
Shift rostering using decomposition: assign

weekend shifts first

Egbert van der Veen ∗1,2, Erwin W. Hans2, Gerhard Post1,2, and

Bart Veltman1,2

1ORTEC, Gouda, The Netherlands
2Center for Healthcare Operations, Improvement, and Research (CHOIR), University

of Twente, Enschede, The Netherlands

January 24, 2012

Abstract

This paper introduces a shift rostering problem that surprisingly has
not been studied in literature: the weekend shift rostering problem. It is
motivated by our experience that employees’ shift preferences predomi-
nantly focus on the weekends, since many social activities happen during
weekends. The Weekend Rostering Problem (WRP) addresses the roster-
ing of weekend shifts, for which we design a problem specific heuristic.
We consider the WRP as the first phase of the shift rostering problem.
To complete the shift roster, the second phase assigns the weekday shifts
using an existing algorithm. We discuss effects of this two-phase approach
both on the weekend shift roster and on the roster as a whole. We demon-
strate that our first-phase heuristic is effective both on generated instances
and real-life instances. For situations where the weekend shift roster is
one of the key determinants of the quality of the complete roster, our two-
phase approach shows to be effective when incorporated in a commercially
implemented algorithm.
Keywords: Shift rostering, weekend shift rostering, decision support
software, heuristics, decomposition

1 Introduction

For many people most social activities are scheduled during the weekend, which
makes working in the weekend less attractive for them. Various industries, like
healthcare and security services, offer services on a 24/7 basis, which implies
that certain employees need to work during weekends. Rostering employees
during weekends is challenging, since most employers like to consider the pref-
erences of each individual on the one hand, but on the other hand also staffing
demands need to be covered. Furthermore, rosters have to respect labor legis-
lation, and shifts have to be distributed in an equitable way among employees,
which complicates the matter even further.

∗corresponding author: Egbert.vanderVeen@ortec.com

1

mailto:Egbert.vanderVeen@ortec.com

A significant amount of literature is devoted to personnel rostering, see,
e.g., the comprehensive review by Ernst et al. [2004]. Most of the early liter-
ature (1950s-1970s) focuses on either finding feasible shift rosters under a set
of (hard) constraints or minimizing the number of employees needed to cover
a given set of shifts. In other words, the focus is on employers’ needs. More
recent literature (1980s-2000s) additionally considers employee preferences. The
models in this literature try to balance or align the goals of employers and em-
ployees. Literature reviews by Burke et al. [2004b], Cheang et al. [2003], and
Kellogg and Walczak [2007] show that, within this literature, there has been a
strong focus on nurse rostering problems. Nurse rostering characterizes itself by
employees working 24/7 and taking into account many employee preferences,
e.g., about which weekends employees prefer not to work. The literature review
by Kellogg and Walczak [2007] particularly focuses on the implementation of
theoretical models and algorithms in practice, and shows that there is still a
considerable gap between theory and practice.

Existing literature recognizes the importance of finding good or fair assign-
ments of weekend shifts to employees; some papers propose (soft) constraints to
cope with preferences related to weekends shifts, see, e.g., Burke et al. [2004b].
Still, to our knowledge, literature does not consider methods specifically de-
signed to construct weekend shifts rosters. Of course, weekend shift rosters can
be created using a general rostering method. However, this approach ignores
problem specific information. Therefore, we design a weekend shift rostering
algorithm that is tailored to use this information.

This research was motivated by practical experiences of customers of ORTEC,
the shift rostering software supplier that employs three of this paper’s authors.
Many planners, when assigning shifts manually, decompose the shift roster-
ing process into two or more steps. They first assign weekend shifts, and sec-
ondly they assign the weekday shifts. This shows that many planners consider
weekend-related shift rostering preferences as more important than other prefer-
ences. We use the same assumption in this paper. Moreover, we apply the same
decomposition to assign the weekend and weekday shifts. Of course, other de-
composition approaches might be valuable in practice, like first assigning night
shifts or first assigning days-off. Section 3.2 discusses decomposition approaches
found in shift rostering literature.

In Section 2 we formally introduce the Weekend Rostering Problem (WRP),
which we consider as a first phase of the shift rostering problem. A problem
specific heuristic for the WRP is designed in Section 3. To complete the roster,
in a second phase the weekday shifts are assigned using a commercially imple-
mented algorithm, see Burke et al. [2008], Post and Veltman [2004]. In Section
4 we show the first-phase heuristic to be effective both on artificially generated
instances and real-life instances. In addition, Section 4 discusses the effects of
our two-phase approach on the weekend shift roster, as well as on the complete
roster. Section 5 presents conclusions and discussion.

2 Problem assumptions and formulation

This section defines the Weekend Rostering Problem (WRP), discusses the as-
sumptions of the WRP and addresses the constraints that are considered in the
WRP. In the WRP we are only interested in assigning weekend shifts, i.e., shifts

2

Workload
prediction

Staffing
levels

Rosters

Staffing
Shift

rostering
Shift

scheduling

Shifts

Figure 2.1: The scheduling process

that overlap with weekends. These are the shifts on Saturday and Sunday, and
may include (late) Friday and (early) Monday shifts.

