
Friction dependence of shallow granular flows from discrete par-

ticle simulations

Anthony Thornton1,2,†, Thomas Weinhart1,2, Stefan Luding1 and Onno Bokhove2

1 Multi-Scale Mechanics, Dept. of Mechanical Engineering, Univ. of Twente, The Netherlands
2 Numerical Analysis and Computational Mechanics, Dept. of Appl. Mathematics, Univ. of Twente, The Netherlands
† P.O. Box 217, 7500 AE Enschede, The Netherlands, Tel.: +31 53 489 3301, Fax: +31 53 489 4833,

a.r.thornton@utwente.nl

PACS 47.57.Gc – Complex fluids and colloidal systems: Granular flow

PACS 45.70.Ht – Granular systems: Avalanches

PACS 83.80.Fg – Rheology: Granular solids

Abstract – A shallow-layer model for granular flows is completed with a closure relation for the

macroscopic bed friction or basal roughness obtained from micro-scale discrete particle simulations

of steady flows. We systematically vary the bed friction by changing the contact friction coefficient

between basal and flowing particles, while the base remains geometrically rough. By simulating

steady uniform flow over a wide parameter range, we obtain a friction law that is a function of

both flow and bed variables. Surprisingly, we find that the macroscopic bed friction is only weakly

dependent on the contact friction of bed particles and predominantly determined by the properties

of the flowing particles.

INTRODUCTION. – Free-surface flows of granu-
lar material occur in many geophysical and engineering
applications, such as rockslides, avalanches, or production-
line transport. They have been studied extensively both
experimentally and numerically. The most direct way to
simulate granular flows is by methods such as the Discrete
Particle Method (DPM), which computes the movement
of individual particles based on a model of the contact
forces between the particles [1, 2]. However, realistic flow
situations often involve billions of particles, and can only
be modeled on a coarser level by continuum solvers (or hy-
brid methods), in which the particulate flow is described
by a small number of continuum fields governed by the
conservation of mass, momentum, and often energy. For
shallow flows, the mass and momentum conservation equa-
tions can be further simplified by averaging over the flow
depth, yielding granular shallow-layer equations [3–5]. In
order to obtain a closed system of equations, closure re-
lations for first normal stress ratio, velocity shape factor,
and macro basal friction, have to be developed in terms
of the flow variables: height, h and the depth-averaged
velocity, ū = (ū, v̄). While closure models are usually de-
veloped to retain the qualitative behaviour of the micro-
scopic system, they often cannot describe the quantitative
behaviour as the relations between the micro- and macro-

scopic quantities are not well known.

Here, we focus on one closure relation: the effective
macro-friction coefficient µ = µ(h, |ū|) and its dependence
on the bed friction. It is informative to make a note about
the nomenclature used in this paper. In the literature, the
word friction gets used to mean both the macroscopic fric-
tional forces felt by a large mass of material moving over a
surface, as well as the contact frictional force between two
individual flow particles, i.e., the contact friction used in
the DPM contact model. In this paper we will refer to
the macroscopic (shallow-layer) friction as µ, and use µf

for the particle-particle contact friction between flowing
particles. There is one final complication: we will take a
different value for the contact friction for contacts between
flowing and base particles; this will be named µb.

The effective macro-friction coefficient, µ, determines
the range of inclinations and heights at which the flow
either arrests, reaches steady flow, or accelerates indefi-
nitely. The rougher the base, the larger the range of incli-
nations at which steady flow is reached. Basal roughness
can be modeled in various ways: in [6], a basal rough-
ness was created by glueing particles onto a flat base.
The roughness was changed by varying the diameter ra-
tio between fixed basal and free flowing particles. They
observed a peak in measured macro-friction coefficient at

p-1



A. Thornton, T. Weinhart, S. Luding, O. Bokhove

a certain diameter ratio depending on the compactness of
the basal layer. In their work on enduring contacts, Louge
and Keast [7] modeled the basal roughness by assuming
a flat frictional incline. Later, Louge [8] extended their
theory to bumpy inclines. Silbert et al. [9] used DPM to
simulate chute flow over a base of disordered particles. In
[10], the effect of different basal types was investigated
and they found that for a base of ordered particles the
steady-state regime splits into three distinct flow regimes.
In our research we aim to obtain the closure relation-

ships by studying small steady-state DPM simulations.
First, a statistical method was developed [11] to extract
the continuum fields from the microscopic degrees of free-
dom that is valid near the base of the flow. Then, an ex-
tensive parameter study was undertaken in [12] to study
the full set of closure laws for the shallow water equations.
Here, we extend the closure relation for the macro-friction
coefficient by systemically changing the contact friction
between basal and flowing particles, µb.

