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Abstract. Using a detailed multilevel analysis of the complete hp-Multigrid as Smoother algo-
rithm accurate predictions are obtained of the spectral radius and operator norms of the multigrid
error transformation operator. This multilevel analysis is used to optimize the coefficients in the
semi-implicit Runge-Kutta smoother, such that the spectral radius of the multigrid error transfor-
mation operator is minimal under properly chosen constraints. The Runge-Kutta coefficients for
a wide range of cell Reynolds numbers and a detailed analysis of the performance of the hp-MGS
algorithm are presented. In addition, the computational complexity of the hp-MGS algorithm is
investigated. The hp-MGS algorithm is tested on a fourth order accurate space-time discontinuous
Galerkin finite element discretization of the advection-diffusion equation for a number of model prob-
lems, which include thin boundary layers and highly stretched meshes, and a non-constant advection
velocity. For all test cases excellent multigrid convergence is obtained.
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1. Introduction. In [16], subsequently called Part I, we introduced the hp-
Multigrid as Smoother algorithm as a new multigrid method for the solution of al-
gebraic systems resulting from higher order accurate finite element discretizations of
partial differential equations. Using discrete Fourier multilevel analysis the multigrid
performance of the full hp-MGS algorithm was analyzed for two-dimensional problems.
An important component of the hp-MGS algorithm is the semi-implicit Runge-Kutta
smoother, which contains a number of free coefficients. The multilevel analysis of the
hp-MGS algorithm, discussed in Part I, gives the opportunity to optimize the multi-
grid efficiency by computing Runge-Kutta coefficients such that the spectral radius
and operator norms of the full hp-MGS algorithm are minimal for a given class of
problems.

In this article we are particularly interested in improving the multigrid perfor-
mance for higher order accurate space-time discontinuous Galerkin discretizations of
advection dominated flows. Discontinuous Galerkin finite element methods have re-
ceived significant attention during the past decade and provide stable and robust
discretizations for large classes of partial differential equations. In particular, due to
their local structure they are well suited for parallel computing and hp-mesh adapta-
tion, where p refers to adjustment of the polynomial order of the basis functions and
h to local mesh refinement and coarsening. For an overview of various aspects of DG
methods, see e.g. [2, 6]. During the past decade also extensive research into efficient
multigrid algorithms for discontinuous Galerkin discretizations has been conducted,
see e.g. [1, 3, 8, 9, 10, 11]. This research is motivated by the strong need in indus-
trial applications to reduce the computational cost of DG methods. Both p-, h-, and
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hp-multigrid methods have been investigated. In p-multigrid the coarser levels are ob-
tained using a sequence of lower order discretizations, whereas in h-multigrid coarser
meshes are used. Combinations of both methods result in hp-multigrid. For a more
detailed overview of multigrid methods for discontinuous Galerkin discretizations, see
Part I and the references therein.

For the multigrid optimization we consider the advection-diffusion equation as
model problem. Using the discrete Fourier multilevel analysis discussed in Part I, we
can compute the operator norms and spectral radius of the full hp-MGS algorithm
for a space-time discontinuous Galerkin discretization with periodic boundary condi-
tions. The operator norms give an upper bound for the reduction of the error and
residual after one application of the hp-MGS algorithm and the spectral radius the
asymptotic convergence rate of the multigrid algorithm. The use of discrete Fourier
multilevel analysis to optimize multigrid performance is very old and can be found
in many multigrid textbooks, [5, 13, 17, 18]. Frequently the optimization is done
using analytical tools, but the computation of the Fourier symbol of the full hp-MGS
algorithm is too complicated for a purely analytic approach. We therefore wrote a
Matlab code to conduct this analysis and use the fmincon Matlab optimization func-
tion for the optimization of the Runge-Kutta smoother. This approach gives optimal
multigrid algorithms for large classes of problems which could not be obtained with
other techniques. Since a number of important simplifications have to be made in the
discrete Fourier multilevel analysis, such as periodic boundary conditions and con-
stant coefficients, we also extensively test the new multigrid algorithms on problems
with very thin boundary layers, which require locally highly stretched meshes, and
problems with non-constant coefficients.

For an efficient multigrid algorithm not only a fast convergence rate is impor-
tant, but also its computational cost. In order to assess this we consider the com-
putational complexity of the hp-MGS algorithm and compare this with the compu-
tational complexity of several simplifications. The first simplified scheme uses only
the semi-implicit Runge-Kutta method as smoother at the p = 2 and 3 levels and
semi-coarsening h-multigrid at the p = 1 level. The second simplification is to replace
also the semi-coarsening multigrid at the p = 1 level with standard h-multigrid using
uniformly coarsened meshes.

The outline of this article is as follows. First, we briefly discuss in Section 2 the
advection-diffusion model problem used for the multigrid optimization. Next, we sum-
marize in Section 3 the hp-MGS algorithm, the semi-implicit Runge-Kutta smoother
and the multigrid error transformation operator. The computational complexity of
the hp-MGS algorithm is analyzed in Section 4 and the multigrid smoothers are op-
timized in Section 5 using the multilevel Fourier analysis discussed in Part I. This
analysis provides the theoretical performance of the hp-MGS algorithm and the two
simplifications thereof discussed earlier. The practical performance of the hp-MGS al-
gorithm on realistic model problems for advection dominated flows, which include thin
boundary layers and a non-constant advection velocity, will be discussed in Section 6.
Finally, conclusions are drawn in Section 7.

2. Space-time DG discretization of the advection-diffusion equation.
As model problem we consider a space-time discontinuous Galerkin discretization
of the advection-diffusion equation in two space dimensions. In a space-time DG
formulation, the space and time variables are discretized simultaneously. A point
at time t = x0, with position vector x̄ = (x̄1, x̄2) ∈ R2, has Cartesian coordinates
x = (x0, x̄) in the open domain E = Ω × (t0, T ) ⊂ R3, with t0 and T the initial and
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final time of the solution and Ω ⊂ R2 the spatial domain. For simplicity we assume
here that Ω is a polyhedral domain. The 2D advection-diffusion equation for a scalar
function u : E → R can be written as

∂u
∂t +∇ · (au) = ν4u, on E ,
u(t0, x̄) = u0(x̄), for x̄ ∈ Ω,

u(t, x̄) = ub(t, x̄), for x̄ ∈ ∂Ω, t ∈ (t0, T ),

where ν ∈ R+ is a constant diffusion coefficient, a ∈ R2 the advection velocity, and
∇ = ( ∂

∂x̄1
, ∂
∂x̄2

) ∈ R2 the nabla operator. Furthermore, the Laplacian operator is

denoted as 4, the initial flow field by u0 and the boundary data by ub. The details
of the space-time discontinuous Galerkin discretization for the advection-diffusion
equation can be found in Part I [16].

The space-time DG discretization for the advection-diffusion equation results at
each time level tn in a linear system

LhU
n
h = fh, (2.1)

for the DG coefficients Unh in each element, with Lh the discretization matrix and
fh the righthand side, which depends on the known DG coefficients Un−1

h from the
previous time level.

For the multigrid analysis we will assume a uniform mesh with mesh sizes h1

and h2 in the x̄1- and x̄2-direction, respectively, and periodic boundary conditions.
Furthermore, we introduce the mesh aspect ratio Ah = h2

h1
, which implies that element

diameter is equal to |h| = h1

√
1 +A2

h, and the flow angle α with respect to the
x̄1-axis, hence a1 = |a| cosα and a2 = |a| sinα. The space-time discretization is
made dimensionless by introducing the following dimensionless numbers, viz. the
CFL number and the cell Reynolds number, defined as

CFL =
|a|∆t
|h|

, Reh =
|a||h|
ν

, (2.2)

with time step 4t = tn+1 − tn. On meshes with h1 6= h2 we use two cell Reynolds
numbers, viz. Reh1

and Reh2
, with h replaced by h1 and h2 in (2.2).