As indicated in Section 1, we consider the WRP as a first phase of the
shift rostering problem. In general, shift rostering problems assign shifts to
employees. Shifts are time periods specifying working time as opposed to rest
time. Furthermore, demand constraints define the number of times each shift
should be assigned. Demand constraints are the outcome of the shift scheduling
phase, which precedes the shift rostering phase. Shift scheduling designs shifts
to efficiently cover staffing levels, which in turn are the outcome of the staffing
phase. Based on the predicted workload, staffing levels are determined, indicat-
ing how many employees need to be present on any specific time and day. For
an overview of this process, see Figure 2.1.

The objective of the WRP is to assign as many weekend shifts as possible,
while satisfying a set of hard constraints, and subsequently minimizing the total
penalty cost associated with violations of a set of soft constraints. We will now
discuss the hard and soft constraints that are used in the WRP.

In practice, many hard constraints are implied on rosters by labor legislation
and labor agreements. The following four hard constraints are relevant for the
weekend rostering problem, and considered in most shift rostering literature.

Constraint C1 (Availability). Employees may not work if they are unavailable.
Employee are unavailable if they are on leave, for example, or assigned to another
shift.

Constraint C2 (Skills). Shift may only be assigned to employees that have all
skills required to work the shift.

Constraint C3 (Rest between shifts). Between two subsequent shifts there
should be a rest period of a given minimum length.

The next constraint implies restrictions on the number of working weekends
in a given period, see Burke et al. [2004a], Burke et al. [2008], Burns and Carter
[1985], Burns and Koop [1987], Burns et al. [1998], Emmons and Fuh [1997],
Hung [1994a], Jaumard et al. [1998], Koop [1986], Miller et al. [1976], andWright et al.
[2006]:

Constraint C4 (Weekends in p weeks). Employees may only work k out of p
weekends, where both k and p may be employee dependent.

Note that constraints on the maximum number of consecutive working week-
ends m, that are considered by Burke et al. [2004a], Jaumard et al. [1998], and
Miller et al. [1976], can also be implied via hard constraint C4: working at
most m weekends consecutively is the same as working at most m out of m+ 1
weekends.

3

Next to these hard constraints, the WRP also considers eight soft constraints.
This list of soft constraints is supposed to be a complete list of soft constraints
that can be implied on the assignment of weekend shifts.

The first soft constraint concerns the scheduling of ‘complete’ off weekends.
Working only Saturday or only Sunday is unattractive for two reasons. First,
there are labor rules regarding the number of times employees work in weekends
(during a specified period), see hard constraint C4. Hence, working either on
both Saturday and Sunday, or not at all, enables organizations to assign more
weekend shifts to employees in total. Second, employee preferences are either to
work the complete weekend or to have the complete weekend off. We encounter
this in the real-life instances of Section 4.2 on which we test the WRP algo-
rithm designed in Section 3.3, and in Berrada et al. [1996], Brucker et al. [2010],
Burke et al. [2001], Burke et al. [2004a], Burke et al. [2008], Burns and Carter
[1985], Burns and Koop [1987], Gärtner et al. [2001], Ikegami and Niwa [2003],
Jaumard et al. [1998], Koop [1986], Miller et al. [1976], Musliu et al. [2002], and
Sodhi and Norris [2004]. Therefore, the following soft constraint is used to as-
sign complete weekends off:

Soft constraint S1 (Complete weekends off). If an employee is off one day of
the weekend, the employee should preferably be off the complete weekend.

The next two soft constraints concern organizational preferences.

Soft constraint S2. Weekend shifts should be equitably distributed among
employees, i.e., proportional to the contract hours of the employees.

Soft constraint S3. Weekend shift types, like, e.g., early, late, night, should be
equitably distributed among employees, see Brucker et al. [2010], and Burke et al.
[2004a]

The next four soft constraints concern employee preferences.

Soft constraint S4. Employee preference to (not) work during a specific week-
end.

Soft constraint S5. Employee preference to (not) work a specific shift on a
specific day in a specific weekend.

Soft constraint S6. Employee preference to (not) work two specific shifts
consecutively, see Brucker et al. [2010], and Burke et al. [2004a].

Soft constraint S7. Employee preference to work at most k weekends in p
weeks, see Brucker et al. [2010], and Warner [1976].

Note that soft constraint S7 is the equivalent of hard constraint C4.
Each of the soft constraints has a (user definable) penalty cost associated

with the violation of the constraint. The penalty cost may differ per employee,
and constraints can be added to a problem instance multiple times with differ-
ent parameter and penalty values. If a shift assignment violates multiple soft
constraints penalty costs are incurred for every violation.

Now that we have stated, described, and motivated the constraints used in
the WRP, the next section introduces a model to solve the WRP.

