ j ∈ J, t ∈ T. (2)

Each OR-block is allocated to a specific surgeon type, because most surgeons in
HagaZiekenhuis are specialized in a certain set of surgery types. The surgeon types
are given by setS and the OR-blocks that have to be performed by surgeon type
s ∈ S are given by subsetKs ⊆ K. The number of available surgeons of types ∈ S on
day t ∈ T is limited and denoted bybst . The following constraints ensure that the
assignment of OR-blocks to days fulfils these restrictions:

∑
k∈Ks

Xkt ≤ bst , ∀s ∈ S, t ∈ T. (3)

Each OR-block consists of several surgeries which must be performed consec-
utively. The total set of possible surgery types is defined byI and the number of
surgeries of a specific typei ∈ I performed in OR-blockk ∈ K is denoted byoik. For
each surgery typei ∈ I a specific set of instruments is needed to perform the surgery.
The set of all available instrument sets is given by setR, andwkr denotes how many
instrument setsr ∈ R are needed for OR-blockk ∈ K. Because a limited number of
instrument sets is available and the instrument sets have tobe sterilized after surgery,
the number of surgeries which need instrument setr ∈ R scheduled per day is limited
by qr. This is ensured by the following constraints:

∑
k∈K

Xktwkr ≤ qr, ∀r ∈ R,∀t ∈ T. (4)
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Note that theoik values are not used explicitly, but are covered in thewkr values.
However, we have introduced the values since they are neededin the next section.

2.2 Objective Function

The constraints (1)-(4) are the restrictions on the decision variablesXkt , and therefore,
describe the setS of feasible solutions. In this subsection, we specify the quality of
a feasible solutionS ∈ S given by the maximum number of beds needed during the
entire planning horizon. To determine this number for a proposed OR-schedule, we
have to determine the bed occupancy for each day. If we would specify the bed occu-
pancy by a deterministic measure (e.g. maximum or expected number of used beds),
we do not take the stochastic nature of the LOS into account. Using the expected bed
occupancy per day results in canceling patients for surgerybecause quite often not
enough beds are available to admit them after surgery. Usingthe maximum number of
beds needed leads to a solution for which almost always too much beds are available.
Therefore, we choose to calculate the complete bed occupancy probability distribu-
tion per day and afterwards take thep-percentile of these probability distributions to
ensure that sufficient beds are available withp percent chance. Since these percentiles
represent the number of beds needed on dayt ∈T of the planning horizon we obtain
the number of beds needed in the wards by taking the maximum over all days.

For a given OR-schedule, the probability distribution of the bed occupancy can
be obtained by using the LOS distribution of all surgery types scheduled in the OR-
blocks. The LOS distribution of each surgery typei ∈ I is given by a multinomial
distribution which can be obtained from historical data. Bytaking discrete convolu-
tions of these LOS distributions, we compute the probability distribution of the bed
occupancy for each day as in [16]. In the following paragraphs, we shortly explain
this method. For a more detailed description of this method,we refer to Vanberkel et
al. [16].

The probability distribution of the LOS of surgery typei ∈ I is given by values
li
n, which denote the probability that the LOS of a surgery typei ∈ I is exactlyn
days (n ∈ {1, . . . ,Li}), whereLi is the maximum LOS of surgery typei ∈ I. From
this, we can determine the probability that a patient who is still admitted on dayn is
discharged that day, which is denoted bydi

n. Note thatdi
1 denotes the probability that

a patient is discharged on the day of surgery (i.e., an outpatient surgery) anddi
Li
= 1.

The value ofdi
n is given by:

di
n =

li
n

∑Li
m=n li

m
. (5)

From these values, we can calculate the probability distributionhik
n (x) thatn days

after carrying out OR-blockk ∈ K, x patients of surgery typei ∈ I are still in recovery.
Recall thatoik denotes the number of patients of typei ∈ I assigned to OR-block
k ∈ K. Therefore, these probabilities are computed recursivelyas follows:
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Forn = 1:

hik
1 (x) =

{

1 whenx = oik,
0 otherwise.