3. Multigrid Algorithm.

3.1. hp-Multigrid as Smoother Algorithm. In this section we summarize
the hp-Multigrid as Smoother algorithm, which we presented in Part I [16] as a new
multigrid algorithm for the solution of algebraic systems resulting from higher order
accurate finite element discretizations of partial differential equations. The hp-MGS
algorithm consists of three steps. First, a V-cycle p-multigrid algorithm is combined
with h-multigrid, which acts as smoother in the p-multigrid at each polynomial level
p, see Figure 3.1. Next, the h-multigrid algorithm uses a semi-coarsening multigrid
algorithm as smoother at each uniformly coarsened mesh, see Figure 3.2. Finally,
the semi-coarsening multigrid algorithm uses a semi-implicit Runge-Kutta method as
smoother.

The hp-MGS algorithm is defined in Algorithms 1, 2 and 3. The first part of
the hp-MGS algorithm is defined recursively in Algorithm 1 and consists of the V-
cycle p-multigrid algorithm HPnh,p, with the h-MGS smoother HUnh,p defined in
Algorithm 2. In Algorithm 1 the linear system at each grid and polynomial level is
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Fig. 3.1. hp-MGS algorithm combining p-multigrid and the h-Multigrid as Smoother algorithm
at each polynomial level. The h-Multigrid as Smoother algorithm uses semi-coarsening in the local
x̄1- and x̄2-directions and a semi-implicit Runge-Kutta method.

2,1 2,2

1,1

1,2

4,1 4,2 4,4 2,4 1,4

Fig. 3.2. h-Multigrid as Smoother algorithm used at each polynomial level p as smoother in
the hp-MGS algorithm. The indices refer to grid coarsening. Mesh (1, 1) is the fine mesh and e.g.
Mesh (4, 1) has mesh size (4h1, h2).

denoted as Lnh,p. The multigrid solution of the linear system is vnh,p and the known
righthand side fnh,p. The linear system originates from a numerical discretization with
polynomial order p and mesh sizes h = (h1, h2), with h1 and h2 the mesh size in the
different local coordinate directions. The mesh coarsening is indicated by the integer
n = (n1, n2), hence nh := (n1h1, n2h2). The parameters γ1, γ2, ν1, ν2, µ1, µ2, and µ3

are used to control the multigrid algorithm, such as the number of pre- and post-
relaxations at each grid level and polynomial order. The HPnh,p-multigrid algorithm

uses the prolongation operators T pnh,p−1 and the restriction operators Qp−1
nh,p. The

prolongation operators T pnh,p−1 interpolate data from a discretization with polynomial
order p − 1 to a discretization with polynomial order p using an L2 projection. The
restriction operators Qp−1

nh,p project data from a discretization with polynomial order
p to a discretization with polynomial order p − 1. The restriction operators are the
transposed of the prolongation operators, viz. Qp−1

nh,p = (T pnh,p−1)T .

In the HUnh,p-multigrid algorithm, defined recursively in Algorithm 2, the semi-
coarsening multigrid algorithm HSinh,p, i = 1, 2, is used as smoother in the local
i-direction. The restriction of the data from the mesh Mnh to the mesh Mmh,
with m1 ≥ n1 and m2 ≥ n2, is indicated by the restriction operators Rmhnh,p. The
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Algorithm 1 hp-MGS Algorithm (HPnh,p)

vnh,p := HPnh,p(Lnh,p, fnh,p, vnh,p, n, p, γ1, γ2, ν1, ν2, µ1, µ2, µ3)
{
if polynomial level p == 1 then

vnh,p := HUnh,p(Lnh,p, fnh,p, vnh,p, n, p, ν1, ν2, µ1, µ2, µ3);
return

end if
// pre-smoothing with h-MGS algorithm
for it = 1, · · · , γ1 do

vnh,p := HUnh,p(Lnh,p, fnh,p, vnh,p, n, p, ν1, ν2, µ1, µ2, µ3);
end for
// lower order polynomial solution
rnh,p := fnh,p − Lnh,pvnh,p;

fnh,p−1 := Qp−1
nh,prnh,p;

vnh,p−1 := 0;
vnh,p−1 := HPnh,p(Lnh,p−1, fnh,p−1, vnh,p−1, n, p− 1, γ1, γ2, ν1, ν2, µ1, µ2, µ3);
// lower order polynomial correction
vnh,p := vnh,p + T pnh,p−1vnh,p−1;

// post-smoothing with h-MGS algorithm
for it = 1, · · · , γ2 do

vnh,p := HUnh,p(Lnh,p, fnh,p, vnh,p, n, p, ν1, ν2, µ1, µ2, µ3);
end for
}

prolongation of the data from the mesh Mmh to the mesh Mnh is given by the
prolongation operators Pnhmh,p. The prolongation operators Pnhmh,p are defined as the
L2 projection from the coarse grid element onto the fine grid elements which are a
subset of the coarse grid element. The restriction operators are defined as Rmhnh,p =

(Pnhmh,p)
T /(n1n2).

The semi-coarsening h-multigrid smoothers HSinh,p, i = 1, 2, are defined recur-
sively in Algorithm 3. Here, i denotes the direction of the semi-coarsening, e.g. a
coordinate direction or local face index in an unstructured mesh. The smoother in
the direction i is indicated with Sinh,p and discussed in detail in Section 3.2. At the
coarsest levels in the semi-coarsened meshes we use µ3 smoother iterations.

Different multigrid algorithms can be obtained by simplifying the hp-MGS algo-
rithm given by Algorithms 1–3. The first simplification is obtained by replacing in the
HPnh,p algorithm for polynomial levels p > 1 the h-MGS-multigrid smoother HUnh,p
with the smoothers S2

nh,pS
1
nh,p in the pre-smoothing step and S1

nh,pS
2
nh,p in the post-

smoothing step. We denote this algorithm as the hp-MGS(1) algorithm, since the
h-MGS algorithm is now only used at the p = 1 level. The second simplification is
to use only uniformly coarsened meshes in the hp-MGS(1) algorithm instead of semi-
coarsened meshes. In addition, the semi-coarsening smoothers HSinh,p in the HUnh,p
algorithm are replaced by the smoothers Sinh,p for i = 1, 2. We denote this algorithm
as hp-multigrid.

3.2. Pseudo-time Runge-Kutta smoother. As multigrid smoother we use
in Algorithm 3 at each polynomial level a semi-implicit Runge-Kutta pseudo-time
integration method, which we briefly summarize. More details can be found in Part
I. First, the linear system is augmented with a pseudo-time derivative, which is inte-
grated to steady-state in pseudo-time

∂v∗nh,p
∂σ

= − 1

4t
(Lnh,pv

∗
nh,p − fnh,p). (3.1)
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Algorithm 2 h-MGS Algorithm (HUnh,p)

vnh,p := HUnh,p(Lnh,p, fnh,p, vnh,p, n, p, ν1, ν2, µ1, µ2, µ3)
{
if coarsest uniformly coarsened mesh then

vnh,p := L−1
nh,pfnh,p;

return
end if
// pre-smoothing using semi-coarsening multigrid
for it = 1, · · · , ν1 do

vnh,p := HS1
nh,p(Lnh,p, fnh,p, vnh,p, 1, n, p, µ1, µ2, µ3);

vnh,p := HS2
nh,p(Lnh,p, fnh,p, vnh,p, 2, n, p, µ1, µ2, µ3);

end for
// coarse grid solution
rnh,p := fnh,p − Lnh,pvnh,p;

f2nh,p := R2nh
nh,prnh,p;

v2nh,p := 0;
v2nh,p := HUnh,p(L2nh,p, f2nh,p, v2nh,p, 2n, p, ν1, ν2, µ1, µ2, µ3);
// coarse grid correction
vnh,p := vnh,p + Pnh2nh,pv2nh,p;

// post-smoothing using semi-coarsening multigrid
for it = 1, · · · , ν2 do

vnh,p := HS2
nh,p(Lnh,p, fnh,p, vnh,p, 2, n, p, µ1, µ2, µ3);

vnh,p := HS1
nh,p(Lnh,p, fnh,p, vnh,p, 1, n, p, µ1, µ2, µ3);

end for
}

At steady state, vnh,p = v∗nh,p. Note, for nonlinear problems this system is obtained
after linearization. The matrix Lnh,p is then the Jacobian of the nonlinear algebraic
system. The hp-MGS algorithm therefore naturally combines with a Newton multigrid
method for nonlinear problems.