4

3 Solution approach and Modeling

3.1 Introduction

To assign the weekday and weekend shifts, i.e., to solve the shift rostering prob-
lem, we apply a decomposition approach. The first phase, the Weekend Roster-
ing Problem (WRP), assigns the weekend shifts. The second phase completes
the roster by assigning the weekday shifts. For the second phase we use a hy-
brid heuristic ordering method as used in commercial software, see Burke et al.
[2008], Post and Veltman [2004], which is not discussed in detail in this paper.
With the WRP, we introduce a new decomposition approach for shift rostering
problems. In Section 3.2, we discuss the use of other decomposition approaches
to solve shift rostering problems. In Section 3.3, we explain how we solve the
WRP.

3.2 Decomposition in shift rostering

This section discusses some decomposition approaches to solve the shift rostering
problem. As a first example, De Causmaecker and Vanden Berghe [2003] pro-
poses decomposition on skills. In a metaheuristic framework the shift roster is
iteratively optimized per skill category. Another decomposition example is days-
off rostering, studied by, e.g., Burns and Carter [1985], Elshafei and Alfares
[2008], Emmons and Burns [1991], and Hung [1994b]. Days-off rostering first
decides when employees should work, and next, in a reduced solution space,
shifts are assigned. The algorithms used by Aickelin and Dowsland [2000], and
Dowsland and Thompson [2000] first decide on day and night assignments, and
afterwards assign day to early and late. A third example is the use of shift pat-
terns. Shift patterns specify a sequence of shifts that are worked consecutively.
In the methods proposed by Aickelin and Dowsland [2000], Dowsland and Thompson
[2000], and Ikegami and Niwa [2003] shift patterns must be created manually,
after which they are assigned by scheduling algorithms. The algorithms of
Brucker et al. [2010], and Burke et al. [2009] first generate these shift patterns
and then assign them to employees. The idea is shift patterns already comply
with many constraints and preferences on consecutive shifts, which makes the
assignment easier and more efficient.

3.3 The weekend rostering problem

The WRP is solved using a heuristic solution approach. A solution is con-
structed with a greedy 3-step heuristic. Step 1, described in Section 3.3.1, cre-
ates ‘weekend shift combinations’: combinations of Saturday and Sunday shifts
for one particular weekend. These are possibly extended with Friday night and
Monday morning shifts, dependent on whether these shifts are considered week-
end shifts in the particular problem instance. Step 2, described in Section 3.3.2,
assigns the weekend shift combinations to employees. The first two steps of our
heuristic are illustrated with an example in Section 3.3.3. Finally, in Step 3,
described in Section 3.3.4, we apply local search to improve the assignment of
Step 2.

5

3.3.1 Weekend shift combinations

We create shift combinations per weekend, by solving a minimum-cost trans-
portation problem. The idea is to choose shift combinations, such that as many
shifts as possible can be assigned.

Let I and J be sets of nodes corresponding to the different types of shifts on
Saturday and Sunday, respectively. For i ∈ I, let si be the number of Saturday
shifts of type i that must be covered, and, for j ∈ J , let dj be the number of shifts
of type j that must be covered. Let N be the set of employees, and let N ij ⊂ N
denote the subset of employees that are allowed to work combination (i, j). An
employee is not allowed to work combination (i, j) if working it would violate
one of the hard constraints of Section 2. Let cij denote the transportation
cost from node i to node j. To define cij we distinguish three cases: either
‘many’, ‘few’ or no employees are allowed to work combination (i, j). First,
if no employees are allowed to work combination (i, j), we do not want it to
be selected. Second, if ‘few’ employees are allowed to work combination (i, j),
the combination may be selected only when it is necessary, i.e., when otherwise
there is no solution to the transportation problem. Third, if ‘many’ employees
are allowed to work combination (i, j) we want to relate cij to the penalty cost
associated with violating the soft constraints.

If no employee is allowed to work combination (i, j) we set cij = ∞, hence:

cij = ∞ if N ij = ∅. (3.1)

However, when |N ij | > 0, we want to let cij depend on the size of N ij . If only
‘few’ employees are allowed to work combination (i, j) we want cij to be high.
We say that ‘few’ employees are allowed to work combination (i, j) if:

|N ij |

|N |
<

min{si, dj}

max{
∑

i∈I si,
∑

j∈J dj}
. (3.2)

Here, the numerator in the fraction on the right hand side denotes the maximum
number of times combination (i, j) can be assigned, the denominator denotes
the minimum number of employees that need to work during the particular
weekend. If the right hand side in (3.2) is larger than the left hand side, which
denotes the fraction of employees that are allowed to work combination (i, j),
we say that ‘few’ employees are allowed to work combination (i, j). In this case
we define cij as M · |N \N ij |, where M is a ‘big’ number. Hence:

cij = M · |N \N ij | if
|N ij |

|N |
<

min{si, dj}

max{
∑

i∈I si,
∑

j∈J dj}
. (3.3)

If ‘many’ employees are allowed to work shift combination (i, j), i.e., if (3.2) does
not hold, we relate cij to the penalty costs associated with the soft constraints.
Let Sn

ij denote the penalty cost associated with the soft constraints of assigning
combination (i, j) to employee n. Then:

cij =
∑

n∈N

Sn
ij if

|N ij |

|N |
≥

min{si, dj}

max{
∑

i∈I si,
∑

j∈J dj}
. (3.4)

6

Summarizing we have:

cij =















∑

n∈N Sn
ij if |Nij |

|N | ≥ min{si,dj}
max{

∑
i∈I

si,
∑

j∈J
dj}

M · |N \N ij | if |Nij |
|N | <

min{si,dj}
max{

∑
i∈I

si,
∑

j∈J
dj}

∞ if N ij = ∅.