(6)

Forn > 1:

hik
n (x) =

oik

∑
y=x

(

y
x

)

(

di
n−1

)y−x (
1− di

n−1

)x
hik

n−1(y). (7)

Next, we take discrete convolutions ofhik
n (x) over all i ∈ I to determine the bed

occupancy caused by OR-blockk ∈ K. This gives the probabilitỹhk
n(x) that n days

after carrying out OR-blockk ∈ K, x patients are still in recovery:

h̃k
n(x) = h1k

n (x)∗ h2k
n (x)∗ . . .∗ hIk

n (x). (8)

Because we use a cyclic OR-schedule, which repeats everyT days, patients who
had surgery in one cycle may still be admitted in the next cycle. Therefore, we must
take into account⌈Nk/T⌉ consecutive cycles, whereNk denotes the maximum LOS of
the surgeries scheduled in OR-blockk ∈ K, i.e,Nk = maxi∈I|oik≥1Li. In other words,
Nk represents the range of one cycle of the OR-schedule. Now, byagain using dis-
crete convolutions, we can compute the probability distribution Hk

t (x) of recovering
patients on dayt ∈ T of the cycle caused by OR-blockk ∈ K as follows:

Hk
t (x) = h̃k

t (x)∗ h̃k
t+T (x)∗ h̃k

t+2T (x)∗ . . .∗ h̃k
t+⌈Nk/T⌉T (x). (9)

The last step in calculating the probability distribution of the bed occupancy is
to combine the probability distributionsHk

t (x) for all OR-blocks. To do this, we first
have to shift the distributionHk

t (x) such that the patients who have surgery in OR-
block k ∈ K are admitted on the day they have surgery, i.e., the dayt ∈ T for which
Xkt = 1. The shifted probability distribution is denoted bȳHk

t (x) and is defined as
follows:

H̄k
t (x) =

{

Hk
t−t̂+1(x) for t̂ with Xkt̂ = 1 andt̂ ≤ t,

Ht−t̂+T+1 otherwise.
(10)

By taking the discrete convolutions of̄Hk
t (x) overk ∈ K, we now determine the

probability distribution of the bed occupancy for each dayt ∈ T denoted byHt ,
which is computed by:

Ht(x) = H̄1
t (x)∗ H̄2

t (x)∗ . . .∗ H̄K
t (x). (11)

Thus, the number of required bedsγ(S) for a given solutionS ∈ S is given by:

γ(S) = max
t∈T

min

{

x

∣

∣

∣

∣

∣

x

∑
y=0

Ht(y)≥
p

100

}

. (12)

The above derivation shows that it is not straightforward toquantify or predict
the effect in the objective function when changing an OR-schedule and that it is hard
to approximate the objective function. Moreover, calculating the objective function
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takes a lot of computational time. To reduce this computation time, we can either
choose to not fully search the solution space, or to approximate the objective function.
This leads to the following two solution approaches: (1) usea local search heuristic
based on the given constraints and objective function, and (2) approximate the objec-
tive function and incorporate this approximation in an Integer Linear Program (ILP),
which includes the given constraints of the OR-schedule. For the second approach,
the original objective value is determined afterwards to determine the number of beds
needed in practice and to make a fair comparison between the two approaches. The
comparison is used to determine whether it is better to not fully search the solution
space with a complete evaluation of the objective function or to approximate the
objective function and search the complete solution space.The two approaches are
discussed in more detail in the following section.

3 Solution Approaches

Because of the complex objective function, we cannot solve reasonable instances
of the problem to optimality. Therefore, we have to make a choice between using
a heuristic procedure to solve the original problem and using a global approach to
solve a simplified version of the problem. Both approaches donot guarantee to find
the optimal solution, however, we want to investigate whichof these two methods
leads to better solutions. The first approach is based on Simulated Annealing, which
is a local search method. The second approach is an Integer Linear Program (ILP),
which uses an approximation of the objective function. In the following, these two
approaches are discussed in more detail.