The system of ordinary differential equations (3.1) is now solved using a semi-
implicit Runge-Kutta method. Since, the hp-MGS algorithm uses semi-coarsening in
the local i1- and i2-directions of each element we split the matrix Lnh,p for sweeps in
the i1-direction, as

Lnh,p = Li11nh,p + Li12nh,p, (3.2)

and for sweeps in the i2-direction as

Lnh,p = Li21nh,p + Li22nh,p. (3.3)

The matrices Li11nh,p and Li21nh,p contain the contribution from the element itself and the
elements connected to each face in the i1-direction, respectively, i2-direction, which
are treated implicitly. The matrices Li12nh,p and Li22nh,p contain the contribution from
each face in the i2-direction, respectively, i1-direction, which are treated explicitly.
Since the DG discretization only uses information from nearest neighboring elements
this provides a very natural way to define the lines along which the discretization is
implicit. The semi-implicit Runge-Kutta method for sweeps in the i1-direction then
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Algorithm 3 Semi-coarsening Multigrid Algorithm (HSinh,p)

vnh,p := HSinh,p(Lnh,p, fnh,p, vnh,p, i, n, p, µ1, µ2, µ3)

{
if (i == 1 and coarsest mesh in local i1-direction) or (i == 2 and coarsest mesh in local i2-
direction) then

for it = 1, · · · , µ3 do
vnh,p := Sinh,p(Lnh,p, fnh,p, vnh,p);

end for
return

end if
// pre-smoothing
for it = 1, · · · , µ1 do

vnh,p := Sinh,p(Lnh,p, fnh,p, vnh,p);

end for
// coarse grid solution on semi-coarsened meshes
rnh,p := fnh,p − Lnh,pvnh,p;
if (i == 1) then

// semi-coarsening in local i1-direction

f(2n1,n2)h,p := R
(2n1,n2)h
nh,p rnh,p;

v(2n1,n2)h,p := 0;

v(2n1,n2)h,p := HS1
nh,p(L(2n1,n2)h,p, f(2n1,n2)h,p, v(2n1,n2)h,p, i, (2n1, n2), p,

µ1, µ2, µ3);
vnh,p := vnh,p + Pnh

(2n1,n2)h,p
v(2n1,n2)h,p;

else if (i == 2) then
// semi-coarsening in local i2-direction

f(n1,2n2)h,p := R
(n1,2n2)h
nh,p rnh,p;

v(n1,2n2)h,p := 0;

v(n1,2n2)h,p := HS2
nh,p(L(n1,2n2)h,p, f(n1,2n2)h,p, v(n1,2n2)h,p, i, (n1, 2n2), p,

µ1, µ2, µ3);
vnh,p := vnh,p + Pnh

(n1,2n2)h,p
v(n1,2n2)h,p;

end if
// post-smoothing
for it = 1, · · · , µ2 do

vnh,p := Sinh,p(Lnh,p, fnh,p, vnh,p);

end for
}

can be defined for the l + 1 pseudo-time step as

v0 = vlnh,p

vk =
(
Inh,p + βkλσL

i11
nh,p

)−1(
v0 − λσ

k−1∑
j=0

αkj(L
i12
nh,pvj − fnh,p)

)
, k = 1, · · · , 5,

(3.4)

vl+1
nh,p = Sinh,pv

l
nh,p = v5,

with a similar relation for sweeps in the i2-direction. Here, αkj are the Runge-Kutta

coefficients, βk =
∑k−1
j=0 αkj for k = 1, · · · 5, λσ = 4σ/4t, and 4σ the pseudo-time

step. At steady state of the σ-pseudo-time integration we obtain the solution of

Lnh,pvnh,p = fnh,p. (3.5)

The coefficients βk ensure that the semi-implicit Runge-Kutta operator is the identity
operator if vlnh,p is the exact steady state solution of (3.5). Without this condition
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the pseudo-time integration method would not converge to a steady state. The only
requirement we impose on the Runge-Kutta coefficients αkj is that the algorithm is
first order accurate in pseudo-time, which implies the consistency condition

4∑
j=0

α5j = 1.

For each polynomial level p the remaining fifteen undefined Runge-Kutta coefficients
will be computed by optimizing the convergence rate of the hp-MGS algorithm using
the multilevel analysis discussed in Part I. In addition, the optimal value of λσ is
determined for each polynomial level.

3.3. Multigrid error transformation operator. In the multigrid optimiza-
tion we will search for Runge-Kutta coefficients which minimize the spectral radius
of the hp-MGS error transformation operator Mh,3. For completeness, we summarize
in this section the general form of the hp-MGS error transformation operator Mnh,p,
which relates the initial and multigrid error, viz.

e1
nh,p = Mnh,pe

0
nh,p.

The hp-MGS multigrid error transformation operator Mnh,p for the HPnh,p multigrid
algorithm can be defined recursively as

Mnh,p =
(
HUnh,p

)γ2(
Inh,p − T pnh,p−1(Inh,p−1 −Mnh,p−1)(Lnh,p−1)−1

Qp−1
nh,pLnh,p

)(
HUnh,p

)γ1
if p > 1, (3.6)

= HUnh,1 if p = 1.

In the h-MGS step we first compute the error reduction using the HUnh,p algorithm,
defined in Algorithm 2. The h-MGS error transformation operator HUnh,p is equal
to

HUnh,p =
(
HS1

nh,pHS
2
nh,p

)ν2(
Inh,p − Pnh2nh,p(I2nh,p −HU2nh,p)

(L2nh,p)
−1R2nh

nh,pLnh,p
)
(HS2

nh,pHS
1
nh,p

)ν1
, if n < m, (3.7)

= 0, if n = m.

The HUnh,p error transformation operator (3.7) can also be used to obtain the semi-
coarsening multigrid error transformation operators HS1

nh,p and HS2
nh,p, defined in

Algorithm 3, which are equal to

HS1
nh,p =

(
S1
nh,p

)µ2
(
Inh,p − Pnh(2n1,n2)h,p(I(2n1,n2)h,p −HS1

(2n1,n2)h,p)

(L(2n1,n2)h,p)
−1R

(2n1,n2)h
nh,p Lnh,p

)(
S1
nh,p

)µ1
, if n < m,

= Inh,p −
(
S1
nh,p

)µ3
, if n = m,

HS2
nh,p =

(
S2
nh,p

)µ2
(
Inh,p − Pnh(n1,2n2)h,p(I(n1,2n2)h,p −HS2

(n1,2n2)h,p)

(L(n1,2n2)h,p)
−1R

(n1,2n2)h
nh,p Lnh,p

)(
S2
nh,p

)µ1
, if n < m,

= Inh,p −
(
S2
nh,p

)µ3
, if n = m.
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Finally, the error after one semi-implicit Runge-Kutta step can be defined recursively
as

ē0 = ẽ0
nh,p

ēk = (Inh,p + βkλσL
i11
nh,p)

−1
(
ē0 − λσ

k−1∑
j=0

αkjL
i12
nh,pēj

)
, k = 1, · · · , 5,

e1
nh,p = S1

nh,pe
0
nh,p = ē5.

A similar expression is obtained for S2
nh,p, when the Runge-Kutta method is implicit in

the i2-direction. Only i11 and i12 are replaced by, respectively, i21 and i22. Combining
all contributions gives the hp-MGS error transformation operator Mnh,p.

4. Computational Complexity. The computational complexity of the hp-
MGS algorithm in combination with its convergence rate determine its efficiency.
Since the semi-implicit Runge-Kutta smoother, discussed in Section 3.2, is by far the
computationally most expensive part of the hp-MGS algorithm we will focus on the
number of operations of this smoother. In order to prevent unnecessarily complex
estimates of the computational complexity we assume a structured mesh with N ×M
elements in, respectively, the x̄1- and x̄2-direction. In the semi-implicit Runge-Kutta
smoother we need to solve then M block tri-diagonal matrices with N blocks on the
main diagonal. The blocks in the space-time DG discretization have size mp, with
p the polynomial order of the basis functions. Three polynomial levels will be con-
sidered in the analysis. For steady state problems we have m1 = 3, m2 = 6 and
m3 = 10. We also assume that L multigrid levels are used, both in the uniform and
semi-coarsening multigrid steps of the hp-MGS algorithm. The multigrid parameters
in Algorithms 1 - 3 are set equal to γ1 = γ2 = ν1 = ν2 = µ1 = µ2 = µ3 = 1.

