Data modelling for
emergency response

Arta Dilo and Sisi Zlatanova

GISt Report No. 54

]
TUDelft &y

Data modelling for
emergency response

Arta Dilo and Sisi Zlatanova

GISt Report No. 54

Summary

Emergency response is one of the most demanding phases in disaster management.
The fire brigade, paramedics, police and municipality are the organisations involved
in the first response to the incident. They coordinate their work based on well-
defined policies and procedures, but they also need the most complete and up-to-
date information about the incident, which would allow a reliable decision-making.

There is a variety of systems answering the needs of different emergency responders,
but they have many drawbacks: the systems are developed for a specific sector; it is
difficult to exchange information between systems; the systems offer too much or
little information, etc. Several systems have been developed to share information
during emergencies but usually they maintain the information that is coming from
tield operations in an unstructured way.

This report presents a data model for organisation of dynamic data (operational and
situational data) for emergency response. The model is developed within the RGI-
239 project ‘Geographical Data Infrastructure for Disaster Management’ (GDI4DM)

ISBN: 978-90-77029-26-8
ISSN: 1569-0245
© 2010 Section GIS technology
OTB Research Institute for Housing, Urban and Mobility Studies
TU Delft
Jaffalaan 9, 2628 BX Delft, the Netherlands
Tel.: +31 (0)15 278 4548; Fax +31 (0)15-278 2745
Websites: http:/ /www.otb.tudelft.nl
Http:/ /www.gdmec.nl

E-mail: a.dilo@utwente.nl & s.zlatanova@tudelft.nl

All rights reserved. No part of this publication may be reproduced or incorporated into any
information retrieval system without written permission from the publisher.

The Section GIS technology accepts no liability for possible damage resulting from the findings of this

research or the implementation of recommendations.

This publication is the result of the RGI-239 project ‘Geographical Data Infrastructure for Disaster
Management’ (GDI4DM).

Contents

1 INtrodUCHioN ...cuuuiiiiiiiiiiiiiiiiecctree e 9
2 Emergency response in the Netherlands and its information
NEEAS.cciiiiiiiiiiiitiieeere e e e e e 1
2.1 Organisation of EMErgeNncy FESPONSEcuuruiurrerererererereieiereieeseseseeesesesesssseaes 11
2.2 INfOrmation NEEAScociueviiiiiiiiiiicic e 14
3 Conceptual and logical data model for ER.........cccocouuuunnrneennnnnn. 17
3.1 Database management SYStEMSc.cuvuvuveririiriecereeereeeneneereenenesenenesenenenes 17
3.2 Conceptual data model........coviiiiiiiiiiiniiiiiics 18
3.3 Data sharing between different SECtOrs.......covuvuiuevviviiciiiniicieiiiceiiinns 21
3.3.1 Data created and used by the fire brigade Sectof......c.ccceuvuviviiivinirivivirinnne. 21
3.3.2 Data created and used by the medical assistance SeCtOrovuveverereenenee. 25
3.33 Data created and used by the police SECtOrcceuvvviiiieiiiniiiiiiriicieines 27
3.3.4 Data created and used by the municipalityccocoeeeieiiiiiiiiiiiiennns 28
3.4 Oracle database SChema........ccocviiiiiiiiciniiciics 30
4 Managing spatiotemporal data.......cccecueeeereeeecnieeenieeenieeenneeenneen. 35
4.1 Existing research on spatiotemporal modelling...........ccccoeeeececccunnnnes 35
4.2 Working with spatiotemporal data in Oraclecccevvieiiiviiiiiininicnnnnnns 37
4.2.1 Declaration and use of temporal data typescccvvviieeiviniieieininicininnnns 37
422 Storage and retrieval of spatiotemporal data........cccoevviiniiiiciccccnnee. 38
5 Spatiotemporal data analysis........ccceeeeueeeeeiiinieennineeeeennieeeennnnnee. 41
6 Conclusions and recommendations.........ceueeeeeeeiieeeeenssneeeennnenees 43
Bibliography c....uuuueiiiiiiiiiiiitiiiiiiiiiinitreee s aaaaeee 45

Appendix A: Oracle scripts creating the database schema with temporal

data at AtELIDULE 1EVEL.eueeuieeireiiireiiiieeieeeeetcrereeessessesecsscrsersesssssnsene 47

Appendix B: Oracle scripts creating the database schema with temporal

data At TECOLA LEVEL uuunrenrenrreirnireireiraireereeeeseeceesesssssssesssssessesssssnsans 67

OTB Research Institute for Housing, Urban and Mobility Studies

1 Introduction

The first hours after a disaster happens are very chaotic and difficult but perhaps the
most important for successfully fighting the consequences, saving human lives and
reducing damages in private and public properties (Sholten et al, 2008). Several
organisations get immediately involved in the response to a disaster incident, like the
fire brigade, paramedics, police and municipality. They have to coordinate their
emergency work based on well-defined policies and procedures, as well as the most
complete and up-to-date information about an incident, which would allow a reliable
decision-making process.

A variety of software systems has been created to help the emergency response (ER)
people in their activities (Figure 1.1 and Figure 3.6 show screenshots of such
systems). There are though several shortcomings (Diehl and v/d Heide 2005,
Zlatanova et al, 2006, Scholten et al 2008). The systems are dedicated to specific
emergency situations or emergency response sectors. Exchange of information
between the different systems is difficult or not possible. They do not offer all the
needed information for the different emergency responders, who have to work by
combining digital information provided by such systems with analogue information,
e.g. different analogue maps, forms that are filled by hand, etc. A lot of information
that is coming from the field operations is stored in an unstructured way, e.g. several
files in the system, which makes it problematic for a systemised analysis.

A complete inventory of the information needed during the emergency response is
often lacking, as well as a good structure for storing the information. The data
structuring would facilitate a fast access to a desired piece of information, as well as
the automation of analysis of the information, and its use in the decision-making
process. A database system provides for these: an organised way of storing the
information, mechanisms that enable fast access, and functionality for the analysis of
the information. This report presents a database model for the emergency response
information. The model is developed within the Bsik RGI-239 project ‘Geographical
Data Infrastructure for Disaster Management’ (GDI4DM), which aimed at the
creation of a spatial data infrastructure to assist the decision-making during an
emergency response. Following the user requirements (Snoeren 2006, Diehl et al
20006, Snoeren et al 2007), information needs were identified and translated to a
conceptual data model. The data model was implemented in Oracle Spatial (Dilo and
Zlatanova, 2008) and the tasks performed by different actors in the emergency
response were translated to context-aware services, which are to be accessed via well-
designed user interfaces (Scholten et al 2008).

A disaster incident in the Netherlands is managed through processes. Each process
has a well-defined objective, which realisation requires certain information and often
produces information during its execution. Depending on the type of process,
different response units, fire brigade departments, police stations, medical services,
and municipalities get involved in the incident. People from these organisations
perform their tasks based on assigned roles and responsibilities. The data model
presented in this report captures the situational information (Dichl and v/d Heide,
2005), e.g. incident and its effect, and the operational information, e.g. the processes

activated to handle an incident, responsible departments, persons (system users)
involved in each process and their roles, measurements, etc. Much of the information
produced during emergency response is temporal, i.e. it is changing with time, and
we need to keep track of changes. New data types are created for temporal and
spatiotemporal information: dynamic counts to store, e.g. number of injured; moving
point for, e.g. the position of a vehicle; moving region for, e.g. gas plume. This
model is to be used within a system that provides for monitoring and supports the
decision-making during emergency response, working on the back of such systems,
e.g. Eagle I (see Figure 1.1), to provide for an efficient storage, access, and analysis of
the data.

L. Eagle Mabile .-.Lﬂ]ﬁ
Train on fire = |[/-
DTG 21178 - M 5o Victaan - |
. Nlm:ﬂ.d. @ 3 130
M| =z
L& ZE

o[-HpeE
LIE IR VL
) B4 D %
I
=xemn

.!‘zlimﬂlrﬂ LiMpE

S

FHOEOT, WSS Meters - Soay 1 FEERS

Figure 1.1: Screenshot of Eagle I emergency response system, the Eagle Mobile module
(taken from Vlotman and Snoeren, 2009).

The Chapter 2 provides a summary of the emergency response in the Netherlands:
the ER sectors and the processes under their responsibility, and the information
needs. Chapter 3 discusses the data model. The chapter starts with a short
introduction of database management systems (DBMS) and the benefits of using a
DBMS. Then, Section 3.2 explains the conceptual model for the emergency response
information, followed by schemas that capture the information needed by each
emergency sector separately. The conceptual model was implemented in Oracle
Spatial, which is the DBMS system that we chose. Section 3.4 describes the data
model at this level. A substantial part of the data is (spatio-)temporal, which is not
supported by Oracle. Chapter 4 treats in more detail the manipulation of this kind of
data, the new data types created and the handling of the temporal data. Chapter 5
provides examples of analysis involving spatiotemporal. Chapter 6 concludes by
summarizing the work and directions for future work.

10 OTB Research Institute for the Built Environment

2 Emergency response in the Netherlands and its
information needs

Emergency response processes in the Netherlands are legally arranged within the
Law for Disasters and Large Accidents (WRZO, Wet rampen en zware ongevallen,
wetten.overheid.nl). The document provides definitions, describes responsibilities,
manner of working, levels of emergencies, and provides classification of disasters.
According to this law, the board of Mayor and Aldermen on the local level is in
charge of drawing up a mandatory disaster plan. In this plan, the emergency response

activities and the organisational structure should be described. The organisation of
the emergency response in the Netherlands is divided into a local level, that is the site
of an incident; the regional level, emergency services are regionally organised,
supporting several municipalities; the provincial level. Most emergency incidents of a
minor nature are responded at the local level. Within this operational structure, the
local fire chief has the primary operational responsibility for the on-site coordination
of local disaster response. If the magnitude of an incident increases, then a regional
coordination team will be formed in liaison with the operational coordination team at
site. The regional coordination team is often situated in a regional office remote from
the incident. e.g. a joint office of the regional emergency services. If a regional
coordination team is formed, then the mayor of the municipality in which the
incident is taking place takes the administrative lead. On municipality level, a policy
team is formed to support the mayor.

Many more structures can be involved in ‘managing’ when the disaster incident
transcends administrative borders e.g. a municipal, provincial or national border.
When the potential magnitude of an incident leads to a serious threat to a large
section of the community, environment, or property, emergency officers at
provincial or national level are informed. If the effects of an incident transcend
provincial borders, e.g. a toxic cloud after a nuclear incident, the Ministry of Internal
Affairs may take the administrative lead. They will work together with coordination
teams at national, provincial, regional and local level to manage and mitigate the
disaster.

2.1 Organisation of emergency response

Response and short-term recovery can be categorised into four different clusters,
namely, containment and control of the disaster and its effects, medical assistance,
public order and traffic management, and taking care of the population. A cluster
consists of several processes that are the responsibility of an ER sectors (see Table
2.1), and may involve third parties when needed.

Table 2.1: List of emergency response processes and the responsible sectors.

Containment and control of the disaster and its effects
Responsible: Fire Brigade

1. Fighting fire and emission of dangerous substances
2. Rescuing and technical assistance

3. Decontaminating people and animals

4.
5.
6
7

Decontaminating vehicles and infrastructure
Observations and measurements

Alerting the population

Making accessible and clearing up

Medical assistance
Responsible: GHOR

8.
9.

10.

Medical aid chain
Preventative public health and medical/environmental measures
Psycho-social aid and care

Public order and traffic management
Responsible: Police and Ministry of Justice

11.
12.
13.
14.
15.
16.
17.

Clearance and evacuation
Fencing off disaster area
Traffic control

Maintaining the legal order
Identification of fatal casualties
Giving directions

Criminal investigation

Taking care of the population
Responsible: Municipality

18.
19.
20.
21.
22.
23.
24.
25.

Advice and information
Relief and care

Funeral arrangements
Registration of victims
Providing primary needs
Damage registration
Environment protection
Follow-up care

Containment and control of the disaster and its effects: In the
Netherlands, the fire brigade is usually organised at a municipal level and has
equipment not only for fighting fire, but also for performing various
measurements related to release of dangerous substances in the air, water or
in the soil. The fire brigade is also responsible for alarming the citizens is case
of emergency using the net of stationary sirens. Generally, the fire brigade is
obliged to maintain a fire brigade call centre, but the tendency of the last
years is to maintain a common call centre, together with the police and
GHOR. Usually, the fire brigade duty officer takes the lead in all small-scale
emergencies (before the operational team is formed). Several other
organisations may also take a part in the containment and control of the
hazard and its effect, if the operational organisations (i.e. first responders)
need support. For example, in case of flood (a major threat in the
Netherlands) Rijkswaterstaat (www.rws.nl), the Dutch National Reserve
(www.natres.nl), KNDRD (www.rednet.nl), KNRM (www.knrm.nl) and SAR
(www.werkenbijdemarine.nl) can be involved. Some of these institutions, (e.g.
KNRM, SAR) follow emergency scaling, which differs from the ones
described in WRZO.

