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ABSTRACT. The concept of (structural) consistency also called structural solvability is an im-

portant basic tool for analyzing the structure of systems of equations. Our aim is to provide

a sound and practically relevant meaning to this concept. The implications of consistency are

expressed in terms of explicit density and stability results. We also illustrate, by typical exam-

ples, the limitations of the concept.
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1. INTRODUCTION

Many models in engineering lead to a Constraint Solving (CS) problem of the type: Find

solutions x ∈ R
n of a system of equations and inequalities,

hi(x) = 0, i = 1, . . . ,m ; gl(x) ≤ 0, l = 1, . . . , k,

(see e.g., [6]). Often in applications the system has a specific structure, i.e., most of the func-

tions only depend on a part of the variables xj .

Remark 1. Note, that by introducing k extra variables ξl, the CS-system above can be written

in the equivalent form

hi(x) = 0, i = 1, . . . ,m ; gl(x) + ξl = 0, l = 1, . . . , k ,

with only inequalities of the simple form ξl ≥ 0.

The most crucial part of CS are the equality constraints. They, e.g., determine the dimension of

the solution set. Also the consistency concept is (essentially) restricted to equality constraints.

Therefore, in the present article we confine our investigations to systems of equations,

hi(x) = 0, i = 1, . . . ,m ,

where all unknowns xj ∈ R are “continuous” variables (no discrete variables). The concept of

(structural) consistency (or structural solvability) for such systems is discussed in a number of

papers (see e.g., [7, 11, 12, 1, 9]). Murota ([11, 12]) has provided a mathematical foundation

of this notion. All authors agree about the definition of consistency (cf., Definition 1), however

in these articles it does not become clear how this concept should be interpreted or what the

precise implications of the concept are. Let us emphasize presently that in the context of
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this paper the term consistent system does not mean that the system has a solution (see also

Definition 1).

The aim of the present paper is to exhibit a precise description of what is meant if we say

that a system (of equations) is consistent. To do so we analyze consistency by techniques

from differential geometry. In our opinion this approach leads to appropriate and satisfying

interpretations and implications which are relevant from a practical viewpoint.

Note that consistency does not say something about a concrete system of equations (a concrete

problem) but it reveals the (generic) properties of a class of systems of equations (problem

class). Roughly speaking, if a class of problems is consistent then for almost all problems out

of this class certain regularity conditions are fulfilled.

The paper is organized as follows. In Section 2 we introduce the consistency concept which is

closely related to a modeling of the structure of the system of equations by a bipartite graph G.

In the Sections 3 and 4 we analyze consistency by applying techniques from differential ge-

ometry, in Section 3 for linear- and in Section 4 for general nonlinear equations. The obtained

results roughly speaking assert that a structured system is generically well-behaving if and

only if the corresponding graph G allows a maximum matching covering all equations. The

advantage of our approach is that the meaning of well-behavior can be expressed in terms of

practically relevant density and stability statements. The last section presents examples which

illustrate the advantage but also the limitations of the consistency concept.

The techniques used in the present paper are not new. They were developed and applied to

obtain genericity and stability results for example in optimization. We refer the reader to the

landmark book [8].

Let us further mention some related topics, where the bipartite graph model is used to analyze

the structure of systems in order to obtain efficient solution methods. For example the so-

called perfect Gaussian elimination (elimination without extra fill-in) see e.g., [5]. Various

studies concern the Dulmage-Mendelsohn decomposition and extensions thereof (cf., [1, 12,

9]). Here, one investigates whether a system of equations allows a decomposition into smaller

sub-systems. Another related subject is the problem of reducing or minimizing the bandwidth

of a system (see e.g., [4], [10]).

2. CONSISTENCY OF STRUCTURED SYSTEMS OF EQUATIONS

According to the discussion above we consider a system of m equations in n unknowns xj ∈
R, j ∈ J := {1, . . . , n},

(1) hi(x) = 0, i ∈ I := {1, . . . ,m}, x = (x1, . . . , xn) .

Let this system have a special structure which is defined by specifying for each i on which

variables xj the function hi may depend. To do so, as usual (cf., e.g. [11, 9, 1]), we introduce

a bipartite graph G = G(I, J, E) with node sets I , J and a set E of edges (i, j) defined by

E = {(i, j) | hi(x) depends explicitly on xj} .