(3.5)

The minimum-cost single-commodity transportation problem defined by the
described parameters is solved by the network flow formulation of Syslo et al.
[1983].

The solution xij of the transportation problem indicates the number of times
we should assign shift combination (i, j). These shift combinations are extended
with the remaining Friday shifts by solving additional transport problems. To
this end, the Friday shifts are considered as the set of I shifts whereas the
combinations of Saturday and Sunday shifts are considered as the set of J
shifts. This problem is then initialized and solved as described above. For
Monday shifts we apply an analogous procedure.

3.3.2 Assign shift combinations

Now that we have the set of shift combinations per weekend that we want to
assign, we describe how these shifts are assigned to employees.

The heuristic first selects a shift combination (part 1) and then an employee
(part 2). The shift combination is selected using the following scheme:

1a. Select the “least flexible” shift combination, i.e., the combination (i, j) for
which the ratio between “the number of times combination (i, j) should be
assigned” (xij) and “the number of employees allowed to work combination
(i, j)” (|N ij |) is the largest. These shift combinations are presumed to be
the hardest to assign to an employee. In case of a tie, go to 1b.

1b. Of the remaining combinations, select the one for which xij is the smallest.
These are presumed to be the hardest to assign. In case of a tie, go to 1c.

1c. Of the remaining combinations, select the combination that is earliest in
time. Since some of the hard constraints consider assignments in previous
weekends, shifts that are earlier in time are presumed to be harder to assign.
In case of a tie, go to 1d.

1d. Randomly select from the remaining combinations.

When a shift combination is selected, an employee is selected via the follow-
ing scheme:

2a. Select the “least busy” employee, i.e., the employee working the fewest
number of weekends relative to his contract hours. This way, all employees
will work (approximately) the same number of weekends. In case of a tie,
go to 2b.

2b. Select the employee for which Sn
ij is the smallest. In case of a tie, go to 2c.

2c. Select the “least flexible” employee, i.e., select the employee that has the
least number of remaining shift combinations that the employee is allowed
to work. In case of a tie, go to 2d.

7

2d. Randomly select from the remaining employees.

3.3.3 Illustrative example

The example in this section consists of two parts. The first part illustrates
the creation of weekend shift combinations, and the second part illustrates the
assignment of the weekend shift combinations.

Create weekend shift combinations for one weekend We have one A
and one B shift on both Saturday and Sunday, so I = J = {A,B}. We have 4
employees, so N = {1, 2, 3, 4}. Employee 1 is not allowed to work shift B at all,
employee 3 is not allowed to work shift B on Saturday. We let SAA = SBB = 1
and SAB = SBA = 2. We omit the superscript of the penalty costs, since in this
example they are the same for all employees.

First, note that:

min{si, dj}

max{
∑

i∈I si,
∑

j∈J dj}
=

1

2
for i ∈ I, j ∈ J. (3.6)

Second, |NAA| = 4, |NAB | = 3, |NBA| = 2, |NBB | = 2, and |N | = 4. Hence,
for (A,A) we have:

|NAA|

|N |
=

4

4
= 1 >

min{sA, dA}

max{
∑

i∈I si,
∑

j∈J dj}
=

1

2
. (3.7)

So, for combination (A,A) we say that ‘many’ employees are available, hence:

cAA = SAA = 1. (3.8)

Similar, for (A,B) we find that ‘many’ employees are available, hence cAB =
SAB = 2, and for (B,A) and (B,B) we find that ‘few’ employees are available,
hence cBA = M · |N \NBA| = M · 2, and cBB = M · |N \NBB | = M · 2.

The solution of the transportation problem is then xAA = xBB = 1, xAB =
xBA = 0. So, we create one shift combination (A,A) and one shift combination
(B,B), but no shift combinations (B,A) or (A,B).

Assign weekend shift combinations After shift combinations are created
they are assigned to employees in the assignment phase. To illustrate this:
assume we have the shift combinations and available employees as in Table 1.

Table 1: Assigning shift combinations

Weekend Combination xij N Sij

1 (A,A) 1 {1, 2, 3, 4} 1
1 (B,B) 1 {2, 4} 1
2 (B,A) 1 {1, 4} 2
2 (A,B) 2 {1, 2, 3, 4} 2

The xij/|N
ij | ratios of the shift combinations are 1

4
, 1

2
, 1

2
, and 2

4
, respectively,

hence shift combinations 2, 3, and 4, are the “least flexible” (Step 1a). We have

8

B B

A B

Employee 2

Employee 1

Employee 4

Employee 3

Sat. Sun. Sat. Sun.