The computational cost of solving these linear systems contains two components,
viz. the construction of the LU-decomposition of each matrix used in the smoother
and the back solution using forward and backward substitutions. In [14] estimates are
given for the number of operations for both steps, which are essentially the same if
we either consider a block or band solve of the linear system. The LU-decompositions
require approximately 7

3NMm3
p operations and the back-solve 3NMm2

p operations.
The number of operations in the semi-implicit Runge-Kutta smoother during the
semi-coarsening multigrid sweeps in the x̄1- and x̄2-direction in Algorithm 3 is then
for the LU-decomposition equal to

2 ·
(

7

3
NMm3

p +
7

3

NM

2
m3
p + · · ·+ 7

3

NM

2L−1
m3
p

)
=

14

3
NMm3

p · 2
(

1− (
1

2
)L
)
, (4.1)

where the factor 2 on the left hand side accounts for the two semi-coarsening direc-
tions. The number of operations for the back-solve, assuming a V-cycle multigrid in
both the x̄1- and x̄2-direction, is

2 · 2 ·
(

3NMm2
p + 3

NM

2
m2
p + · · ·+ 3

NM

2L−1
m2
p

)
= 12NMm2

p · 2
(

1− (
1

2
)L
)
, (4.2)

where the factors 2 on the left hand side account for the V-cycle and the two semi-
coarsening directions. The semi-coarsening multigrid is used as smoother in the h-
MGS-multigrid in Algorithm 2. Using (4.1) - (4.2) and assuming that L ≥ 2 we
obtain the following estimate for the number of operations in the LU-decompositions
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in Algorithm 2

14

3
NMm3

p · 2
(

1− (
1

2
)L
)

+
14

3

NM

4
m3
p · 2

(
1− (

1

2
)L−1

)
+ · · ·

+
14

3

NM

4L−2
m3
p · 2(1− (

1

2
)2) =

14

3
NMm3

p · 2
L−2∑
k=0

1

4k

(
1− (

1

2
)L−k

)
.

Note, the coarsest uniformly refined mesh is not included here since a direct solver is
used at this level. If the number of multigrid levels L is sufficiently large this cost is
negligible. Analogously, we obtain for the number of operations in the back-solve in
Algorithm 2

2 · 12NMm2
p · 2

L−2∑
k=0

1

4k

(
1− (

1

2
)L−k

)
,

where the first factor 2 accounts for the V-cycle multigrid. In order to simplify
notation we introduce

T (L) = 2

L−2∑
k=0

1

4k

(
1− (

1

2
)L−k

)
=

2

3

(
4− (

1

4
)L−1 − 3(

1

2
)L−1

)
, L ≥ 2,

hence T (2) = 3/2, T (3) = 17/8 and T (4) = 77/32. The cost of the LU-decompositions
in the full hp-MGS algorithm can now be estimated as

LU1
cost =

14

3
NMT (L)(m3

1 +m3
2 +m3

3),

and the cost of the back-solve is

B1
cost = 24NMT (L)(m2

1 + 2m2
2 + 2m2

3). (4.3)

The factors 2 in (4.3) are due to the fact that the p = 2 and 3 levels are visited twice
in the p-multigrid cycle.

We also consider two simplifications of the hp-MGS algorithm, viz. the hp-
MGS(1) and the hp-multigrid algorithms, which are defined in Section 3.1. The
computational cost of the LU-decomposition in the hp-MGS(1) algorithm at the
polynomial levels p = 2 and 3 is 14

3 NMm3
p, since we need to generate an LU-

decomposition for both coordinate directions. The cost of the back-solve at these
levels is 12NM(m2

2 +m2
3) using the fact that the p = 2 and 3 levels are visited twice

in the p-multigrid cycle and there are two semi-coarsening directions. Combining all
contributions then gives for the LU-decomposition in the hp-MGS(1) algorithm the
number of operations

LU2
cost =

14

3
NM(m3

2 +m3
3) +

14

3
NMT (L)m3

1,

and the cost of the back-solve is

B2
cost = 12NM(m2

2 +m2
3) + 24NMT (L)m2

1.
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Table 4.1
Overview of the computational complexity consisting of LU-decomposition cost (LUcost) and

back-solver cost (Bcost). Superscripts 1, 2 and 3 refer to the hp-MGS, hp-MGS(1) and the hp-
multigrid algorithms, respectively.

LU1
cost LU2

cost LU3
cost LU1

cost/LU
2
cost LU1

cost/LU
3
cost

12326NM 5942NM 5840NM 2.1 2.1

B1
cost B2

cost B3
cost B1

cost/B
2
cost B1

cost/B
3
cost

14331NM 2091NM 1773NM 6.9 8.1

Table 4.2
Overview of the memory necessary to store the LU-decomposition matrices (Mem). Super-

scripts 1, 2 and 3 refer to the hp-MGS, hp-MGS(1) and the hp-multigrid algorithms, respectively.

Mem1 Mem2 Mem3 Mem1/Mem2 Mem1/Mem3

3081NM 1551NM 1478NM 2.0 2.1

Finally, we consider hp-multigrid which uses the semi-implicit Runge-Kutta smoother
in both local coordinate directions at all polynomial levels in combination with stan-
dard h-multigrid with uniform coarsening at the p = 1 level. The cost of the LU-
decomposition is then equal to

LU3
cost =

14

3
NM

(
4

3
m3

1(1− (
1

4
)L) +m3

2 +m3
3

)
,

and the cost of the back-solve

B3
cost = 2 · 3NM

(
2 · 4

3
m2

1(1− (
1

4
)L) + 2m2

2 + 2m2
3

)
.

Here, the first factor 2 accounts for the fact that the smoother acts in two directions.
The other factors 2 are for, respectively, the V-cycle in the h- and p-multigrid. In
Table 4.1 the estimates for the LU-decomposition and the back-solve costs for the
different algorithms are summarized. Also, the ratio of the computational cost of the
hp-MGS algorithm to the simplified algorithms is given.

The results in Table 4.1 indicate that the cost of the LU-decomposition is sub-
stantial for all three versions of the multigrid algorithm. Since for linear problems
the LU-decomposition only needs to be computed once, and also can be reused many
times for nonlinear problems, it is beneficial to store these matrices. The required
amount of memory to store these matrices and also the matrices used in the explicit
part of the semi-implicit Runge-Kutta algorithm at each grid level is for the hp-MGS
algorithm proportional to

Mem1 = 10NMT (L)(m2
1 +m2

2 +m2
3),

where we accounted for the five block diagonals in the discretization matrix and
the two semi-coarsening directions. For the hp-MGS(1) algorithm the approximate
memory use for the matrices is

Mem2 = 10NM
(
T (L)m2

1 +m2
2 +m2

3

)
,
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and for standard hp-multigrid with uniform coarsening at the p = 1 level, the approx-
imate memory use is

Mem3 = 10NM

(
4

3
m2

1(1− (
1

4
)L) +m2

2 +m2
3

)
.

An overview of the memory use for the different algorithms is given in Table 4.2.

5. Multigrid Optimization. The pseudo-time Runge-Kutta smoother, dis-
cussed in Section 3.2, is an important part of the hp-MGS algorithm and has sig-
nificant influence on the multigrid performance. Since time-accuracy is not important
for pseudo-time smoothers we only require that the Runge-Kutta smoothers are con-
sistent and first order accurate. The remaining coefficients can be chosen such that
the multigrid performance for a selected class of problems is optimal. In [7, 12, 15]
we performed this optimization for explicit Runge-Kutta methods. In this section
we will discuss the optimization of the semi-implicit Runge-Kutta smoother used
in the hp-MGS multigrid algorithm. We consider a fourth order accurate space-
time discontinuous Galerkin discretization of the two-dimensional advection-diffusion
equation. The hp-MGS multigrid algorithm used in the optimization process has
three polynomial levels (p = 1, 2, 3) in the p-multigrid and three mesh levels in
the h-multigrid part, both for the uniformly and semi-coarsened meshes, see Fig-
ures 3.1 and 3.2. In all computations the multigrid parameters in Algorithms 1 - 3
are γ1 = γ2 = ν1 = ν2 = µ1 = µ2 = µ3 = 1. Only, for the cell Reynolds number
Reh = 104, we use the parameters ν1 = ν2 = µ1 = µ2 = µ3 = 2.