Medical assistance: The second large cluster comprises processes related to
medical assistance. GHOR (Geneeskundige Hulpverlening bij Ongevallen en
Rampen, www.ghor.nl) is an organisation that coordinates medical assistance

during emergencies. Key actors are the Ambulance Central Point (CPA),
ambulances, hospitals, and Communal Health organisation, which is
responsible for general health issues such as prophylactic medical inspections,
vaccinations, etc. Compared to the fire brigade and police, the medical help is
quite independently organised and does not directly depend on any local
administrations. In case of emergency, however, the GHOR structuring is
activated and a regional medical official is appointed who takes the lead
within the medical help (similar to the regional officers in fire brigade and
police structures). The hospitals are seen as trauma centres, where during
disasters mobile medical teams (MMT) should be available 24 hours per day.
One hospital is dedicated to the victims of disasters. The SIGMA teams of
the Netherlands Red Cross (NRD, www.rodekruis.nl) and special ambulance
teams can be formed and included in the medical help operations. NRD is
usually involved only in large disasters, which require help and evacuation of

many people, such as floods.

Public order and traffic management: In case of an emergency, the police
are responsible for processes that are related to evacuation of citizens from
affected areas, clear threatened areas, protect shelters and commando centres,
control of traffic, etc. In most cases the police are working under the
authority of the mayor. In some special cases, e.g. criminal cases, the High
Officer of Justice is taking the lead together with the mayor and the regional
police chief.

Taking care of the population: Besides the overall responsibility for
emergency response (under the authority of the mayor), the municipal
structures are responsible for processes related to taking care of the
population such as informing citizens, accommodating non-injured people
from affected areas, registering casualties, etc. Generally the municipalities
have to take care of good preparation of response sectors as well as citizens.
Therefore, the municipality has to prepare (and update every 4 years) the
emergency response plan. The plan describes the most important types of
disaster incidents at the territory of the municipality and the way of dealing
with a particular emergency. Responsibilities, tasks and all required
medicaments, shelters, reserves of food and clothes, etc. are also part of the
emergency response plan.

There are other agreements in the Netherlands concerning organisation and
categorisation in emergency response, e.g. categorisation of disaster types, level of
emergency (GRIP) (MBZ, 2003) and organisation of the country into safety regions.
Some of these are also used by the data model described in Chapter 3 and
implemented in the scripts that create the database structure for the emergency
response provided in Appendix A: Oracle scripts creating the database schema with
temporal data at attribute level.

The emergency types are categorised into 19 types of disaster, which are categories
under a larger grouping: incidents in relation to traffic and transport, incidents with
dangerous material, incidents in relation to public health, incidents in relation to
infrastructure, incidents in relation to population, natural disasters. Disaster types
under the first group are Aviation incident, Incident on water, Traffic incident on
land; similarly the other groups consist of one or more disaster types. There are five
GRIP levels describing the severity of an incident. More details about these

categorisations can be seen in Appendix A: Oracle scripts creating the database
schema with temporal data at attribute level, page 50.

2.2 Information needs

The information needed for emergency response is grouped into two large clusters,
dynamic information (situational and operational) and static (existing) information.
Data collected during a disaster incident are denoted as dynamic data, while the
information existing prior the disaster is named static information. Examples of
dynamic information are:

Incident: location, nature, scale

Effects: affected area and its development in time, sectormal (a diagram for first
estimates of effected areas), and gas plume

Consequences: threatened atea (+time/petiod), escalation possibility

Damages: damaged objects, damaged infrastructure

Casualties: dead, injured, missing, trapped people and animals

Alccessibility: building entrances, in- and out-routes, traffic direction, blocked roads
Temporary centres: places for accommodating people (and animals), relief centres,
morgues

Decontamination: decontamination centres; vehicles, houses and infrastructure to
decontaminate; people and animals to decontaminate

Meteorological information: wind direction, humidity, temperature

Specific information depending on tpe of disaster: e.g. in case of flood — velocity and water
depth, flood pattern; in case of incident with ships — ship type, numbers of people on
board, owner, other ships in the surroundings; aircraft incident — type of plane,
function (cargo /militaty /civilian), number of people on boatd, type of fuel and
volume.

Dynamic information is collected from processes of one cluster (i.e. from actors
responsible for the process) and is intended to be shared with other clusters/actors.
This information can be parameters of incident such as scale, development, which
are updated regularly; number of victims considering different categories such as
trapped, injured people, slightly wounded, death, missing, which are also updated
regularly; or a measurement. In case of detection of dangerous substances in the air,
water or in the ground, special measurement teams are sent to collect samples —
results of the measurements are reported to the commando and control centre and
analysed by a specialist. Some dynamic information has to be gathered from other
organisations. For example, the actual metrological information is obtained from the
nearest meteorological station, water levels and the likelihood of a flood are obtained
from Rijkswaterstaat. The information used during disaster management is very wide,
and of a very different nature. The model that is described in this report is restricted
to information collected by the first emergency responders.

The most commonly used static information needed by the emergency response is:

Reference data: topographic maps, aerial photographs, cadastral maps and data
Managerial and administrative data: census data, administrative borders, risk objects (gas
stations, storage places of dangerous goods, etc.), vulnerable objects (schools, nursing
homes, etc.)

Infrastructure: road network, water network, utility networks (gas, water, electricity),
parking places, dykes, etc.

Buildings catalogues: high/low-tise material, number of floors, usage (tesidential,
industrial), presence of dangerous materials, owners, cables and pipes, etc.

Alccessibility maps: for buildings, industrial terrains, etc.

Water sources: fire hydrants, uncovered water, drilled water well, capacity, etc.

The existing information is available at various places: within the municipalities
(reference data), private companies (utility networks), ministries (buildings catalogues,
cadastre, road and water networks), accessibility maps (fire brigade), etc. This
information is assumed available and accessible directly from the source. Information
models for access and exchange of data are in process of development or readily
available within the NEN (NEN, 2005). This report does not cover existing data.

16

OTB Research Institute for the Built Environment

3 Conceptual and logical data model for ER

This chapter provides a short overview on database systems, followed by the main
topic, the data model for the emergency response. Data modelling is done in two
levels:

* 2 conceptual level that describes the information in terms of classes/entities,
their attributes and their interrelations, and is independent of a specific DBMS
system;

" a logical level that is the translation of the conceptual model into a database
schema, which holds the specifics of the implementation of the conceptual
model to an Oracle Spatial database.

The Unified Modelling Language (UML, version 2.1) was employed for modelling

data, and Enterprise Architect (HA) was the modelling tool. The translation from the

conceptual level to the logical level is done partially automatic from inside EA, with
additional modifications. These are also explained in the corresponding sections.

31 Database management systems

A database management system (DBMS) is a software package that allows a user to
set up, use, and maintain a database (de By, 2005). A database is a repository of
interrelated data items that are often central to the business of an enterprise or
institution. Many diverse applications and multiple users, each of which may need
only a fraction of the data, generally use a database. One role of the database is to
provide a single representation to all these applications, avoiding redundancies and
possible inconsistencies that would occur if each application managed its data
separately.

A DBMS provides to applications a high-level data model and a related query and
data manipulation language. Other important functionalities offered by a DBMS are
indexing and join methods, authorisation, integrity constraints, concurrency, and
transactions. Important elements of a data modelling language are a collection of
types together with their operators (functions). They are used by the data
manipulation and query language, which is offered to applications for the storage and
analysis of their data. The query optimiser uses the indices for efficient performance
of queries.

The classical database management systems were conceived for relatively simple
business applications. For example, the data types available for attributes are simple,
basically integers, floating-point numbers, or short text strings. One goal of database
research in the last decades has been to widen the scope, so that as much as possible
any kind of data used by any application can be managed within a DBMS, described
by a high-level data model, and accessed by a powerful query language. For example,
we would like to store images, geographic maps, music, videos, CAD models and so
on. For all these kind of data, we are interested in appropriate extensions of data
model and query language, so that any kind of question about these data can be

formulated in a manner as simple as possible and be answered efficiently by the
DBMS (Giting and Schneider, 2005). A spatial DBMS is an extensions of standard

(.e. classical) DBMS’s. A spatial DBMS is extended with data structures and
algorithms for computation over spatial types (points, lines, polygons and volumes)
together with spatial indexing techniques, and extension of the optimiser for
mapping from the query language to the spatial components. Most of the spatial
DBMS support spatial data types according to the simple feature specifications for
SQL (www.opengeospatial.org). The spatial databases may have several data
structures for management of spatial information: geometry, topology or network
(Oosterom et al. 2005).

Today, there are several commercial and open source spatial DBMS systems. A
critical question for an emergency response application is the selection of the DBMS,
as well as the choice between commercial and open source. Important aspects to be
considered are the support for different data types, appropriate for handling different
kind of information coming during an emergency, as well as extendibility with new
types and functions. The information collected during an emergency is of very
different nature. Besides various sensor information such as optical and range images
(terrestrial, aerial), videos, textual data, audio, etc will have to be managed. Most of
the information is dynamic; therefore the temporal component is critical. The choice
between open source or commercial DBMS is driven from pragmatic reasons. On
the one hand, an open source, freeware DBMS, e.g. PostGIS, may have benefits in
large area devastating disasters (similar to East Asia Tsunami or the hurricane
Katrina) when existing infrastructure is destroyed and a command centre has to be
set up in few hours. On the other hand, many organisations in the Netherlands have
already commercial DBMS, such as Oracle Spatial. Oracle Spatial and PostGIS offer
the most from the functionality we need, but within the project RGI-239 (GDI4DM)
we decided to use Oracle Spatial. Many units from the emergency sector, e.g.
municipalities, have already their data in Oracle Spatial.

3.2 Conceptual data model

According to the Dutch procedure for emergency management, a critical situation
that needs special attention and treats the wellbeing of humans is called Zncident. An
incident could be hypothetical, e.g. a forthcoming big concert or important football
match, or a real incident, e.g. a big explosion or a plane crash. Usually, when a real
incident happens, a kind of emergency call of a report about the incident comes to a
commando centre (via the emergency number 112). The emergency response units
from the closest location get involved in order to manage the incident. Based on the
type of the incident, several processes are activated, each process being responsibility
of one or more departments, dependent on the scale of the incident. Several people
get involved in these processes having specific roles. Also, several teams can be
formed in order to perform specific tasks. When the incident involves release of
dangerous substances, a template, named sectormal, is used to sketch the zone
affected by gas distribution. Several measurement teams are formed and sent in the
field to perform measurements, from which the movement of gas plume is derived.
An incident usually causes damage in buildings, cars, infrastructure, as well as people
and animals living in the surroundings of the incident. In case there are casualties in
people, detailed information is collected from the medical assistance, and they are
sent to relief centres.

The conceptual model shown in Figure 3.1 captures classes of information and their
associations. It is a UML class diagram; attributes and operators are hidden for the

sake of space. A class is drawn as a box, and an association is drawn as an arrow
connecting two classes; an association that has attributes has a box attached, which
contains the attributes. Multiplicities of an association are shown when different
from 1, thus a missing label indicates a multiplicity equal to 1. Dashed lines show
dependency, which in our case means a source class which existence depends on the
target class.

Inci dert
Cormpl zirt
Hypathetical
A 1
DamagedBuilding Repartabout
T 0.4 Sector mal
:D.." r-————--—1
|
| .
DamagedCar x 1 B RIS“ZPnEDf
D“ ______ ! CausedBy 1 Real Incidert o —————— !
Gasral
CausedBy e — _Spreadnf 0.1
—————————————————————————————— —
! 1
! 1
:D 1 0.1 : ’II?\' 4\ FerformedFor
[t DamagePA [~77"77° 1
Casualty hu'laniage Describe
Fatientl njuredin |
1.25]
Frocess 8.
EvertObject o
a.r
— - N MeasurementTask
um-p Patient Card v T 0.:
ResponsibeFor Inwol wedin o= J'IT\.
‘ 9.7 Cirawun By |
1
FatientSentTo precceesedernsscascesreiscnaseannnns AR N \ '
H Emergency Response Sector H :
Relief Cartre H 1.7 1.7 Resultdf
H H i
. Departrent OrdSU=ser ' i 1
: P ik ar H Assign |
H 1. Mezsur ermert
E BelongTe Lead E 0.F
H ehicla Trave [Ulfith Teamm ' Ferfarm
s asuaaaaa s s s asaasaaaasaaaaaaaaaaaaaaaaaaand

Figure 3.1: Conceptual level of dynamic data for emergency response: classes in boxes, and

their associations shown by arrows, together with a box in case an association has attributes.

The classes Hypothetical and Reallncident are subclasses of Incident. Reported
complaints (generally from citizens) are presented by the class Complaint. The
association ReportAbout connects complaints to the Reallncidents for which they
are made. Several complaints can arrive for an incident, as shown from the
cardinality of ReportAbout association. The class Sectormal contains information
about sectors that will possibly be affected by an incident involving dangerous
substances. This is done by marking circle sectors in a fixed template (see Figure 3.3).
Gasmal contains information about the gas plume for the incident. It is computed
from the measurements performed by the measurements teams. The link between
the measurements and the corresponding gas plume is not explicitly stored but can
be derived by the time stamps.

Figure 3.2 is a part of the class diagram of Figure 3.1 that contains the above
mentioned classes, and shows the attributes of these classes. A detailed explanation
of attributes of all the classes is provided further, in Section 3.3.

Cla=zs Model :Incident

+ incidentll: int]
+ location: point Class Model :: Complaint
+ fenced_area: polygon + complaintiD: int
+ start_time: datetime + call_time: timestamp
+ end_time: datetime o Ioca_tion' point
+ deseription: string R—— ghing
1.7
Reporbbout
Class Model:
Sector mal
Class Madel: Resl Incidert RigZoneot |+ sactors: sting
. e + label: string
Class Model::Hypothetical + disaster_tvpe: dynamicDT 0.1+ deseription: string
+ disaster_type: enumDT + affected_area: MovingRegion
+ threatened_area: polygon
+ estimation_time: timestamp Cla=ss Model:: Gasmal
+ GRIPlevel: dynamicGRIPwal . .
+ seale: dynamicScalelew Spreadof 0..1|F shape: MovingRegion
+ escalation: string e = ¥ Iabe!: _5"'“9 .]
+ evacuation_area: pohrgon + prediction: MovingRegion

Figure 3.2: Part of the conceptual model showing classes and their attributes.