MATHEMATICAL BACKGROUND. –

Shallow layer model. The granular shallow-layer equa-
tions have proved to be a successful tool in predicting both
geological large-scale [13–17] and laboratory-scale experi-
ments [4, 18–20] of granular chute flows. They have been
derived in many papers, starting with [3], but here we use
the form presented in [4,5]. Shallow-layer theories assume
that the flow is incompressible, the stress is isotropic and
the velocity profile is uniform in depth. We will consider
the flow down a slope with inclination θ with the x-axis
downslope, y-axis across the slope and the z-axis normal
to the slope. The free-surface and base location will be
given by z = s(x, y) and z = b(x, y), respectively. The
height of the flow is h = s−b and velocity components are
u = (u, v, w)T . Depth-averaging the remaining equations
and retaining only high-order terms (in the ratio of height
to length of the flow) yields the depth-averaged shallow-
layer equations, e.g., [4],

∂h

∂t
+

∂

∂x
(hū) +

∂

∂y
(hv̄) = 0, (1a)

∂
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∂
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)
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∂

∂y
(hūv̄) = Sx, (1b)
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∂
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g

2
h2 cos θ

)

= Sy, (1c)

where g is the gravitational acceleration, ū = (ū, v̄) the
depth-average velocity and the source terms are given by

Sx = gh cos θ

(

tan θ − µ
ū√

ū2 + v̄2

)

and

Sy = gh cos θ

(

−µ v̄√
ū2 + v̄2

)

.

Here, for simplicity it has been assumed that b is constant.
We note that various assumptions can be relaxed by intro-
ducing closure relations for the mean density, the normal

stress ratio, and the shape of the velocity profile. This,
however, is beyond the scope of this paper; we refer the
interested reader to [12].

Friction law for rough surfaces. The closure to eqs. (1)
is achieved by determining the bed macro-friction in terms
of the flow variables, such that µ = µ(h, |ū|). In the early
models a constant friction coefficient was used [3,21], i.e.,
µ = tan δ, where δ is a fixed slope angle. For these models,
steady uniform flow is only possible at a single inclination,
δ, below which the flow arrests, and above which the flow
accelerates indefinitely. However, detailed experimental
investigations [22–24] for the flow over rough uniform beds
show that steady flow emerges at a range of inclinations,
δ1 < θ < δ2, where δ1 is the minimum angle required for
flow, δ2 is the maximum angle at which steady uniform
flow is possible. In [23], the measured height hstop(θ) of
stationary material left behind when a flowing layer has
been brought to rest, was fitted to

hstop(θ)

Ad
=

tan(δ2)− tan(θ)

tan(θ) − tan(δ1)
, δ1 < θ < δ2, (2)

where d is the particle diameter and A is a characteristic
dimensionless length scale over which the friction varies.
Here, we will investigate how the parameters A, δ1 and δ2
change as a function of the contact friction between bed
and flowing particles.
For h > hstop, steady flow exists where the Froude num-

ber, F = |ū|/√gh cos θ, is assumed to fit a linear function
of the height,

F =
βh

hstop(θ)
− γ , δ1 < θ < δ2, (3)

where β, γ are constants independent of the chute inclina-
tion and particle size.
From eqs. (2) and (3) we can derive a relation between

the inclination θ and the flow variables F and h. For
steady flow over a uniform bed, the momentum eqs. (1)
reduce to µ = tan θ, and by combining this with (2) and
(3) we can derive the friction law

µ(h, F ) = tan(δ1) +
tan(δ2)− tan(δ1)

βh/(Ad(F + γ)) + 1
. (4)

Even though (4) is derived for steady-flow conditions it
is expected to hold, in an asymptotic sense, for unsteady
situations; therefore, it can be used as a closure relation
for (1).