The error e1
h,3 after one full hp-MGS iteration is determined by the multigrid error

transformation operator Mh,3 as

e1
h,3 = Mh,3e

0
h,3.

The multigrid error transformation operator Mh,3 is defined in Section 3.3. The
optimization of the Runge-Kutta smoother in the hp-MGS algorithm is performed
simultaneously for all polynomial levels, since there is a strong interaction between
these multigrid levels in the hp-MGS algorithm. In the optimization process we search
for Runge-Kutta coefficients which minimize the spectral radius ρ(Mh,3) of the hp-
MGS error transformation operator. In addition, we require that the spectral radii
of the Runge-Kutta smoothers Sinh,p, i = 1, 2, in Algorithm 3 are less than one for
all polynomial levels p. These constraints on the smoothers are essential to obtain a
robust multigrid algorithm. Unstable smoothers for some p-levels can give a better
multigrid performance, but are not reliable. In addition, we require that each of the
semi-coarsening multigrid algorithms HSinh,p, i = 1, 2, given by Algorithm 3, have a
spectral radius less than one. The operator norms and spectral radii of the multi-
grid error transformation operator and the Runge-Kutta smoothers are computed for
the two-dimensional advection-diffusion equation using the discrete Fourier multilevel
analysis discussed in Part I, [16].

The operator norm ‖Mh,3‖ of the hp-MGS error transformation operator provides
an upper bound for the reduction of the error after one iteration of the full hp-MGS
algorithm. We also compute the norm ‖Mh,3‖L := ‖L−1

h,3Mh,3Lh,3‖, which gives an
upper bound for the reduction of the residual after one hp-MGS iteration, and the
spectral radius ρ(Mh,3), which gives the asymptotic convergence rate. See [4] for an
explanation of the different convergence measures.

For the computation of the operator norms and spectral radius an extensive Mat-
lab program was written, which performs the full multilevel analysis of the hp-MGS
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Table 5.1
Optimized Runge-Kutta smoother coefficients αij and pseudo-time step λσ for the hp-MGS

algorithm for a fourth order space-time DG discretization of the steady advection-diffusion equation
(γ1 = γ2 = ν1 = ν2 = µ1 = µ2 = µ3 = 1).

Runge-Kutta coefficients Reh = 1
P 10-level P 20-level P 30-level

λσ 4.064e+01 8.239e+01 1.149e+02
α1,0 1.066209267521e+00 3.350894806084e-01 2.727948283871e-01
α2,0 7.180492865411e-01 2.951566984408e-02 3.819041499688e-01
α2,1 6.163816243989e-01 3.756895602864e-01 2.044998728477e-01
α3,0 -4.527958372691e-01 -4.535683794919e-01 -4.562349170706e-01
α3,1 -5.583612017693e-01 -2.831700768733e-01 9.511751654662e-03
α3,2 1.967631764281e+00 -4.908716265626e-01 7.156119819888e-01
α4,0 -8.888763218402e-01 -4.238398891230e-01 -8.897482288601e-02
α4,1 -1.401525685401e+00 1.831110282381e-01 -1.046204349088e-01
α4,2 4.844557217353e-01 1.676572696271e-01 -6.168593216634e-01
α4,3 2.048020891903e-01 7.775979258990e-01 -1.041586085909e-01
α5,0 -1.652446826064e+00 -2.221934676001e+00 -1.053917760604e+00
α5,1 -5.258533708371e-01 2.531223130879e-01 2.184090410378e-01
α5,2 8.008864716245e-02 5.872585947323e-01 4.911479000314e-02
α5,3 1.281626589298e+00 5.554657058114e-01 5.641596413156e-01
α5,4 1.816584960441e+00 1.826088062369e+00 1.222234288247e+00

Runge-Kutta coefficients Reh = 10
P 10-level P 20-level P 30-level

λσ 4.064e+01 8.239e+01 1.149e+02
α1,0 1.067076553707e+00 3.354038200637e-01 2.698898366842e-01
α2,0 7.475044908338e-01 4.364450123197e-01 3.630028474154e-01
α2,1 5.782869546967e-01 3.471346464581e-01 2.370748120992e-01
α3,0 -2.321022121346e-01 -6.045448400458e-01 -4.677183793622e-01
α3,1 -4.629530713053e-01 -2.724698584165e-01 1.462815397238e-04
α3,2 2.039046812330e+00 -3.566993131079e-01 7.155518835259e-01
α4,0 -9.398870654851e-01 3.920819132938e-01 -7.797329349952e-02
α4,1 -1.325186004004e+00 6.260665126301e-01 -9.457888411948e-02
α4,2 5.762255233657e-01 4.600411796511e-01 -6.119099535840e-01
α4,3 3.082732977044e-01 1.056866241204e+00 -1.530418886823e-01
α5,0 -5.389654416153e-01 -8.815339257398e-01 -9.984400648089e-01
α5,1 -7.330159070872e-01 5.791100087170e-02 2.011573494938e-01
α5,2 -1.783450185086e-01 2.596544690805e-01 3.175641184709e-02
α5,3 8.890378339131e-01 2.467434890736e-01 5.530581503410e-01
α5,4 1.561288533298e+00 1.317224966714e+00 1.212468153127e+00

algorithm discussed in Part I using a finite number of Fourier modes. Since the dis-
crete Fourier multilevel analysis is quite intricate it is verified by comparing the results
with a matrix analysis of the hp-MGS algorithm. This analysis computes the operator
norms and spectral radius directly from the matrix representation of the error trans-
formation operator. For all cases the operator norms and spectral radius computed
with the discrete Fourier transform and the matrix analysis agree up to machine preci-
sion. The matrix analysis of the full hp-MGS algorithm is, however, computationally
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Table 5.2
Optimized Runge-Kutta smoother coefficients αij and pseudo-time step λσ for the hp-MGS

algorithm for a fourth order space-time DG discretization of the steady advection-diffusion equation
(γ1 = γ2 = ν1 = ν2 = µ1 = µ2 = µ3 = 1).

Runge-Kutta coefficients Reh = 102

P 10-level P 20-level P 30-level
λσ 4.059e+01 8.238e+01 1.148e+02
α1,0 1.875168099757e-01 2.042989931395e-01 4.772611338845e-01
α2,0 1.788557210400e-02 7.606498423253e-03 -8.312761869675e-02
α2,1 2.619682251192e-01 2.522228252442e-01 4.664398891082e-01
α3,0 2.081705840618e-03 -1.379499687713e-01 -1.344442798725e-01
α3,1 1.840377842528e-02 -1.456043068852e-02 5.512529454746e-02
α3,2 3.526505428668e-01 3.377211127332e-01 5.032484753505e-01
α4,0 3.478615954498e-02 -8.318763590321e-03 2.399183961118e-03
α4,1 -6.473522267297e-03 -6.202015368083e-02 -1.424155037565e-01
α4,2 4.761322957430e-03 -2.108372207376e-02 1.499062564444e-01
α4,3 5.364376367676e-01 5.389061802536e-01 5.259982962831e-01
α5,0 7.030542918979e-02 6.293201561569e-02 -6.467621539816e-02
α5,1 -1.536408672031e-02 -1.300641145400e-02 3.438390839114e-02
α5,2 -2.724347090973e-02 -3.031293146299e-02 -1.243092975350e-01
α5,3 -2.496762906715e-02 -4.067726799470e-02 7.797864129102e-02
α5,4 9.972697575074e-01 1.021064595296e+00 1.076622963251e+00