Note that in this graph model the vertices in I correspond to the equations hi(x) = 0 and the

vertices in J are associated with the variables xj . The following example illustrates how the

bipartite graph reflects the structure of the system.
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Example 1. Consider the 2 systems of 4 equations hi = 0 in 5 unknowns x = (x1, . . . , x5),

h1(x) = x1 − x2 h2(x) = x1 + x2 − 4
h3(x) = x

2
1 − x3 h4(x) = x1 + x3 + x4 + x5

∣∣∣∣
h1(x) = x1 − x2 h2(x) = x1 + x2 − 4
h3(x) = x

2
1 − x2 h4(x) = x1 + x3 + x4 + x5

with corresponding bipartite graphs:

x1 x2 x3 x4 x5

h1 h2 h3 h4

x1 x2 x3 x4 x5

h1 h2 h3 h4

For the first system we do not expect a problem. Indeed, from h1 = 0, h2 = 0 we obtain

x1 = x2 = 2. The third equation yields x3 = 4. Then we can chose, e.g., x5 freely and

compute x4 by the last equation. However the second example is inconsistent in the sense that

the solution x1 = x2 = 2 from the first 2 equations contradicts h3 = 0.

To avoid a situation as in the second example, after a moment of reflection, one finds that the

following condition should hold: For any subset I0 ⊂ I the number of variables appearing in

the equations hi(x) = 0, i ∈ I0, should not be smaller than the cardinality |I0| of I0. If we

define the set N(I0) of neighbor nodes of I0 in G,

N(I0) = {j ∈ J | xj appears in at least one of the equations hi(x), i ∈ I0},

this condition means:

(2) |N(I0)| ≥ |I0| ∀I0 ⊂ I .

The famous theorem of Hall (see e.g., [3]) says

(3) (2) holds ⇔ G has a matching covering all nodes in I .

As a consequence, we call a system (1) with corresponding bipartite graph G = G(I, J, E)
consistent if (2) holds or equivalently if G has a matching covering all nodes in I .

Note that consistency implies m ≤ n. Recall that a matching in G covering I defines a one

to one mapping µ : I → J, i 7→ µ(i), (i, µ(i)) ∈ E , with image B = Bµ := {j =
µ(i), i ∈ I}. We introduce a partition x = (xB, xF ) with xB = (xj, j ∈ B) ∈ R

m and

xF := (xj, j /∈ B) ∈ R
n−m. The n − m variables of xF are called “free variables” of the

system (1). According to the consistency concept these variables can be chosen (freely) so that

for any choice of xF we are left with a (consistent) system

h̃i(xB) := hi(xB, xF ) = 0 , i = 1, . . . ,m ,

of m equations in the m unknowns xB.

Example 2. The first system in Example 1 allows a matching covering I = {1, 2, 3, 4}, the

second does not. For the first system such a matching is given, e.g., by µ : I → J , µ(i) =
i, i = 1, 2, 3, 4; and x5 is the free variable.
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Remark 2. There may exist different choices for the free variables xF . Chosing e.g., in Ex-

ample 2 a different matching, µ(I) = {1, 2, 3, 5}, then x4 becomes the free variable.

Motivated by the preceeding discussion, from now on we confine the further analysis to the

case m = n of a structured system of n equation in n unknowns,

(4) hi(x) = 0, i ∈ I := {1, . . . , n}, x = (x1, . . . , xn) ∈ R
n

with a structure given by a bipartite graph G = G(I, J, E).

Definition 1. Let the structure of a system (4) be given by the bipartite graph G = G(I, J, E)
(I = J = {1, . . . , n}). We then call the system (4) consistent if (2) holds or, equivalently, if G
has a matching covering all nodes in I (a perfect matching).

Often, e.g., in [11], instead of consistency the notion structural solvability is used. We recall

that in this paper consistency of a system does not mean its solvability. Consistency does not

say something about a concrete instance of a system but it has a meaning for a whole class of

systems (given by G).

In the next sections we analyze this consistency concept, firstly for linear- and then for general

nonlinear equations.

