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Abstract

On the class of cycle-free directed graph games with transferable utility solution
concepts, called web values, are introduced axiomatically, each one with respect
to some specific choice of a management team of the graph. We provide their
explicit formula representation and simple recursive algorithms to calculate
them. Additionally the efficiency and stability of web values are studied. Web
values may be considered as natural extensions of the tree and sink values as
has been defined correspondingly for rooted and sink forest graph games. In
case the management team consists of all sources (sinks) in the graph a kind
of tree (sink) value is obtained. In general, at a web value each player receives
the worth of this player together with his subordinates minus the total worths
of these subordinates. It implies that every coalition of players consisting of
a player with all his subordinates receives precisely its worth. We also define
the average web value as the average of web values over all management teams
in the graph. As application the water distribution problem of a river with
multiple sources, a delta and possibly islands is considered.
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tion link property, stability
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1 Introduction

In standard cooperative game theory it is assumed that any coalition of players may
form. However, in many practical situations the collection of coalitions that can
be formed is restricted by some social, economical, hierarchical, communication,
or technical structure. The study of games with transferable utility and limited
cooperation introduced by means of communication graphs was initiated by Myerson
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[6]. In this paper we restrict our consideration to the class of cycle-free digraph
games in which the players are partially ordered and the communication via bilateral
agreements between players is represented by a directed graph without directed
cycles. A cycle-free digraph cooperation structure allows modeling of various flow
situations when several links may merge at a node, while other links split at a node
into several separate ones.

It is assumed that a directed link represents a one-way communication situation.
This restricts the set of coalitions that can be formed. There are different scenarios
possible for controlling cooperation in case of directed communication. It is possible
that players are controlled only by their predecessors. Another scenario assumes
that players are controlled only by their successors. But it is also possible that
the management team is located neither at the top nor at the bottom of the given
directed communication structure but somewhere in between and each manager
keeps control over all of his successors and predecessors.

We introduce web values for cycle-free digraph games axiomatically, each one
with respect to a chosen management team, and provide their explicit formula rep-
resentation. On the class of cycle-free digraph games with a fixed management
team the web value is completely characterized by web efficiency (WE), web succes-
sor equivalence (WSE) and web predecessor equivalence (WPE), where a value is
web efficient, if for every manager of the given management team it holds that the
payoff for this manager together with all his successors and all his predecessors is
equal to the total worth they can get by their own. A value satisfies WSE if when a
link towards a player from one of the managers or one of the successors of the given
management team is deleted, this player and all his successors will get the same pay-
off, and a value satisfies WPE if when a link from a player being a predecessor of the
management team is deleted, this player and all his predecessors will get the same
payoff. It implies that the web value assigns to every player what he contributes
when he joins his subordinates in the graph and that the total payoff for any player
together with all his subordinates is equal to the worth they can get all together by
their own. It is worth to emphasize that the web value should not be considered as
personal payment by one player to another one (the boss to his subordinate) but as
distribution of the total worth according to the proposed scheme. We also provide
simple recursive computational methods for computing web values and study their
efficiency and when possible stability.

The values are introduced for arbitrary cycle-free digraph games and can be
considered as natural extensions of the tree and sink values defined for rooted and
sink forest digraph games, respectively (cf. [2], [5]). Besides, we define the average
web value by taking the average of web values over all management teams of the
graph. This value depends only on a given TU game and a given cycle-free directed
communication graph and does not depend on the choice among different options
for controlling cooperation. Furthermore, we extend the Ambec and Sprumont ([1])
line-graph river game model of sharing a river to the case of a river with multiple
sources, a delta and possibly islands by applying the results obtained to this more
general setting of sharing a river among different agents located at different levels
along the river bed restated in terms of a cycle-free digraph game.

The paper has a following structure. Basic definitions and notation are intro-
duced in Section 2. In Section 3 we discuss different scenarios possible for controlling
the situation defined by a digraph communication structure with respect to the cho-
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sen management team (anti-chain in the digraph). Section 4 investigates a particular
case when the control is going from the top to the bottom, which provides the so-
called tree value. In Section 5 the general case of web values is studied. The average
web value is introduced in Section 6. In Section 7 the application to the water
distribution problem of a river with multiple sources, a delta and possibly islands is
considered.

2 Preliminaries

A cooperative game with transferable utility (TU game) is a pair 〈N, v〉, where N =
{1, . . . , n} is a finite set of n, n ≥ 2, players and v : 2N → IR is a characteristic
function, defined on the power set ofN , satisfying v(∅) = 0. A subset S ⊆ N is called
a coalition and the associated real number v(S) represents the worth of coalition
S. The set of TU games with fixed player set N we denote GN . For simplicity
of notation and if no ambiguity appears, we write v when we refer to a TU game
〈N, v〉. A game v ∈ GN is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N ,
such that S ∩ T = ∅, and v ∈ GN is convex if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ),
for all S, T ⊆ N . A value on a subset G of GN is a function ξ : G → IRN that
assigns to every game v ∈ G a vector ξ(v) ∈ IRN ; the number ξi(v) represents the
payoff to player i, i ∈ N , in the game v. In the sequel we use standard notation
x(S)=

∑

i∈S xi, xS=(xi)i∈S for any x∈ IRN and S ⊆ N , |A| for the cardinality of a
finite set A, and omit brackets when writing one-player coalitions such as i instead
of {i}, i ∈ N .

For a game v ∈ GN , a payoff vector x ∈ IRN is efficient if x(N) = v(N) and is
feasible if x(N) ≤ v(N).

The core [3] of a game v ∈ GN is defined as

C(v) = {x ∈ IRN | x(N) = v(N), x(S) ≥ v(S), for all S ⊆ N}.

For a game v ∈ GN we may also consider the weak core defined as

C̃(v) = {x ∈ IRN | x(N) ≤ v(N), x(S) ≥ v(S), for all S $ N}.

A value ξ on a subset G of GN is stable if for any game v ∈ G it holds that ξ(v) ∈ C(v),
and a value ξ on G is weakly stable if for any game v ∈ G it holds that ξ(v) ∈ C̃(v).

The cooperation structure on the player set N is specified by a graph, directed
or undirected, on N . An undirected graph on N consists of a set of nodes, being
the elements of N , and a collection of unordered pairs of nodes Γ ⊆ Γ c

N , where
Γ c
N = { {i, j} | i, j ∈ N, i 6= j} is the complete undirected graph without loops on

N and an unordered pair {i, j} ∈ Γ is a link between i, j ∈ N . A directed graph,
or digraph, on N is given by a collection of ordered pairs of nodes Γ ⊆ Γ̄ c

N , where
Γ̄ c
N = {(i, j) | i, j ∈ N, i 6= j} is the complete directed graph without loops on N

and an ordered pair (i, j) ∈ Γ is a directed link between i, j ∈ N . In this paper
we study cooperation structures represented by directed graphs. A subset Γ ′ of a
(directed or undirected) graph Γ on N is a subgraph of Γ . For a subgraph Γ ′ of
a digraph Γ on N , N(Γ ′) ⊆ N is the set of nodes in Γ ′, i.e., N(Γ ′) = {i ∈ N |
∃j ∈ N : {(i, j), (j, i)} ∩ Γ ′ 6= ∅}. For a digraph Γ on N and a coalition S ⊆ N , the
subgraph of Γ on S is the digraph Γ |S = {(i, j)∈Γ | i, j∈S} on S.
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In a graph Γ on N a sequence of different nodes p = (i1, . . . , ir), r ≥ 2, is a path
in Γ from node i1 to node ir if for h=1, . . . , r−1 it holds that {ih, ih+1} ∈ Γ when Γ
is undirected and {(ih, ih+1), (ih+1, ih)}∩Γ 6= ∅ when Γ is directed. In a digraph Γ a
path ~p = (i1, . . . , ir) is a directed path from node i1 to node ir if for all h=1, . . . , r−1
it holds that (ih, ih+1) ∈ Γ . For a digraph Γ on N and any i, j ∈N we denote by
~PΓ (i, j) the set of all directed paths from i to j in Γ . Any node i of a (directed)
path p we denote as an element of p, i.e., i ∈ p. Moreover, when for a directed path
~p in a digraph Γ we write (i, j) ∈ ~p, we assume that i and j are consecutive nodes
in ~p. For any set P of (directed) paths, by N(P ) = {i ∈ p | p ∈ P} we denote the
set of nodes determining the paths in P . In a digraph Γ a directed link (i, j) ∈ Γ
for which there exists a directed path ~p in Γ from i to j such that ~p 6= (i, j) is
inessential, otherwise (i, j) is an essential link. In a digraph Γ a directed path ~p is
a proper path if it contains only essential links.

Given a graph Γ on N , two nodes i and j in N are connected in Γ if there
exists a path in Γ from node i to node j. Γ is connected if any two nodes in N
are connected. A coalition S ⊆ N is connected in Γ if the subgraph Γ |S on S is
connected. For a coalition S ⊆ N , CΓ (S) is the set of all connected subcoalitions of
S in Γ , S/Γ is the set of maximally connected subcoalitions of S in Γ , called the
components of S in Γ , and (S/Γ )i is the component of S in Γ containing player
i ∈ S.

For a digraph Γ on N and any i, j ∈ N , j is a (proper) successor of i and i
is a (proper) predecessor of j if there is a directed (proper) path from i to j. For
a directed (essential) link (i, j) ∈ Γ , i is the origin and j is the terminus, i is
a (proper) immediate predecessor of j and j is a (proper) immediate successor or
(proper) follower of i. Node j ∈ N is a brother of node i ∈ N if both have a same
predecessor in Γ . For i ∈ N , we denote by PΓ (i) the set of predecessors of i in Γ ,
by OΓ (i) the set of immediate predecessors of i in Γ , by O∗

Γ
(i) the set of proper

immediate predecessors of i, by FΓ (i) the set of immediate successors of i in Γ , by
F ∗
Γ
(i) the set of proper immediate successors of i, by SΓ (i) the set of successors

of i in Γ , and by BΓ (i) the set of brothers of i. Moreover, for i ∈ N , we define
P̄Γ (i) = PΓ (i) ∪ i, S̄Γ (i) = SΓ (i) ∪ i, and B̄Γ (i) = BΓ (i) ∪ i.