A A B A

A B

Figure 3.1: Example - Resulting roster

xBB = 1, xBA = 1, and xAB = 2, so (B,B) and (B,A) have to be assigned
the least number of times (Step 1b). Since (B,B) is a shift combination of the
first weekend, and (B,A) of the second, (B,B) is earliest in time (Step 1c), so
(B,B) is to be assigned.

Since there are no shift combination assigned yet, employees 2 and 4 (the
employees available for (B,B)) are equally busy (Step 2a). For both these
employees Sn

BB = 1, so Step 2b gives no conclusion on which employee to
select. However, since employee 2 has only 3 remaining shift combinations
(including (B,B)) and employee 4 has 4, Step 2c assigns shift combination
(B,B) to employee 2.

The other shift combinations are assigned to employees in an analogous way.
(B,A) is assigned randomly to 1 or 4, say it is assigned to 1. Then (A,B) is
assigned randomly to 3 or 4, say it is assigned to 3. Next, the other (A,B)
combination is assigned to 4, and, finally, (A,A) is assigned randomly to 1, 3 or
4, say it is assigned to 1. We then get the roster as in Figure 3.1.

3.3.4 Local search

The initial solution, created via the heuristics described in Section 3.3.1 and
Section 3.3.2, has a cost implied by violations of the soft constraints. We try to
improve this solution via two local search techniques: 2-opt search, and a Very
Large Neighborhood Search (VLNS).

The VLNS that we apply calculates whether swapping shift combinations,
not necessarily in the same weekend, improves the total penalty cost, see Fig-
ure 3.2. These options include, assigning an assigned shift combination to an-
other employee, swapping two shift combinations, or cyclically swapping three
shift combinations. Swaps can be applied both on shift combinations in the
same weekend, and in different weekends.

Every iteration of 2-opt search calculates per shift whether the total penalty
cost improves if this shift is swapped with another shift. That is, if employee
1 is assigned to shift A, and employee 2 to shift B, 2-opt calculates whether
the total penalty cost decreases when employee 1 is assigned to shift B, and
employee 2 to shift A, see Figure 3.3. The swap is accepted if the total penalty
cost decreases. Note that 2-opt also considers swapping not assigned shifts with

9

A AEmployee 2

Sat.

Employee 1

Sun.

A A

B BEmployee 2

Employee 1

Sat. Sun. Sat. Sun.

Figure 3.2: Local search: Very Large Neighborhood Search (VLNS). Assigning
a shift combination to another employee (top), and swapping two shift combi-
nations in (possibly) different weekends (bottom)

B B

A A

Employee 2

Employee 1

Sat. Sun.

Figure 3.3: Local search: 2-opt search

assigned shifts.
The local search techniques are applied as in Algorithm 3.1:

Algorithm 3.1. Local search scheme

1. Apply VLNS, until no improvements are found anymore.

2. Apply 2-opt, until no improvements are found anymore.

4 Results

This section discusses experimental results. Section 4.1 analyzes the quality of
the weekend rostering algorithm, as described in Section 3, on generated in-
stances. Section 4.2 describes two case studies in which we tested the weekend
rostering algorithm in practice and benchmarked it against a hybrid heuris-
tic ordering method as used in commercial software, see Burke et al. [2008],
Post and Veltman [2004].

10

4.1 Algorithm results

We have studied the quality of the shift combination assignment phase in a
preliminary research Versteegh [2009]. We summarize the main results of the
preliminary research here.

In total 400 instances were generated, of which, by construction, the optimal
objective values were known. Furthermore, for each of these instances, all shifts
are assigned in the optimal solution. We used 400 instances, since preliminary
tests showed that after 400 instances the average deviation from the optimum
stabilizes.

The quality of the algorithm was assessed by counting the number of shifts
the algorithm was unable to assign, and determining the penalties resulting
from violating the soft constraints. Two soft constraints were considered: (1)
equitable division of shifts among employees, and (2) equitable division of shift
types among employees.

For 89% of the instances all weekend shifts were assigned. The average
number of not assigned shifts per instance is 0.85 shift (calculated over all 400
instances). From the experiments we observed that for 270 (67.5%) instances
the optimal solution is found. The average devation from the optimum is 3.8%.
It appeared that equitably dividing the shift types among employees was harder
than equitably dividing the number of shifts. We expect to further improve on
these results by extending the local search.

4.2 Practical results

This section presents the practical results. We first describe the experimental
setup in Section 4.2.1. In Sections 4.2.2 and 4.2.3, presents the case studies in
which we test the weekend rostering algorithm, and in Section 4.2.4 we discuss
the results.

4.2.1 Experimental setup

We want to study the effect that weekend rostering has on the complete roster,
i.e., the roster of the entire week. We compare two approaches, called WRP+CA
and CA. WRP+CA first assigns the weekend shifts using the weekend rostering
heuristic. Then, it fixes these shift, and assigns the weekday shift using the
commercial algorithm (CA). CA assigns all shifts (week and weekend) using
the same commercial algorithm. Both approaches use the same hard and soft
constraints.