A Reallncident is Managed by one or more Processes; at most 25 processes will be
activated for an incident (see Table 2.1). Class Department contains information
about a department unit. A department is responsible for several processes started
for the same incident or processes of different incidents. When the scale of an
incident is big, several department units take the responsibility over the process.
Association ResponsibleFor keeps track of the responsible departments for each
process. A department owns one or more vehicles, e.g. a fire brigade owns trucks
and boats. Class Vehicle keeps information about vehicles, and BelongTo takes care
of the ownership. Class DMSUser contains information about the system users, i.e.
emergency response actors that are users of the ER application system. A system
user is involved in different processes of one or different incidents at different times.
The association InvolvedIn contains the duration of such involvements. During the
response to a disaster incident, several teams are created with people from the ER
sectors, and volunteers assigned to these sectors (e.g. fire brigade). The class Team
keeps information about teams, e.g. number of its members, and position of the
team. We assume a team is created for an incident (or a task), and has a one-time
existence. Not all persons from a team are necessarily users of the system, but there
is one person who is a team leader and has access to the system. The association
Lead indicates the team member that is a system user. A team uses a vehicle to travel
to the place of incident, which is captured by TravelWith association.

Different measurements are performed for incidents that involve dangerous
substances. A measurement task is designed by an advisor of dangerous substances
(AGS), and sent to a team that performs the measurement according to task
specifications. The class MeasurementTask keeps information about such task, the
association PerformedFor keeps track of the incident for which a task was designed,
and the association Assign keeps track of which (AGS) user assigned what task. The
class Measurement contains results of the measurements and the association
Perform records which team performed what measurement. A gas plume is derived
from a calculation based on several measurements. The class EventObject contains
drawings done by system users to locate different events happening in the field, e.g. a
gas leak, blocked road, damaged utility (network) segment. The information
represented by this class is of a very different nature. The association DrawnBy keeps
track of objects drawn by each user. (This is an example of unstructured information,

which has to be further categorised and organised after a better understanding of the
needs, probably into different classes.)

plnfo Professional - [Borssele]

sﬂrmkmm;wwmwmmmmmm =
ﬂﬁlﬁl | &| |m]] - | cloja)m]s) 2] - | Lol falo] o] o] sl =2lmi)]
R B3 B [@JQ.@EHJ_LL*EJ_LIEEI_U_U

Figure 3.3: Example of a sectormal template overlaid with an orthophoto, used in the Borsele

workshop for nuclear disasters (taken from Diehl et al. 2006)

The classes DamagedBuilding, DamagedCar, and DamagePA contain information
about damaged buildings, damaged cars, and damages in people and animals,
respectively. Information about individual persons that are injured during an incident
is kept by the class PatientCard as a record of treatment, symptoms, etc. as well as
the level of injury. The class Casualty contains summaries of injured persons
categorised on the level of injury, and class ReliefCentre contains information about
centres where the injured people are sent.

3.3 Data sharing between different sectors

The emergency response information is collected by the different ER sectors; most
of this information is important for all the sectors, thus should be shared between
them. The data model presented in this report deals with this common information,
which is of importance for all actors. This section explains what part of the data
(model) is used by each sector.

3.3.1 Data created and used by the fire brigade sector

The fire brigade departments are responsible for processes 1-7 (see Table 2.1). The
attribute process_type of class Process defines which process is it from the list of 25
processes. The attribute takes values from an enumeration list enumDMProcess. The
other attributes of class Process are the (start) time the process is activated, and its
ending.

OTB Research Institute for the Built Environment 21

fncident
Class Model :: Real Incident
+ dizaster_type: dynamicDT Class Model:: Gasmal
+ affected_area: MovingRegion
+ threatened_area: palygon + shape: MovingRegion
Class Maodel :DamageP A + estimation_time: timestamp + label: string
+ GRIPlzvel: dynamicERIPwval + prediction: hMovingRegion
+ trapped: Dynamichum + szale: dynamicScalelew /;I
+ mizsing: Dynamichum + escalation: sting .
+ peopleZevac: DynamicHum + ewacuation_area: polygon Class Model : _,.”
+ peopleZdecontam: DynamicHum sncident Sector mal J,"
+ animalZdecontam: DynamicHum + incidentlD: int 4
+ peopledshelter: DynamicHum + location: point + sectors string .
+ people2fead: Dynamichum + fenced_area: pohygon + label: string :!
+ animalZfeed: Dwnamichum + ctart_time: datetime + description: sting S
R + end_time: datetime)'""l uze-info Process1
RN + description: string ! aflonm
e 1 !
e | ’
. o Il ;
createtuse N uze-info .
aflowin ™~ wreatetuse «flowwe J.ff Armess2
el afl oo f f
-~ - 1 I
Class Model:: 5‘“‘-\ N, | i
DamagedBuilding T - | !
“{‘-—*———_.L__create-info Frocess3
+ BAdcode: sting T e Class Model::Process
afl o 7
L=t process_twpe: enumDMPlocess{(]—
_oe=TT s+ stan_time: timestamp
create .~ =" L7 + end_time: timestamp Proces=d
Class Model::MeasurementTask === o ,’/ - "
e L usetcreate y
+ taddD: int L -~ L7 = Y
PR - "
S RIERIE [- [l=ss Model::EventObject| resesss
+ azzignment_time: timestamp i use+creats
+ explosionLEL: boolean cre ate’ + objectlD: int fl‘
L i
+ gas_tube_no: float /,ocfloll\m + symbol: enumSymbal " \:o
+ automess: boolean e + deseription: string . Processh
+ automess_sonde: boolean . + geometny: geometny ‘\
+ dosizmeter: boolean /.—’ \\\i
+ protection: boolean o A Y ¥
+ details: string e H Emergency Response Sector H
- . ' Frocess7
- H H
éf: H Class Model: :Departriert H
H Class Model::DMSUser |«
Class Model: :Measurement 1|+ depatmentil: int WankFar N H
. X L + DhiSuserlD: int .
+ measurement_time: timestam |t deptCode: sting + : i H
. o5 LEL'_fI t P E + =afetyRegion: enum$SafetyReg userB.Sl.‘J. string Il
exXp os.lon 3 oa Al Doesion: peih + moles: listURoles [1..10] H
+ pumping_na: int H | H
+ gas tube_no: enumBrawvot’ H H
A . Lead H
+ concentration: float . BelongTo H
+ automess1: float H H
+ automessZ: float H | H
+ automess_sonda: float H @ Modail . Class Mo e s E
X X ass Modal:vehicle
+ dosls.m.eter.. float E) + teamliD: int H
+ details: string H + wehiclelD: int Trave iith |, type: enumTeamType [+
H + wehicleCode: string + name: string H
H + location: MowingPaint + no_members: int H
H +! calculated ETA: time + location: MovingFoint |1

Figure 3.4: Information created and used by the fire brigade departments.

The information about Reallncident is expressed in the attributes: the disaster type
of the incident (one of the 19 types listed in Section 2.1), which may change during
the incident, the affected area by the incident, which is a dynamic area, i.e. it changes
in time, an estimation of the threatened area together with the estimation time, GRIP
level and scale of the incident, both (possibly) changing in time, the escalation risk as
word description, and the area to be evacuated. The list is extended with the
attributes inherited from its super-class Incident: incidentID, a number to identify an
incident, location of the incident, the fenced area, start and end time of the incident,
and a text description for the incident. The Reallncident information is mostly
created by the fire brigade. The information about DamagedBuilding consists of a
code, BAGcode, that uniquely identifies the building and can be used to access
additional information from existing datasets.

Measurements are performed by the fire brigade. Figure 3.5 shows an example of a
completed measurement form. The upper part of the form is the task formulated by
an advisor who decides what measurements should be performed. The bottom part
(gray-shaded) contains the results of the measurements. Classes MeasurementTask
and Measurement reflect the information of the upper and bottom part of the form,
respectively. The MeasurementTask contains an identifier for the task (and the

measurement itself), location where the measurement should be performed, the time
of this task assignment, a yes/no value for a set of parameters indicating if a
parameter should be measured, and a text field to give more details about the task.
The Measurement contains the results of a measurement task: for each parameter
that is requested to be measured by the task there should be a filled value in the
corresponding attribute in the Measurement. It also contains the time of the
measurement and a text field to provide more details about the accomplished
measurement.

(HFddh 4 SToam ouk)
Measurement task from ledear-AGS tocos. _
Meazurement team 39 /41Whiskey Whiskey 743
Secforemmal

Coordinates place of incident Oecar 1 S1°59°10" 3°54°17"
sectorfs] Oscar 2 al, b2, ed

Measzurement location number /coprdinateMike $51°99°117 5°54°207

Type of measurement
Explo=ion state LEL Echo yes O
Gas-tube number Bravo 12.54
Romeo es O
sutomess + sonde Romeo-gierra no O
persoonlijke dosizmeter Delta no O
Perzonal protection Ademincht yea O
Details
Time of aszignment Tango 1071072006 T:38 PM

Measurement report to leader-MPO from s smwie-e

ent team J9 Whiskey _ Whishey 743

tion number /coordinateMike 51°539711" 5°54°20"

Echo 23.56

Bravo [2

tie november_5_ Charlie _ 203
FRomeo 1 10.2

Romeo 2 525

Sierra

Delta

ime of measurement Tango 10/10/2006 9:28 PM

etails fopey

Figure 3.5: The form containing the measurement task and results.

The damages in people and animals are collected by the fire brigade department,
GHOR and the police. The class DamagePA contains this information: number of
trapped persons, number of missing persons, number of people to evacuate, people
and animals to decontaminate, number of persons needing a shelter, people and
animals needing food. All these are dynamic counts, meaning that they change in
time and we want to keep track of the history of change. The class EventObject
contains and identifier for every object that is drawn on the screen, a symbol code
selected from the list of symbols that is offered by the ER application, and is
recorded in the list of values of the enumSymbol type, a text description for the
drawn object, and the shape of the object, which could be a point, a line or a
polygon. Figure 3.6 shows the palette of symbols in the VNet emergency response

system. People from the fire brigade departments or from any other sector can create
the event objects.

Owebcls ¥Yeiligheidsnet
|Navigeren Il(aartheeld ‘Uitlnqqen
Totaal gcc wageningen m werkblad Actoren
&
* g S W' gec wageningen
Q- 1 Hotel { = derland mi
- poktA o rcc gelderland midden
o)
; |
D bos by
2 = e
T [Stadsgracht br2
4 i opvangterrein
Symbolen [
i I 3
an |l B iR : | P
La] - 4 | Theater: 2 I
; m * H | @ ‘I Beuningpletin 4
hd @ R N\ & A
e ol] ¢ ul
dz1 ¢ gas F
}J el ” . Beunipgsted
G @ 404z %, Poststraat lh'iiaﬁ
A a = <3 4 f;ﬁ
/\ 5 e, 2 '14,-5. o
KINNNN G0 st
D — D D watercontrole bri 15 13‘ >
H | rABPY +
I - 4
e haal: 1:2770 (4 b5

Figure 3.6: Screenshot of VNet system showing the drawing symbols palette.

The group of classes belonging to the Emergency Response sector is an example of
the combination between existing and dynamic information. Departments, vehicles,
and people from the ER sector belong to existing information. For each of these
three classes we keep minimal information, basically a code to make the link between
the operational data and the existing data. Dynamic information in this category is
the involvement in the processes managing an incident. The class Department
contains: an identifier for each emergency response unit within the ER system; the
department code to connect to external (existing) databases with full information
about a department; the safety region the department belongs to; the location as x-y(-
z) coordinates that are stored in this system for fast access (although they may be
collected from an existing database with information about a specific department).
The association ResponsibleFor is updated for the participation of a department in
an ER process. The class DMSUser contains: an identifier for a system user; the
social security number of the person in order to be able to get additional information
from existing databases; a list of roles this emergency responder takes during the
response to the incident. The association Involvedin keeps track of the involvement
of a system user in the processes managing the incident: the start and end time of the
involvement and his/her role in this process.

The class Vehicle contains: an identifier for the vehicle (car, boat, motorbike or
truck) within the ER system; a code to connect to existing databases; the location of
the vehicle that is a dynamic position often collected from a GPS, captured by
MovingPoint type of data; (calculation of) the estimated time of arrival in case the
vehicle is requested to go to a destination. The class Team is completely dynamic,
meaning a team is created during the management of an incident and stops existing
after the incident. It contains: an identifier for each team; the type of the team,
defined by its purpose, e.g. measurement team, which takes values from a pre-
defined list enumTeamType; a name for the team, which is for the ease of use
during the incident response; the number of team members; the location, which is a

dynamic position that could be defined by the vehicle the team travels with, or
should be recorded separately in case the team moves freely (no vehicle). Not all the
members of a team are necessarily users of the ER system, but there is always one
person that has access to the system in order to receive or send information. This is
captured by the Lead association.

The Sectormal and Gasmal information are used by the fire brigade departments.
The class Sectormal contains information about the sectors, a label and a
description. Class Gasmal contains information about the gas plume: the shape of
the gas plume, which changes in time, a description, and the prediction for the gas
plume after a fixed time interval. We keep track of the history of predictions, thus the
attribute is of type MovingRegion as it is the gas plume shape itself.