For a digraph Γ on N and a node i ∈ N , the set WΓ (i) = SΓ (i) ∪ PΓ (i) ∪ i
defines the web of i in Γ with i being its hub, and all j ∈ WΓ (i)\{i} are called
subordinates of i. A coalition S ⊆ N is a full successors set in Γ , if S = S̄Γ (i) for
some i ∈ N , and is a full predecessors set in Γ , if S = P̄Γ (i) for some i ∈ N . A
node i ∈ N having no predecessor in Γ , i.e., PΓ (i) = ∅, is a source in Γ . A node
i ∈ N having no successor in Γ , i.e., SΓ (i) = ∅, is a sink in Γ . For any S ⊆ N we
denote by RΓ (S) the set of sources in Γ |S and by LΓ (S) the set of sinks in Γ |S .
For simplicity of notation, for a digraph Γ on N and i ∈ N , by Γ i we denote the
subgraph Γ |S̄Γ (i)

and by Γi the subgraph Γ |P̄Γ (i)
.

Given a digraph Γ on N and a node i ∈ N , the in-degree of i is given by
dΓ (i) = |O∗

Γ
(i)| and the out-degree of i by d̃Γ (i) = |F ∗

Γ
(i)|, and for j ∈ SΓ (i) the

in-degree of j with respect to i is given by d i(j) = |O∗
Γ i(j)| and for any j ∈ PΓ (i)

the out-degree of j with respect to i is given by di(j) = |F ∗
Γi
(j)|. Given a digraph

Γ on N and a set of paths ~P ⊆ ~PΓ (i, j), i ∈ N , j ∈ SΓ (i), a node h ∈ N(~P ) such
that d i(h) · dj(h) > 1 is called a proper intersection point in N(~P ). The subset

of N(~P ) composed by i, j, all proper immediate successors h ∈ F ∗
Γ
(i) ∩ N(~P ) of
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i and all proper intersection points in N(~P ) defines the upper covering set C(~P )
for ~P , and the subset of N(~P ) composed by i, j, all proper immediate predecessors
h ∈ O∗

Γ
(j)∩N(~P ) of j and all proper intersection points in N(~P ) defines the lower

covering set C̃(~P ) for ~P .
For any digraph Γ on N , i ∈ N and j ∈ SΓ (i), the set of paths ~PΓ (i, j) can be

partitioned into a number of separate subsets of two types, possibly only one subset
of one or another type, or a subset containing only one path, such that paths from
different subsets do not intersect between i and j, in subsets of the first type all
paths belonging to the same subset have at least one common node different from i
and j, and in each subset of the second type paths do intersect but have no other
nodes in common than i and j. More exactly, given a digraph Γ on N , for every
i∈N and j∈SΓ (i) there exist two integers qij≥1 and 0≤ q′ij≤qij , and a partition

~PΓ (i, j) =

qij
⋃

h=1

~Ph (1)

such that (i) ~p1 ∩ ~p2 = {i, j}, for all ~p1 ∈ ~Ph, ~p2 ∈ ~Pl, h, l = 1, ..., qij , h 6= l;
(ii)

(
⋂

~p∈~Ph

~p
)

\ {i, j} 6= ∅ for all h = 1, ..., q′ij ;

(iii)
⋂

~p∈~Ph

~p = {i, j}, for all h = q′ij + 1, ..., qij .

In a digraph Γ a path (i1, . . . , ir), r ≥ 3, is a cycle in Γ if {(ir, i1), (i1, ir)}∩Γ 6=
∅. In a digraph Γ a directed path (i1, . . . , ir), r ≥ 2, is a directed cycle in Γ if
(ir, i1)∈Γ .1 A digraph Γ on N is cycle-free if it contains no directed cycles, i.e., no
node is a successor of itself. A digraph Γ on N is strongly cycle-free if it is cycle-free
and contains no cycles. Remark that in a strongly cycle-free digraph all links are
essential.

A cycle-free directed graph Γ on N is a (rooted) tree if it has only one source,
called the root and denoted r(Γ ), and for any other node in N there is a unique
directed path in Γ from the root to this node. A directed graph Γ on N is a sink
tree if it has only one sink and for any other node in N there is a unique directed
path in Γ from this node to the sink. A directed graph Γ is a (rooted or sink)
forest if it is composed by a number of disjoint (rooted or sink) trees. A line-graph
is a forest in which each node has at most one immediate successor and at most
one immediate predecessor. Both a rooted tree and a sink tree, and in particular a
line-graph, are strongly cycle-free. A subgraph T of a digraph Γ is a subtree of Γ
if T is a tree on N(T ). A subtree T of Γ is a full subtree if its node set consists of
the root r(T ) all successors of r(T ), i.e., N(T ) = S̄Γ (r(T )). A full subtree T of Γ is
a maximal subtree if the root r(T ) is a source of Γ .

In what follows it is assumed that the cooperation structure on the player set N
is specified by a cycle-free directed graph, not necessarily being strongly cycle-free.
A pair 〈v,Γ 〉 of a TU-game v ∈ GN and a cycle-free directed communication graph
Γ on N constitutes a game with cycle-free digraph communication structure and
is called a directed cycle-free graph game or cycle-free digraph game. The set of all
cycle-free digraph games on a fixed player set N is denoted GΓ

N . A value on a subset
G of GΓ

N is a function ξ : G → IRN that assigns to every cycle-free digraph game

1Notice that in a digraph a cycle of length 2 is not well defined.
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〈v,Γ 〉 ∈ G a vector of payoffs ξ(v,Γ ) ∈ IRN . For any graph game 〈v,Γ 〉 ∈ GΓ

N ,
a payoff vector x ∈ IRN is component efficient if for every component C ∈ N/Γ
it holds that x(C) = v(C), and x is component feasible if for every component
C ∈ N/Γ it holds that x(C) ≤ v(C).

3 Web connectedness and management teams

For a directed link in an arbitrary digraph there are two different interpretations
possible. One interpretation is that a link is directed to indicate which player has
initiated the communication, but at the same time it represents a fully developed
communication link. In such a case, following Myerson [6], it is assumed that coop-
eration is possible among any set of connected players, i.e., the coalitions in which
players are able to cooperate, the productive coalitions, are all the connected coali-
tions. In this case the focus is on component efficient values. Another interpretation
of a directed link assumes that a directed link represents the only one-way commu-
nication situation. In that case not every connected coalition might be productive.
In this paper we abide by the second interpretation of a directed link and consider
different scenarios possible for controlling cooperation and creation of productive
coalitions under the assumption of one-directional communication.

In a directed graph every player is able to communicate only with his successors
and his predecessors with whom he is connected via directed paths and no com-
munication is possible with other players. In general any player can be chosen as
a manager for controlling the situation and he keeps control over his full web set
that in this case can be interpreted as the set of his subordinates. For a coalition of
players to create a management team the necessary conditions are, first, that they
are independent from each other, and second, that they all together keep control
over the entire society represented by N .

Given a digraph Γ on N , a coalition M⊂N is a management team in Γ if
(i) WΓ (M) = N ,
(ii) S̄Γ (i) ∩ P̄Γ (j) = ∅ ∀ i, j ∈ M , i 6= j.

Given a digraph Γ the set of all possible management teams we denote by M(Γ ).
We write M(Γ ) instead of M when we need to emphasize that management team
M depends on graph Γ . Remark that a management team is an antichain in terms
of graph theory.

Observe that we prescribe the subordination of players in a given digraph Γ
when we choose a management team. It is easy to see that for every i ∈ N there
exists at least one management team M(Γ ) containing i. Whence, in particular, it
follows that some managers might be simply sources or sinks in Γ . Moreover, there
exist two particular management teams – one composed by all sources in Γ and
another one composed by all sinks in Γ . Furthermore, as a consequence of condition
(ii), we obtain that each management team is minimal since WΓ (M\{j}) 6= N for
all j ∈ M . It is important to notice that the set of successors of M in Γ given
by SΓ (M) =

⋃

i∈M

SΓ (i) and the set of predecessors of M in Γ given by PΓ (M) =
⋃

i∈M

PΓ (i) are well defined in the sense that SΓ (M) ∩ PΓ (M) = ∅. More precisely,

{PΓ (M),M, SΓ (M)} forms a partition of the player set N . Later on we also consider
the sets S̄Γ (M) = SΓ (M) ∪M and P̄Γ (M) = PΓ (M) ∪M .
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Given a digraph Γ on N and management team M ∈ M(Γ ), to keep the sub-
ordination prescribed by M we define the management team M(S) of a coalition
S ⊆ N induced by M as a subcoalition of S composed by

(i) all managers in M that belong to S,
(ii) all predecessors of M in Γ belonging to S that are not covered by the web

WΓ |S (M ∩ S) and all whose immediate successors belong to SΓ (M),
(iii) all successors of M in Γ belonging to S that are not covered by the web

WΓ |S (M ∩ S) and all whose immediate predecessors belong to PΓ (M) except those
that are already covered by (ii),

(iv) all predecessors of M in Γ that are sinks in S,
(v) all successors of M in Γ that are sources in S,

i.e.,
M(S) = M1(S) ∪M2(S) ∪M3(S) ∪M4(S) ∪M5(S),

where M1(S) = M ∩ S,

M2(S) = {i ∈ PΓ (M) ∩ S | i /∈ WΓ |S (M ∩ S) and FΓ |S (i) ⊆ SΓ (M)},

M3(S) = {i ∈ SΓ (M) ∩ S | i /∈ WΓ |S (M ∩ S) and OΓ |S (i) ⊆ PΓ (M)\M2(S)},

M4(S) = PΓ (M) ∩ S ∩ LΓ (S),

M5(S) = SΓ (M) ∩ S ∩RΓ (S).

It is not difficult to check that this procedure uniquely defines M(S) and that
M(S) is a management team in the subgraph Γ |S . Moreover, M(S) inherits the
subordination in M in the sense that if i ∈ PΓ (M) ∩ S then i ∈ PΓ |S (M(S)) and if
i ∈ SΓ (M) ∩ S then i ∈ SΓ |S (M(S)).

In case when a directed link binding a manager is broken we admit the following
rule.

Management team development rule (MTDR): Given digraph Γ on N and manage-
ment team M in Γ , for any immediate successor j ∈ FΓ (i) of some manager i ∈ M ,
M ∪ {j} becomes a management team in Γ\{(i, j)} if j /∈ FΓ (h) for all h ∈ M ,
h 6= i, and similar, for an immediate predecessor k ∈ OΓ (i) of some i ∈ M, M ∪{k}
becomes a management team in Γ\{(k, i)} if k /∈ OΓ (h) for all h ∈ M , h 6= i.