Runge-Kutta coefficients Reh = 103

P 10-level P 20-level P 30-level
λσ 4.059e+01 8.239e+01 1.149e+02
α1,0 1.230191320983e-01 3.787544077773e-01 6.834476146419e-01
α2,0 -1.911011219608e-02 -2.442927468845e-02 -8.067765104029e-02
α2,1 1.791974565594e-01 4.789662134943e-01 8.442823072522e-01
α3,0 6.607895783461e-02 -1.211319344924e-02 -1.736668864009e-02
α3,1 1.041899359346e-02 2.965031660220e-02 -1.180087757507e-02
α3,2 3.147642224444e-01 5.936409581635e-01 9.361622777963e-01
α4,0 5.102610692669e-02 1.127839537195e-02 6.423732366912e-02
α4,1 4.620074200916e-02 -3.156972133469e-02 3.983702905524e-03
α4,2 1.821584235271e-02 -6.209853413418e-03 1.220654565895e-01
α4,3 5.394650992184e-01 7.388196708596e-01 1.027157194092e+00
α5,0 -5.542549811339e-02 -3.278940681468e-02 -8.604435919780e-03
α5,1 1.097845276121e-02 -3.578745418390e-02 -9.592188900718e-02
α5,2 2.057300337444e-02 -5.121999888593e-02 -1.510905772327e-01
α5,3 6.855657560740e-03 -1.101851473049e-02 -1.462692551634e-02
α5,4 1.017018384417e+00 1.130815374615e+00 1.270243827676e+00

far too expensive to be used in an optimization process. The constraint optimization
for the Runge-Kutta coefficients is conducted with the Matlab function fmincon. In
the optimization process 32× 32 Fourier modes were used. Increasing the number of
modes has minor influence on the results.

In this article we only consider steady state problems, since it is considerably
more difficult to obtain good multigrid performance for steady state than for time-
accurate problems with a space-time DG discretization. The steady state solution
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Table 5.3
Optimized Runge-Kutta smoother coefficients αij and pseudo-time step λσ for the hp-MGS

algorithm for a fourth order space-time DG discretization of the steady advection-diffusion equation
(γ1 = γ2 = µ3 = 1, ν1 = ν2 = µ1 = µ2 = 2).

Runge-Kutta coefficients Reh = 104

P 10-level P 20-level P 30-level
λσ 4.059e+01 8.239e+01 1.149e+02
α1,0 1.196700090440e-01 3.521851754420e-01 6.714970808381e-01
α2,0 -8.730243741498e-04 -1.946937702667e-02 -5.354183172912e-02
α2,1 1.734472033543e-01 4.629686954431e-01 8.249862430844e-01
α3,0 8.084957377579e-02 8.308777440605e-03 3.299173830984e-02
α3,1 1.844866881966e-02 2.836597896229e-02 2.334203182750e-04
α3,2 3.117604893605e-01 5.668150586102e-01 9.060620264916e-01
α4,0 6.465279866316e-02 9.966464841345e-03 7.808773075933e-02
α4,1 5.010267429506e-02 -9.842761904063e-03 4.934112313665e-02
α4,2 2.262216358794e-02 -3.620009174632e-03 9.768424174771e-02
α4,3 5.300143933421e-01 7.154247867145e-01 9.962375617257e-01
α5,0 -6.438852672615e-03 -3.986306405263e-02 -2.930006213412e-02
α5,1 6.915694851553e-03 -2.880173428246e-02 -7.612015487044e-02
α5,2 3.719052958574e-03 -3.386419857743e-02 -1.134426465864e-01
α5,3 -5.460166654512e-03 -1.611563144248e-02 -1.854202477204e-02
α5,4 1.001264271517e+00 1.118644628355e+00 1.237404888363e+00

of the advection-diffusion equation depends on the cell Reynolds number Reh, the
mesh aspect ratio and the flow angle, see Section 2. The Runge-Kutta coefficients are
optimized for a flow angle of 45◦ and a mesh aspect ratio of one. The spectra of the
space-time DG discretization, however, strongly depend on the cell Reynolds number
Reh. For this purpose the optimization was performed for a range of cell Reynolds
numbers, from very viscous to nearly inviscid problems. After optimization the effect
of flow angle and mesh aspect ratio were investigated.

The Runge-Kutta coefficients obtained from the multigrid optimization are given
for a wide range of cell Reynolds numbers in Tables 5.1–5.3. Since we consider
steady state problems, the polynomial basis functions are constant in time and lin-
ear, quadratic and cubic in space, indicated respectively, as P 10, P 20 and P 30. For
Reh ≤ 1 the Runge-Kutta coefficients do not depend on the cell Reynolds number,
but for larger values of Reh the smoother coefficients change, however, significantly
see, Tables 5.1–5.3,

The performance of the optimized hp-MGS algorithm is investigated for a number
of test cases using the multilevel analysis described in Part I. In all computations
64×64 Fourier modes are used, which is sufficient to obtain an accurate prediction of
the multigrid performance. In Table 5.4 the spectral radius ρ(Mh,3) and the operator
norms ‖Mh,3‖ and ‖Mh,3‖L are presented for two flow angles, viz. α = 15◦ and
α = 45◦ with respect to the x̄1-axis, as a function of the cell Reynolds number on a
mesh with aspect ratio Ah = 1. This are representative flow angles since the flow field
for flow angles in the range (90◦, 360◦) can be obtained using symmetry considerations.
For values of Reh ≤ 102 the convergence rate is extremely good, but for Reh values
beyond 103 the spectral radius increases to approximately 0.7. The influence of the
flow angle is small.

Next, we investigated the influence of a number of simplifications of the hp-MGS
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Table 5.4
Spectral radius and operator norms of the hp-MGS error transformation operator for flow angles

α = 15◦ and 45◦ on a mesh with aspect ratio Ah = 1.

α = 15◦ α = 45◦

Reh ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L
10−1 4.854e-08 6.471e-08 6.472e-08 5.108e-08 6.420e-08 6.420e-08
100 3.963e-07 5.067e-07 5.068e-07 2.537e-07 2.976e-07 2.977e-07
101 2.283e-05 2.789e-05 2.792e-05 1.118e-03 1.431e-03 1.433e-03
102 2.239e-05 2.797e-05 2.915e-05 5.464e-04 7.662e-04 7.898e-04
103 2.722e-01 4.355e-01 4.368e-01 4.000e-01 7.379e-01 7.364e-01
104 4.547e-01 8.378e-01 8.536e-01 7.687e-01 1.282e+00 1.287e+00

Table 5.5
Spectral radius and operator norms of the hp-MGS(1) error transformation operator for flow

angles α = 15◦ and α = 45◦ on a mesh with aspect ratio Ah = 1.

α = 15◦ α = 45◦

Reh ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L
10−1 2.950e-02 8.204e-02 8.204e-02 2.932e-02 9.137e-02 9.137e-02
100 2.886e-02 5.311e-02 5.310e-02 3.743e-02 9.469e-02 9.469e-02
101 2.044e-01 2.647e-01 2.652e-01 3.057e-01 3.670e-01 3.678e-01
102 4.361e-01 5.084e-01 5.182e-01 8.106e-01 1.049e+00 1.067e+00
103 8.597e-01 1.293e+00 1.306e+00 9.781e-01 1.645e+00 1.668e+00
104 9.522e-01 1.730e+00 1.762e+00 9.953e-01 1.981e+00 2.007e+00

Table 5.6
Spectral radius and operator norms of the hp-multigrid error transformation operator for flow

angles α = 15◦ and α = 45◦ on a mesh with aspect ratio Ah = 1.

α = 15◦ α = 45◦

Reh ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L
10−1 5.750e-02 9.355e-02 9.355e-02 5.550e-02 9.654e-02 9.654e-02
100 6.802e-02 8.896e-02 8.897e-02 8.715e-02 1.247e-01 1.247e-01
101 2.691e-01 3.114e-01 3.125e-01 4.342e-01 5.057e-01 5.065e-01
102 6.215e-01 7.391e-01 7.552e-01 8.715e-01 1.127e+00 1.147e+00
103 9.177e-01 1.353e+00 1.364e+00 9.856e-01 1.645e+00 1.668e+00
104 9.761e-01 1.729e+00 1.762e+00 9.980e-01 1.981e+00 2.007e+00

algorithm. The first simplification is the hp-MGS(1) algorithm, which uses the semi-
implicit Runge-Kutta smoother at the p = 2 and 3 levels and the h-MGS algorithm
only at the p = 1 level, see Section 3.1. The multigrid performance of this algorithm is
summarized in Table 5.5 . The second simplification is to use a standard hp-multigrid
algorithm, which uses h-multigrid with uniformly coarsened meshes at the p = 1 level
and the semi-implicit Runge-Kutta smoother at all p-levels, see Table 5.6.