3. STRUCTURED LINEAR EQUATIONS

In this section we deal with the special case that the system (4) is linear,

Ax− b = 0, A ∈ R
n×n, b ∈ R

n ,

and has a structure as given by the bipartite graph G(I, J, E). We then can define the corre-

sponding structured class of linear equations.

Definition 2. Given a bipartite graph G = G(I, J, E) we introduce the corresponding class

of structured matrices

MG = {A ∈ R
n×n | aij = 0 for (i, j) /∈ E} ∼= R

|E|.

We call the problem class

PG : solve Ax = b with A ∈ MG

consistent if G allows a perfect matching (inconsistent otherwise).

In the following we will show that for almost all A ∈ MG the matrix A is non-singular (i.e.,

Ax = b has a unique solution) if and only if PG is consistent. The basic implication of

consistency is given by

Proposition 1. The set MG contains a non-singular matrix A0 if and only if G allows a perfect

matching.

Proof. Let µ represent a perfect matching in G(I, J, E), i.e., µ : I → J, i 7→ µ(i), (i, µ(i)) ∈
E, defines a permutation J of I . Then the matrix A0 ∈ MG given by

A0 = (aij) , aij =

{
1 if j = µ(i)

0 otherwise
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is obviously a permutation matrix with detA0 = ±1, i.e., A0 is non-singular.

Assume now that G does not allow a perfect matching. By Hall’s result there must exist a

subset I0 ⊂ I with |N(I0)| < |I0|. Defining k := |I0|, we can assume I0 = {1, . . . , k} and

N(I0) = {1, . . . , r} with r < k. By construction this means that the entries in the first k rows

of all matrices A ∈ MG have value zero in the columns j ≥ k ≥ r + 1. So the first k rows of

any matrix A ∈ MG are linearly dependent implying the singularity of A. 2

To give a precise formulation of the implications of the consistency concept we use the fol-

lowing fundamental lemma in differential geometry.

Lemma 1. Let p : RK → R be a polynomial mapping, p 6= 0. Then the set p−1(0) = {x ∈
R

K | p(x) = 0} has (Lebesgue) measure zero.

Next we define a polynomial mapping on MG
∼= R

|E| by

p : MG → R, p(A) = detA .

According to Proposition 1 this mapping is non-trivial (p(A0) 6= 0 and thus p 6= 0) if and only

if G allows a perfect matching. So, together with Lemma 1 we conclude.

Corollary 1. The set M0
G = {A ∈ MG | detA = 0} of singular matrices in MG has

(Lebesgue) measure zero if and only if G allows a perfect matching.

By Corollary 1 the set M r
G := MG \M0

G = {A ∈ MG | detA 6= 0} of non-singular matrices

has full Lebesgue measure. This means that for almost all A ∈ MG (in the Lebesgue sense) the

system Ax = b is uniquely solvable if and only if G allows a perfect matching. In particular

M r
G is dense in MG. Recall the fact that p(A) = det(A) is continuous (on MG). So if

det(A0) 6= 0 holds the condition det(A) 6= 0 holds in a whole neighborhood of A0 with

respect to (wrt.) some norm in MG
∼= R

|E|. Altogether we have proved the following stability

and density result.

Proposition 2. The set M r
G is dense and open in MG if and only if G allows a perfect matching.

We wish to mention, that in particular, with this analysis we have generalized the well-known

result that for the matrix class “without any special structure” (corresponding to the complete

bipartite graph G = Kn,n) the set of non-singular matrices is open and of “full measure”.

4. STRUCTURED NONLINEAR EQUATIONS

We now consider general systems of (nonlinear) equations

hi(x) = 0, i = 1, . . . , n .

Let the system belong to a class of problems having a special structure given by the bipartite

graph G = G(I, J, E). By setting h = (h1, . . . , hn) we define the corresponding set of

functions

SG = {h : Rn → R
n, h ∈ C1 | hi depends on xj only if (i, j) ∈ E} ⊂ C1(Rn,Rn) .
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To motivate our approach, recall that a standard way to solve a system h(x) = 0 is by Newton’s

method. It is well-known that for any solution x̄ of h(x) = 0 the Newton iteration xk+1 =
xk− [∇h(xk)]

−1h(xk) is locally quadratically convergent to x̄ if the regularity condition holds:

(5) ∇h(x̄) is non-singular .