Observe that in the first case it is not necessarily the case that the adjunct
manager j is a source in Γ\{(i, j)} because j may have predecessors among players
in PΓ (M), in particular, j might be a sink in Γ\{(i, j)} (see Example 1 below). A
similar remark concerns the second case when the adjunct manager k is not a sink
in Γ\{(k, i)} when k has successors among players in SΓ (M).

Example 1 Consider the cycle-free cycle-free digraph Γ depicted in Figure 1. Then
the set of management teams in Γ equals
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Figure 1

M(Γ ) =
{

{1, 2}, {2, 3}, {2, 5}, {3, 4, 10}, {4, 5, 10}, {6, 7}, {7, 9}, {8, 9}
}

.

For management team M = {4, 5, 10} the deletion of link (5, 6) does not lead to
the change of the management team while in case of management team M = {7, 9}
the deletion of link (7, 8) is accompanied by the creation of a new management team
M(Γ\{(7, 8)}) = ({7, 8, 9}. In the latter case the adjunct manager 8 is a sink in the
digraph Γ\{(7, 8)}.

In real-life situations usually no one accepts that one of his subordinates be-
comes his equal partner if a coalition forms. So, given a digraph Γ on N and a
management team M ∈ M(Γ ), we assume that the only productive coalitions are
the so-called M -web connected coalitions, for a digraph Γ being the connected coali-
tions S ∈ CΓ (N) that meet the condition that for every manager i∈M(S) it holds
that i /∈WΓ (j) for any other manager j ∈M(S). It is not difficult to see that the
latter condition guarantees that every M -web connected coalition inherits the sub-
ordination of players prescribed by M in Γ . Obviously, every component C ∈ N/Γ
is M -web connected. Moreover, any full web set in Γ with its hub being a manager
in M is M -web connected. A M -web connected coalition is full M -web connected if
it together with its management team contains also all their subordinates. Observe
that a full M -web connected coalition is the union of several full webs sets. For a
given cycle-free digraph Γ on N , management team M ∈ M(Γ ) and coalition S⊆N
let CM

Γ
(S) denote the set of all M -web connected subsets of S, by [S/Γ ]M the set

of maximally M -web connected subsets of S, called the M -web components of S,
and by [S/Γ ]Mi the M -web component of S containing player i ∈ S.

In what follows we assume that for every cycle-free digraph Γ on N some man-
agement team M ∈ M(Γ ) is a priori fixed. The set of cycle-free digraph games
〈v,Γ ,M〉 on N with management team M, M ∈ M(Γ ), we denote by GΓ,M

N .
For efficiency of a value we require that every M -web connected coalition com-

posed by one of the managers together with all subordinates of this manager fully
realizes its worth. This gives the first axiom a value must satisfy, called web effi-
ciency.
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A value ξ on GΓ,M
N is web efficient (WE) if for every cycle-free digraph game

〈v,Γ ,M〉 ∈ GΓ,M
N it holds that

∑

j∈WΓ (i)

ξj(v,Γ ,M) = v(WΓ (i)), ∀ i ∈ M.

WE generalizes the usual definition of efficiency for a (rooted/sink) tree. Indeed,
in a (rooted) tree when it is assumed that there is only one manager - its root, the
web efficiency just says that the total payoff should be equal to the worth of the grand
coalition N . A similar remark holds true for a sink tree with only one sink-manager
as well. Still, WE is not the productive component efficiency condition. Different
from the Myerson [6] case with undirected communication graph we assume that
not every productive component is able to realize its exact capacity but only those
with a web structure. For example, if one worker works in two different divisions,
the two managers of these firms and the worker create a productive coalition. Yet,
it is impossible to guarantee the efficiency of this coalition because there is no
communication link between the managers of the two divisions.

The next two axioms reflect the desirable property of stability of the management
system – any changes on the upper levels of the management hierarchy should not
destroy the stable performance at the lower levels. The first axiom, called web
successor equivalence, says that if a link with the terminus being a successor of a
given management team is deleted, the terminus of this link and all his successors
still receive the same payoff.

A value ξ on GΓ,M
N is web successor equivalent (WSE) if for every cycle-free

digraph game 〈v,Γ ,M〉 ∈ GΓ,M
N it holds that for all (i, j) ∈ Γ such that i, j ∈ S̄Γ (M),

ξk(v,Γ\(i, j),M) = ξk(v,Γ ,M), ∀ k ∈ S̄Γ (j).

WSE means that the payoff to any member in the full successors set of any
player being a successor of the given management team does not change if any of
the immediate predecessors of that player breaks his link to that player. It implies
that for every successors set of a successor or member of the given management
team the payoff distribution is completely determined by the players of this set.

The second axiom, called web predecessor equivalence, says that if a link with
the origin being a predecessor of a given management team is deleted, the origin of
this link and all his predecessors still receive the same payoff.

A value ξ on GΓ,M
N is web predecessor equivalent (WPE) if for every cycle-free

digraph game 〈v,Γ ,M〉 ∈ GΓ,M
N it holds that for all (i, j) ∈ Γ such that i, j ∈ P̄Γ (M),

ξk(v,Γ\(i, j),M) = ξk(v,Γ ,M), ∀ k ∈ P̄Γ (i).

WPE means that the payoff to any member in the full predecessors set of any
player being a predecessor of the given management team does not change if any
of the immediate successors of that player breaks his link to that player. It implies
that for every predecessors set of a predecessor or member of the given management
team the payoff distribution is completely determined by the players of this set.

Along with WE we consider also two stronger efficiency properties requiring that
the full sets of subordinates of any player are able to realize their full capacity. Web
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full-tree efficiency and web full-sink efficiency require correspondingly that every full
successors set within the set of successors of a given management team and every full
predecessors set within the set of predecessors of a given management team realize
their worths.

A value ξ on GΓ,M
N is web full-tree efficient (WFTE) if for every cycle-free digraph

game 〈v,Γ ,M〉 ∈ GΓ,M
N it holds that

∑

j∈S̄Γ (i)

ξj(v,Γ ,M) = v(S̄Γ (i)), ∀ i ∈ SΓ (M).

A value ξ on GΓ,M
N is web full-sink efficient (WFSE) if for every cycle-free digraph

game 〈v,Γ ,M〉 ∈ GΓ,M
N it holds that

∑

j∈P̄Γ (i)

ξj(v,Γ ,M) = v(P̄Γ (i)), ∀ i ∈ PΓ (M).

4 The tree value

Consider first the situation when a management team is composed by the set of all
sources of a given graph.

4.1 Axiomatic definition

In this case web connectedness can be restated in terms of tree connectedness. For a
digraph Γ a connected coalition S ∈ CΓ (N) is tree connected, or simply t-connected,
if it meets the condition that for every source i ∈ RΓ (S) it holds that i /∈ SΓ (j)
for any other source j ∈ RΓ (S). A t-connected coalition is full t-connected, if it
together with its sources contains all successors of these sources. Observe that a full
t-connected coalition is the union of one or more full successors sets.

In what follows for a cycle-free digraph Γ on N and a coalition S ⊆ N , let
Ct
Γ
(S) denote the set of all t-connected subsets of S, [S/Γ ]t the set of maximally

t-connected subsets of S, called the t-connected components of S, and [S/Γ ]ti the
t-connected component of S containing player i ∈ S.

In the considered case web efficiency reduces to maximal-tree efficiency, web
successor equivalence to successor equivalence and web full-tree efficiency to full-
tree efficiency, while the axioms of web predecessor equivalence and web full-sink
efficiency become redundant.

A value ξ on GΓ

N is maximal-tree efficient (MTE) if for every cycle-free digraph
game 〈v,Γ 〉 ∈ GΓ

N it holds that

∑

j∈S̄Γ (i)

ξj(v,Γ ) = v(S̄Γ (i)), for all i ∈ RΓ (N).

A value ξ on GΓ

N is successor equivalent (SE) if for every cycle-free digraph game
〈v,Γ 〉 ∈ GΓ

N it holds that for all (i, j) ∈ Γ

ξk(v,Γ\(i, j)) = ξk(v,Γ ), for all k ∈ S̄Γ (j).
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A value ξ on GΓ

N is full-tree efficient (FTE) if for every cycle-free digraph game
〈v,Γ 〉 ∈ GΓ

N it holds that

∑

j∈S̄Γ (i)

ξj(v,Γ ) = v(S̄Γ (i)), for all i ∈ N. (2)

Proposition 1 On the class of cycle-free digraph games GΓ

N MTE and SE together
imply FTE.

Proof. Let ξ be a value on GΓ

N that meets MTE and SE, and let a cycle-free digraph
game 〈v,Γ 〉 ∈ GΓ

N be arbitrarily chosen. For every given i ∈ N , the subgraph Γ i

is a maximal tree in the subgraph Γ ′ = Γ\
⋃

j∈OΓ (i)
{(j, i)}. Since S̄Γ ′(i) = S̄Γ (i),

i ∈ RΓ ′(N) and due to MTE,

∑

j∈S̄Γ (i)

ξj(v,Γ\
⋃

k∈OΓ (i)

{(k, i)})
MTE
= v(S̄Γ (i)).

By successive application of SE,

ξj(v,Γ\
⋃

k∈OΓ (i)

{(k, i)})
SE
= ξj(v,Γ ), for all j ∈ S̄Γ (i).

Whence,
∑

j∈S̄Γ (i)

ξj(v,Γ ) = v(S̄Γ (i)), for all i ∈ N,

i.e., the value ξ meets FTE.

Given a digraph Γ on N , for all i ∈ N and j ∈ SΓ (i) we define

κij =

n−2
∑

r=0

(−1)rκrij , (3)

where, for r = 0, 1, . . . , n − 2, κrij is the number of tuples (i0, . . . , ir+1) such that
i0 = i, ir+1 = j, ih ∈ SΓ (ih−1), h = 1, . . . , r + 1.

It turns out that MTE and SE uniquely define a value on the class of cycle-free
digraph games.