The effect of these simplifications is very large if one compares the results in Tables
5.5 and 5.6 with Table 5.4. For cell Reynolds numbers Reh ≤ 101 the multigrid
convergence rate of the simplified algorithms is still very good, although the full
hp-MGS algorithm converges much faster, even if one takes into account that the
computational cost of the hp-MGS algorithm is about a factor 8 larger based on
the results of the analysis of the computational complexity given in Table 4.1. For
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Table 5.7
Spectral radius and operator norms of the hp-MGS error transformation operator on a mesh

with aspect ratio Ah = 100 for flow angles of 15◦, 45◦, and 75◦.

α = 15◦

Reh1
Reh2

ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L
10−5 10−1 3.944e-10 1.039e-09 1.039e-09
10−4 100 1.355e-09 3.077e-09 3.076e-09
10−3 101 1.049e-05 1.418e-05 1.420e-05
10−2 102 1.132e-04 1.413e-04 1.426e-04
10−1 103 7.716e-04 2.063e-03 2.080e-03
100 104 1.758e-07 2.596e-07 2.624e-07

α = 45◦

Reh1
Reh2

ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L
10−5 10−1 3.965e-10 1.045e-09 1.045e-09
10−4 100 1.426e-09 3.242e-09 3.242e-09
10−3 101 5.924e-04 7.142e-04 7.151e-04
10−2 102 9.435e-06 2.664e-05 2.793e-05
10−1 103 1.765e-03 1.906e-02 1.914e-02
100 104 1.884e-05 3.724e-05 3.741e-05

α = 75◦

Reh1
Reh2

ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L
10−5 10−1 3.983e-10 1.049e-09 1.049e-09
10−4 100 1.485e-09 3.375e-09 3.374e-09
10−3 101 8.241e-04 9.918e-04 9.931e-04
10−2 102 7.153e-05 1.607e-04 1.664e-04
10−1 103 1.021e-01 3.093e-01 3.103e-01
100 104 6.278e-03 1.428e-02 1.441e-02

cell Reynolds numbers Reh ≥ 103 the convergence rate of the simplified multigrid
algorithms is very poor. Since the Runge-Kutta coefficients were optimized for the
full hp-MGS algorithm one might wonder if a direct optimization of the simplified
multigrid algorithms would improve the convergence rate. This, however, is not the
case, which shows the importance of using the full h-MGS algorithm at all p-levels.

Since the Runge-Kutta coefficients were optimized for a uniform mesh it is im-
portant to investigate the multigrid performance on highly stretched meshes. For
this purpose we consider a mesh aspect ratio Ah = 100 and various flow angles. The
mesh aspect ratio Ah = 100 results in a factor 104 difference in the cell Reynolds
numbers Reh1 and Reh2 in, respectively, the x̄1- and x̄2-coordinate directions. On
non-uniform meshes the Runge-Kutta coefficients of the smoother are selected using
the maximum cell Reynolds number Reh,max := max(Reh1

, Reh2
) and the coefficients

are selected from the class with the lowest Reh value in Tables 5.1 – 5.3, such that
Reh,max ≤ Reh. This approach is also used in Section 6 for problems which require
a large mesh stretching to account for thin boundary layers. The multigrid perfor-
mance of the hp-MGS algorithm for flow angles of 15◦, 45◦ and 75◦ is summarized
in Table 5.7. On these highly stretched meshes the convergence rate is extremely
good, despite the fact that the Runge-Kutta smoother coefficients were optimized for
a uniform mesh with Ah = 1. If we simplify the hp-MGS algorithm and use either the
hp-MGS(1) algorithm or the hp-multigrid method then the convergence rate is still
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Table 5.8
Spectral radius and operator norms of the hp-MGS(1) error transformation operator on a mesh

with aspect ratio Ah = 100 and flow angles 15◦, 45◦ and 75◦ (**ν1 = ν2 = µ1 = µ2 = 2).

α = 15◦

Reh1 Reh2 ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L
10−5 10−1 5.794e-02 8.925e-02 8.925e-02
10−4 100 6.569e-02 1.012e-01 1.012e-01
10−3 101 8.647e-02 1.339e-01 1.351e-01
10−2 102 1.442e-01 3.285e-01 3.142e-01
10−1 103 1.105e-01 1.688e-01 1.694e-01
100 104 2.747e-02 4.444e-02 4.461e-02

α = 45◦

Reh1
Reh2

ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L
10−5 10−1 5.797e-02 8.930e-02 8.930e-02
10−4 100 6.610e-02 1.018e-01 1.018e-01
10−3 101 1.368e-01 1.871e-01 1.852e-01
10−2 102 1.666e-01 2.835e-01 2.804e-01
10−1 103 2.924e-01 4.645e-01 4.654e-01
100 104 4.428e-01 7.206e-01 7.207e-01

α = 75◦

Reh1 Reh2 ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L
10−5 10−1 5.799e-02 8.933e-02 8.933e-02
10−4 100 6.628e-02 1.021e-01 1.021e-01
10−3 101 1.917e-01 2.870e-01 2.891e-01
10−2 102 2.159e-01 3.601e-01 3.585e-01
10−1 103 1.224e+00 1.950e+00 1.953e+00
10−1 103 ** 1.816e+00 2.919e+00 2.922e+00
100 104 7.941e-01 1.600e+00 1.615e+00

good for Reh2
≤ 102, but much slower than for the hp-MGS algorithm, see Tables 5.8

and 5.9. For a flow angle of 75◦ the simplified multigrid schemes become, however,
unstable when Reh2 ≥ 103. Increasing the number of pre- and post-relaxations does
not improve the convergence rate. These results show that the hp-MGS is much more
efficient and robust on highly stretched meshes than the hp-MGS(1) and hp-multigrid
algorithms.

6. Multigrid performance. In order to demonstrate the performance of the
hp-MGS algorithm we consider the 2D dimensionless advection-diffusion equation

∂tu(t, x̄) +∇ · (au(t, x̄)) = 1
Re∆u(t, x̄) = 0, (t, x̄) ∈ (t0, T )× Ω,

u(t, x̄) = uD, (t, x̄) ∈ (t0, T )× ΓD,

u(t0, x̄) = u0, x̄ ∈ Ω,

(6.1)

with domain Ω = [0, 1]2, advection velocity a = (cosα, sinα), where α is the flow angle

with respect to the x̄1-axis, Re the global Reynolds number, defined as Re = |a|L
ν ,

with L a reference length for the domain Ω. Note, the global Reynolds number Re
is generally much larger than the cell Reynolds number Reh. The boundary data uD
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Table 5.9
Spectral radius and operator norms of the hp-multigrid error transformation operator on a mesh

with aspect ratio Ah = 100 and flow angles 15◦, 45◦ and 75◦ (**ν1 = ν2 = µ1 = µ2 = 2).