PROBLEM DESCRIPTION. –

Contact description. The DPM is used to perform
simulations of a collection of mono-dispersed spherical
granular particles of diameter d and density ρp; each par-
ticle i has a position ri, velocity vi and angular velocity
ωi. It is assumed that particles are soft and have a sin-
gle contact point. The relative distance is rij = |ri − rj |,
the unit normal n̂ij = (ri − rj)/rij and the relative ve-
locity vij = vi − vj . Two particles are in contact if their
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overlap, δnij = max(0, d− rij), is positive. The normal and
tangential relative velocities at the contact point are given
by

vn
ij = (vij · n̂ij)n̂ij , (5a)

vt
ij = vij − (vij · n̂ij)n̂ij +

d− δnij
2

n̂ij × (ωi + ωj). (5b)

Particles are assumed to be linearly viscoelastic; there-
fore, the normal and tangential forces are modeled as a
spring-dashpot with linear elastic and linear dissipative
contributions. Hence

fn
ij = knδnijn̂ij − γnvn

ij , f t
ij = −ktδtij − γtvt

ij , (6)

with spring constants kn, kt and damping coefficients γn,
γt; the elastic tangential displacement, δtij , is defined to
be zero at the initial time of contact, and its rate of change
is given by

d

dt
δtij = vt

ij − r−1
ij (δtij · vij)nij . (7)

When the tangential-to-normal force ratio becomes larger
than the contact friction coefficient, µc, the tangential
spring yields and the particles slide, and we truncate the
magnitude of δtij as necessary to satisfy |f t

ij | ≤ µc|fn
ij |.

Here µc = µf for contacts between two flowing particles
and µb for contacts between flow and basal particles. For
more details on the contact law used in these simulations
we refer the reader to [12]; whereas, in [2] a more complete
discussion of contact laws, in general, can be found.
The total force on particle i is a combination of the con-

tact forces fn
ij + f t

ij between two particles i, j in contact
and external forces, which for this investigation will be
limited to gravity, mg. We integrate the resulting force
and torque relations in time using Velocity-Verlet and for-
ward Euler [25] with a time step ∆t = tc/50, where tc is
the collision time [2]. The fixed bed particles are modeled
as having an infinite mass and are unaffected by body and
contact forces: they do not move.
In the following simulations, parameters are nondimen-

sionalised such that the flow particle diameter d = 1, mass
m = 1 and the magnitude of gravity g = 1. The normal
spring and damping constants are kn = 2·105 and γn = 50;
thus the contact duration is tc = 0.005 and the coefficient
of restitution is ǫ = 0.88. The tangential spring and damp-
ing constants are kt = (2/7)kn and γt = γn; hence, the
frequency of normal and tangential contact oscillation and
the normal and tangential dissipation are equal. These
parameters are identical to those used by Silbert et al.
[9] except that a dissipation in the tangential direction,
γt, was added to dampen rotational degrees of freedom in
arresting flow. In this investigation, the friction between
bed and flowing particles, µb, is varied between µb = 0
and ∞.

Chute geometry. DPM simulations are used to simu-
late uniform granular chute flows. The chute is periodic

z

g

y
x

Fig. 1: DPM simulation for N = 3500, inclination θ = 24◦

and the basal contact friction, µb = 0.5, at time t = 2000;
gravity direction g as indicated. The domain is periodic in the
x- and y-directions. In the plane normal to the z-direction,
fixed (black) particles form a rough base while the surface is
unconstrained. Colours indicate speed, which increase from
slow (blue) at the bottom to faster (orange) towards the free-
surface.

and of size 20 × 10 in the x- and y-directions, with incli-
nation θ. The base is created by performing a 12 particle
deep simulation of particles, across a flat surface, relax-
ing the system and then taking a cross-section to use as a
rough bottom. More details of the base creation process
can be found in [12].

The height of the flow is determined by the number of
flow particles, N , which are initially randomly distributed
with a low packing fraction of about ρ/ρp = 0.3. From
this state the particles collapse and compact to a height
of approximately, N/200, giving the chute enough kinetic
energy to initialise flow. Time is integrated from t = 0 to
t = 2000 (20 million time steps) to allow the system to
reach steady state. A screen shot of a system in steady
state is given in fig. 1.