Theorem 1 On the class of cycle-free digraph games GΓ

N there is a unique value t
that satisfies MTE and SE. For every cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N , the value
t(v,Γ ) satisfies the following conditions:

(i) it obeys the recursive equality

ti(v,Γ ) = v(S̄Γ (i))−
∑

j∈SΓ (i)

tj(v,Γ ), for all i ∈ N ; (4)

(ii) it admits the explicit representation in the form

ti(v,Γ ) = v(S̄Γ (i))−
∑

j∈SΓ (i)

κij v(S̄Γ (j)), for all i ∈ N. (5)
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Proof. Due to Proposition 1 the value t on GΓ

N that satisfies MTE and SE meets
FTE as well, wherefrom the recursive equality (4) follows straightforwardly. Next,
we show that the representation in the form (4) is equivalent to the representation
in the form (5). According to (4) it holds for the value t that every player receives
what this player together with his successors can get on their own, their worth,
minus what all his successors will receive by themselves. Since the same property
holds for these successors as well, it is not difficult to see that (5) follows directly
from (4) by successive substitution. Indeed, for any 〈v,Γ 〉 ∈ GΓ

N and i ∈ N it holds
that

ti(v,Γ ) = v(S̄Γ (i))−
∑

j∈SΓ (i)

tj(v,Γ )
(4)
=

v(S̄Γ (i))−
∑

j∈SΓ (i)

v(S̄Γ (j)) +
∑

j∈SΓ (i)

∑

k∈SΓ (j)

tk(v,Γ )
(4)
=

v(S̄Γ (i))−
∑

j∈SΓ (i)

v(S̄Γ (j)) +
∑

j∈SΓ (i)

∑

k∈SΓ (j)

v(S̄Γ (k))−
∑

j∈SΓ (i)

∑

k∈SΓ (j)

∑

h∈SΓ (k)

th(v,Γ )
(4)
=

. . . = v(S̄Γ (i))−
∑

j∈SΓ (i)

n−2
∑

r=0

(−1)rκrij v(S̄Γ (j)) = v(S̄Γ (i))−
∑

j∈SΓ (i)

κij v(S̄Γ (j)).

From (5), we obtain immediately that the value t meets SE, because in any
digraph Γ for all (i, j) ∈ Γ and k ∈ S̄Γ (j) the full subtrees Γ k and (Γ\(i, j))k

coincide. This completes the proof, since MTE follows from FTE automatically.

According to (4) the value t assigns to every player the worth of his full successors
set minus the total payoff to his successors.

Corollary 1 There exists a simple recursive algorithm for computing the value t
going upstream from the sinks of the given digraph.

The computation of the coefficients κij , i ∈ N , j ∈ SΓ (i), defined by (3) in
the explicit formula representation (5) requires, in general, the enumeration of quite
a lot of possibilities. We show below that in many cases the coefficients κij can
be easily computed and the value t can be presented in a computationally more
transparent and simpler form. To do that observe first that for a given digraph Γ
on N , for any i ∈ N and j ∈ SΓ (i), all nodes forming a tuple (i0, ..., ir+1) in which
i0 = i, ir+1 = j, ih ∈ SΓ (ih−1), h = 1, ..., r + 1, belong to one directed path ~p in
~PΓ (i, j). Wherefrom it easily follows that for all i∈N and j ∈SΓ (i), κij given by

(3) is in fact defined only via tuples of nodes from N(~PΓ (i, j)). For i ∈ N, j ∈ SΓ (i)
and S ⊆ N(~PΓ (i, j)) containing nodes i and j, define

κij(S) =
n−2
∑

r=0

(−1)rκrij(S), (6)

where, for r = 0, 1, . . . , n− 2, κrij(S) counts all tuples (i0, ..., ir+1) for which i0 = i,

ir+1 = j, and ih ∈ SΓ (ih−1)∩S, h = 1, . . . , r+1. Remark that κij = κij(N(~PΓ (i, j)))
for all j ∈ SΓ (i), i ∈ N .
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Theorem 2 For every cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N the value t given by (5)
admits the equivalent representation in the form

ti(v,Γ ) = v(S̄Γ (i))−
∑

j∈F ∗
Γ
(i)

v(S̄Γ (j))+

+
∑

j∈SΓ (i)

d i(j)>1

(

qij − 1−

qij
∑

h=q′ij+1

κij(C(~Ph))
)

v(S̄Γ (j)), for all i∈N, (7)

where, for all i∈N and j ∈ SΓ (i), ~Ph, h= 1, ..., qij, form the partition of ~PΓ (i, j)
defined by (1).

If the consideration is restricted to only strongly cycle-free digraph games, then
the above representation reduces to

ti(v,Γ ) = v(S̄Γ (i))−
∑

j∈FΓ (i)

v(S̄Γ (j)), for all i ∈ N. (8)

For rooted-forest digraph games defined by rooted forest digraph structures that
are strongly cycle-free, the value given by (8) coincides with the tree value intro-
duced first under the name of hierarchical outcome in Demange [2], where it is also
shown that under the mild condition of superadditivity it belongs to the core of the
restricted game defined in Myerson [6]. More recently, the tree value for rooted-
forest games was used as a basic element in the construction of the average tree
solution for cycle-free undirected graph games in Herings et al. [4]. In Khmelnit-
skaya [5] it is shown that on the class of rooted-forest digraph games the tree value
can be characterized via component efficiency and successor equivalence; moreover,
it is shown that the class of rooted-forest digraph games is the maximal subclass
in the class of strongly cycle-free digraph games where this axiomatization holds
true. It is worth to recall that by definition for a rooted-tree digraph game every
connected component is a tree. Hence, on the class of rooted-forest digraph games
every connected component is productive and maximal-tree efficiency coincides with
component efficiency.

From now on we refer to the value t given by (5), or equivalently by (7), as to
the root-tree value, or simply the tree value, for cycle-free digraph games. The tree
value assigns to every player the payoff equal to the worth of his full successors set
minus the worths of all full successors sets of his proper immediate successors plus
or minus the worths of all full successors sets of any other of his successors that are
subtracted or added more than once. For a player i ∈ N and his successor j ∈ N
that is not his proper immediate successor, the coefficient κij indicates the number
of overlappings of full successors sets of all proper immediate successors of i at node
j. A player receives what he contributes when he joins his successors when only
the full successors sets, that are the only efficient productive coalitions, are counted.
Since a sink has no successors, a sink just gets his own worth. It is worth to note
and not difficult to check that the right sides of both formulas (7) and (8), being
considered with respect not to coalitional worths but to players in these coalitions,
contain only player i when taking into account all pluses and minuses.

The validity of the first statement of Theorem 2 follows directly from Theorem 1
and Lemma 1 and Corollary 2 to it. The second statement follows easily from the
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first one. Indeed, in any strongly cycle-free digraph Γ all links are essential, whence
F ∗
Γ
(i) = FΓ (i), and d i(j) = 1 for all i ∈ N and j ∈ SΓ (i).

Lemma 1 For any digraph Γ on N , the coefficients κij, i ∈ N , j ∈ SΓ (i), defined
by (3) possess the following properties:

(i) if a link (k, l)∈Γ is inessential, then for all i∈N and j ∈SΓ (i), κij defined
on Γ is equal to κij defined on Γ\(k, l);

(ii) κij = 1 for all i ∈ N and j ∈ F ∗
Γ
(i);

(iii) κij = −qij + 1 +
qij
∑

h=q′ij+1

κij(C(~Ph)) for all i ∈ N and j ∈ SΓ (i) \ F ∗
Γ
(i)j ∈

SΓ (i) \ F
∗
Γ
(i) with d i(j) = 1 .

Proof.

(i). It is sufficient to prove the statement only in case when k ∈ SΓ (i) and
j ∈ SΓ (l). Let ~p ∈ ~PΓ (i, j) be such that ~p ∋ (k, l). By definition of an inessential
link there exists ~p0 ∈ ~PΓ (k, l) such that ~p0 6= (k, l). It is not difficult to see that the
path ~p1 = ~p\(k, l) ∪ ~p0 obtained from the path ~p by replacing the link (k, l) by the
path ~p0 belongs to ~PΓ (i, j), and moreover, all tuples (i0, ..., ir+1) in the definition of
κi(j) that belong to ~p also belong to ~p1. Whence it follows straightforwardly that
deleting an inessential link does not change the value of κij .

From now without loss of generality we may assume that ~PΓ (i, j) is composed
by only proper paths.

(ii). If j ∈ F ∗
Γ
(i), then ~PΓ (i, j) contains only the path ~p = (i, j). Wherefrom it

follows that κij = 1.

(iii). Let j ∈ SΓ (i) \ F
∗
Γ
(i). Since paths in ~PΓ (i, j) are partitioned into subsets

of paths ~Ph, h = 1, ..., qij , such that paths from different subsets do not intersect
between i and j, it holds that

κij = κij(N(~P1)) +
[

κij(N(~P2))− κij(N(~P1 ∩ ~P2))
]

+ . . .

. . .+
[

κij(N(~Pqij ))− κij(N(

qij
⋂

h=1

~Ph))
]

.

Since the paths from different subsets ~Ph do not intersect between i and j, only
(i, j) belongs to all paths in ~p ∈ ~PΓ (i, j). Therefore, for all k = 2, . . . , qij ,

κij(N(
k
⋂

h=1

~Ph)) = 1.

Whence it easily follows that

κij = −qij + 1 +

qij
∑

h=1

κij(N(~Ph)).

First, let h ∈ {1, ..., q′ij}, i.e., the subset of paths ~Ph is of the first type when

all paths belonging to ~Ph have at least one common node different from i and j.
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Then there exists k ∈ N(~Ph), k 6= i, j, such that k ∈ ~p for all ~p ∈ ~Ph. By definition,
κrij(N(~Ph)) is equal to the number of tuples (i0, . . . , ir+1) such that i0 = i, ir+1 = j,

il ∈ SΓ (il−1) ∩ N(~Ph), l = 1, . . . , r + 1, or equivalently, κrij is equal to the number
of these tuples (i0, . . . , ir+1) that do not contain k plus the number of these tuples
(i0, . . . , ir+1) that contain k. Since k ∈ ~p for all ~p ∈ ~Ph, for every (r + 2)-tuple
(i0, . . . , ir+1) that does not contain k there exists a uniquely defined (r + 3)-tuple
composed by the same nodes plus node k. Wherefrom together with equality (6) it
follows that κij(N(~Ph)) = 0.