3.3.2 Data created and used by the medical assistance sector

The medical assistance (GHOR) sector is responsible for processes 8—10 (see Table
2.1 and Figure 3.8). The information about Reallncident and Sectormal are also used
by the medical assistance people. The interaction with the group of classes of the
Emergency Response sector is the same as for the fire brigade sector. The three
processes controlled by the medical assistance sector produce the information of
PatientCard, Casualty, and ReliefCentre classes.

Sjeizeicialany |

W—
—
— J———
- u._._'_-
b bty S -
[Ja—
—— ok
i oy — wi
. v - s
Faparieis sy - i
®:6 o

Figure 3.7: Patient Card.

The class PatientCard holds the information of the (analogue) patient card shown in
Figure 3.7. The information collected in the patient card is complex, but well-
structured. We created new data types to group together pieces of information that

OTB Research Institute for the Built Environment 25

are related to each other, e.g. medical history, and the new types are used for the
attributes of class PatientCard, which contains the complete information of the
analogue patient card. The class contains an identifier for the patient, personal
information about the patient: gender, name, birth date, address, family phone
number. The code (ID) used by the analogue patient card is also kept in PatientCard.
Other information is the place the person was found, allergies in case (s)he has,
medication that was given. The medical history consists of a group of yes/no answer

about important medical problems, e.g. heart or blood pressure problems (see Figure
3.7 top-left).

mcident
Class Model:: ReliefCertre Class Model :: Real Incident
+ centrelD: int + dizaster_type: dynamichT
+ centre_type: enumRCentreT + affected_area: MovingRegion
+f capacity: int I + threatened_area: polygon
+ location: point Class Model:: + estimation_time: timestamp
Sector mal + GRIFlevel: dynamicBRIPual
Class Model ::Patient Card + sectors: sting + seale: ldynamllcScaleLe\r
oy + label: string + escalation: string
+ patientlD: int s + description: string + g\racuatlon_area: polygon
+ gender enumEender % saroident
. . L .
+ name: string K ."‘\ + incidentll: int
+ bithdate: date "\ ‘I + location: paint
+ address: string \\ 1 + fenced_area: paolygon
+ |Deard: string ' ', + start_time: datetime
+ tel_family: string s ll + end_time: datetime
+ place_found: string G'eate_""m L + description: string
+ allergy: string acfl ot usetinfo
+ medication: string Tﬂ-__ \\ ﬂ‘ ,/'f
+ pastMR: MedicalHistory R . e K
+ last_meal: string el * | -'f
+ decontamination: boolean create-infa v ' use-Info
+ accident_mech: string whlows ~~ " v o;ﬂoll\l:o
+ head_diagnose: string el \ “ A Processg
+ injuns enuminjury el N /
+ left_pupilR: beolean T oL /!
+ right pupilR: baalean Class Model :: Casualty
o ngte;psrrin Class Model::Process
. d + paycologicP: DynamicHum . Process3
* e>.<posure_ EX_DOSL,”E +f triage1: DynamicHum oreate-info |+ process_type: enumDbMProcess
: :r!age_relcor-d. Trla?re.[1..5] Tordered) +f triage2: Dynamichum o + start_t.ime: t.imestamp
MR ST +f triage3: DynamicMum + end_time: timestamp
+ remats: string N . " T
+ teat + Treat t1.E dered +f triage3n: Dwnamichum \
reatment: Treatment [1.6] {ordere +f tiaged DynamicHum | Process10
+ dead: DynamicHum !
usetcreate
wtlovs
abypen atypen 'l
Triage Exposure ‘,'
+ time: timestamp + lewel: enumExposure pesressssasamssassssasasasans \.J\'II feimisistascassassssensansaney
+ eye: int + radiologic: enumRadioExp Emergency Response Sactor :
+ motoric: int + biologic: string H H
+ warbal: int + chemicinfect: enumCHinfact H Clazs Model ::Depart mert E
+GCS: int + chemictype: enumCHbype H - Class Model:DMSUser | &
+ AF: int + chemicname: sting s |+ deparmentlD: int WokFor H
+ RR: int |+ deptCode: sting + DMSuserD: int :
1 |+ =afetyRegion: enumSafetyReg + userBSM: sting H
abypen : . !] :
+ caleulate@CE0: int Medical Histary ' + location: point + roles: listURoles [1..10] 1
+ caleulateTotald) : int H T H
+ Blanco: boolean i Lead H
+ Bloedingsneiging: boolean H H
whypen "
Tee e + CWA-Stroke: boolean H BelngTo E
. > Epllleras boo-lean H Class Model::Team E
+ time: timestamp + HartProblems: boolean H Class Model :Yehicle H
+ place: enumFlace + HighBloodFreszure: boolean H T IWith + teamlD: int H
+ performed-by: int + Cancer boolean : + wehiclelD: int rawe T + type: enumTeamType E
+ triage-class: enumTriage + Longaandeeining: boolean H + wehigleCode: string + name: string H
+ treatmenttype: enumTreat ||+ Diabetis: boolean H + location: MovingPaint + no_members: int '
+ sorttreat string + Unknown: boolean i |*f saleulatedETA: time + location: MowingPaint | 1
+ amounttreat: sting + Other string H H
R -

Figure 3.8: Information created and used by the GHOR departments.

A new data type, MedicalHistory, is created for this collection, and the data is put in
the attribute pastMR. Other information is the last meal the person has taken, if
there was decontamination, accident mechanism, head diagnose, type of injury from
a list of predefined values enumlnjury, problems with left or right pupil as a yes/no
answer (boolean data type), and additional notes for the observed problems.
Exposure to chemical substances or radiation (see Figure 3.7 bottom-right) is
recorded as a group of checks taking values from pre-defined lists (enum types). A
new type, Exposure, is created for this group of values. A categorisation called
‘triage’ defines the priority levels of handling a patient, T1-T4 (GHOR 2008). Triage
is a dynamic process. A group of medical checks are performed for a patient in a

repeated manner at different places, e.g. at the incident, in the nest of the first help,
at the hospital, or after different treatments that are given to him/her. A new data
type, Triage, is created to group together the medical checks, while the attribute
triage_record keeps track of the repeated triage calculations. The attribute
triage_class holds the value of the latest calculation of the triage class. Another data
type, Treatment, is created for a treatment given to a patient containing the time and
place of the treatment, the type of treatment (a predefined list stored in enumTreat),
etc. The attribute treatment holds the records of several treatments (106, see Figure
3.7 top-tight) given to a patient, and remark contains additional remarks.

The class Casualty contains summaries of triage classes, T1 — T4, number of patients
classified in these triage levels, which are changing in time. These attributes of class
Casualty would be updated after any relevant change in the PatientCard class, e.g.
entering a new patient, change of triage class value. The other attributes of class
Casualty store the number of people with psychological problems and deaths. The
class ReliefCentre contains: an identifier for the centre, what kind of relief centre,
e.g. hospital, field hospital, other public buildings used as shelters, and the current
capacity and the location of the centre.

3.3.3 Data created and used by the police sector

The police sector is responsible for processes 11-17 (see Table 2.1). The information
about the Sectormal and the Gasmal is used by the police departments (to ensure
public safety and to control the risk for the emergency responders). The seven
processes controlled by the police sector use and modify the group of classes of the
Emergency Response sector is the same way as the previous processes (of the other
sectors). A part of the incident information and information of the EventObject class
is created by the police sector, e.g. the fenced area of an incident, or the blocked
roads. The class DamagedCar contains the plate number of the cars that are
damaged by an incident.

Class Model:: Real Incident

Sroident

+ dizaster_type: dynamichT
+ affected_area: mMowingRegion
+ threatened_area: polygon Class Model:: Gasmal
+ esftimation_time: timestamp
+ GRIPlevel: dynamicGRIPval + shape: MovingRegion
Class Model: + =zeale: dynamicScalelew + label: sting
Sector mal + escalation: shing + prediction: MovingRegion
+ ewvacuation_area: pohigon
+ sectorz sting droident /ﬁ
i o '
+ Iabel: s_tnng] + incidentlD: int B
+ description: string + location: paint ;
\‘s: + fenced_area: polygon ,'I
- + start_time: datetime ’
. + end_time: datetime g
" + description: strin .
S i 2 use-rmfo — Pracess11
-) Ibl\ wfloves
Cla== Model::EvertObject uze-infa "] h
. B wflowe, 1 .r'r
+ objediD: int _\ use-info | FFrace oo
+ symbal: enumSymbal - - ;
+ deseription: string - . “ﬂm:""" K
+ geometny: geometny = - usetcreate \‘\ \.\ s
-xﬂ-o-t:\-.l;_"‘“-»_ s Y ! || Process13
T~ Class Model::Process
Class Model:: create-_hlf_o_____ _______ + process_type: enumDmProcess <:‘:]—
DamagedCar e ekt ____o;fI;w» + start time: timestamp - Process14
+ end_time: timestamp
+ plate_na: string —
rH'
usetcreate | | Process15
- wuflowes
Emergency Response Sector I Frocess18
Class Maodel::Departmert Class Model :OMEUser
* departmentID:_ int WokFar + DhiSuserD: int L | Process17
: deptCode: string + uzerBEM: string
+

zafetyRegion: enumSafetyReg + roles: listURoles [1..10]

lozation: point

Lead

- n
: :
: :
' H
; 5
' H
' H
: :
: :
. BelongTa :
: :
' H
' H
: :
' H
' H
: :
;. .

Class Model::Team

Class Model:vehicle

teamliDl: int

type: enumTeamType
name: string
no_members: int
location: hMowingPaoint

+ wehiclelD: int Trave IWith

+
+
+ wehicleCode: string +
+
+

+ location: bovingPoint
calculated ETA: time

Figure 3.9: Information created and used by the police departments.

3.3.4 Data created and used by the municipality

The municipality is responsible for processes 18—25 (see Table 2.1), which are related
to alarming, giving help and registrations of injuries and damages. Therefore, the
classes in the model that are related to damages and casualties are mostly used. These
classes are already explained in the previous sections. The processes 18-25
create/modify and use information from these classes. Figure 3.10 illustrates which
classes care relevant for the municipality processes. The information of Gasmal is
needed if dangerous gas (substance) is released. Municipality creates some
information from EventObject. For example, they draw polygons to indicate ateas to
be used as distributions centres, areas to be used as field morgues for people and
animals, and they use the information about blocked roads and streets as provided by
the police.

ReliefCentre

Gasmal
DamagePA ',ﬂ:\
i Real Incident
\ pig
s N

e ' A

B ~ i i (i - EventObject

Damaged Building uze-create 5 f'| \ o :
fickin. y create-use y
: - N ! e Process 18
Tuse-creats = 5 5 | L C i
-~ ~ "
afloms™ % | - aflows
DamagedCar _ use-create DDL::Process Process 19
oflows |+ end_time: Integer kG
+ process-type: DMProcess
oo UBE |+ start time: Integer i
Casulty = " ufiows ;
use+create

i . s R — Process 21
Emergency response sector
DDL::Department o Process 22
+ deparimentiD: int {seguence} -
+ de%:tCode: string 2 - et ‘LO’FG .
i |+ location: point +WorkFor = rolesélsi.:\le,.e‘r?:l;j_: A1RE2 . Process 23
+ SafetyRegion: Sector ~ e Sk
T
i /P 4 +Lead : Process 24
3 | |
+BelongTo f \'qlzr i
DDL::Vehicle DDL:Team . — .
' weoiumne T location: MOVING _POINT

+ CaleulatedETA: fime VBl !

departmentiD: Integer
tocation: MOVING_POINT
vehicleCode: WARCHARZ

no-membera: int
teamiD; ink {sequence}
+ type: enum

+
+ pame: YARCHARZ

vehiclelD; LONG {sequence]} .

Figure 3.10: Information created and used by municipality.

It should be noted that not all the processes the municipality is responsible for are
modelled in detail. For example, process 19 is taking care of people (and pets) who
need help in evacuation (such as old, ill or disabled people), deciding where temporal
shelters have to be placed, how much food is needed, etc. This process considers all
the needs for a maximum of three days. Process 20 deals with funeral arrangements
and is activated in case of a large number of dead people and animals, which have to
be transported to places for cremation of funerals. Process 21 is specifically devoted
to the registration of victims. The information needed for this process is available in
DamagePA, ReliefCentre and Casualty. Process 22 deals with situations when
people need care for longer periods. The information that has to be maintained is the
location of the shelters, the capacity of each shelter and the number of people (with
specification of their needs). Process 23 deals with registration of damages and
destructions (usually in large disasters). In general, when this process is to be started,
a special center (CRAS, Centraal Registratiecbureau Aangerichte Schade is
established). The work of the centre is quite complex, requiring an overall view on
the damages on buildings, infrastructure, cars, data (e.g. cadastre data and other
registers), claims from citizens and companies etc. Parts of this information can be
found in DamagecCar and DamagedBuilding, but we expect that the model needs to
be extended to serve Process 23 better. Processes 24 and 25 are not modeled as well,
since they are very specific and depend on the type of disasters. Furthermore many
new actors may get involved (especially in Process 25, follow-up care), which do not
belong to the sectors considered in this model. Furthermore it is not quite clear
which information from these processes is meant to be shared with other emergency
response sectors.

3.4 Oracle database schema

The conceptual model described in Section 3.2 is translated to a logical model, the
database schema for Oracle Spatial. This translation can be done automatically from
the Enterprise Architect (EA) using model transformation commands; a screenshot

1s given in Figure 3.11.