Statistics. To obtain macroscopic fields from the DPM
simulations, we use the coarse-graining statistical meth-
ods as described in [26, 27], extended to incorporate ex-
ternal boundary forces [11]. For coarse-graining a course-
graining function, that spatially smears the discrete data
has to be defined; we use a Gaussian of width, or variance,
d/4.

The flow is assumed steady at t = 2000 if the kinetic en-
ergy has been constant over the interval 1500 < t < 2000.
To obtain depth profiles of the macroscopic fields in steady
state, an average is taken over t ∈ [2000, 2100] and the x
and y directions. The height of the flow is defined to be
the distance between the point where the downwards nor-
mal stress σzz vanishes and where it reaches its maximum
value. In order to avoid the effects of coarse graining, we
used the height where the stress was 1% and 99% of the
maximum stress; then we linearly extrapolated the bulk
stress profile to define the base and surface locations (see
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Fig. 2: Overview of DPM simulations for µb = 0.5, with mark-
ers denoting the state: arrested filled-symbols, steady open-
symbols, and accelerating ∗. The demarcation line is fitted
to hstop in eq. (2) (solid line). Note, circular symbols are for
increasing the number of particles and square symbols for de-
creasing.

[12] for details).

RESULTS. –

The steady flow regime. From the experiments of
Pouliquen [22], steady granular flow over a rough base
is known to exist for a range of heights and inclinations,
θstop(h) < θ < θacc, where θstop(h) denotes the inverse
function of hstop(θ). The range of steady flow was pre-
viously determined using DPM simulations by [9]. How-
ever, the simulations provided too few data points near
the boundary of arrested and steady flow to allow a fit of
the stopping height.
To determine the demarcation line between arrested and

steady flow with good accuracy (the hstop-curve), a set of
simulations were performed with initial conditions deter-
mined by the following algorithm: Starting withN = 1000
flow particles and inclination θ = 21◦, the angle was in-
creased in steps of 1◦ until a flowing state was reached. If
the flow arrested, the number of particles was increased by
N = 400 or else the angle decreased by 1/2◦. Flow was de-
fined to be arrested when the ratio between kinetic energy
and the elastic energy stored in the contact, Ekin/Eela,
fell below 10−5 before t = 500 was reached, otherwise the
flow was determined as flowing. In contrast to [12], we also
determined the demarkation line for thin flows: Starting
with N = 1000, the angle was increased by 1/2◦, if the
flow arrested; otherwise the number of particles was de-
creased by 10% until N < 200 was reached. Note, these
simulations are shorter than the ones used to determine
the flow properties, due to the large number of simulations
required to obtain high resolution hstop-curves. Thus, we
obtain inclination intervals at various heights and height
intervals at various inclinations between which the actual
demarcation line lies, see fig. 2. The demarcating curve
was then fitted to eq. (2) by minimising the distance of

θ

h
/
d

µb = 0

µb = 1/1024

µb = 1/32

µb = 1/16

µb = 1/8

µb =∞

18 20 22 24 26 28 30 32 34
0
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20

25

30

35

40

45

50

Fig. 3: Demarcation lines hstop(θ;µ
b) between retarding and

steady flows for various values of µb. The demarcation line is
fitted to eq. (2).

the fit to these intervals. The observed fittings are illus-
trated in fig. 4.

A general friction law. First, we study the effect of
basal contact friction on the range of steady flows, µb.
This yields a family of demarcation curves between ar-
rested and steady states, hstop(θ;µ

b), which can all be
fitted to the Pouliquen hstop-curve (2). In order to ob-
tain a function for the bed macro-friction, we used the
approach of Pouliquen who found that for rough bases the
Froude number is a linear function of h/hstop(θ). Our first
approach was to fit the Froude number to h/hstop(θ;µ

b);
however, it was found that a better collapse is obtained if
the Froude number is fitted with the hstop–curve for the
case where the flowing and base particles are identical,
i.e., µf = µb such that