WRP+CA and CA are compared using the following performance indicators:

• Number of complete weekends assigned (Complete On)

• Number of half weekends assigned

• Number of off weekends assigned (Complete Off)

• Number of weekend shifts not assigned

• Total number of shifts not assigned

11

4.2.2 Case 1: Belgian Police

The first case is provided by a Belgian Police department. This department
consists of 60 employees, and it uses two-month rosters. In each roster, approx-
imately 2000 shifts of the following four types need to be assigned: morning
shifts (7h-13h), afternoon shifts (13h-22h), night shifts (22h-7h), and days-off.
Shifts are assigned on both week and weekend days.

Before this Belgian Police department started to use the WRP+CA ap-
proach, as proposed in this paper, they manually assigned the weekend shifts
before constructing the complete roster. Note that WRP+CA uses exactly the
same decomposition. All hard and soft constraints defined in Section 2 are
implied on the rosters.

4.2.3 Case 2: Dutch care provider

The second case is provided by a Dutch care provider for visually impaired peo-
ple that offers intramural and extramural care. We test the weekend planner on
two departments called D1 and D2. These have 12 and 42 employees, respec-
tively, and both use monthly rosters. D1 has two shift types: morning shifts
(8h-15h) and afternoon shifts (15h-22h), and shifts must be scheduled on week
and weekend days. In every month, approximately 135 shifts need to be as-
signed. D2 has three shift types: morning shifts (8h-15h), day shifts (10h-14h),
and afternoon shifts (15h-22h), and again shifts must be assigned on week and
weekend days. For D2 approximately 450 shifts must be assigned every month.

All hard and soft constraints defined in Section 2 are implied on the rosters,
except soft constraint S3.

4.2.4 Experimental Results

This section presents our experimental results for the cases presented in Section
4.2.2 and Section 4.2.3. For the Belgian Police case we tested the algorithms
on 6 instances. For the Dutch care provider we also tested the algorithm on 6
instances; 3 for each department. For both approaches a time limit of 1 hour
was set. Table 2 summarizes the results.

In Table 2 we observe for all instances of the Belgian Police case that both
the fraction of weekends Complete On (fourth column), and the fraction of
weekends Complete Off (sixth column) is larger when the WRP+CA approach
is applied. This implies that, for all instances, the fraction of half weekends
(fifth column) is smaller if WRP+CA is applied. We say that an employee
works a half weekend if the employee works either on Saturday or on Sunday,
but not on both days. In fact, on average WRP+CA assigns 55.8% weekends
Complete On, 37.1% weekends Complete Off, and 7.1% half weekends. CA
assigns on average 44.4% weekends Complete On, 26.7% weekends Complete Off,
and 28.9% half weekends. Furthermore, the number of not assigned weekend
shifts (seventh column) and the total number of not assigned shifts (eighth
column) are approximately the same for WRP+CA and CA. Hence, WRP+CA
outperforms CA on the weekend shift assignment, while the number of assigned
shifts is approximately equal.

For department D1 of the Dutch Care Provider we observe no difference
between both approaches. We believe this is caused by the relatively small size
of this department. For D2 we observe that WRP+CA outperforms CA on

12

Table 2: Experimental results

Instance Weekend Not assigned shifts
Case No. Approach Complete On Half Complete Off Weekend Total

Police 1 WRP+CA 70.0% 10.8% 19.2% 0.5% 1.8%
CA 66.9% 18.3% 14.8% 0.9% 2.0%

2 WRP+CA 57.8% 8.5% 33.7% 0.3% 0.3%
CA 48.5% 26.9% 24.6% 0.3% 0.4%

3 WRP+CA 52.5% 7.2% 40.3% 0.1% 0.1%
CA 38.8% 33.9% 27.3% 0.2% 0.3%

4 WRP+CA 54.2% 4.9% 40.9% 0.0% 0.1%
CA 38.8% 25.4% 35.8% 0.0% 0.0%

5 WRP+CA 51.8% 2.4% 45.8% 0.1% 0.1%
CA 34.8% 35.6% 29.6% 0.3% 0.5%

6 WRP+CA 48.6% 8.7% 42.7% 0.4% 1.1%
CA 38.6% 33.5% 27.9% 0.4% 0.9%

Care D1-1 WRP+CA 33.3% 0.0% 66.7% 0.0% 0.0%
CA 33.3% 0.0% 66.7% 0.0% 0.0%

D1-2 WRP+CA 33.3% 0.0% 66.7% 0.0% 0.0%
CA 33.3% 0.0% 66.7% 0.0% 0.0%

D1-3 WRP+CA 26.7% 6.7% 66.7% 0.0% 0.0%
CA 26.7% 6.7% 66.7% 0.0% 0.0%

D2-1 WRP+CA 27.0% 6.5% 66.5% 0.0% 0.0%
CA 23.7% 13.0% 63.3% 0.0% 0.0%

D2-2 WRP+CA 25.0% 7.9% 67.1% 2.4% 7.3%
CA 23.8% 9.8% 66.5% 2.0% 7.0%

D2-3 WRP+CA 26.8% 8.3% 64.9% 0.0% 0.0%
CA 25.0% 11.9% 63.1% 0.0% 0.0%

the weekend shift assignment. On average WRP+CA assigns 26.3% weekends
Complete On, 66.2% weekends Complete Off, and 7.6% half weekends. CA
assigns on average 24.2% weekends Complete On, 64.3% weekends Complete
Off, and 11.6% half weekends. Again the number of weekend shifts not assigned
and the total number of shifts not assigned are approximately equal. For case
D2-2, note that CA assigns only one shift more than WRP+CA does.