3.1 Local Search Approach: Simulated Annealing

The first approach we have chosen to solve our problem is Simulated Annealing (SA)
[13]. SA is a local search procedure that in each step moves from the current solution,
denoted bySc, to a randomly selected neighbor solution, denoted bySn. A solution is
represented by the assignment of OR-blocks to a day in the planning horizon and is
considered to be feasible when it satisfies constraints (1)-(4). As neighbor solutions,
we consider all feasible solutions that can be obtained by swapping two OR-blocks
that are assigned to two different days. We do not consider swapping two OR-blocks
assigned to the same day, because this does not affect the objective value. If the ran-
domly selected neighbor solution has a lower objective function value than the current
solution, i.e.,γ (Sn)≤ γ (Sc), the neighbor solution is accepted as the new current so-
lution. Otherwise, the neighbor solution is accepted with aprobability that depends
on the objective value of the current and neigbhor solution and on a temperature pa-
rameter. This temperature parameter, denoted byΓ , gradually decreases during the
search process, and therefore, also the acceptance probability of a worse solution de-
creases. The allowance of moving to worse solutions makes itpossible to escape from
a (poor) local minimum. For each temperature value, we perform ω iterations which
together form a Markov chain, because the next state only depends on the current
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state. Also, during the entire process of SA, we keep track ofthe best solution found
this far. A more detailed description of this method is givenby Kirkpatrick et al. [13].

Summarizing, our implementation of SA is as follows, whereS̄ denotes the cur-
rent best solution:

Step 1. Start with the initial solutionSc given by the OR-schedule currently used at
the hospital. Set̄S := Sc and determine the objective functionγ (Sc). Set the
initial temperature, i.e.,Γ := Γs, and a reduction factorα.

Step 2. Repeatω times:
Step a) Randomly select a neighbor solutionSn of the current solution and

determineγ (Sn).
Step b) Ifγ (Sn)≤ γ (Sc), setSc := Sn, and ifγ (Sn)≤ γ

(

S̄
)

, setS̄ := Sn.

Otherwise, setSc := Sn with probabilitye
γ(Sc)−γ(Sn)

Γ .
Step 3. SetΓ = αΓ . If Γ < Γf , the final temperature, then stop; else, go to 2.

We choose the initial temperatureΓs such that an increase of the objective value
at the beginning of the procedure is accepted with a relatively high probability. This
is needed to easily escape from a local minimum. We observe that the maximum
increase of the objective value equals the maximum over the number of surgeries
assigned to an OR-block minus the minimum over the number of surgeries assigned
to an OR-block, i.e., maxk ∑i oik−mink ∑i oik, because all patients are admitted on the
day of surgery. We want to accept this maximum increase at thestart of the procedure
with probability 0.95, thus the initial temperature is given by:

Γs =
maxk ∑i oik −mink ∑i oik

ln0.95
(13)

Using the same approach, we determine the final temperatureΓf . This tempera-
ture is chosen such that the probability of accepting the minimum increase of the ob-
jective value is very low. This means that at the end of the procedure almost no worse
solution is accepted, and thus, the procedure converts to a local minimum. Since our
objective function returns an integer amount of beds, the minimum increase is one
bed. Thus, we set the threshold temperatureΓf such that an increase of one bed is
accepted with probability 0.001, i.e.,

Γf =
−1

ln0.001
(14)

We set the number of iterations for each temperature value equal to the number
of neighbour solutions that can be achieved by one swap of thecurrent solution. This
number is equal to the total amount of OR-blocks, i.e,ω equals the cardinality of set
K, because in theory each OR-block can be swapped with one of the other OR-blocks.
However, due to the restrictions described in Section 2.1, some swaps are prohibited.
The reduction factorα is set to 0.95.

During preliminary runs, we tested the effect of increasingthe length of the
Markov chain and increasing the reduction factorα. Only increasing both factors
at the same time improves the quality of the solution slightly, but also increases the
computation time significantly. As the resulting computation time exceeds the com-
putation time of the global approach, we use the length of theMarkov chain and
reduction factorα as described in this section.
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3.2 Global Approach: Linearization of Objective Function