F =β(µb)
h

hstop(θ;µf )
− γ(µb),

θstop(h;µ
b) ≤ θ ≤ θacc(µ

b), (8)

for all steady flows. This modification to hstop is a key
finding.
The fits to these curves are shown in fig. 3; the fitting

parameters δ1(µ
b), δ2(µ

b) and A(µb) can be found in fig. 4.
The value of δ1 shows no sensitivity to µb, which is to be
expected as δ1 is strongly related to the angle of repose
of material, which is not a function of the base configu-
ration. For, µb ≤ 1/4, δ2 decreases as µb is decreasing;
whereas A increases, resulting in a net reduction in the ef-
fective macro-friction coefficient, µ, as is clearly illustrated
in fig. 3.
When plotting h/hstop versus the Froude, hstop(θ;µ

f )
was used instead of hstop(θ;µ

b) because it gives a better
collapse and is defined for all inclinations for which steady
flow exists. The proportionality constant, β, and offset, γ,
are shown in fig. 5 and again appear almost independent
of µb. In the case µb = 0 there is a sharp reduction in
γ, even compared to µb = 1/1024, implying a change in
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Fig. 4: Figure showing how A, δ1 and δ2 depend on the contact
friction coefficient between base and flowing particles, µb.

the flowing behaviour when the contact friction is ‘turned
off’. Thus, the friction coefficient of the depth-averaged
eqs. (1) is given by

µ(h, F ;µb) = tan(δ̂1) +
tan(δ̂2)− tan(δ̂1)

β(µb)h

Âd(F+γ(µb))
+ 1

,

θstop(h;µ
b) ≤ tan−1 µ ≤ θacc(µ

b), (9)

where the hat denotes e.g., δ̂1 = δ1(µf ), etc. The values
obtained for the parameters are given in figs. 4 and 5. The
key results are that the only dependence of the macro-
friction, µ, on the bed contact friction, µb, is through the
coefficients β and γ, i.e., (9) is valid for all steady flows,
for beds with varying micro friction, and only β and γ are
functions of µb, all other parameters are determined by
µf . A detailed investigation of how A, δ1 and δ2 depend
on other flow parameters has been undertaken in [12].

Frictional dependence in the depth profiles. For all
simulations we observe nearly constant, with depth, den-
sity profiles, and linear stress profiles for σxx and σxz,
which satisfy the mass and momentum balances for steady
uniform flow. Additionally, we do find a normal stress
anisotropy, i.e., σxx 6= σzz. Fig. 6 shows a selection of ve-
locity profiles. We observe a Bagnold profile as predicted
in [28] for thick collisional flows. A small deviation from
the Bagnold profile is observed at the surface, where the
profile becomes linear and near the base where the shear
rate decreases. For µb = 0, the flow shows a slip velocity
at the base, a characteristic of smoother flows and is not
observed for the case µb = 1/1024. This implies a sharp
change in the flow behaviour near the base when the basal
contact friction is included in the particle contact model.
Combined with a similar ‘discontinous’ change in γ be-
tween µb = 0 and µb 6= 0 it appears there is a fundamen-
tal change in the flow characteristics when a basal contact
friction is added to the DPM model. However, the mean

µb

β γ

01/1024 1/1281/64 1/32 1/16 1/8 1/4 1/2 1 ∞0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 5: Figure showing the dependence of β and γ on the con-
tact friction coefficient between base and flowing particles µb.

density and the shape of the velocity profile both show a
dependence on the inclination and height of the flow [12].

CONCLUSIONS. – A closure relation for the
macroscopic basal friction in a shallow-layer model of
granular flow, over a geometrically rough bed, was ob-
tained using DPM simulations. An extensive parameter
study of steady uniform flows was undertaken by vary-
ing height h, inclination θ and the basal contact friction
µb. At small inclinations, the flow quickly retards and a
static pile is formed; at large inclinations, the flow contin-
ued to accelerate; between these two regimes there was a
range of inclinations at which steady flows were observed,
see fig. 2. Depth profiles for density, velocity and stress
were measured using coarse-grained macroscopic fields. A
novel definition of the stress at the boundary was used
cf. [11], which exactly satisfies the mass and momentum
balance, even near the boundary. The assumptions of
depth-averaged theory are found to be valid for steady
uniform flow: the density is almost constant in depth,
and the downward normal and shear stress balances the
gravitational forces acting on the flow (both local and in
depth-averaged form).