Next, consider h ∈ {q′ij+1, ..., qij}, i.e., the subset of paths
~Ph is of the second type

when all paths belonging to ~Ph do intersect but have no other nodes in common
than i and j. We show now that κij(N(~Ph)) = κij(C(~Ph)). Consider arbitrary

k ∈ N(~Ph) \ C(~Ph). We may split the computation of κij(N(~Ph)) into two parts:

κij(N(~Ph)) = κij(N(~Ph); k) + κij(N(~Ph) \ {k}),

where κij(N(~Ph); k) counts all tuples in N(~Ph) containing k. By definition of upper

covering set, C(~Ph) contains some predecessor of k, i.e., C(~Ph) ∩ PΓ (k) 6= ∅. More-
over, since k /∈ C(~Ph), i.e., k is neither a proper immediate successor of i nor a proper
intersection point in the subgraph Γ|N(~Ph)

, there exists l ∈ C(~Ph) ∩ PΓ (k) that be-

longs to all paths in ~Ph containing k. Applying the same argument as above in the
proof of ~Ph of the first type, now with respect to l, we obtain that κij(N(~Ph); k) = 0.

Thus κij(N(~Ph)) = κij(N(~Ph) \ {k}). Repeating the same reasoning successively

with respect to all k′ ∈ N(~Ph) \
(

C(~Ph)∪ {k}
)

we obtain κij(N(~Ph)) = κij(C(~Ph)).

From (iii) of Lemma 1 we easily obtain the following.

Corollary 2 κij = 0 for all i ∈ N and j ∈ SΓ (i) \ F
∗
Γ
(i) for which qij = q′ij =1. In

particular, κij = 0 for all i ∈ N and j ∈ SΓ (i) \ F
∗
Γ
(i) with d i(j) = 1, since for all

j ∈ SΓ (i) \ F
∗
Γ
(i) with d i(j) = 1 there is a unique proper immediate predecessor of

j that belongs to all paths in ~PΓ (i, j).

A value ξ on GΓ

N is independent of inessential links (IIL) if for every cycle-
free digraph game 〈v,Γ 〉 ∈ GΓ

N and the cycle-free digraph game 〈v,Γ ′〉 ∈ GΓ

N with
Γ ′ being the subgraph Γ ′ of Γ composed by all essential links of Γ it holds that
ξ(v,Γ ) = ξ(v,Γ ′).

Corollary 3 The tree value t satisfies independence of inessential links.

Example 2 The examples of digraphs depicted in Figure 2 demonstrate the situa-
tion when all paths from any ~PΓ (i, j) constitute one subset of the second type, i.e.,
paths in ~PΓ (i, j) do intersect but have no other nodes in common than i and j.
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Figure 2

For the digraph depicted in Figure 2.a) we have d 1(7) = 2 and κ17 = 0, for the one
in Figure 2.b) we have d 1(6) = 2 and κ16 = 1, and for the one in Figure 2.c) we
have d 1(8) = 2 and κ18 = −1.

Example 3 Figure 3 provides an example of the tree value for a 10-person game
with cycle-free but not strongly cycle-free digraph structure depicted in Figure 1. If
there is no confusion, a set {i1, ..., ik} is denoted by i1...ik.

1 2

10

3 4

5

6

7

8 9

v(13456789, 10)−v(356789)−v(46789)−

−v(689, 10)+2v(689)+v(78)−v(8)

v(246789, 10)−v(46789)−

−v(689, 10)+v(689)

v(356789)−v(56789)
v(46789)−v(689)−v(78)+v(8)

v(56789)−v(689)−v(78)+v(8)

v(689)−v(8)−v(9)

v(78)−v(8)

v(8) v(9)

v(689, 10)−v(689)

Figure 3

The tree value may be computed in two different ways, either by the recursive
algorithm based on equality (4) or using the explicit formula representation (7).

We explain in detail the computation of t1(v,Γ ) based on the explicit formula (7):

S̄Γ (1) = {1, 3, 4, 5, 6, 7, 8, 9, 10}.
3, 4, 10 ∈ F ∗

Γ
(1) =⇒ κ13 = κ14 = κ1,10 = 1;

SΓ (1) \ F
∗
Γ
(1) = {5, 6, 7, 8, 9}:

d 1(5)=d 1(9)=1 =⇒ κ15=κ19=0;
~PΓ (1, 6) =

{

~p1 = (1, 3, 5, 6), ~p2 = (1, 4, 6), ~p3 = (1, 10, 6)}, paths ~p1, ~p2 and ~p3 do
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not intersect between 1 and 6 =⇒ q16 = q′16 = 3 =⇒ κ16 = −2;
~PΓ (1, 7) =

{

~p1 = (1, 3, 5, 7), ~p2 = (1, 4, 7)}, paths ~p1 and ~p2 do not intersect
between 1 and 7 =⇒ q17 = q′17 = 2 =⇒ κ17 = −1;

~PΓ (1, 8) =
{

~p1 = (1, 3, 5, 7, 8), ~p2 = (1, 3, 5, 6, 8), ~p3 = (1, 10, 6, 8), ~p4 = (1, 4, 7, 8),
~p5=(1, 4, 6, 8), ~p6=(1, 3, 8)

}

; we eliminate path ~p6 containing inessential link (3, 8);
paths ~p1, ~p2, ~p3, ~p4 and ~p5 form one subset of the second type =⇒ q18=1, q′18=0;
{1, 4, 5, 6, 7, 8, 10} is the minimal covering set C(~PΓ (1, 8));
κ18(~p1) = 0;
~p2\~p1 contains tuples (1, 6, 8) and (1, 5, 6, 8) =⇒ κ18(~p2\~p1) = 0;
~p3\(~p1 ∪ ~p2) contains tuples (1, 10, 8), (1, 10, 6, 8)) =⇒ κ18(~p3\(~p1 ∪ ~p2)) = 0;
~p4\(~p1 ∪ ~p2 ∪ ~p3) contains (1, 4, 8), (1, 4, 7, 8)) =⇒ κ18(~p4\(~p1 ∪ ~p2 ∪ ~p3)) = 0;
~p5\(~p1 ∪ ~p2 ∪ ~p3 ∪ ~p4) contains (1, 4, 6, 8)) =⇒ κ18(~p5\(~p1 ∪ ~p2 ∪ ~p3 ∪ ~p4)) = 1;
=⇒ κ18 = 1.

t1(v,Γ ) = v(13456789, 10)−v(356789)−v(46789)−v(689, 10)+2v(689)+v(78)−v(8).

Example 4 Figure 4 gives an example of the tree value for a 10-person game with
strongly cycle-free digraph structure.

1 2

10

3 4

5

6

7

8 9

v(13456789)− v(356789) v(24689)− v(4689)

v(10, 356789)− v(356789)

v(356789)− v(56789) v(4689)− v(689)

v(56789)− v(7)− v(689)

v(689)− v(8)− v(9)

v(7)

v(8) v(9)

Figure 4
In

Figure 2,a 7 ∈ SΓ (1), d
1(7) = 2, and κ17 = 0. In Figure 2,b 6 ∈ SΓ (1), d

1(6) =
2,and κ16 = 1. In Figure 2,c 8 ∈ SΓ (1), d

1(8) = 2, and κ18 = −1.

It turns out that the tree value not only meets FTE but FTE alone uniquely
defines the tree value on the class of cycle-free digraph games.

Theorem 3 On the class of cycle-free digraph games GΓ

N the tree value is the unique
value that satisfies FTE.

Proof. Since the tree value satisfies FTE, to prove the theorem it is enough to show
that the tree value is the unique value that meets FTE on GΓ

N . Let a value ξ on GΓ

N

satisfy axiom FTE. Then, because of FTE, (2) holds for every 〈v,Γ 〉 ∈ GΓ

N . Every
digraph Γ under consideration is cycle-free, i.e., no player in N appears to be a

17



successor of itself. Hence, due to the arbitrariness of game 〈v,Γ 〉, the n equalities in
(2) are independent. Therefore, we have a system of n independent linear equalities
with respect to n variables ξj(v,Γ ) which uniquely determines the value ξ(v,Γ ) that
in this case coincides with t(v,Γ ).

Corollary 4 FTE on the class of cycle-free digraph games GΓ

N implies not only
MTE but SE as well.

Remark 1 Observe that the inessential links independence of the tree value can be
also obtained as a corollary to Theorem 3.

4.2 Overall efficiency and stability

In this subsection we consider efficiency and stability of the tree value. First we
derive for the tree value the total payoff for any t-connected coalition.

Given a digraph Γ and a t-connected coalition S ⊆ N , we define

S̄Γ (S) =
⋃

i∈RΓ (S)

S̄Γ (i),

and
κi,S =

∑

j∈P̄Γ (i)∩S̄Γ (S)

κij , for all i ∈ S̄Γ (S),

and let for every i ∈ S̄Γ (S), dS(i) be the in-degree of i in the subgraph Γ |S̄Γ (S)
, i.e.,

dS(i) = |O∗
Γ (i) ∩ S̄Γ (S)|.

Remark that for all i ∈ N , dN (i) = dΓ (i).

Theorem 4 In a cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N , for any t-connected coalition
S ∈ Ct

Γ
(N) it holds that

∑

i∈S

ti(v,Γ ) =
∑

i∈RΓ (S)

v(S̄Γ (i))−

−
∑

i∈S\RΓ (S)

dΓ (i)>1

(

κi,S−1
)

v(S̄Γ (i))−
∑

i∈S̄Γ (S)\S

κi,S v(S̄Γ (i)). (9)

If the consideration is restricted to only strongly cycle-free digraph games, then
for any t-connected coalition S ∈ Ct

Γ
(N) it holds that

∑

i∈S

ti(v,Γ ) =
∑

i∈RΓ (S)

v(S̄Γ (i))−

−
∑

i∈S\RΓ (S)

(

dS(i)−1
)

v(S̄Γ (i))−
∑

i∈RΓ (S̄Γ (S)\S)

dS(i) v(S̄Γ (i)). (10)
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Proof. Let 〈v,Γ 〉 ∈ GΓ

N be a cycle-free digraph game and let S be any t-connected
coalition S ∈ Ct

Γ
(N). Then it holds that

∑

i∈S

ti(v,Γ )
(5)
=

∑

i∈S

(

v(S̄Γ (i))−
∑

j∈SΓ (i)

κij v(S̄Γ (j))
)

=

=
∑

i∈RΓ (S)

v(S̄Γ (i))−
∑

i∈S\RΓ (S)

(

∑

j∈SΓ (i)

(κij−1
)

v(S̄Γ (i))
)

−
∑

i∈S̄Γ (S)\S

(

∑

j∈SΓ (i)

κij v(S̄Γ (i))
)

.