5 Conclusions and discussion

This paper introduces the Weekend Rostering Problem (WRP), a rostering prob-
lem focused on weekend shift assignment. It is motivated by our experience that
employee preferences predominantly focus on the weekends, since many social
activities happen during the weekend. Despite of its practical relevance, the
WRP is underexposed in both literature and decision support software.

In this paper, we introduce a two-phase heuristic to solve the WRP. The first
phase assigns weekend shifts, the second phase assigns the remaining, weekday,
shifts. For the first phase we design a special-purpose heuristic, whereas for
the second phase we use a hybrid heuristic ordering method as used in com-

13

mercial software. This decomposition approach is inspired by our experience of
how shift rosters are created in practice. An algorithm specifically designed to
create weekend shift rosters supports the natural planning process. Planners
often start assigning the ‘hard’ shifts, like weekend shifts. Furthermore, the de-
composition algorithm allows the planner to adjust the automatically generated
weekend rosters, before the rest of the roster is constructed. When the complete
roster is already generated, it is harder for the planner to improve the weekend
roster manually, since in a complete roster the re-assigning of weekend shifts is
constrained by shifts assigned to weekdays Ikegami and Niwa [2003].

We encourage research to improve the algorithm proposed in this paper,
since it is the first algorithm we know of that solves the WRP. Furthermore,
we encourage further research into alternative decomposition approaches, like
decomposition on night shifts or skills.

Experiment results show that the heuristic designed for the weekend shift
assignment performs well on a broad range of generated instances. When we
use this heuristic as a first phase in the shift rostering problem, results obtained
via this decomposition approach look promising. On a set of practical problem
instances, our decomposition outperforms the commercial algorithm on all of our
weekend roster quality defining performance indicators, while both approaches
have the same performance on the weekday shift roster. This proves that our
decomposition is valuable when weekend related performance indicators are key
determinants of the quality of rosters.

We incorporated the proposed algorithm in commercial software Post and Veltman
[2004], and the algorithm is currently used to create rosters for the Belgian Po-
lice department case discussed in this paper.

Acknowledgments

The authors would like to thank Frédérique Versteegh for initiating and taking
the first steps in this research, and Monique Hoogstrate for helpful discussions.

This research is supported by the Dutch Technology Foundation STW, ap-
plied science division of NWO and the Technology Program of the Ministry of
Economic Affairs.

References

Uwe Aickelin and Kathryn A. Dowsland. Exploiting problem structure in a ge-
netic algorithm approach to a nurse rostering problem. Journal of Scheduling,
3(3):139–153, 2000. ISSN 1099-1425.

Ilham Berrada, Jacques A. Ferland, and Philippe Michelon. A multi-objective
approach to nurse scheduling with both hard and soft constraints. Socio-
Economic Planning Sciences, 30(3):183–193, 1996. ISSN 0038-0121.

Peter Brucker, Edmund Burke, Tim Curtois, Rong Qu, and Greet Van-
den Berghe. A shift sequence based approach for nurse scheduling and a new
benchmark dataset. Journal of Heuristics, 16:559–573, 2010. ISSN 1381-1231.

14

Edmund Burke, Peter Cowling, Patrick De Causmaecker, and Greet Vanden
Berghe. A memetic approach to the nurse rostering problem. Applied Intel-
ligence, 15(3):199–214, 2001. ISSN 0924-669X.

Edmund Burke, Patrick De Causmaecker, Sanja Petrovic, and Greet Vanden
Berghe. Variable neighborhood search for nurse rostering problems, pages
153–172. Kluwer Academic Publishers, Norwell, MA, USA, 2004a. ISBN
1-4020-7653-3.

Edmund Burke, Jingpeng Li, and Rong Qu. A pareto-based search methodology
for multi-objective nurse scheduling. Annals of Operations Research, pages
1–19, 2009. ISSN 0254-5330.

Edmund K. Burke, Timothy Curtois, Gerhard Post, Rong Qu, and Bart Velt-
man. A hybrid heuristic ordering and variable neighbourhood search for the
nurse rostering problem. European Journal of Operational Research, 188(2):
330–341, 2008. ISSN 0377-2217.

E.K. Burke, P. de Causmaecker, G. vanden Berghe, and H. van Landeghem.
The state of the art of nurse rostering. Journal of Scheduling, 7(6):441–499,
2004b.

R. N. Burns and M. W. Carter. Work force size and single shift schedules with
variable demands. Management Science, 31(5):599–607, 1985. ISSN 00251909.