α = 15◦

Reh1 Reh2 ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L
10−5 10−1 5.794e-02 8.925e-02 8.925e-02
10−4 100 6.569e-02 1.012e-01 1.012e-01
10−3 101 1.180e-01 3.087e-01 3.076e-01
10−2 102 1.469e-01 3.315e-01 3.173e-01
10−1 103 1.120e-01 1.717e-01 1.744e-01
100 104 2.744e-02 4.441e-02 4.460e-02

α = 45◦

Reh1
Reh2

ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L
10−5 10−1 5.797e-02 8.930e-02 8.930e-02
10−4 100 6.610e-02 1.018e-01 1.018e-01
10−3 101 1.580e-01 2.597e-01 2.563e-01
10−2 102 1.592e-01 2.736e-01 2.717e-01
10−1 103 3.082e-01 5.275e-01 5.456e-01
100 104 4.440e-01 7.224e-01 7.227e-01

α = 75◦

Reh1 Reh2 ρ(Mh,3) ‖Mh,3‖ ‖Mh,3‖L
10−5 10−1 5.799e-02 8.933e-02 8.933e-02
10−4 100 6.628e-02 1.021e-01 1.021e-01
10−3 101 1.957e-01 3.146e-01 3.147e-01
10−2 102 2.062e-01 3.647e-01 3.652e-01
10−1 103 1.148e+00 1.950e+00 1.953e+00
10−1 103 ** 1.748e+00 2.812e+00 2.816e+00
100 104 7.907e-01 1.599e+00 1.615e+00

equal the exact steady state solution at the domain boundary, given by

u(x̄1, x̄2) =
1

2

(
exp(a1Re)− exp(a1Re x̄1)

exp(a1Re)− 1
+

exp(a2Re)− exp(a2Re x̄2)

exp(a2Re)− 1

)
. (6.2)

The exact solution has a thin boundary layer, with a thickness proportional to 1/Re,
see Figure 6.1. Note, this boundary layer is considerably thinner than the laminar
boundary on a flat plate, which is proportional to 1/

√
Re. For Re = 1000 we used

an asymptotic expansion in terms of 1/Re to prescribe the boundary data, because
otherwise serious underflow would occur. The extremely thin boundary layer for Re =
1000 is clearly visible at the point (1, 1) in Figure 6.1(b). The thin boundary layer
poses serious problems for Reynolds numbers larger than 10 when the algebraic system
resulting from the fourth order accurate space-time DG discretization is solved with
a multigrid algorithm. Even after extensive optimization for the hp-MGS algorithm
explicit smoothers were not suitable to obtain a converged solution. We also evaluated
smoothers based on various incomplete LU-decompositions of the matrix. These ILU-
smoothers required, however, so much fill-in that they were essentially a direct solver,
which does not make them attractive as a multigrid smoother.

In order to deal with the thin boundary layer a so-called Shishkin mesh was used.
In this mesh the coordinates (x̄u1 , x̄

u
2 ) of a uniform mesh in Ω are mapped onto a mesh
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Fig. 6.1. Solution of advection-diffusion equation on a 32× 32 Shishkin mesh.

suitable for dealing with boundary layers. The mapping is given by:

x̄i =

{
2(1− σi)x̄ui , for x̄ui < 0.5

1 + 2σi(x̄
u
i − 1), for x̄ui ≥ 0.5

, i = 1, 2,

where σi = min( 1
2 , 2/(|a|Re) ln(Ni)), and where Ni is the number of elements in the

x̄i-direction.
The advection-diffusion equation is solved with a fourth order accurate space-time

DG discretization. For more details, see Part I. The resulting system of algebraic
equations is solved with the hp-MGS algorithm defined in Algorithms 1 - 3 using
three polynomial levels (p = 1, 2, 3) and three uniformly and semi-coarsened meshes.
The multigrid parameters are γ1 = γ2 = ν1 = ν2 = µ1 = µ2 = µ3 = 1. The Runge-
Kutta coefficients of the smoother (3.4) are selected in each element from Tables
5.1 – 5.3 using the maximum cell Reynolds number Reh,max = max(Reh1

, Reh2
).

In each element the coefficients from the class with the lowest Reh are used, such
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Fig. 6.2. Mesh size dependance of the convergence rate of hp-MGS algorithm for a 4th order
space-time DG discretization of the advection-diffusion equation. (Re = 100, α = 45◦).
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Fig. 6.3. Reynolds number dependence of the convergence rate of hp-MGS algorithm for a 4th
order space-time DG discretization of the advection-diffusion equation. (32× 32 mesh, α = 45◦).
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Fig. 6.4. Flow angle dependance of the convergence rate of hp-MGS algorithm for a 4th order
space-time DG discretization of the advection-diffusion equation. (32× 32 mesh, Re = 100).
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Fig. 6.5. Solution of the advection-diffusion equation at Re = 1000 on a 128 × 128 Shishkin
mesh for a rotating advective velocity field.
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Fig. 6.6. Grid dependance of the convergence rate of the hp-MGS algorithm for a 4th order
accurate space-time DG discretization of the advection-diffusion equation at Re = 1000 for a rotating
advective velocity field.

that Reh,max ≤ Reh. Note, this results in very different smoother coefficients in the
boundary layer than in the central part of the domain. The stopping criterium for
the hp-MGS algorithm is that the residual should decrease by 10 orders.

In the first set of computations we investigated the dependence of the convergence
rate of the hp-MGS multigrid algorithm on the mesh size. In Figure 6.2 the conver-
gence rates are shown for a Reynolds number Re = 100 and flow angle α = 45◦ on
meshes with 32× 32, 64× 64 and 128× 128 elements. The hp-MGS algorithm shows
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an excellent convergence rate on the non-uniform Shiskin mesh, independent of the
mesh size, despite the fact that the optimization of the semi-implicit Runge-Kutta
smoother was performed for a uniform mesh with periodic boundary conditions.

Next, we investigate the dependence of the multigrid convergence rate on the
global Reynolds number. If the global Reynolds number increases then the boundary
layer becomes thinner and the Shiskin mesh contains highly stretched elements near
the wall, see Figure 6.1. This makes it in general more difficult to solve the algebraic
system resulting from the higher order accurate space-time DG discretization. In
Figure 6.3 the convergence rate of the hp-MGS multigrid algorithm is shown for a
32× 32 mesh, flow angle α = 45◦ and global Reynolds numbers Re = 50, 80, 100 and
1000. The multigrid convergence is excellent for all cases.

Finally, we consider the dependence on the flow angle. In Figure 6.4 the conver-
gence rate of the hp-MGS multigrid algorithm for a Reynolds number Re = 100 on
a 32× 32 mesh is shown for flow angles α = 15◦, 30◦ and 45◦. Note, the coefficients
in the Runge-Kutta smoothers were optimized for a flow angle α = 45◦. The effect of
the flow angle on the convergence rate is, however, minimal.

In order to investigate the effect of a non-constant advection velocity, we consider
on the domain Ω = [0, 1]2 the rotating advection velocity-field

a(x̄) = (a1, a2) = c
(

1√
2
− r
)n(

cos(θ), sin(θ)
)
,

where r =
√

(x̄1 − 1
2 )2 + (x̄2 − 1

2 )2 and c is such that maxx̄∈Ω |a(x̄)| = 1. Taking

n = 3, we find c = 2.828427124746190735. The Dirichlet boundary condition at ∂Ω is
given by (6.2) with x̄ restricted to ∂Ω. The global Reynolds number is Re = 1000. The
cell Reynolds numbers in the mesh vary between a minimum value Reh = 7.5×10−13

and a maximum value Reh = 21.5. The solution of the fourth order space-time DG
discretization for this test case on a 128 × 128 Shishkin mesh is given in Figure 6.5.
The solution has a thin boundary layer and also two discontinuities at the boundary,
viz. at (x̄1, x̄2) = (0, 1) and (1, 0). The multigrid convergence is shown in Figure
6.6, which shows that also for this test case the hp-MGS algorithm has a nearly
mesh independent convergence rate despite the thin boundary layers, non-constant
advection velocity and singularities.

7. Conclusions and Outlook. The hp-MGS multigrid algorithm with an op-
timized semi-implicit Runge-Kutta smoother shows an excellent convergence rate for
both advection and diffusion dominated solutions of the advection-diffusion equation,
including problems with thin boundary layers and non-constant advection velocity.
The larger computational complexity of the hp-MGS algorithm compared to simplified
versions of the algorithm, including standard hp-multigrid, is more than compensated
by its faster convergence rate. In addition, for cell Reynolds numbers Reh ≥ 103 the
simplified algorithms diverge on non-uniform meshes. The convergence results were
obtained both with a multilevel discrete Fourier analysis and actual computations.
The hp-MGS algorithm combines a number of innovations, viz. the use of the h-MGS
algorithm as smoother at all polynomial levels, which significantly improves the multi-
grid convergence rate and robustness for higher order accurate discretizations, the use
of a new semi-implicit Runge-Kutta smoother, and the optimization of the multigrid
smoother using multilevel analysis of the complete hp-MGS algorithm in two-space
dimensions.

Currently, the hp-MGS multigrid algorithm is being investigated for a fourth
order accurate space-time DG discretization of the Euler equations describing inviscid
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compressible flows. The Runge-Kutta smoother coefficients will be optimized for the
linearized Euler equations as a function of the Mach number and tested on several
aerodynamic problems.
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