The results of the DPM simulations did not vary sig-
nificantly with the contact friction at the bed; variations
were only observed for small values of the basal contact
friction, µb < 1/4. For small values of µb the demarcation
curves hstop(θ;µ

b), θacc(µ
b) between arrested, steady and

accelerating flows shifted to the left, see fig. 3, implying
a lower macro-friction coefficient, µ. Thus, a steady state
was observed at smaller inclinations and heights. For the
special case of µb = 0, the flow developed a small slip ve-
locity at the base, see fig. 6. Additionally, the offset in the
dependance of height on Froude number sharply changed
between the case µb = 0 and µb 6= 0, indicating a change
in the flow characteristics, when basal contact friction is
added to the contact model.
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Fig. 6: Flow velocity profile for thick flow with N = 6000
(H = 30), inclination θ = 24◦ and bed micro-friction µb =
0, 1/1024, 1/2,∞. The flow velocity roughly observes a Bag-
nold profile, except near the surface and the base. For µb = 0
the flow shows a slip velocity at the base.

The bed friction, µ = tan θ, was expressed as a function
of height and flow velocity, cf. (9). This was done by
extending the approach of Pouliquen for varying contact
friction at the bed: the Froude number is a linear function
of h/hstop(θ;µ

f ), i.e., the stopping height is determined
by the flowing, not the basal, particles. The results in
this paper suggest that macroscopic closure relations for
shallow granular flow can be expressed in terms of the
microscopic parameters. This approach yields the closure
relation for the friction coefficient for the shallow-layer
continuum model allowing large-scale computations (e.g.,
[29]) of granular flows using continuum equations.

The friction law developed here is strictly only valid
for steady flows of mono-dispersed particles for the estab-
lished inclination range θstop(h;µ

b) ≤ tan−1 µ ≤ θacc(µ
b).

However, it is anticipated, that it will still hold for slightly
poly-dispersed particles, slowly varying basal properties,
and across a wider range of angles. The exact range of ap-
plicability of the closure law still has be determined and
this will form the theme of future work.

Both the results presented here and in [12], where the
geometric basal roughness (size of basal particles) was
changed, show that the flow rule for the case where bed
and flow particles are the same gives the best collapse.
Therefore, for the macroscopic friction coefficient, µ, the
main result of these studies is: The only dependence of
µ on the base properties is through the relationship of
the Froude number against hstop(θ;µ

f ). In other words,
the macroscopic friction coefficient, µ is mainly deter-
mined by the properties of flowing material and, hence,
the Pouliquen law may still give insight for flows over
smooth surfaces, where at the moment it is thought to
be of limited applicability.
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[18] Hákonardóttir K. and Hogg A., Phys. Fluids, 17

(2005) 077101.
[19] Gray J. and Cui X., J. Fluid Mech., 579 (2007) 113.
[20] Vreman A., Al-Tarazi M., Kuipers A., Van Sint An-

naland M. and Bokhove O., J. Fluid Mech., 578 (2007)
233.

[21] Hungr O. and Morgenstern N., Geotechnique, 34

(1984) 415.
[22] Pouliquen O., Phys. Fluids, 11 (1999) 542.
[23] Forterre Y. and Pouliquen O., J. Fluid Mech., 486

(2003) 21.
[24] GDR MiDi, Eur. Phys. J. E., 14 (2004) 341.
[25] Allen M. and Tildesley D., (Editors) Computer Sim-

ulation of Liquids (Oxford University Press) 1993.
[26] Babic M., Int. J. Eng. Science, 35 (1997) 523 .
[27] Goldhirsch I., Granular Matter, 12 (2010) 239.
[28] Bagnold R., Proc. Roy. Soc. A, 255 (1954) 49.
[29] Pesch L., Bell A., Sollie W., Ambati V., Bokhove

O. and Van der Vegt J., ACM Transactions on Math-

ematical Software, 33 (2007) 4.

∗ ∗ ∗

The authors would like to thank the Institute of Me-
chanics, Processes and Control, Twente (IMPACT) for its
financial support. The research presented is part of the
STW project ‘Polydispersed Granular Flows through In-
clined Channels’.

p-6