R. N. Burns and G. J. Koop. A modular approach to optimal multiple-shift man-
power scheduling. Operations Research, 35(1):100–110, 1987. ISSN 0030364X.

Richard N. Burns, Rangarajan Narasimhan, and L. Douglas Smith. A set-
processing algorithm for scheduling staff on 4-day or 3-day work weeks. Naval
Research Logistics (NRL), 45(8):839–853, 1998.

B. Cheang, H. Li, A. Lim, and B. Rodrigues. Nurse rostering problems–a bibli-
ographic survey. European Journal of Operational Research, 151(3):447–460,
2003. ISSN 0377-2217.

Patrick De Causmaecker and Greet Vanden Berghe. Relaxation of coverage
constraints in hospital personnel rostering. In Edmund Burke and Patrick
De Causmaecker, editors, Practice and Theory of Automated Timetabling IV,
volume 2740 of Lecture Notes in Computer Science, pages 129–147. Springer
Berlin / Heidelberg, 2003. ISBN 978-3-540-40699-0.

K.A. Dowsland and J.M. Thompson. Solving a nurse scheduling problem with
knapsacks, networks and tabu search. Journal of the Operational Research
Society, 51(7):825–833, 2000.

Moustafa Elshafei and Hesham K. Alfares. A dynamic programming algo-
rithm for days-off scheduling with sequence dependent labor costs. Journal
of Scheduling, 11(2):85–93, 2008.

Hamilton Emmons and Richard N. Burns. Off-day scheduling with hierarchical
worker categories. Operations Research, 39(3):484–495, 1991.

15

Hamilton Emmons and Du-Shean Fuh. Sizing and scheduling a full-time and
part-time workforce with off-day and off-weekend constraints. Annals of Op-
erations Research, 70(0):473–492, 1997. ISSN 0254-5330.

A.T. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens, and D. Sier. An annotated
bibliography of personnel scheduling and rostering. Annals of Operations
Research, 127(1):21–144, 2004. ISSN 0254-5330.

Johannes Gärtner, Nysret Musliu, and Wolfgang Slany. Rota: a research project
on algorithms for workforce scheduling and shift design optimization. AI
Communications, 14(2):83–92, 2001. ISSN 0921-7126.

Rudy Hung. Multiple-shift workforce scheduling under 3-4 the workweek with
different weekday and weekend labor requirements. Management Science, 40
(2):280–284, 1994a. ISSN 0025-1909.

Rudy Hung. Single-shift off-day scheduling of a hierarchical workforce with
variable demands. European Journal of Operational Research, 78(1):49–57,
1994b. ISSN 0377-2217.

A. Ikegami and A. Niwa. A subproblem-centric model and approach to the
nurse scheduling problem. Mathematical Programming, 97(3):517–541, 2003.
ISSN 0025-5610.

Brigitte Jaumard, Frederic Semet, and Tsevi Vovor. A generalized linear pro-
gramming model for nurse scheduling. European Journal of Operational Re-
search, 107(1):1–18, 1998.

D.L. Kellogg and S. Walczak. Nurse Scheduling: From Academia to Implemen-
tation or Not? Interfaces, 37(4):355–369, 2007.

G. J. Koop. Cyclic scheduling of offweekends. Operations Research Letters, 4
(6):259–263, 1986. ISSN 0167-6377.

Holmes E. Miller, William P. Pierskalla, and Gustave J. Rath. Nurse scheduling
using mathematical programming. Operations Research, 24(5):857–870, 1976.

Nysret Musliu, Johannes Gärtner, and Wolfgang Slany. Efficient generation of
rotating workforce schedules. Discrete Applied Mathematics, 118(1-2):85–98,
2002. ISSN 0166-218X.

Gerhard Post and Bart Veltman. Harmonious personnel scheduling. In Pro-
ceedings of the 5th international conference on the Practice and Theory of
Automated Timetabling, pages 557–559, 2004.

ManMohan S. Sodhi and Stephen Norris. A flexible, fast, and optimal mod-
eling approach applied to crew rostering at london underground. Annals of
Operations Research, 127(1):259–281, 2004. ISSN 0254-5330.

Maciej M. Syslo, Narsingh Deo, and Janusz S. Kowalik. Discrete optimiza-
tion algorithms: with Pascal programs. Prentice-Hall, Englewood Cliffs, New
Jersey, 1983.

16

Frédérique Versteegh. Let the weekend begin! a solution for solving the weekend
scheduling problem for ortec harmony. Master’s thesis, University of Twente,
The Netherlands, 2009. URL http://essay.utwente.nl/60656.

D. Michael Warner. Scheduling nursing personnel according to nursing prefer-
ence: A mathematical programming approach. Operations Research, 24(5):
842–856, 1976.

P. Daniel Wright, Kurt M. Bretthauer, and Murray J. Ct. Reexamining the
nurse scheduling problem: Staffing ratios and nursing shortages*. Decision
Sciences, 37(1):39–70, 2006. ISSN 1540-5915.

17

http://essay.utwente.nl/60656