: File Edt Yew Project Diagram Element Tools Add-Ins Settings Window Help

PG BB o@D E B e (| @uiEBABRE|R L tEEE RN 6 e
ootboi > 3 [73 Logical Diagrar: *Didclasses” createct 11-6-2007 16:05:32 modiied: 2462009153947 100% 79121138 =
More fook... =
E Class Elements =
B Packa Inci dent
ackage Compl aint
B e Hypothetiosl [
=@ Interface e
b B
= Table 01| Sectormal
: i e]
[signal !
'<J>' Asgsntlatmn a.F [dE 0 RiSkZIDneU'
,,,,,,, ikt i Realincident petoo— -
E Class Relationshi... Gasmal
CausedBy [l aiea iR
------------------------------ e
;A A ; -
0.1 1) 4\ PerfarmedFor
A e B DamagePA F--—--— i
[| Manage Desoiibe
sl Patientinjuredin 1__253
B Common Frocess e
B HE 2 EwvertObject a.r
= e
L = = MeasuremertTask
1 i Sy PatientCard i 15 0.
Ol ResponsibeFor fik M
1.7 Drauin By i
3 |
IR i e A T A S ST s)
: Emergensy Response Sectar : !
Reliaf Cant e
Model Transformation E
il
Elements: Transfarmations:
Mame | TargetPackage. |
Cce
v DOL Clazs Model
[EJB Ertity
[C EJB Session
" Java
I JUnit
= WUt 2 —
[wioL
[T #sD
Al I Mane ™ Includs Child Packages
[V Generate Cods on result ™ Petform Transformations on result
~ Intermediany File [optional for debugging ony
‘ D Transfom I
—;I Clase
[Wwhite Always Wiite Now I
| Help | ,;J
4 StartPage\ DMclasses B
L | 2| vefalt Sty Wi AT EHH| QA6 aa | REF Xy

Figure 3.11: Screenshot of Enterprise Architect showing the model transformation window for

automatic generation of tables from the class model.

Figure 3.12 shows the UML diagram of tables created from EA. For each class in the
conceptual level there is a corresponding table in the logical level. All the one-one or
one-many associations are resolved by primary key, foreign key relations. The label
PK in front of a column name indicates that it is (part of) a primary key, label FK
indicates that it is a foreign key, label pfK indicates that it is (part of) a primary key
that is also a foreign key, * indicates that the column cannot be empty, and an arrow
shows foreign key — primary key relation. The automatically generated tables and
relationships need corrections. The translation of types is not always correct, e.g. an
int or integer type is not translated to an Oracle data type, as well as date and
timestamp data types. The dependencies are not resolved correctly, e.g. the class
Sectormal is dependent on the class Reallncident but the translation has not created
a foreign key relationship; the same happens for Gasmal, Process, DamagedCar,
DamagedBuilding, and DamagePA. The associations with attributes are also
problematic; the association Involvedin is created as a separate table with no

relationship with DMSUser and Process, while a new table JoinDMSUserToProcess
is created from the association between DMSUser and Process. The automatic
translation adds a primary key attribute named after the table name and followed by
‘ID’ in case there is no such attribute; e.g. the attribute eventObjectID is added to
table EventObject, while we have meant objectID to be the primary key of the table.
In addition to these, several data types in our conceptual model require special
treatment, e.g. boolean, enumeration types, the spatial types, as well as the new data
types that were created.

Patient Card B Relief Cantre B Inei dent B Complaint B
weolumne weolumns Hypothetical B weolumna o —

patientiD: int cantrelD: int “PK incidentlD: int Pl complaintiD: int
gender. enum@ender centrz_type: enumRCentraT «calumns = location: point call_time: timestamp
name: VARCHARZ(SO) capacity: int dizaster_type: enumDT 0.1 fenced_arza: palygon -
birthdate: date location: point “pik hypothetical D:_Integer start_time: DATE *+Reportabout report: VARCHARZ(S0]
address: VARCHARZ(50) "PK relisfCentralD: Integer il fitrs BAVE 4.7 | FK realincidentiD: Integer
IDeard: VARCHARZEGN) / description: VARCHARZ(S0)

tel_family: VARCHARZ(SH)
place_found: VARCHARZ(S0)

allergy: VARCHAR2(50)
medication: VARCHARZS0) |g.= +F atientinjuredin Realincident =] acolumne

pasttR: MedicalHistony sectors: VARCHARZ(S0)
last_meal: VARCHARZ(S0) acalumns label: MARCHARZ(50]

+PatientSentTa yZ R
e Sector mal B

decontamination: boolean Erlly =] disaster_type: dynamicDT daseription: VARCHARZ(S0)

accident_mach: VARCHARZ(E0) affected_area: MovingRegion "PK sactormallD: Integer

head_diagnose VAREHARZ(SD)&\ zoolumns threatened_area: polygon = 2

injury: enuminjury Sumllp | psyeologicP: DynamicHum estimation_time: timestamp

left_pupilR: boolean triaget: Dynamichum GRIPlevel: dynamicoRIPval

fight_pupilR: boolean triage2: Dynamishum soale: dynamicSoaleLew Eocd =]

notes: VARCHARZ(50) WIEREER (ELmemiitim escalation: VARCHARZ(S0) O

exposure: Exposure iagedn Ay evacustion_area: polygan R e Moving

triage_record: Triage [1.4] triaged: Dynamichum “ptk realinsidentin: Integer ; bp‘_ VARCHGARZGSO

triage_class: enumTriage ead Mrna e ol 501

T "PK casualtylD: Integer prediction: MowingRegion
PR 1D Int

treatment: Treatmant [1.5] FK patientCardiD: Integer +Describe 0.7 i i

*FK patientCardID: Integer r— D R
FK reliefCentrelD: Integer EventObject | *Ferformedfor 0

FIC reallincidentiD: Integer
@ » M ntTask
Responsibefor [calldm acolumne S e e E]
[tProcess] process ype: enumCMProces heTs
start_time: timestamp) acolumnn
£o0lMN) o end_time: timestamp symbol: enumSymELl taskiD: int
DsmagedCar E] FIC processiD: Integer P description: WARCHAR(ED) =T et
FIC depatmentiD: Integer geometny: geometny . .
= assignment_time: timestamp
“FK eventObjectiD: Integer
weolumnz 1.0 ' explosionLEL: boolean
plate_ne: VARCHARZ(ED) - ! e o e gas_tube_no: FLOAT
e . +Depatment reslincidentiD: Integer i
PR damagedCanD: Integer epartmen JoinDMSsarTorrasess [R
+DrawnBy” 0.7 +Assign automess_sonde: boslesn
woolumns e dosismeter: beslean
DamagedBuilding B Departmert B FK processiD: Integer e - protection: boolean
FiC dMSUseriD: Intagar e details: VARCHARZ(SN)
acolumnw weolumng J |nvu|veu|n/ﬂ' "PK measurementTasdl: Integer
BAGeode: WARCHARZ(SD) TFK departmentil: int 1.7 // Fi dMSUserlD: Integer
"Pl damagedBuildinglD: Integer deptCode: VARCHARZ(S) 4 W FI realincidentiD: Integer
safetyRegion: enumSafetyReg DMSUser fole: enumRale
location: peint [stadgor DZ startfime: fim S Measuremert B
DamagePa =]] ecotumns - gnthm;T-IDN.mlgiump
- DMSuserD: int inveolvadinib: TriayEy pr—
weolumnzs userBSH: VARCHAR2(50) measurement_time: timestamp
trapped: DynamisNum +BalongTa 1.7 toles: listl Roles [1..10] explosionL EL: FLOAT
miing | Dynaml e *PK dMSUserlD: Integer pumping_na: int
T X
peopleZevac: DynamicHum Vehicle =] FK userlD: Integer eLead — 8 gas_tube_na: enumBravel/
peopleZdecontam: DynamicHum : T +Perform foanoentision JE Tl
animalzdecantam: DynamicHum O N T 0.* automessi: FLOAT
. f PK teamiD: int]
Pespisdehatiar: DyamieHE PI wehiclelD: int +Travelfinn eamiD: in 0. PoreTh LA
wehicleCode: WVARCHARZ(EN) type: enumTeamType
(e Fmerodium - automess_sanda; FLOAT
losation: MowingPoint 0. name: VARCHARZ(S0) =
animalZfeed: DynamisNum polays. O o mombe dosismeter: FLOAT
e i’ caloulate ime _
PR damagePAID: Integer ” e Jocation: MovingPaint . details VAR'C‘;AI‘%Z'(SDJ
FK dmSUserD: Integer measuremen ntegey
FK_vehiclelD: Infeger FK teamiD: Integer

Figure 3.12: EA automatically generated tables from the class model: PK indicates a primary
key, FK a foreign key, pfK a foreign key that is also a primary key; an arrow indicates tables

relationship.

Figure 3.13 shows tables and relationships after making the necessary modifications:
types int and integer are changed to NUMBER(), the types date and timestamp are
changed to DATE and TIMESTAMR respectively. We changed the spatial types to
MDSYS.SDO_GEOMETRYhich is the spatial type of Oracle Spatial for all points, lines,
and polygons. The boolean types are changed to CHAR(1), with a check constraint
added to the field to restrict values to Y’ (true) and ‘N’ (false), e.g. for the attribute
decontamination of the table PatientCard the constraint is CHECK
(decontamination in (Y’, 'N’)) . The enumeration types are changed to
NUMBER(), and these numeric values will be used as codes that refer to the values of
the enumeration list. The relationship tables Involvedin and JoinDMSUserToProcess
are merged under the name UserInProcess. The trelationship table ResponsibleFor is
renamed to DeptResponsibe4Proc. The relationships are added for the dependent
tables, e.g. Process. The primary key attributes added from the automatic generation
were deleted and the identifier (class) attributes were declared as primary keys, e.g.
objectID is the primary key of table EventObject instead of eventObjectID, which is
removed from the table. The primary keys were added in the depended tables. Then,
the primary-foreign key relationships were added or corrected. We merged the

classes MeasurementTask and Measurement into one table named Measurement

to be able to express constraints using attributes of both classes.

JWW1sS3mL lewsebzpay

(00ZIZdwHI v 12p sEAW
dWELEIWIL AWTEE AW
w004 dsjEwsiEep

1%074 “m_ucomlmmwc._ot._m
Lw0T4 Essewone
L0704 :hssawane

1%0774 uoRERURIU0D
(ZdFamnn =qny sel
(FaIamny cou”Buidwnd
Lyg4 T3 uesa)dxa

(OZ)HIEWNN CQIWESL X4

(DOZIZHHHI WA E|IEIRPHEEL
(LIdwHD uopasjod

(LJ4%HD uzjawsisop e}

(LIdwHD SRpuos ssaloine” He]

(I IWHD ss3wopne ey

19074 ou"aqny sef

CLIHWHD J3usiso|dxaysey
dWwLSIWIL B Wy uswubiEse
AHLIWOIS DS SASAN (UenEaD]

(SLI4IEWNN dURENSaY H4
CGLHIEWNN CQRUEPRUL H
SETIIANNN CAPEET Hdx

EOTLITES

D PEWE INSESpy

NOISIHTONIADK uohaipad
(0R)ZYWHIHWA (1398
NOIS3Y NIAOW RdEys

U oa e

SLIHIANNN dRuEpRUld,

LHIOE SNIADWH UonEan]
(Z)43AWNN SRqwawou L0 YA BAEL L+ LHIO49NIADK uonean)
(OPTHTHI W, (FWEY dWWLSINIL ¥ 1IpaE|na e
(Zi43amny adiy weay 0 (OLIZYHIYYA SMSaIasn (OZIZHWH IR RPODaaIyan
(GLHIAWNN QB sd L (0L 3EWNN ardap x4 (OLIH3amNN apd=p x4
il (GLMIAWNN (QURPE3| 4 |Agpea+ |LELIHIEWNN CQUESNSING Ad. | o) L CQIRRIYEL M,
(DZTTEMNIN AILE Hd. o e
Agpawiopa 4+ AL | O
E FEENET] wopwoms | [E CIETICTS
D wea)
) <k
A
o) Bunjag+
Agpaubissy+ (Eldgamnn =
WS LSIWIL Wy pus L\
AgumEIg+ dWIYLSIWIL 13 WHHEL B E e S IS Gl o=l
(EHIBANN 25 ==w001d 1d, (2)43amnN uoiBayiaes
CLTASENNN aRI=FEl s, (REERTE, EPeEED
=0 B TR SAEEmaltl, (OWYIENNN (QRuswpEdsp g
— UL |00 f._E_.__oosx
AHLAWOIS DS SASAW Apewoad
(0SIZdWH I uenduasap ss30044uU]Jas
(ZIANNN Joquis O 3 il E R ed=g
(GLI4IAWNN quesn x4 B
(GLI4IEWNN_ TRUAPIUL 3 4 -
dPFLEINIL PWRTREE dWFLSIWIL Fwypua
TZdIaMNH 20 s==aoid Hd, - dWELEIMIL Bwy TS
E weE0wEng CLIHTHMNN CaRu=pru s, ' TOIFAIANNN aRd=p s,
0 LT T E TZId3amnN =i sseaoid wd,
GHEIANNN aRIEPRUl .
0 aquotags E ssa0044 HUWnoa
sz _‘_ D anldraqisundsaydsg
abEuEpy+
lojpawlopads