We will show in this section, that generically (i.e., for an open and dense subset in SG) the

condition (5) holds at all solutions x̄ of h(x) = 0. Moreover, if G does not allow a perfect

matching, then generically no solution of h(x) = 0 exists.

Definition 3. We call the problem class

PG : solve h(x) = 0 with h ∈ SG

consistent if the graph G = G(I, J, E) allows a perfect matching (inconsistent otherwise).

To generalize the results of Section 3 we need some preparations. Given a function f ∈
C1(Rm,Rr) the vector 0 ∈ R

r is called a regular value of f if

∇f(y) has full rank r for all solutions y of f(y) = 0 .

This condition implies that the solution set of f(y) = 0 is a smooth manifold of dimension

m− r. Instead of Lemma 1, for nonlinear equations, we need

Theorem 1. [Parametric Sard theorem [2]]

Let f(y, z), y ∈ Rm, z ∈ R
p be a function in Ck(Rm+p,Rr) with k > max{0,m− r}. If 0 is

a regular value of f then for almost all parameters z ∈ R
p (in the Lebesgue measure), 0 is a

regular value of the function f̂z : R
m → R

r, f̂z(y) = f(y, z).

Based on this theorem we can now prove the following basic genericity result.

Theorem 2. Let ĥ ∈ SG be given. Then for almost all vectors [A, d] = [aij, (i, j) ∈ E; di, i =
1, . . . , n] ∈ R

|E| × R
n the perturbed functions

(6) hi(x) := ĥi(x) +
∑

j; (i,j)∈E

aijxj + di, i = 1, . . . , n ,

satisfy the regularity condition (5) for all solutions x̄ of h(x̄) = 0.

Proof. By construction h ∈ SG. Assume now that the statement is false. The fact, that at a

solution x of h(x) = 0 the condition (5) fails means that after an appropriate renumbering of

the hi’s, there exists a solution (x, λ) of the following system

(7)
∇h1(x) +

∑n

i=2 λi∇hi(x) = 0
hi(x) = 0, i = 1, . . . , n.

Some of the λj’s might be zero. We can skip these coefficients and after a second renumbering

of the indices i we arrive at a system (see (6))

(8) F (x, λ;A, d) :=
∇h1(x) +

∑k

i=2 λi∇hi(x) = 0
hi(x) = 0, i = 1, . . . , k.
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in (x, λ). This system depends precisely on say v variables xj . So we can assume

(9) x ∈ R
v , λ ∈ R

k−1 , λi 6= 0 ∀i = 2, . . . , k .

We now show that for almost all parameters [A, d] the system (8) doesn’t allow any solution

(x, λ). To do so, we apply Theorem 1 and consider the Jacobian of the system F (x, λ,A, d) =
0 in (8) with respect to (wrt.) the variables xj, j = 1, . . . , v, λi, i = 2, . . . , k and parameters

aij, (i, j) ∈ E , di , i = 1, . . . , k ; j = 1, . . . , v.

The Jacobian has the form (∂x etc. denote the partial derivative wrt. x, ⊗ denote matrices of

appropriate dimension)

(10)

∂x ∂λ ∂a1j
′s ∂a2,j

′s . . . ∂akj
′s ∂d

⊗ ⊗ I1 λ2I
2 . . . λkI

k 0
⊗ 0 ⊗ ⊗ . . . ⊗ Ik

with identity matrix Ik ∈ R
k×k and diagonal matrices I i ∈ R

v×v

I i = diag(di1, . . . , d
i
v), dij = 1 if (i, j) ∈ E and dij = 0 otherwise.

By construction, for any j = 1, . . . , v at least one element dij , i = 1, . . . k, is nonzero (each

variable xj , j = 1, . . . , v, appears in (8)). Hence by recalling λi 6= 0 ∀i, in each of the v first

rows of the submatrix of (10) formed by the columns corresponding to the ∂aij’s at least one

element is nonzero. So the first v rows are linearly independent and in view of the sub-block

Ik in the last k rows of (10) this Jacobian has full row rank k + v. The Sard theorem implies

that for almost all [A, d] also the Jacobian ∂x,λF of (8) with respect to the variables (x, λ) has

full row rank k + v at all solutions (x, λ) of (8). But (x, λ) ∈ R
v+k−1, i.e., the Jacobian ∂x,λF

only has v + k − 1 columns so that the (row) rank of the Jacobian cannot be equal v + k.