The local approach described in the previous subsection incorporates the complete
evaluation of the objective function but only searches a part of the solution space. The
global approach described in this subsection searches the entire solution space, but for
such an approach the relation between a solution and the objective function must be
evident. However, Section 2 shows that there is no straightforward and direct relation
between a given OR-schedule and the resulting required number of beds. Therefore,
we choose to linearize the objective function by replacing it with the maximum over
the expected number of occupied beds per day. For calculating the expected number
of occupied beds per day, we follow the approach of Beliën and Demeulemeester [4].
However, their formula does not work properly when the LOS ofa patient exceeds
the planning horizon. When the maximum LOSLi of a surgery typei ∈ I exceeds the
lengthT of the planning horizon, patients of two cycles of the OR-schedule may be
admitted simultaneously, i.e., patients from different cycles may overlap. In [4], it is
assumed that this holds for all days in the planning horizon,however, this only holds
for a few days as shown in Figure 1, where a situation is sketched with T = 5 and
li = 7. This deficiency can be accounted for by a small modificationin the weight
factor used in the formula defined in [4]. This modification ensures that patients are
only counted multiple times on the days of the planning horizon that the LOS of
several cycles overlap.

× × × × × × ×

× × × × × × ×

× × × × ×

Cycle 1 Cycle 2 Cycle 3

Fig. 1 Overlap patients multiple cycles

As a result, the expected number of occupied bedsγt(S) on dayt ∈ T of the
planning horizon is given by:

γt(S) = ∑
i∈I

∑
k∈K

∑
τ≤t

(

Li

∑
n=t−τ+1

linoik

⌈

n− t+ τ
T

⌉

)

Xkτ

+∑
i∈I

∑
k∈K

∑
τ>t

(

Li

∑
n=T+t−τ+1

linoik

⌈

n−T − t + τ
T

⌉

)

Xkτ (15)

Equation (15) determines for each dayt in the planning horizon, the impact of all
OR-blocks on the bed occupancy. Thus, for all OR-blocks it isdetermined whether
patients operated on in this OR-block are still admitted in the hospital while taking
into account overlapping cycles. Note that the expected value associated with the
probability distribution of the bed occupancy as given in Section 2.2 corresponds to
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γt(S). We can incorporate this linearized objective function in an ILP which includes
the constraints given in Section 2.1. Then, the resulting ILP is:

min
S

γ̄(S) (16)

s.t. (1)− (4), (15)

γ̄(S)≥ γt(S),∀t ∈ T

Xkt ∈ {0,1}

This resulting problem is strongly NP-hard. For this, consider an instance with 3
ORs, a planning horizon ofT days and thus 3T OR-blocks. Each of the 3T OR-blocks
consists ofak patients withk = 1, . . . ,3T and∑k ak = T b, and each of the patients
has a LOS of exactly one day. For this instance, determining whether there exists an
OR-schedule which requiresb beds is equivalent to determining whether there areT
pairwise disjoint subsetsRl ⊂{1, . . . ,3T} such that∑Rl

ak = b for l = 1, . . . ,T , which
is known as the 3-partition problem [10].

The ILP given by (16) consists of|K|T binary variables and(|J|+ |S|+ |R|+2)T
+|K| constraints. After solving the ILP, each OR-block is assigned to a day in the
planning horizon leading to a solutionS ∈ S . For this solution, the real objective
value, i.e., the maximum over thep-percentiles of the resulting bed occupancy prob-
ability distribution, can be determined using the method described in Section 2.2.

4 Results

The purpose of this section is twofold. First, we compare thelocal and global ap-
proach in Section 4.1. We do this by generating 100 random instances and solving
these instances with the two approaches. For the global approach, the original ob-
jective value for the resulting OR-schedule is determined afterwards such that a fair
comparison can be made between the local and global approach. The results are used
to determine whether it is better to not fully search the solution space with a com-
plete evaluation of the objective function or to approximate the objective function and
search the complete solution space. Second, we consider several what-if scenarios for
HagaZiekenhuis with the solution approach that performed best in Section 4.1. We
use these scenarios to determine whether the resource availability in HagaZiekenhuis
limits the reduction of the number of required beds.