Since S ∈ Ct
Γ
(N), for all i, j∈S with j∈SΓ (i) every path from i to j belongs to S.

Then, from the last equality it follows that

∑

i∈S

ti(v,Γ ) =
∑

i∈RΓ (S)

v(S̄Γ (i))−
∑

i∈S\RΓ (S)

(

κi,S−1
)

v(S̄Γ (i))−
∑

i∈S̄Γ (S)\S

κi,S v(S̄Γ (i)).

Next, due to Lemma 1, κji = 0 for all j ∈
(

P̄Γ (i)∩ S̄Γ (S)
)

\FΓ (i) with d j(i) = 1
and κji = 1 for j ∈ FΓ (i)∩ S̄Γ (S). Whence it follows that κi,S = 1 when dΓ (i) = 1.

In case Γ is a strongly cycle-free digraph, it holds that

∑

i∈S

ti(v,Γ )
(8)
=

∑

i∈S

(

v(S̄Γ (i))−
∑

j∈FΓ (i)

v(S̄Γ (j))
)

=

=
∑

i∈RΓ (S)

v(S̄Γ (i))−
∑

i∈S\RΓ (S)

(

dS(i)−1
)

v(S̄Γ (i))−
∑

j∈FΓ (i)

i∈S, j /∈S

dS(j) v(S̄Γ (j)).

To complete the proof of (10) it suffices to notice that, since Γ is a strongly cycle-
free digraph, every immediate successor j∈FΓ (i) of i∈S that does not belong to S
is a source in S̄Γ (S)\S.

From Theorem 4 it follows that for any cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N the
overall efficiency is given by

∑

i∈N

ti(v,Γ ) =
∑

i∈RΓ (N)

v(S̄Γ (i))−
∑

i∈N\RΓ (N)

(

κi,N−1
)

v(S̄Γ (i)), (11)

while if the consideration is restricted to only strongly cycle-free digraph games,
(11) reduces to

∑

i∈N

ti(v,Γ ) =
∑

i∈RΓ (N)

v(S̄Γ (i))−
∑

i∈N\RΓ (N)

(

dΓ (i)−1
)

v(S̄Γ (i)). (12)

To support these expressions we recall the Myerson model in [6] of a game
with undirected cooperation structure, in which the component efficiency entails
the equality

∑

i∈N

ξi(v,Γ ) =
∑

C∈N/Γ

v(C). (13)

While the right-side expression in (13) is composed by connected components that
are the only efficient productive elements in the Myerson’s model, the building bricks
in (11) and (12) are the full successors sets which are the only efficient productive
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coalitions under the assumption of t-connectedness. Observe also that for strongly
cycle-free rooted-forest digraph games (12) reduces to (13),

∑

i∈N

ti(v,Γ ) =
∑

i∈RΓ (N)

v(S̄Γ (i)) =
∑

C∈N/Γ

v(C).

For a cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N , we define the t-core Ct(v,Γ ) as the
set of component efficient payoff vectors that are not dominated by any t-connected
coalition,

Ct(v,Γ ) = {x ∈ IRN | x(C) = v(C), ∀C ∈ N/Γ ; x(S) ≥ v(S), ∀S ∈ Ct
Γ (N)}, (14)

while the weak t-core C̃t(v,Γ ) is the set of component feasible payoff vectors that
are not dominated by any t-connected coalition,

C̃t(v,Γ ) = {x ∈ IRN | x(C) ≤ v(C), ∀C ∈ N/Γ ; x(S) ≥ v(S), ∀S ∈ Ct
Γ (N)}. (15)

Theorem 5 The tree value on the subclass of superadditive rooted-forest digraph
games is t-stable.

Proof. Let 〈v,Γ 〉 ∈ GΓ

N be a superadditive rooted-forest digraph game arbitrarily
chosen. We show that the tree value t(v,Γ ) belongs to the core Ct(v,Γ ). Consider
arbitrary C ∈ N/Γ , then C is a tree. Let i ∈ C be a source in Γ , then C = S̄Γ (i)
because of the rooted-forest structure of Γ . Due to the full-tree efficiency of the tree
value, it holds that

∑

j∈S̄Γ (i)

tj(v,Γ )
FTE
= v(S̄Γ (i)),

wherefrom it follows that
∑

j∈C

tj(v,Γ ) = v(C).

Let now S ∈ Ct
Γ
(N). Because of the rooted-forest structure of Γ , it holds that

dN (i) = 1 for all i ∈ N\RΓ (N). Wherefrom it follows that Γ |S contains exactly
one source, say, node i, Γ |S is a subtree, and S ⊆ S̄Γ (i). Moreover, since Γ is
strongly cycle-free, Γ |S̄Γ (i)

is a full subtree, and because of the tree structure of Γ |S ,
Γ |S̄Γ (i)\S

consists of a collection (might be empty) of disconnected full subtrees, i.e.,

Γ |S̄Γ (i)\S
=

⋃q
k=1 Tk where Tk

⋂

Tl = ∅, k 6= l, and q = |[S̄Γ (i)\S]/Γ | is the number

of components in S̄Γ (i)\S. Hence,

S̄Γ (i) = S ∪

q
⋃

k=1

Tk.

Applying again the full-tree efficiency of the tree value, we obtain that

∑

j∈S̄Γ (i)

tj(v,Γ )
FTE
= v(S̄Γ (i)),

and
∑

j∈Tk

tj(v,Γ )
FTE
= v(Tk), for all k = 1, . . . , q.
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From the superadditivity of v and the last three equalities, it follows that

∑

j∈S

tj(v,Γ ) = v(S̄Γ (i))−

q
∑

k=1

v(Tk) ≥ v(S).

Remark 2 The statement of Theorem 5 can also be obtained as a corollary of
the stability result proved in Demange [2]. Indeed, in a rooted forest every con-
nected component has a tree structure and, therefore, is t-connected. Whence, for
any rooted-forest digraph game the t-core coincides with the core of the Myerson
restricted game.

The following examples show that for t-stability of a superadditive digraph game
the requirement on the digraph to be a rooted forest is non-reducible. In Example 5
the tree value of a superadditive cycle-free but not strongly cycle-free digraph game
violates individual rationality and, therefore, does not meet the second constraint
of the weak t-core, while in Example 6 the tree value of a superadditive strongly
cycle-free game in which the graph contains two sources violates feasibility.

Example 5 Consider a 4-person cycle-free superadditive digraph game 〈v,Γ 〉 with
v(24) = v(34) = v(234) = v(N) = 1, v(S) = 0 otherwise, and Γ depicted in Figure 5.

1

2 3

4

Figure 5

Then t(v,Γ ) = (−1, 1, 1, 0), whence t1(v,Γ ) = −1 < 0 = v(1). Remark that every
singleton coalition, in particular S = {1}, is t-connected.

Example 6 Consider a 3-person cycle-free superadditive digraph game 〈v,Γ 〉 with
v(12) = v(13) = v(N) = 1, v(S) = 0 otherwise, and Γ depicted in Figure 6.

1 2

3

Figure 6

Then t(v,Γ ) = (1, 1, 0), whence t1(v,Γ ) + t2(v,Γ ) + t3(v,Γ ) = 2 > 1 = v(N).
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A cycle-free digraph game 〈v,Γ 〉 is t-convex, if for all t-connected coalitions
T,Q ⊂ Ct

Γ
(N) such that T is a full t-connected set, Q is a full successors set, and

T ∪Q ∈ Ct
Γ
(N), it holds that

v(T ) + v(Q) ≤ v(T ∪Q) + v(T ∩Q). (16)

Theorem 6 The tree value on the subclass of t-convex strongly cycle-free digraph
games is feasible.

Proof. Let 〈v,Γ 〉 ∈ GΓ

N be any t-convex strongly cycle-free digraph game. Assume
that Γ is connected, otherwise we apply the same argument to any component
C ∈ N/Γ . If there is only one source in Γ , it holds that

∑n
i=1 ti(v,Γ ) = v(N)

and the tree value is even efficient. So, suppose that there are q different sources
r1, . . . , rq in Γ for some q ≥ 2. Since Γ is connected, the sources in Γ can be ordered
in such a way that

(

j−1
⋃

h=1

S̄Γ (rh)
)

∩ S̄Γ (rj) 6= ∅, for j = 2, ..., q.

For j = 1, ..., q let Tj =
⋃j

h=1 S̄Γ (rh). Then from the strongly cycle-freeness of Γ it
follows that for j = 2, ..., q there exists a unique ij ∈ N such that

Tj−1 ∩ S̄Γ (rj) = S̄Γ (ij).

By t-convexity of the digraph game 〈v,Γ 〉 it holds that

v(Tj−1) + v(S̄Γ (rj)) ≤ v(Tj) + v(S̄Γ (ij)), for j = 2, ..., q.

Since T1 = S̄Γ (r1) and Tq = N , then applying the last inequality successively q − 1
times we obtain

q
∑

j=1

v(S̄Γ (rj)) ≤ v(N) +

q
∑

j=2

v(S̄Γ (ij)).

Hence,

v(N)≥

q
∑

j=1

v(S̄Γ (rj))−

q
∑

j=2

v(S̄Γ (ij)).

Since Γ is strongly cycle-free, for any i ∈ N\RΓ (N), node i has dΓ (i) different
sources as predecessors, which implies that the term v(S̄Γ (i)) appears precisely
dΓ (i)− 1 times. Therefore,

v(N) ≥
∑

i∈RΓ (N)

v(S̄Γ (i))−
∑

i∈N\RΓ (N)

(

dΓ (i)−1
)

v(S̄Γ (i)).

The following example of a convex strongly cycle-free digraph game shows that
even under the assumption of convexity of a given digraph game, which is stronger
than t-convexity, one or more constraints for not being dominated in the definition
of the week t-core might be violated by the tree value, and therefore, the tree value
is not weakly t-stable.
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Example 7 Consider a 5-person cycle-free convex digraph game 〈v,Γ 〉 with v(N) =
10, v(123) = v(1234) = v(1235) = 3, v(1345) = v(2345) = 2, v(S) = 0 otherwise,
and the strongly cycle-free digraph Γ depicted in Figure 7.