A

= AHLIWOID 0AS SASAW ERET UOIENIERD
(OSIZUYHIY WA (UolE|EasR

WINH™JIWENAG (3|Eas

Lo

_u [EWSED

JopEsds+ WIMH T 2 HAG

(O0Z)ZHFHIH WM uepdussap

NOISIY oNHIADH

dWELEIWIL 3wy uoiewEs
AHLIWOIST 0A5 SASAW (ERE pausjealyy
(EEIET paagE

JUNSOdxT PFMZIEWIUE
WM JIWNAT (payze|dead

WINNT JIWNAD egayspa dead
PIMNT 21PN A
WINH™ 2R A Cweeaapza)doad

EJU0aapZ|EWIuE

WINNJIWwNAG 2EARZR|dead
WINN 2N cBussiw
WK JIWEHAG cpaddey
GLIIEMNN aRuzRE i,

SULLN| oD@

wd=beweg

OZJZHWHI YW (Rpoasg
SLIYIAINNMN CqRUEpERUL 2.
CULIN |03 n

Buipingpaieweg

OLIZHH DY foU 33|

Ad:
SEHIEWNNN JRUFPE UL,
Suwnjoo®

_u 1enpafeweg

« 0

[2 1] LHIW L3y L uawgesn
(OOZIZHWH I SHEWa
(Ldgamny =sep abien

[71] 3owiyL cpoaaiafien
JUNS04%T ansodxa

TAPFENEO+

(00ZIZewH WA 55q0u
(L HD cyidnd Ty by

HENEdld D

UIpRIN[URUEGE d+

AW LSINIL AWy

AHLINO0IS DA SASAW WoREaD)

|E2

(GLIHIEWNN ABUEPIRUL ¥4

P ECI TG TNEE TR E M
UM |30

WNNTDIWYH LD CPESR
WM I S HAD ERben

(OS)ZHwH IR 129E) Vo PIMNT 2N AT “wn_.zlammm__u . |
(OSIZHFHD Wy, =10p 3 T (gH3annN .o_ucma_uc_ﬂ__”_v“wm RAPTENET + WMNTIIAYNAG (LB
GLIHIENNN aRuapRulsd, WNN_JIWWNAG :daiBojoadsd
SULIN| 022 TpuEplaul
noqHedags E e —— SLIH3AWNN a R_U.L.Eﬂ.__v“wm
D [EW J0j0ag
. (Ziy3amny :2digTizgEesp B Ayense]
S b0 ENFEETTN U EN IR
ao7a poeda (00ZIZdwH I uonduasap suwn| oo

31%qg swhTpua
L% EWRHERE v _H_

|22 jEodiy

AHLIWOID OIS SASAW (ERETpIoUR
AH1IWO0TOT 0AS SASAW WoRED|

(SIHIERNN CARUZPIRL Ay
LONTLILLEY

E Wi dweg

E wzp 10Ul

AHLIWOIST 005 SASAW uonean
(oL)d3anny Hpeedes
(d3amnn ediysguas

L

(L3 HD dpdnd s
(Lad3gmnm nfuy
(DSIZwHIYn asoufielpTpeay
(DSIZHWHIEYA (Y03 W uapIaaE
[JH%HD fuofEuILEID 3R
(OIZIYHI YA CIEaWTIsE|
AHOLSIHT 21030 uppsed
(DSIZHYH I A UORESIpEW
(OSIZwH Iy AR E
(0S)ZUwH I puney=oe|d
(DTIZHFHI WA e 153
(0ZIZHWHI WA (pIE2q)
(O0LIZYFHI UM =58P PE
LW FIEPYHIG
(0S)IZUWH DY awEy
CLJd3amny 12pust
(OLIHIEWNN 123030
(SEIIENNN gRuapoul

DITHTANNN (#0050 Hd.
HULLR| a3 %

E 203 3112

QLRSS

SLIYIENNN aRuanEe
UL | 03

Ad
Ad
Hdx

E paRIUERRY

imary key; FK

: PK shows pr

ion

informat

ic

Oracle spatial data tables for ER dynam

Figure 3.13

key

12n

key, an arrow shows fore

i 1l as a foreign

is primary as we

foreign key, pfK a column that

101.

key relat

— primary

The UML diagram of Figure 3.13 is a visual model of the database schema. The

corresponding Data Definition Language (DDL) statements will create the database

schema in Oracle Spatial. These are the structures where the data can be stored. The

generation of DDL statements can also be done automatically from EA; a screenshot
is shown in Figure 3.14.

=181x]
AddIns Settings Window Help
T R e (@ EBRARE|R. LCEDE ®n 5w e
ol || 73 LogicalDingram: " Tables! createdt 26:2009 1558.05 modiied 262008 185040 100 16544 1169 ﬂ‘
TotooET] F Ty
oretools. | — = - [EEH=AE R o 2
E] Class Elements =] Relizt Centre [E] sl E roject Model
B Package —_ (51 Class Modkl
= i “PK incidentiD: NUMBER(1S) e Divclasses
E Qs R sentielDz NUMBERL) Sl location: MDSYS.500 GEOMETRY i compl o Clacsnonrncase
o Interface e P ISR vt packcage DL 3
an_time:
[Enumeration location: MDSYS.5D0_SEOMETRY Hypothatical El s
= Table PR desoription: VARC! Floot Package: [Data Model Generate: I
1 *pikincidentiD: NUMBERC1S) 0.1
[sigral Cazuaity 3 disaster_type: NUMBER(Z) o
< pssodation s
e) acclumnn Realincidert =] Comment Level [Hone: v U and as comment
Bl Class “pfiCincidentlD: NUMBER(IS)
papeologicP: BYNAMIG_NUM ¥ Create Primary/Foreion Key Constraints
. | S el e UnIEER 15 % GereutelndenlCansats
= 02 disaster_type: DYNAMIC_NUM
A 2R Hizged: DYHAMIE I affected_area; MOVING REGION LG sossinliiccess
(50} :nsgein Dmm‘ﬂc\ﬂiw threatened_area: MDSTE.300_GEOMETRY ™ Generate Stored Procedures I Generate Packages [Dracle}
sl or (50 1= - estimation_time: TIMESTAMF r i
By - ISHmE: Generate Views ™ Benerate Functions
deadi DY RARIENURL GRIPIewal: DYHAMIC_NUM
E Commaon 0.2 +Patientinjuradin seale: DYNAMIC_NUM I Create Drop SOL ™ Generate Sequences
esealation: VARCHARZ(S0)
B B +CausedBy evasuation_area: MDSYS.5DO_GEOMETRY: Use |: a: 5L Teminator. W an the same fine.
R I lse and| around names
! +Manage
- DeptResponsibedfros [125 I Generate Table Duner
+Besaiibe
aealumna Frocess B Use Database
“piKincidentlD: NUMBERCS .
“piK process type: NUMBER(. csolumn g ™ Use dliss if Avaiable:
*pik depiD: NUMBER(1D) “piKincidentiD: NUMBER(15)
stan time: TIMESTAMP [1-7 "PK process_type: NUMBER(Z) Gl ™" Use NULL for nuable columns
end_time: TIMESTAMP
wcelumns ~File
B “PK gbjedlil: 1
1 3
Fie usens W0 Incividual il for each table
e —] symbol: N
deseription T
£
wealumns 920MEY Gelect Objects ko Generate I Include all Child Packages

"FK depaimentiD: NUMBER(1D)
depiCode; VARCHARZZO)
satetyRegion: NUMBER(Z)
location: MDSTS.5D0_GEOMETRT

Tanget File -

+DrawnBy

2 and_time: TIMESTAMF
B role! HUMBER(Z)
+BelongTe
| 1~
o
5 ™
wehicle B | wwonror DMSUser B o
woslumns
_HUN weolumnn woolumno "FK teamlD
AAMIC_HUM TP wehiclelD: int 1.7 | "PK DMSuserlD: NUMBER{15)| FleadBy| FK leaderD
LAMIC_HUM FIC deptiD: NUMBER(1D) FK duptiD: NUMBER(ID) ~| 7 vehiclall
IC_HUM wehicleCode: VARCHARZ(Z0) userBSH: VARCHARI(1D) @ team_ty. nt =
U saloulatzdETA: TIMESTAMP nam: v aaica S
nnnnnn + 0.
i Joastion: MOVING S Foudl v With e Selestal | SelectHane | Delele Taiget Files Cancel

] | [T
q StartPage™, Tables [S
P g | = 2 vefak sty B piEmETE AN | O 6| Q6688 |EEs X,

Figure 3.14: Automatic generation of SQL scripts from the data tables.

The DDL script created by EA needs modifications. The automatic generation
cannot handle new data types, neither a solution for enumeration lists. We added
most of the constraints directly in the DDL scripts (and not in the UML table model,
for not being practical, though possible). We created new data types for the patient
card information, e.g. the EXposure data type is created by

CREATE TYPE EXPOSURE AS OBJECT (
level NUMBER(1),
radiologic NUMBER(1),
biologic VARCHAR2(25),
chemic_infect NUMBER(1),
chemic_type NUMBER(1),
chemic_name VARCHAR2(25)

);
The creation of temporal and spatiotemporal data types is treated in Chapter 4.
All the enum types are implemented as (look-up) tables in Oracle. For example, the

attribute process_type takes values from a look-up table Process_Type
containing information for all processes. The table Process_Type is created from:

CREATE TABLE Process Type (
code NUMBER(2) CONSTRAINT PK_Process_Type PRIMARY K EY,
value_EN VARCHAR2(70),
value_NL VARCHAR2(70)

);

The table is filled with information for all the 25 processes. Values of
process_type attribute are constrained to codes available in Process_Type
table, by its declaration inside the Process table:

CREATE TABLE Process (
incidentiD NUMBER(15) CONSTRAINT FK_Process_Inciden t
REFERENCES Realincident,
Process_type NUMBER(2) CONSTRAINT REF_Process
REFERENCES Process_Type,
start_time TIMESTAMP,
end_time TIMESTAMP,
CONSTRAINT PK_Process PRIMARY KEY
(incidentID, process type)
);
The automatic generation of DDL scripts creates the primary and foreign key
constraints with an ALTER TABLE statement after the creation of all the tables.
After modifying the DDL scripts we put the constraints within the CREATE TABLE
statement.

Other constraints are added to control attributes of boolean type (Oracle tables do
not support boolean type), a well as (pre-)conditions of the information. For
example, explosion state LEL is a measurement from the form of Figure 3.5:
attribute task_exposionLEL contains values true/false deciding if this
measurement should be performed, and attribute explosionLEL contains the
measurement value in case the task decided that this measurement should be
performed. This is checked through these constraints written in the declaration of
Measurement table:

task_explosionLEL CHAR(1) CONSTRAINT CHK_explosion_ task
CHECK (task_explosionLEL in ('Y’, 'N"),

CONSTRAINT CHK_explosion CHECK
(task_explosionLEL <> 'Y’ OR explosionLEL IS NOT NU LL),

The first declares task_exposionLEL attribute as having only values ’Y’ (true) and
N’ (false); the second assures that if task_exposionLEL is set to true, then
explosionLEL is not empty. Appendix A: Oracle scripts creating the database
schema with temporal data at attribute level contains the complete scripts that create
the database schema.

4 Managing spatiotemporal data

The databases managed by a standard DBMS normally describe the current state of
the world. A standard DBMS offers data types like date and time that can be used
from the attributes. If an application needs to keep track of the history of changes, it
has to manage time itself by adding it explicitly as attribute(s), and performing the
right kind of computation in the queries. When a join is done between two tables
extended by time attributes, explicit conditions should be added to the query to
assure concurrency in the lifetime of joined tuples. This results soon in quite
complicated queries, and long execution times. A temporal DBMS system takes care
that such conditions are checked automatically, so that there is no need to include
them explicitly in a query. The objective of a temporal DBMS system is the
integration of temporal concepts deeply into its data model and query language, to
achieve efficient execution of queries. A spatiotemporal database system aims at a
combination of temporal and spatial concepts, which bring to structures and
techniques for handling spatiotemporal data.

4.1 Existing research on spatiotemporal modelling

The basic concepts of a temporal DBMS are the time domain and the time
dimensions. Time is generally perceived as a one-dimensional space extending from
the past to the future. The time space can be viewed as bounded or infinite. A
bounded model assumes some origin and also an end of time. Time can be seen as
discrete or continuous. While time is perceived as continuous, for practical reasons
temporal databases work with discrete time. Two important time dimensions are
valid time and transaction time. The valid time refers to the real world time instant
when a change occurs, or the period during which a fact is valid. The transaction
time refers to the time when the change is reflected in the database, or the period
during which the database is in a particular state. In this context, standard databases
are called snapshot databases; those dealing with valid time only are called valid-
time or historical databases; those handling only transaction time are called
transaction-time or rollback databases; and those treating both kinds of time are
called bitemporal databases. The term temporal database refers to a model or
system offering any kind of time support.'

Some relational and object-oriented databases are extended with the temporal
concepts. The general approach has been to consider elements of the DBMS data
model (e.g. tuples) as facts and to associate elements of the time domain with them
to describe when facts are valid (timestamps). Timestamps are added at the tuple
(object) level, or at the attribute level. Several temporal models have been proposed
(Zaniolo et al 1997); some of the models store change at the instant it occurs, others
store the period during which a fact or a database state exists. For example, a
temporal model working with valid time at the tuple level may add a new tuple for
each change, time-stamping it with the instant it became valid, or time-stamping
every tuple with the period they are valid.