The data used in the following subsections is based on data ofHagaZiekenhuis.
HagaZiekenhuis provided us with an OR-schedule of the orthopedics department
with a planning horizon of 28 days, where up to three ORs and nine surgeons are
available. The exact availability of the ORs and surgeons isgiven for each day in the
planning horizon. The OR-schedule consists of 49 unique OR-blocks which have to
be scheduled exactly once during the planning horizon. In total, 43 different surgery
types are scheduled and the LOS varies from 1 to 59 days with anaverage LOS of
3.7 days. For each surgery type it is denoted which instrument sets are needed and
for each of the ten available instrument sets it is given how many are available each
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day. As the number of required beds, we take the maximum of the95-percentile of
the probability distribution of the bed occupancy over the 28 days.

4.1 Comparing Local and Global Approach

To determine which of the two considered approaches performs better, we have gen-
erated 100 random instances based on the data of HagaZiekenhuis. To generate the
random instances, we vary the number of times a certain OR-block has to be per-
formed during the planning horizon. For the original data set, each OR-block has to
be performed exactly once, but for the generated random instances, some OR-blocks
are not performed at all and some are performed multiple times in one cycle. To
make sure there exists a solution that satisfies the fixed OR, surgeon and instrument
sets availability, we generate the instances as follows: first, we randomly select for
each available OR for each day in the planning horizon a surgeon available on that
day. After this, we randomly select one of the OR-blocks which can be performed
in the considered OR by the selected surgeon. During this selection process, we also
consider the instrument sets availability. Because the number of times an OR-block
is performed varies for the generated instances, we create instances that vary among
the number of surgeries and the average LOS of the patients. Therefore, we analyze
a broad range of different instances. The number of surgeries varies between 201 and
236 and the average LOS varies between 3.75 and 4.11 days.

The SA approach is implemented in CodeGear Delphi and the ILPis solved with
CPLEX 12.3. Both methods are executed on a Intel Core2 Duo CPUP8600 2.40
GHz with 3.45 GB RAM. Since proving the optimality of a solution by CPLEX takes
quite some time, we interrupt the solver after 10 minutes or when the integrality gap
is less than 1%. The maximum achieved integrality gap for the100 random instances
is 1.38%. The results for the 100 instances can be found in Figure 2 where the dashed
lines denote the average of the objective values for the two approaches. Note that the
random instances are sorted according to the objective function values to clarify the
differences between the two approaches.
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Fig. 2 Results 100 random instances
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Figure 2 shows that the global approach performs better thanthe local approach
for all of the 100 random instances. In addition, we see that the difference between
the global and local objective value is almost everywhere the same. The difference in
the objective values is two beds for 9% of the instances, three beds for 77% of the
instances, four beds for 13% of the instances, and five beds for 1% of the instances.
Note that both objective values represent the maximum of the95-percentile of the
probability distribution of the number of required beds over all days.

Figure 3 shows one of the random instances for which the difference between the
two approaches can be explained nicely. The peaks for the global approach are flat,
which results in a constant number of occupied beds. The peaks of the local approach
fluctuate, which results in a higher number of required beds.

The solution time needed for the local approach varies between 32 and 74 seconds
with an average of 42 seconds. The solution time needed for the global approach
varies between 1.8 and 600 seconds with an average of 240 seconds. Therefore, as
expected, the global approach takes longer than the local approach, but 4 minutes on
average is still a reasonable amount of time.
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Fig. 3 Difference in levelled bed occupancy

The given results already indicate that for the considered instances it is not neces-
sary to include the detailed objective function to determine a good OR-schedule. The
correlation coefficients of the expected and the 95-percentile number of occupied
beds per day for both the OR-schedules obtained by the local and global approach
confirm this as it equals 0.998 for the local approach and 0.996 for the global ap-
proach. This high correlation is caused by the fact that the variance of the probability
distributions of the bed occupancy is similar for each day inthe planning horizon.
Because we considered OR-schedules that vary in the number of surgeries and LOS
probability distributions, we believe that this is often the case in practice. However,
before using this approach on another instance, it should beverified that this also
holds for the instance considered. Based on the instances considered in this research,
we conclude that the global approach performs better although it does not incorpo-
rate the detailed objective function. Note that the detailed formulation of the objective
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function is still used for comparing the solutions and is also needed to determine the
number of beds required in practice.