Consequently for almost all [A, d] there cannot exist any solution (x, λ) of (8).

By noticing that there are only finitely many choices ρ for h1 and λi’s equal to zero (by taking

the finite intersection ∩ρ[A, d]
ρ) we have proven that for almost all [A, d] the system (7) doesn’t

have a solution. This proves the statement. 2

We now describe the implications of consistency (G has a perfect matching) or inconsistency

(G doesn’t have a perfect matching). We begin with the latter. As a corollary of Theorem 2

we find

Corollary 2. Suppose G does not allow a perfect matching and let ĥ ∈ SG be fixed. Then

for any x ∈ R
n the Jacobian ∇h(x) is singular. Moreover, for almost all vectors [A, d] =

[aij, (i, j) ∈ E; di, i = 1, . . . n] ∈ R
E × R

n the perturbed functions

hi(x) := ĥi(x) +
∑

j,(i,j)∈E

aijxj + di, i = 1, . . . , n

don’t allow any solution x̄ of h(x) = 0.

Proof. If G doesn’t posses a perfect matching then, arguing as in the second part of the proof

of Proposition 1 (after an appropriate renumbering of equations and variables), with k = |I0|,
r = |N(I0)| < k, the first k equations hi(x) = 0 only depend on the r variables x1, . . . , xr. So
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the first k rows of the Jacobian ∇h(x) are linearly dependent for all x ∈ R
n. Consequently for

all x ∈ R
n the matrix ∇h(x) is singular so that 0 can only be a regular value of h if h(x) = 0

does not allow any solution. The statement is now a direct consequence of Theorem 2.

2

We finally analyze the case that the problem class PG is consistent (G has a perfect matching).

For the next result we assume that the set SG (as a sub-class of C1(Rn,Rn)) is endowed with a

special topology, the so-called strong topology. We do not go into details and refer the reader

to [8]. Being interested in the set of “nice” (regular) problems we define the corresponding set

of functions in SG:

Sr
G = {h ∈ SG | (5) holds for any solution x̄ of h(x) = 0} .

Theorem 3. Let G allow a perfect matching. Then the following hold:

(a) The set Sr
G contains functions h which have solutions x̄ of h(x) = 0.

(b) The set Sr
G is an open and dense subset of SG (open and dense in the strong topology).

Proof. (a) By taking the nonsingular matrix A0 of Proposition 1, we see that for any b ∈ R
n

the (linear) function h(x) = A0x − b belongs to SG. Moreover since ∇h(x) = A0 is non-

singular, h is a function in Sr
G and a (unique) solution of h(x) = 0 exists.

(b) Here we only give a sketch of the proof and refer the reader to [8] for details.

The density part is based on the perturbation result in Theorem 2 and uses the technique

of partition of unity in the following way (as in the proof of [8, Th.7.1.13]). Let be given

a function ĥ ∈ SG. Then near each solution x0 of ĥ(x) = 0 an (arbitrarily) small local

perturbation is applied to obtain (locally defined) functions ĥ ∈ Sr
G. Using the partition of

unity these local perturbations are “glued” together to result into a function h̃ ∈ Sr
G close to ĥ.

The proof of the openness part also uses an appropriate partition of unity to extend a local

stability result into a global one.

2

In [11, Sect.5-7] and [12, Sect.4.3.1,4.3.2] Murota establishes a mathematical foundation of

the consistency (structural solvability) concept. His approach relies on some assumptions

([11, GA1, p.36]) in terms of algebraic number theory. His result in [11, Theorem 7.1, 7.2]

can essentially be compared with the basic statement in Theorem 3(a). Theorem 3(b) pro-

vides additional information, namely implications of consistency in terms density and stability

results.

5. INTERPRETATIONS AND ILLUSTRATIVE EXAMPLES

In this last section we briefly comment on the interpretation of the results above from a prac-

tical perspective. We illustrate the advantage and limitations of the consistency concept. The

results in Theorem 3 and Corollary 2 can be summarized as follows.