1 Most of the text in this section is taken from (Giiting and Schneider, 2005).

Classical research on spatiotemporal databases has focused on discrete changes:
sporadic events e.g. volcano eruptions, earthquakes; stepwise constant changes, that
are spatial objects whose shape and position changes discretely in time, e.g. capital of
a country or headquarter of a company change position discretely, land parcels in
cadastral applications or state boundaries change shape discretely. Figure 4.1 (taken
from Giting and Schneider, 2005) illustrates discrete and continuous change of
spatial objects. The point and the region in Figure 4.1(a) change at discrete moments
of time, whereas the point and region of Figure 4.1(b) change continuously.

t A ¢ A

> >
X X
(a) (b)

Figure 4.1: Spatial objects changing over time: (a) discretely changing point and region, (b)

continuously changing point and region.

Later research concentrates on continuous changes (Giliting et al. 2000, Giiting et al.
2003, Giting and Schneider 2005) and uses the term moving objects. A moving
point is the basic abstraction of a physical object moving around in the plane or a
higher-dimensional space, for which only the position, but not the extent, is relevant.
The moving region abstraction describes an entity in the plane that changes its
position as well as its extent and shape, i.e. a moving region may not only move but
also grow and shrink.

In general, a moving object can be represented as a partial function from the time
domain to the set of spatial objects. For example, a moving point is an element of
the set mPoint defined as mPoint = {o : R - Point}. All other ‘moving’ types are
defined similarly, and are named by prefixing the argument type with an ‘m” mPoint,
mLine, mRegion, mint, etc. collection of operators is defined over the spatial types.
These operators should be able to express the most common questions one may ask
about changing objects in time. One group of operators performs questions in the
time domain, another group of operators extends with time the (static) spatial
operators (see Giting 1994 for a list of standard spatial operators), a third group
gives the rate of change of moving objects. The operator DefTime returns the time
intervals during which a moving object exists. This is the domain of the function
representing the mSpatial object. The operator Atlnstant returns the state of a
mSpatial object at a given instant. The Atlnstant operator provides snapshots of a
moving object as a pair of (static) object state and instant of time. The operators
Initial and Final return, respectively, the state of a moving object at the first and last
instant of its existence, respectively. The operator Val extracts the object from a pair
of object state and time. The operator Present returns true if a moving object exists
at a given time instant, and returns false otherwise. A collection of static (spatial)
operators can be extended in the time domain through a process called lifting
(Guting et al. 2000, Giting et al. 2003). The idea is to allow any argument of a spatial
operator to be made spatiotemporal, i.e. to become a changing object, and to return a
temporal type. For example, we can perform the intersection between two moving
regions, or between a moving region and a region, both returning a moving region. A

region object is constant and exists all the time. It can thus be presented as a moving
region object that is a constant total function. All lifted operators are defined for
moving objects, or a combination of moving objects with static objects. Lifted
operators are defined for set operators (e.g. union, intersection), topological
predicates (e.g. overlap, disjoint), metric operators (e.g. area, perimeter, distance). A
third group of operators contains Derivative, Speed, Turn, Velocity.

Other work on spatiotemporal data modelling and querying are presented on
(Chomiski and Revesz 1999, Tryfona and Christian 1999, Oosterom et al. 2002,
Pernt at al. 2006, Meratnia, 2005, Mokbeland Aref 2008)

A moving object is presented by a (partial) function from the time domain to a
spatial object type. This assumes that the changing process is fully known and
modelled, which however is generally not the case. Spatial objects are extracted from
acquired data, which is done at discrete moments of time. A more realistic solution is
to store an object at various discrete moments of validity, together with functions
that model the change (transformation) from a stored instant to the consecutive one.
Modelling change between short periods of time is less prone to errors, and can be
accepted as a better approximation of the real change. A moving object can thus be
represented by a sequence of objects at discrete moments of valid time, together with
a function for each of these moments, giving the change from that moment to the
next one.

A moving object can be stored as a sequence of the corresponding static simple
objects. The complete (approximate) information about a changing object is then
compiled from a linear interpolation method. An mPoint object is a (time) sequence
of Point objects, each associated with a time stamp, i.e. {((x1, Y1), t1), . . ., ((Xn, Yn),
tn)). Linear interpolation should be petformed between two consecutive elements of
the sequence in order to get the state of the mPoint object at any moment of time.
An mPoint object is thus a piecewise linear feature in a four-dimensional space.

4.2 Working with spatiotemporal data in Oracle

The data model described in Chapter 3 requires three temporal and spatiotemporal
data types: DYNAMIC_NUMfor dynamics counts, e.g. number of missing people;
MOVING_POINT for dynamic points, e.g. position of a team in the field;
MOVING_REGIONfor dynamic regions, e.g. the gas plume. A dynamic count is
stored as a sequence of paits (cnti, ti), where cntiis the count value at instance ti. For
any time instant t, the value for count can be calculated from linear interpolation
between two consecutive counts cnti and cnti+1, such that t [J [ti, ti+1]. Similarly, a
MOVING_POINT is stored as a sequence of pairs point location and time, and a
MOVING_REGIONas a sequence of pairs polygon shape and time. Different
interpolation techniques can be used for calculating point position and polygon
shape for any moment of time, see e.g. (Meratnia and de By 2003, Meratnia 2005) for
moving point interpolation.

4.2.1 Declaration and use of temporal data types

We use nested tables in Oracle to store sequences for dynamic types. For example, to
create MOVING_POINT type, first an object type is created containing a time

instance and a point location, which is then used to build the sequence as a table of
such objects:

CREATE TYPE MPointinst AS OBJECT (
meas_time TIMESTAMP,
point_geo MDSYS.SDO GEOMETRY
);
/
CREATE TYPE MOVING_POINT AS TABLE OF MPointlnst;
/

The other types, MOVING_REGIONind DYNAMIC_NUMre created in a similar way.
The new data types are used in tables containing attributes of a dynamic nature. For
example, Team table has an attribute position , which is a moving point. The DDL
statement for creating the Teamtable is:

CREATE TABLE Team (
teamID NUMBER(20) CONSTRAINT PK_Team PRIMARY KEY,
name VARCHAR2(20),
team_type NUMBER(2) REFERENCES TeamType,
no_members NUMBER(2),
leaderlD NUMBER(15) REFERENCES DM_SUser,
vehicleID NUMBER(15) REFERENCES Vehicle,
position MOVING_POINT

)
NESTED TABLE position STORE AS TeamPosition;

Other tables, like Reallncident | Gasmal, Casualty , and DamagePA which
contain dynamic attributes, have similar declaration (see Appendix A, from page 57,
for the declaration of the other tables).

bl

The use of temporal and spatiotemporal types in the database tables is an example of
handling time at the attribute level. Another option is to work with time at the tuple
level. In this case the management of data is performed by standard SQL (Structured
Query Language) queries. The performance of queries over a database schema that
uses spatiotemporal data types, as compared to a database schema that handles time
at tuple level is a relevant matter. For this reason we created a database schema, i.c.
DDL scripts to create the tables and other structures in Oracle Spatial. Appendix B
provides the scripts for the creation of a database that handles time at the tuple level.

Working with (spatio)temporal data that is stored by employing temporal and
spatiotemporal types, requires special queries, i.e. not the standard SQL. In the
following section we elaborate on these queries.

4.2.2 Storage and retrieval of spatiotemporal data

A spatiotemporal attribute can be filled by adding values (point location or polygon
shape) for each time instant one by one. First, an empty table should be created for
the spatiotemporal attribute, and then time-geometry pairs can be added one by one.
For example, assume a new team is created, and its data is entered into Team table,
together with an empty instance for the spatiotemporal attribute position:

INSERT INTO Team (teamID, name, team_type, no_membe rs,
position)
VALUES(12,'Whisky 349, 2, 4, MOVING_POINT());

Once the empty nested table is created, data can be added to it:

INSERT INTO TABLE(
SELECT t.position
FROM Team t
WHERE TeamID = 12)
VALUES(sysdate, sdo_geometry(2001, 90112,
sdo_point_type(86875.2, 447457.9, null), null, null);

The above statement adds one tuple, time-position pair, where time is the current
system time, and position is point type geometry of Oracle Spatial. It is possible to
enter a block of values at once in a spatiotemporal attribute. We have the GPS logs
for the position of (six) teams in the field, containing (among other data) an identifier
for the team, time and position. The data is entered in a temporary table GPStrack :

desc GPStrack;

Name Null? Type

ID NUMBER(11)

TIME_ CHAR(19)

GEOMETRY MDSYS.SDO_GEOMETRY

To insert the data from this flat table into the Teamtable in our model, e.g. for team
with ID = 16, the following statement is executed:
INSERT INTO Team(teamID, position)
VALUES(16,CAST(
MULTISET(SELECT MPointInst(time_, geometry)
FROM GPSTrack
WHERE id = 16)
AS MOVING_POINT)
)i
Each individual record of a spatiotemporal attribute can be accessed by performing
an un-nesting of the table. For example, the following statement returns the
trajectory of team 16 that was entered above.
SELECT tp.meas_time, tp.point_geo
FROM THE(SELECT position

FROM Team
WHERE teamID = 16) tp;

For the purpose of visualisation, spatiotemporal data is converted to spatial data. We
create views that perform an un-nesting of tables, in order to turn the spatiotemporal
types to spatial types. For example, to view data from Team table, TeamTracking
view is created:

CREATE VIEW TeamTracking AS

SELECT t.teamlID, t.team_type, t.name, t.no_members,

t.vehiclelD, p.*
FROM Team t, TABLE(t.position) p;

which structure is

desc TeamTracking;

Name Null? Type

TEAMID NOT NULL NUMBER(20)
TEAM_TYPE NUMBER(2)
NAME VARCHAR2(20)
NO_MEMBERS NUMBER(2)
VEHICLEID NUMBER(15)
MEAS_TIME TIMESTAMP(0)

POINT_GEO SDO_GEOMETRY()

To visualise data from Oracle Spatial, metadata should be filled for spatial attributes.
For the view created above we add metadata information for the spatial attribute,
specifying the extent and the reference system (for the whole Netherlands):
INSERT INTO USER_SDO_GEOM_METADATA VALUES

‘TEAMTRACKING',

'POINT_GEO',

SDO_DIM_ARRAY(

SDO_DIM_ELEMENT (X', 0, 220000, 0.05),

SDO_DIM_ELEMENT ('Y", 250000, 630000, 0.05)),
90112);

Data of TeamTracking view can be visualised from FME software (or another
software visualising Oracle Spatial data), and can also be accessed from a web service.
Figure 4.2 shows the trajectories of six teams, which data was entered by the
statements given above.

Figure 4.2: Trajectories of six teams in the field; colors identify the different teams.

5 Spatiotemporal data analysis

The spatiotemporal data model is to be used in analysis, in order to help decision-
making during emergency. Analysis usually requires combination of existing data
with the dynamic data, which in turn requires combination of spatial functionality
(on static data) with spatiotemporal functionality.

The AGS adviser (for dangerous substances) might need to know, e.g. the positions
of measurement teams in the last two hours. This requires analysis of temporal
(dynamic) data for teams of type ‘measurement team’ (TEAM_TYPE= 2), selecting
their positions starting from two hours from the actual time. Figure 5.1 shows, in the
left, the trajectories of six teams in the field (the same shown in Figure 4.2), and in
the right, positions of the measurement teams (12 and 14) in the last two hours.

® 12
13
14
15

. A\J team|D
. .
P 11 ‘
b

16

Figure 5.1: Trajectories of six teams in the field (left); trajectories of the measurements teams

in the last two hours of an incident (right).

As soon as the threatened area of an incident is entered in the system, it should
display the residential buildings and calculate the number of people (registered in
these buildings) that are within this area. Such information is needed to organise the
evacuation procedure. This requires a combination of dynamic data, threatened area,
and existing data, buildings and data on registered residents in these buildings.

Figure 5.2 shows a residential area, the location of an incident, and its threatened area
by the semi-transparent bluish circle. Buildings (in red colour) that overlap with this
circle are selected, and databases of the municipality are queried to estimate the
number of people leaving in these buildings (using BAG code to identify each
building).

Figure 5.2: A fire incident in a residential area, threatened area is shown by the semi-

transparent blue circle.

Spatiotemporal operators (functions) are to be build on the spatiotemporal types
introduced in Section 4.2 to provide the functionality for the data analysis. These
functions will be defined based on the typical queries needed for the decision-making
during the emergency response. Other examples of such queries are:

42

Find the location of all the fire brigade teams.

How many people of the police sector are involved?

When did the fire brigade, ambulance arrived at the place of incident?

Find police vehicles that are in a radius of 5km from the incident.

Give information that has been available 2 hours after the incident has taken
place

Give the number of injured, missing, trapped people ... two hours, four hours,
six hours ... after the incident. How did they develop?

Which police car is the closest to the incident? (dynamic routing)

Calculate the route for an ambulance, which does not overlap with the gas
plume.

Calculate the speed of expansion of the gas plume.

Evaluate the evacuation area for the next 8 hours from the Gasmal shape and
prediction.

OTB Research Institute for the Built Environment

6 Conclusions and recommendations

This report presents a spatiotemporal model to maintain operational and situational
information in emergency response. It is developed after a careful investigation of
the information flow from processes performed by the first responders: fire brigade,
paramedics, police and municipality. The model is derived from the organization of
emergency response in the Netherlands. It practically represents pieces of
information that are currently collected in analogue way (paper templates), via
telephone or digitally (but stored in an unstructured way). It captures the type of
disaster, the involvement of response sectors (allowing registering of their locations),
consequences of the disaster for people, animals and infrastructure, and captures
other significant objects. Some of the processes need further consideration, which
eventually will require en extension of the model.