1 2

3

4 5

Figure 7

Then t(v,Γ ) = (1, 1, 0, 0, 0), whence, the total payoff t1(v,Γ )+ t2(v,Γ )+ t3(v,Γ ) of
t-connected coalition S = {1, 2, 3} is equal to 2 which is smaller than v(S) that is
equal to 3.

From (11) it follows that for a cycle-free (for simplicity connected) digraph game
〈v,Γ 〉 ∈ GΓ

N a necessary and sufficient condition for the feasibility of the tree value
is that

∑

i∈RΓ (N)

v(S̄Γ (i)) ≤ v(N) +
∑

i∈N\RΓ (N)

(

κi,N−1
)

v(S̄Γ (i)). (17)

Since N =
⋃

i∈RΓ (N)

S̄Γ (i), the grand coalition equals the union of the successors sets

of all sources in the graph Γ . In case there is only one source in Γ , condition (17)
is redundant, because the left side is then equal to v(N). In case there is more
than one source in Γ , the different successors sets of the sources of Γ will intersect
each other and for any i ∈ N\RΓ (N) the number κi,N − 1 is the number of times
that the successors set S̄Γ (i) of node i equals the intersection of successors sets of
the sources of Γ . Therefore, condition (17) is a kind of convexity condition for the
grand coalition saying that the sum of the worths of the successors sets of all the
sources of the graph should be less than or equal to the worth of the grand coalition
(their union) plus the total worths of their intersections. In a firm where any full
successors set of a source is a division within the firm and subdivisions that are
intersections of several divisions are shared by these divisions, in (17) the left-side
minus the sum in the right-side can be economically interpreted as the total worths
of the divisions when they do not cooperate, while v(N) is the worth of the firm
when the divisions do cooperate. To have feasibility the latter value should be at
least equal to the former value. Remark that v(N) minus the total payoff at the
tree value can be interpreted as the net profit of the firm (or the synergy effect from
cooperation) that can be given to its shareholders.

5 Web values

We consider now the general case of an arbitrary management team in a given
cycle-free directed communication graph.
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To any digraph Γ on N and management team M ∈ M(Γ ) we associate the
digraph

ΓM = {(i, j) | (i, j) ∈ Γ , j ∈ SΓ (M)}
⋃

{(j, i) | (i, j) ∈ Γ , i ∈ PΓ (M)},

composed by the same links as Γ but with reversed orientation of all links with
origins the predecessors of M . It then holds that the set of sources in ΓM coin-
cides with the management team M in Γ , i.e., RΓM (N) = M . Moreover, due to
the management team development rule, the assumption of M -web connectedness
with respect to M in Γ is equivalent to the assumption of tree connectedness in
digraph ΓM , and the requirements of axioms WE, WSE together with WPE, and
WE together with WFTE and WFSE with respect to game 〈v,Γ ,M〉 are equivalent
to the requirements of axioms MTE, SE amd FTE with respect to game 〈v,ΓM 〉
correspondingly. The latter observations allow to obtain the following results rele-
vant to the general case of M -web connectedness straightforwardly from the results
proved above in Section 4 under the assumption of tree connectedness.

Proposition 2 On the class of cycle-free digraph games GΓ,M
N WE, WSE and WPE

together imply WFTE and WFSE.

WE, WSE and WPE uniquely define a value on the class of cycle-free digraph
games GΓ,M

N .

Theorem 7 On the class of cycle-free digraph games GΓ,M
N there is a unique value

w that satisfies WE, WSE and WPE. For every cycle-free digraph game 〈v,Γ ,M〉 ∈
GΓ,M
N , the value w(v,Γ ,M) satisfies the following conditions:
(i) it obeys the recursive equality

wi(v,Γ ,M) =



































v(S̄Γ (i)) −
∑

j∈SΓ (i)

wj(v,Γ ,M), ∀ i ∈ SΓ (M),

v(P̄Γ (i)) −
∑

j∈PΓ (i)

wj(v,Γ ,M), ∀ i ∈ PΓ (M),

v(WΓ (i))−
∑

j∈WΓ (i)\{i}

wj(v,Γ ,M), ∀ i ∈ M ;

(18)

(ii) it admits the explicit representation in the form

wi(v,Γ ,M)=























































v(S̄Γ (i))−
∑

j∈SΓ (i)

κijv(S̄Γ (j)), ∀ i ∈ SΓ (M),

v(P̄Γ (i))−
∑

j∈PΓ (i)

κjiv(P̄Γ (j)), ∀ i ∈ PΓ (M),

v(WΓ (i))−
∑

j∈SΓ (i)

κijv(S̄Γ (j))−

−
∑

j∈PΓ (i)

κjiv(P̄Γ (j)), ∀ i ∈ M ;

(19)

where for all i ∈ N and j ∈ SΓ (i), κij is defined by (3).

24



From now on we refer to the value w given by (19) as to the M -web value for
cycle-free digraph games.

According to (18) the web value assigns to any successor of the given management
team the worth of his full successors set minus the total payoff to his successors, to
any predecessor of the management team the worth of his full predecessors set minus
the total payoff to his predecessors, and to any member of the management team
the worth of his full web minus the total payoff to his subordinates. Wherefrom we
obtain a simple recursive algorithm for computing the web value by going upstream
from the sinks and downstream from the sources till the chosen management team
is reached.

The next theorem provides an explicit representation of the M -web value.

Theorem 8 For any cycle-free digraph game 〈v,Γ,M〉 ∈ GΓ,M
N , the M -web value

w(v,Γ,M) given by (19) admits the equivalent representation in the form

wi(v,Γ ,M)=























































































































































v(S̄Γ (i))−
∑

j∈F ∗
Γ
(i)

v(S̄Γ (j))+

+
∑

j∈SΓ (i)

d i(j)>1

(

qij−1−
qij
∑

h=q′ij+1

κij(C(~Ph))
)

v(S̄Γ (j)), ∀ i∈SΓ(M),

v(P̄Γ (i))−
∑

j∈O∗
Γ
(i)

v(P̄Γ (j))+

+
∑

j∈PΓ (i)

di(j)>1

(

qji−1−
qji
∑

h=q′ji+1

κji(C̃(~Ph))
)

v(P̄Γ (j)), ∀ i∈PΓ(M),

v(WΓ (i))−
∑

j∈F ∗
Γ
(i)

v(S̄Γ (j))−
∑

j∈O∗
Γ
(i)

v(P̄Γ (j))+

+
∑

j∈SΓ (i)

d i(j)>1

(

qij−1−
qij
∑

h=q′ij+1

κij(C(~Ph))
)

v(S̄Γ (j)),

+
∑

j∈PΓ (i)

di(j)>1

(

qji−1−
qji
∑

h=q′ji+1

κji(C̃(~Ph))
)

v(P̄Γ (j)), ∀ i ∈ M.

(20)

If the consideration is restricted to only strongly cycle-free digraph games, then
the above representation reduces to

wi(v,Γ ,M)=



































v(S̄Γ (i))−
∑

j∈FΓ (i)

v(S̄Γ (j)), ∀ i ∈ SΓ (M),

v(P̄Γ (i))−
∑

j∈OΓ (i)

v(P̄Γ (j)), ∀ i ∈ PΓ (M),

v(WΓ (i))−
∑

j∈FΓ (i)

v(S̄Γ (j))−
∑

j∈OΓ (i)

v(P̄Γ (j)), ∀ i ∈ M ;

(21)

The M -web value assigns to every successor of a given management team the
payoff equal to the worth of his full successors set minus the worths of all full
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successors sets of his proper immediate successors plus or minus the worths of all
full successors sets of any other of his successors that are subtracted or added more
than once. The M -web value assigns to every predecessor of a given management
team the payoff equal to the worth of his full predecessors set minus the worths
of all full predecessors sets of his proper immediate predecessors plus or minus the
worths of all full predecessors sets of any other of his predecessors that are subtracted
or added more than once. The M -web value assigns to every manager of a given
management team the payoff equal to the worth of his full web minus the worths of
all full successors sets of his proper immediate successors plus or minus the worths
of all full successors sets of any other of his successors that are subtracted or added
more than once and minus the worths of all full predecessors sets of his proper direct
predecessors plus or minus the worths of all full predecessors sets of any other of his
predecessors that are subtracted or added more than once. Moreover, for any player
i ∈ S̄Γ (M) and his successor j ∈ SΓ (i) that is not his proper immediate successor,
the coefficient κi(j) indicates the number of overlappings of full successors sets of
all proper immediate successors of i at node j. While for any player i ∈ P̄Γ (M)
and his predecessor j ∈ PΓ (i) that is not his proper immediate predecessor, the
coefficient κi(j) indicates the number of overlappings of full predecessors sets of all
proper immediate predecessors of i at node j. In fact each player receives what
he contributes when he joins his sudordinates when we count only the efficient
productive coalitions that are either full webs, full successors sets, or full predecessors
sets. Besides, it is worth to note and not difficult to check that the right sides of
both formulas (20) and (21) being considered with respect not to coalitional worths
but to players in these coalitions contain only player i when taking into account all
pluses and minuses.

Example 8 Figure 8 provides an example of the M -web value w(v,Γ ,M) for a
10-person game v with cycle-free digraph Γ given on Figure 1 and the management
team M = {3, 4, 10}.
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v(689)−v(8)−v(9)

v(78)−v(8)

v(8) v(9)

v(12689, 10)−v(1)−v(2)−v(689)

Figure 8
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The M -web value not only meets WE, WFTE and WFSE but also that these
three efficiency properties alone uniquely define the M -web value on the class of
cycle-free digraph games GΓ,M

N .

Theorem 9 On the class of cycle-free digraph games GΓ,M
N the M -web value w is

the unique value that satisfies WE, WFTE and WFSE.

Corollary 5 WE, WFTE and WFSE together on the class of cycle-free digraph
games GΓ,M

N imply WSE and WPE.

Corollary 6 The M -web value w meets the independence of inessential links.

For a cycle-free digraph game 〈v,Γ ,M〉 ∈ GΓ,M
N , we define the M -web core

CM (v,Γ ,M) as the set of component efficient payoff vectors that are not dominated
by any M -web connected coalition,

CM (v,Γ ,M) = {x ∈ IRN | x(C) = v(C), ∀C ∈ N/Γ ; x(S) ≥ v(S), ∀S ∈ CΓ

M (N)}.