4.2 What-if Scenarios

The starting point of this research was the request from HagaZiekenhuis to get more
insight in the factors that influence the bed occupancy. Therefore, we use the global
approach to show the reduction in the number of required bedswhen the OR-schedule
is changed and we investigate whether the resource availability at HagaZiekenhuis
limits this reduction. The hospital provided us an OR-schedule with a planning hori-
zon of 28 days used by the orthopedics department. For the OR-schedule as provided
by HagaZiekenhuis, 48 beds where needed to admit all surgical patients. We deter-
mined a new OR-schedule by solving the ILP and interrupting the solver after 10
minutes or when the integrality gap is less than 1%. To determine whether one or
more of the constraints limit the improvement of the OR-schedule, we also consider
the following scenarios:

– Relax the number of available ORs per day: The number of ORs of typej ∈ J
that are available each day is given bya jt . By disregarding constraint (2), we do
not restrict the model to schedule a fixed amount of OR-blocksper day. Since we
relax the problem, we expect to come up with a schedule which requires less beds
on the wards. We allow a maximum of 5 OR-blocks scheduled per day since 5
ORs are physically available at the operating department.

– Relax the surgeon availability: As with the previous scenario, the surgeon avail-
ability corresponds to a constraint in the model. To determine what restriction this
constraint imposes on the resulting OR-schedule, and thus on the required number
of beds, we solve the model without constraint (3).

– Relax the instrument availability: For each instrument setr ∈ R, qr denotes the
number of instrument sets available per day. By omitting constraint (4), we can
determine the impact of this constraint on the number of required beds.

– Relax all constraints: By solving the model without all of the above mentioned
constraints, we can determine the number of required beds when all resource
capacities are unrestricted.

– Relax all constraints including weekends: Typically, no elective surgeries are
performed during the weekends. However, it might be interesting to see which
restriction this imposes on the objective function. Therefore, we also relaxed the
availability of the ORs and surgeons during the weekends.

The results of the considered scenarios are given in Table 1.This table shows
the expected number of required beds and the number of beds required when the 95-
percentile is considered. In addition, we show the number ofdays in the planning
horizon for which the maximum number of beds is achieved, which is denoted by ‘#
Times Peak Achieved’. We also provide the integrality gap denoted by ‘Int. Gap’.

Table 1 shows that the global approach reduces the number of required beds from
48 to 40 by reassigning the OR-blocks while taking into account all resource con-
straints. The results for the other scenarios show that the OR and surgeon availability
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Table 1 Results scenarios

# Expected # 95-perc. # Times peak
Int. gap (%)

beds beds achieved

Original 43.2 48 1 —
Global approach 34.7 40 14 1.06
Relax OR availability 34.4 40 5 1.93
Relax surgeon availability 34.1 40 5 1.08
Relax instrument availability 34.7 40 15 1.16
Relax all constraints 33.9 40 2 1.68
Relax all constraints

32.7 38 12 2.14
including weekends

during the week and the number of available instrument sets do not influence the
required number of beds, because for all considered scenarios, except the last one,
the number of beds needed equals 40. However, the expected number of required
beds and the number of times the peak bed occupancy is achieved indicates a slight
improvement for the scenarios where the OR availability, the surgeon availability or
all resource constraints are relaxed. The scenario where the constraints are also re-
laxed during the weekends decreases the number of required beds from 40 to 38 beds.
The resulting bed occupancies over the entire planning horizon for the original OR-
schedule used in HagaZiekenhuis, the OR-schedule obtainedby the global approach
and the OR-schedule for the last mentioned scenario are given in Figure 4.
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Fig. 4 Resulting bed occupancy three scenarios

The differences between the bed occupancy for the original OR-schedule and the
one resulting from using the global approach might be explained by the differing
number of surgeries scheduled per day. For the original OR-schedule, there is a peak
in the number of surgeries scheduled per day at the start of the week and halfway
through the week, while for the OR-schedule created by the global approach, there is
only a peak at the start of the week. The global approach also schedules OR-blocks
with a high average LOS at the end of the week. Note that the bedoccupancy, shown
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in Figure 4, for the global approach is rather flat during the week, however, during the
weekends the bed occupancy is rather low. To flatten out thesepeaks, HagaZiekenhuis
should consider to open the OR for elective surgeries duringthe weekends, because
then, the number of beds needed can be reduced by two extra beds.