When G has a perfect matching (Theorem 3)

(i) Openness result (stability): Given a function h ∈ Sr
G then by any (sufficiently) small

perturbation h̃ of h we maintain a function h̃ ∈ Sr
G (i.e., at each solution x̄ of h̃(x) = 0
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the regularity condition (5) holds). In other words, small computation errors do not

destroy well-behavior.

(ii) Density result: Given a “bad” function h ∈ SG\S
r
G, by an arbitrarily small perturbation

we can obtain a “nice” function h̃ ∈ Sr
G.

When G doesn’t allow a perfect matching

(i) Given h ∈ SG and a solution x̄ of h(x) = 0. Then ∇h(x̄) is singular. In other words, at

any solution h(x̄) = 0 of any function h ∈ SG, the regularity condition for the Newton

iteration is not satisfied.

(ii) Given a function h ∈ SG then by any (sufficiently) small perturbation we obtain a

function h̃ ∈ SG such that h̃(x) = 0 has no solution.

There is one essential difference between the case of a consistent system of linear and nonlinear

equations.

• In the linear case (if G allows a perfect matching) then for any A ∈ M r
G the system

h(x) = Ax− b = 0 has a (unique) solution.

• For nonlinear equations (with h ∈ Sr
G) the existence of a solution of h(x) = 0 is not

guaranteed as is illustrated by the next example. We only know that if solutions exist

then they are all locally unique (and regular in the sense of (5)).

Example 3. We define the systems of 2 equations in the 2 unknowns x1, x2, depending on the

parameter α ∈ R:

(Pα) h1(x) := x2
1 + x2

2 − 1 = 0 , h2(x) := (x1 − α)2 + x2
2 − 1 = 0 ,

the intersection of two circles. This system is obviously consistent. For 0 < |α| < 2 the

corresponding system h = 0 has two (regular) solutions and h is contained in Sr
G. For α = ±2

we have 1 solution of h = 0 and for α = 0 infinitely many (the whole circle). In both cases

h /∈ Sr
G. For |α| > 2 there is no solution and thus trivially h ∈ Sr

G.

We finally come back to systems of n equations in more than n say n + k unknowns. The

result of Theorem 3 can then be interpreted as follows:

Suppose G allows a matching µ covering I and let wlog. Bµ = {1, . . . , n} so that the k free

variables are xF = (xn+1, . . . , xn+k) (cf., Section 2). For any fixed x̄F with xB = (x1, . . . , xn)
the equations

(11) ĥi(xB) := hi(xB, x̄F ) = 0, i = 1, . . . , n

define a consistent problem (in xB) possessing the density and stability properties above.

However we cannot expect that generically (for an open and dense function set) the func-

tion ĥ in (11) is contained in Sr
G for all xF , unless the system (11) is linear, i.e., h(xB) =

A1xB +A2xF − b = 0 with A = [A1, A2] ∈ R
n·n ×R

n·k. More precisely the following holds.

When G allows a matching:

• In the linear case, for any choice of the free variables xF the system A1xB+A2xF−b =
0 has a unique solution xB.
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For systems of nonlinear equations a corresponding result is not true as illustrated by

the next example.

Consider the (consistent) equation h(x) = x1 · x2 + x2
1 + x2 = 0 in two variables. Taking x2

as free variable we see that for the choice x̄F = x̄2 = 0 the system h = 0 does not satisfy the
regularity condition at x̄1 = 0 since ∂x1

h(x̄1, x̄F ) = 0. Moreover, this bad situation is stable

wrt. small C1 perturbations of h. Indeed, we can show that for any small C1 perturbation h̃
of h there is a choice x̄F ≈ 0 such that ∂x1

h(x1, x̄F ) = 0 for a corresponding solution x1 of

h̃ = 0.

As a concluding remark we emphasize that in any constraint solving procedure a consistency
check (check whether G allows a matching which covers I) should be done before starting to
(try to) compute a solution. Such a check can be done efficiently (see e.g., [13]). If the system
is not consistent the solver should stop with this outcome and the user should reconsider his
CS problem.
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