Theorem 10 The M -web value on the subclass of superadditive line-graph games
is M -web stable.

However, for M -web stability of a superadditive digraph game the requirement
on the digraph to be a line-graph is non-reducible.

A cycle-free digraph game 〈v,Γ ,M〉 ∈ GΓ,M
N is M -web-convex, if for all M -web

connected coalitions T,Q ⊂ CΓ
M (N) such that T is a full M -web connected set, Q

is a web, and T ∪Q ∈ CΓ
M (N), it holds that

v(T ) + v(Q) ≤ v(T ∪Q) + v(T ∩Q). (22)

Theorem 11 The M -web value on the subclass of M -web-convex strongly cycle-free
digraph games GΓ ,M

N is feasible.

Remark that if the management team is composed by the set of all sinks in
a given graph, web connectedness can be restated in terms of sink connectedness
when for a digraph Γ a connected coalition S ∈ CΓ (N) is sink connected, or simply
s-connected, if it meets the condition that for every sink i ∈ LΓ (S) it holds that
i /∈ PΓ (j) for another source j ∈ LΓ (S). In this case web efficiency reduces to
maximal sink efficiency, web predecessor equivalence to predecessor equivalence, web
efficiency together with web full-sink efficiency provide full sink efficiency, axioms of
web successor equivalence and web full-tree efficiency become redundant, and the
M -web core reduces to the s-core Cs(v,Γ ) defined as the set of component efficient
payoff vectors that are not dominated by any s-connected coalition,

Cs(v,Γ ) = {x ∈ IRN | x(C) = v(C), ∀C ∈ N/Γ ; x(S) ≥ v(S), ∀S ∈ Cs
Γ (N)},

where Cs
Γ
(N) denotes the set of all s-connected subcoalitions ofN . Besides, formulas

(19), (20) and (21) that provide representations of M -web-value reduce correspond-
ingly to2

si(v,Γ ) = v(P̄Γ (i))−
∑

j∈PΓ (i)

κji v(P̄Γ (j)), for all i ∈ N, (23)

2In the next formulas we denote the value relevant to the case of sink connectedness by s instead
of w used in the general case.
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si(v,Γ ) = v(P̄Γ (i))−
∑

j∈O∗
Γ
(i)

v(P̄Γ (j))+

+
∑

j∈PΓ (i)

di(j)>1

(

qji − 1−

qji
∑

h=q′ji+1

κji(C̃(~Ph))
)

v(P̄Γ (j)), for all i∈N, (24)

si(v,Γ ) = v(P̄Γ (i))−
∑

j∈OΓ (i)

v(P̄Γ (j)), for all i ∈ N. (25)

For sink-forest digraph games defined by sink forest digraph structures that are
strongly cycle-free, the value given by (25) coincides with the sink value introduced
in Khmelnitskaya [5]. By that reason from now on we refer to the value s given by
(23), or equivalently by (24), as to the sink-tree value, or simply the sink value, for
cycle-free digraph games.

For the sink value it holds that for any cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N the
overall efficiency is given by

∑

i∈N

si(v,Γ ) =
∑

i∈LΓ (N)

v(P̄Γ (i))−
∑

i∈N\LΓ (N)

(

κ̃i,N−1
)

v(P̄Γ (i)),

while if the consideration is restricted to only strongly cycle-free digraph games, the
last equality reduces to

∑

i∈N

si(v,Γ ) =
∑

i∈LΓ (N)

v(P̄Γ (i))−
∑

i∈N\LΓ (N)

(

d̃Γ (i)−1
)

v(P̄Γ (i)).

Theorem 12 The sink value on the subclass of superadditive sink-forest digraph
games is s-stable.

6 The average web value

In this section we introduce the average web value for cycle-free directed graphs.
This value only depends on a givenTUgame and digraph.

For any cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N , the average web value (AW-value)
is defined as the average of M -web values over the set M(Γ ) of all management
teams in the digraph Γ , i.e.,

AWi(v,Γ ) =
1

|M(Γ )|

∑

M∈M(Γ )

wi(v,Γ ,M), for all i ∈ N.

It is not difficult to see that the AW-value inherits the independence of inessential
links property from M -web values. Moreover, since convexity of a digraph game
〈v,Γ 〉 ∈ GΓ

N is stronger then M -web-convexity with respect to any management
team M ∈ M(Γ ), we obtain from Theorem 11 the next theorem.

Theorem 13 On the class of convex strongly cycle-free digraph games GΓ

N the AW-
value is feasible.
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The average tree solution (AT solution) for undirected cycle-free graph games,
introduced in Herings et al. [4], assigns to any cycle-free graph game 〈v,Γ 〉 to
player i ∈ N the average of his tree value payoffs in all rooted spanning trees in the
subgraph 〈(N/Γ )i,Γ |(N/Γ )i〉:

ATi(v,Γ ) =
1

|(N/Γ )i|

∑

j∈(N/Γ )i

ti(v, T (j)), for all i ∈ N,

where, for j ∈ (N/Γ )i, T (j) is the rooted tree on (N/Γ )i with j as root and composed
of all links of 〈(N/Γ )i,Γ |(N/Γ )i〉 with orientation directed away from the root and t
is the tree value given by (8).

In Herings et al. [4] it is shown that the AT solution defined on the class of
superadditive cycle-free graph games is stable, and that on the entire class of cycle-
free graph games the AT solution is characterized via component efficiency and
component fairness.

A value ξ on the entire class of graph games is component efficient (CE) if, for
any graph game 〈v,Γ 〉, for all C∈N/Γ ,

∑

i∈C

ξi(v,Γ ) = v(C).

A value ξ on the entire class of graph games is component fair (CF) if, for any
cycle-free graph game 〈v,Γ 〉, for every link {i, j} ∈ Γ , it holds that

1

|(N/Γ\{i, j})i|

∑

t∈(N/Γ\{i,j})i

(

ξt(v,Γ )− ξt(v,Γ\{i, j}
)

=

1

|(N/Γ\{i, j})j |

∑

t∈(N/Γ\{i,j})j

(

ξt(v,Γ )− ξt(v,Γ\{i, j}
)

.

Theorem 14 The AW-value for a digraph game 〈v,Γ 〉 ∈ GΓ

N coincides with the
AT solution for the corresponding undirected graph game 〈v, Γ̃ 〉, i.e., AW (v,Γ ) =
AT (v, Γ̃ ), if and only if Γ is a line-graph.

Proof. In a line-graph Γ on N every management team is a singleton and the
web value relevant to each management team coincides with the tree value to the
corresponding undirected graph Γ̃ . Besides, in a line-graph Γ on N the total number
of management teams in Γ is equal to n, i.e., |M(Γ )| = n. Moreover, every digraph
in which all management teams are singletons is a line-graph and conversely.

Since on the subclass of line-graph games the requirement of WE coincides with
CE, we obtain from Theorem 14 and the axiomatization of the AT solution the next
theorem.

Theorem 15 On the subclass of line-graph games 〈v,Γ 〉 ∈ GΓ

N the AW-value is
characterized by WE and CF and, moreover, on the subclass of superadditive line-
graph games 〈v,Γ 〉 ∈ GΓ

N the AW-value is stable.
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7 Sharing a river with multiple sources, a delta and

possible islands

Ambec and Sprumont [1] approach the problem of optimal water allocation for a
given river with certain capacity over the agents (cities, countries) located along
the river from the game theoretic point of view. Their model assumes that between
each pair of neighboring agents there is an additional inflow of water. Each agent, in
principal, can use all the inflow between itself and its upstream neighbor, however,
this allocation in general is not optimal in respect to total welfare. To obtain a more
profitable allocation it is allowed to allocate more water to downstream agents which
in turn can compensate the extra water obtained by side-payments to upstream ones.
The problem of optimal water allocation is approached as the problem of optimal
welfare distribution. Van den Brink et al. [7] show that the Ambec-Sprumont river
game model can be naturally embedded into the framework of a graph game with
line-graph cooperation structure. In Khmelnitskaya [5] the line-graph river model
is extended to the rooted-tree and sink-tree digraph model of a river with a delta or
with multiple sources, respectively. We extend the line-graph, rooted-tree or sink-
tree model of a river to the cycle-free digraph model of a river with both multiple
sources and a delta, and also possible islands along the river bed as well.

Let N be a set of players (users of water) located along the river from upstream
to downstream. Let eki ≥ 0, i ∈ N , k ∈ O(i), be the inflow of water in front of
the most upstream player(s) when k = 0, or the inflow of water entering the river
between neighboring players when player k is in front of player i. Figure 9 provides
a schematic representation of the model.
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Figure 9

A river with multiple sources, a delta, and several islands along the river bed.

Following Ambec and Sprumont [1] it is assumed that each player i ∈ N has a
quasi-linear utility function given by ui(xi, ti) = bi(xi) + ti where ti is a monetary
compensation to player i, xi is the amount of water allocated to player i, and
bi : IR+ → IR is a continuous nondecreasing function providing benefit bi(xi) to
player i when he consumes the amount xi of water. Moreover, in case of a river with
a delta it is also assumed that if a splitting of the river into branches happens to
occur after a certain player, then this player takes, besides his own quota, also the
responsibility to split the rest of the water flow to the branches such to guarantee
the realization of the water distribution plan x∗ to his successors.
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The superadditive river game v ∈ GN introduced under the same assumptions
in Khmelnitskaya [5] for a river with multiple sources or a delta defined as:

for any S ∈ CΓ(N), v(S) =
∑

i∈S bi(xSi ), where xS ∈ IRS solves

max
x∈IRS

+

∑

i∈S

bi(xi) s.t.



















∑

j∈P̄Γ (i)

xj ≤
∑

j∈P̄Γ (i)

∑

k∈O(j)

ekj ,

∑

j∈PΓ (i)∪B̄Γ (i)

xj ≤
∑

j∈PΓ (i)∪B̄Γ (i)

∑

k∈O(j)

ekj ,
∀i ∈ S,

and for any other S ⊂ N , v(S) =
∑

T∈S/Γ

v(T ),

suits to the case of a river with both multiple sources and a delta, and also possible
islands along the river bed as well. The tree and sink values proposed above can be
applied for the solution of the river game in the general case.
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