5 Conclusions

In this paper, we developed two approaches to improve the OR-schedule such that
the number of required beds is reduced. The first approach incorporates the analyt-
ical formulation of the probability distribution of the bedoccupancy and improves
the OR-schedule by using a local search procedure. The second approach approxi-
mates the required number of beds by the expected bed occupancy, which enables us
to solve the problem as an ILP. Both approaches are tested on 100 random instances
to determine which of the two approaches provides the best solution to the original
problem. The computational results show that the ILP with the simplified objective
function performs the best. Note that after solving the ILP,the number of required
beds is still determined by using the analytic formulation.The computational results
show that the number of required beds at the orthopedic department of HagaZieken-
huis can be reduced by almost 20% when the ILP is used. None of the resources used
at HagaZiekenhuis restrict the improvement that can be madeto the OR-schedule,
however, the number of required beds can be reduced slightlywhen the OR is also
available for elective surgeries during the weekends.

Beliën and Demeulemeester [4] considered a similar problem as discussed in this
paper, however, they focused on minimizing the total expected bed shortage instead
of minimizing the number of required beds. They compared an SA approach, which
considers the original objective function, and an ILP, which considers an approxi-
mation of the objective function. The approximation used inthe ILP is given by the
minimization of the maximum expected bed occupancy which isquite different from
the original objective function that indirectly focuses onminimizing the expected
bed occupancy for all days in the planning horizon. Oppositeto our results, Beliën
and Demeulemeester [4] conclude that the SA approach performs better than the ILP
when compared based on the original objective function. This can be explained by the
fact that the original and approximated objective functionused by [4] differ signifi-
cantly, while in our case, both objective functions are quite similar which is shown
by the high correlation coefficient. Therefore, we concludethat approximating the
objective function only provides good solutions to the original problem when the
correlation between the approximated and original objective function is close to one.
Therefore, when using the proposed solution approach in practice, it should be veri-
fied that the correlation between the approximated and original objective function for
the considered instance is also close to one.

The approach developed in this paper only considers elective surgeries, because
only these surgeries can be scheduled in advance. However, patients who have to un-
dergo surgery immediately, and as a consequence, their surgery cannot be scheduled
beforehand, also have to be admitted at one of the wards aftersurgery. By using the
model of Vanberkel et al. [16], we can incorporate these emergency surgeries by in-
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troducing dummy OR-blocks which are already fixed to a specific day in the planning
horizon and contain the expected number of emergency surgeries. In this way, the ar-
rival and admission of emergency patients is considered while determining a new
OR-schedule for the elective surgeries, and thus, the totalnumber of required beds is
minimized and both elective and emergency patients can be admitted after surgery.

The developed approach can also be used to determine the admission schedule
for non-surgical patients. To achieve this, we should schedule individual admissions
instead of OR-blocks. This increases the complexity of the ILP as the number of
variables increases. In addition, for the case of non-surgical patients, it is not defined
how many admissions can be scheduled per day as this number may be unlimited.
This also increases the complexity of the ILP due to the increasing solution space.
Therefore, it might be needed to improve the solution approach to guarantee a rea-
sonable computation time.

In the considered model, we assumed that the assignment of surgery types to
OR-blocks is determined beforehand by the specialism of specialist. However, this
assignment also influences the number of required beds on thewards. Therefore,
it would be interesting to also incorporate this assignmentwhen creating an OR-
schedule such that the number of required beds can be reducedeven further. Note
that this also imposes some extra constraints on the model, because we also have to
consider the stochastic duration of the surgeries such thatthe needed surgical time
does not exceed the available surgical time. Thus, it would be interesting to investi-
gate this problem in future research.

Another interesting topic for future research would be to take into account the
available bed capacity at the wards when minimizing the number of required beds.
When the available bed capacity at the wards equals 40 beds, it is not necessary to
reduce the number of required beds to 38. In addition, it might be beneficial to free
as many wards as possible during the weekends. This reduces costs as less staff is
needed during the costly weekends.
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