The model is currently tested only for the management of spatiotemporal data and
more specifically for moving point objects. Since not all the operational and
situational data (intended for storage) in the model are currently recorded, it was not
possible to test the entire model. An appropriate interface to collect this data is in
process of development. Further experiments are needed to validate all the
developments and especially the digital replacements of the templates used by the fire
brigade and the paramedics. Appropriate digital templates and interfaces (on mobile
devices) are needed as well.

Future work includes development of spatiotemporal functionally to allow analysis of
spatiotemporal data, e.g. distance between two moving points, direction of
movement of a moving region, dynamic shortest route on a (road) network. The
model is to be part of a complete ER system where the dynamic data will be
combined with existing data accessed via the internet. Investigation of the
functionality needed over this combination followed by the development of such
functionality is another direction for future work.

Next developments of the model would be to accommodate higher GRIP levels
which mean involvement of a wider range of organisations, more actors (i.e. people
with specified roles) and wider range of information.

44

OTB Research Institute for the Built Environment

Bibliography

Chomicki, J. and Revesz, P. Z. 1999, Constraint-based interoperability of
spatiotemporal databases. Geolnformatica, 3(3):211-243, 1999.

de By, R. 2005, Principles of Geographical Information Systems. ITC Educational Textbook
series; 1. International Institute for Geo-Information Science and Earth
Observation (ITC), Hengelosestraat 99, P.O. Box 6, 7500 AA Enschede,
The Netherlands, 3d edition

Diehl, S. and van der Heide, J. 2005, Geo Information Breaks through Sector Think,
in: Oosterom, Zlatanova&Fendel (eds) Geo-information for Disaster
Management, Earth and Environmental Science. Springer Berlin Heidelberg,
pages 85-108.,

Diehl, S., Neuvel, J., Zlatanova, S. and Scholten, H. 2006, Investigation of user
requirements in the emergency response sector: the Dutch case, Second
Symposium on Gi4DM, 25-26 September, Goa, India, CD ROM, 6p.

Dilo, A. and Zlatanova, S. 2008, Spatiotemporal data modeling for disaster
management in the Netherlands, in Walle, Song, Zlatanova, and Li,
Information Systems for Crisis Response and Management, Harbin Engineering
University, 4-6 August 2008, pp. 517-528.

Giting, R. H. 1994, An introduction to spatial database systems. ['ILDB Journal,
3(4):357-399, 1994.

Giting, R. H, Bohlen, M. H., Erwig, M., Jensen, C. S., Lorentzos, N., Schneider, M.
and Vazirgiannis, M. 2000, A foundation for representing and querying
moving objects. ACM Transactions on Databases Systems, 25(1):1-42, March
2000. 37

Giting, R. H., Bohlen, M. H., Erwig, M., Jensen, C. S., Lorentzos, N., Nardelli, E.,
Schneider, M. and Viqueira, J. R. R. 2003, Spatio-temporal Models and
Languages: An Approach Based on Data Types, in: Spatio-Temporal
Databases: The CHOROCHRONOS' Approach, Lecture Notes in Computer
Science. Springer, pp 117-176.

Giting, R. H. and Schneider, M. Moving Objects Databases. Data Management Systems.
Morgan Kaufmann, August 2005.

GHOR Academie. Basisleerstof GHOR, 2008, Technical report, Nederlands
Instituut Fysieke Veiligheid Nibra, Arnhem, the Netherlands, July 2008.

Dong, H. K., Keun, H. R. and Chee, H. P. 2002, Design and implementation of
spatiotemporal database query processing system. Journal of Systems and
Software, 60:37-49, 2002.

MBZ, 2003, Handboek Voorbereiding Rampendestrijding (in Dutch) available at
http://www.nifv.nl/upload/157207_668_1246372018436-
HBOEKI1_zonder_ GRIP.swf (last accessed December 2009)

Meratnia, N. and de By, R. A. Trajectory representation in location-based services:
Problems and solution. In Klas et al. Santucci, editor, Proceedings of Fourth
International Conference on Web Information Systems Engineering Workshops
(WISEW’03), pages 18—24, 2003.

Meratnia, N. 2005, Towards Database Support for Moving Object Databases. PhD thesis,
Twente University, Enschede, the Netherlands, 2005.

Mokbel, M. F. and Aref, W. G. 2008, Sole: scalable on-line execution of continuous
queries on spatio-temporal data streams. I'ILDB Journal, 17:971-995, 2008.

Nederlands Normalisatie Instituut, 2005 Basis model Geo-informatie, NEN 3610 (in
Dutch) available at http://www.geonovum.nl/content/basismodel-
nen3610.

Parent, C., Spaccapietra, S. and Zimanyi, E. 2006, Conceptual Modeling for Traditional and
Spatio-Temporal Applications: The MADS Approach. Springer, 2006.

Scholten, H., Fruijter, S., Dilo, A. and van Borkulo, E. 2008, Spatial Data
Infrastructure for emergency response in Netherlands, in: Nayak &
Zlatanova (eds) Remote Sensing and GILS' technology for monitoring and prediction of
disaster, Environmental Science and Engineering. Springer-Verlag, pp 177-195

Shih-Lung, S. and Wang, D. 2000, Handling disaggregate spatiotemporal travel data
in gis. Geolnformatica, 4(2):161-178, 2000.

Snoeren, G. 2006, Rampbestrijdingsprocessen: Actoren, werkwijze, data. Internal report for
GDI4DM, Bsik project RGI-239, Public Aid ‘Gelderland Midden’, October
2006. in Dutch.

Snoeren, G., Zlatanova, S., Crompvoets, J. and Scholten, H. 2007, Spatial Data
Infrastructure for emergency management: the view of the users. In
Proceedings of the 3" International symposinm on Gi4DM, Toronto, Canada, 22—
25 May 2007.

Tryfona, N. and Christian, J. S. 1999, Conceptual data modeling for spatiotemporal
applications. Geolnformatica, 3(3):245—-268, 1999.

Oosterom, P. van, Maessen, B. and Quak, W. 2002, Generic query tool for spatio-
temporal data, International Journal of Geographical Information Science,
16(8):713-748, 2002. 38

Oosterom, P. van, Tijssen, T. and Penninga, F. 2005, Topology storage and use in
the context of consistent data management, GISt Report No. 33, Delft,
2005, 54 p. (available at www.gdme.nl/publications)

Vlotman, S. and Snoeren, G. 2009, Eagle for Public Safety Disaster. Response. In
ESRI Education User Conference, San Diego, July 11-14, 2009.

Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R. T., Subrahmanian, V. S. and Zicari,
R. 1997, Advanced Database Systems. Data Management Systems. Morgan
Kaufmann, May 1997.

Zlatanova, S., van Oosterom, P. and Verbree, E. 2006, Geo-information supports
management of urban disasters, Open House International, Vol. 31, No.1,
March 2000, pp.62-79

Appendix A: Oracle scripts creating the database schema
with temporal data at attribute level

The DDL (Data Definition Language) statements for creating the structures for the
data model in Oracle Spatial are organised in a number of scripts. A main script,
CreateDMNesT.SQL , calls all the others: a script that creates the new data types
needed in tables, TypesNesT.SQL ; a script for creating and filling the look-up
tables, LookupTables.SQL , one for each enumeration type; the script that creates
tables shown in Figure 3.13, named TablesNesT.SQL ; one for creating spatial
indices and indices for columns that are foreign keys, Indices.SQL ; and a script
that creates views and metadata for displaying spatiotemporal data, named
ViewsNesT.SQL . These scripts create tables that manage temporal and
spatiotemporal data at attribute level, which is realised through the creation of
temporal and spatiotemporal data types as nested tables.

The main script, which calls the other scripts performing specific tasks,
CreateDMNesT.SQL :

[* Creates the data model for operational data.
Uses nested tables for spatiotemporal data. */

spool gdiddm_struct.log
set trimspool on

set trim on

set echo on

[* Delete existing database: metadata, views, indic es,tables &
records, data types. */
@ClearNesT.SQL

[* Create spatiotemporal types: dynamic count, movi ng point and
moving region, and also types for GHOR info. */
@TypesNesT.SQL

[* Create and fill the look-up tables */
@LookupTables.SQL

[* Create tables */
@TablesNesT.SQL

/* Create indices: foreign keys and spatial indices */
@Indices.SQL
[* Create views to display spatiotemoral data, and fills their

metadata */
@ViewsNesT.SQL

commit;

set trimspool off

The script that creates new types for temporal, spatiotemporal and data types needed
for GHOR information, TypesNesT.SQL :

[* Types for a moving point instance
and the full track of moving point */

CREATE OR REPLACE TYPE MPointinst AS OBJECT (
meas_time TIMESTAMP,
point_geo MDSYS.SDO_GEOMETRY
);
/
CREATE TYPE MOVING_POINT AS TABLE OF MPaointlnst;
/

[* Types for a moving region instance
and the full history of moving region */

CREATE OR REPLACE TYPE MRegioninst AS OBJECT (
meas_time TIMESTAMP,
region_geo MDSYS.SDO_GEOMETRY
)i
/
CREATE TYPE MOVING_REGION AS TABLE OF MRegionInst;
/

[* Types for dynamic counts, i.e. integers changing

CREATE OR REPLACE FORCE TYPE CntAtinstance AS OBJEC
time TIMESTAMP,
value NUMBER(15)

);

/

CREATE TYPE DYNAMIC_NUM AS TABLE OF CntAtinstance;

/

[* Data types for GHOR information */
@Types.SQL

The script Types.SQL :

-- Type for medical history

CREATE OR REPLACE TYPE MEDICAL_HISTORY AS OBJECT (

blanco BOOLEAN,
bleeding BOOLEAN,
CVAstroke BOOLEAN,
epilepsy BOOLEAN,
hart_problem BOOLEAN,
cancer BOOLEAN,
lung_affect BOOLEAN,
diabetis BOOLEAN,
unknown BOOLEAN,
other BOOLEAN

)i

/

-- Type for Triage

CREATE OR REPLACE TYPE TriageRec AS OBJECT (
time TIMESTAMP,
eye PLS_INTEGER,
motoric PLS_INTEGER,
verbal PLS_INTEGER,
GCsS PLS_INTEGER,
AF PLS_INTEGER,
RR PLS_INTEGER

with time */

T(

/
CREATE TYPE CREATE TYPE TRIAGE AS VARRAY(5) OF Tria geRec;
/

-- Type for Treatment
CREATE OR REPLACE TYPE TreatmentRec AS OBJECT (
time TIMESTAMP,
place NUMBER(1),
performed_by PLS INTEGER,
triage_class NUMBER(1),
treatm_type NUMBER(1),
sort_treatm VARCHAR2(50),
amount_treat VARCHAR2(25)
)i
/
CREATE TYPE TREATMENT AS VARRAY(6) OF TreatmentRec;
/

-- Type for Exposure
CREATE OR REPLACE TYPE EXPOSURE AS OBJECT (

level NUMBER(1),
radiologic = NUMBER(1),
biologic VARCHAR2(25),

chemic_infectNUMBER(1),
chemic_type NUMBER(1),
chemic_name VARCHARZ2(25)
)i
/

The script that creates the look-up tables and fills their
LookupTables.SQL

[* Create Process_Type table, insert records */

CREATE TABLE Process_Type (

code NUMBER(2)

CONSTRAINT PK_Process_Type PRIMARY KEY,
value_EN VARCHAR2(70),

value_NL VARCHAR2(70)

);

insert into Process_Type values (1,
'Fighting fire and emission of dangerous substances ,
'‘Bestrijden van brand en emissie gevaarlijke stoffe nY;
insert into Process_Type values (2,
'Rescuing and technical assistance’,

'Redden en technische hulpverlening’);

insert into Process_Type values (3,
‘Decontaminating people and animals',
'‘Ontsmetten mens en dier");

insert into Process_Type values (4,
'‘Decontaminating vehicles and infrastructure’,
'‘Ontsmetten voertuigen en infrastructuur');
insert into Process_Type values (5,
'‘Observations and measurements',
'‘Waarnemen en meten’);

insert into Process_Type values (6,

'Alerting the population’,

'‘Waarschuwen van de bevolking");

insert into Process_Type values (7,

‘Making accessible and clearing up’,
"Toegankelijk maken en opruimen’);

content,

insert into Process_Type values (8,

‘Medical aid chain’,

‘Geneeskundige Hulpverlening-somatisch’);
insert into Process_Type values (9,
'Preventative public health and
medical/environmental measures',

'Preventieve Openbare Gezondheidszorg
(incl.verzamelen besmette waren)');

insert into Process_Type values (10,
'Psycho-social aid and care',

‘Geneeskundige Hulpverlening-psychosociaal’);
insert into Process_Type values (11,
‘Clearance and evacuation’,

'‘Ontruimen en evacueren’);

insert into Process_Type values (12,

'Fencing off disaster area’,

'‘Afzetten en afschermen’);

insert into Process_Type values (13,

"Traffic control','Verkeer regelen’);

insert into Process_Type values (14,
‘Maintaining the legal order,

'‘Handhaven openbare orde');

insert into Process_Type values (15,
‘Identification of fatal casualties',

'Identificeren slachtoffers');

insert into Process_Type values (16,

'‘Giving directions','Begidsen’);

insert into Process_Type values (17,

'‘Criminal investigation','Strafrechtelijk onderzoek
insert into Process_Type values (18,

‘Advice and information’,'Voorlichten en informeren
insert into Process_Type values (19,

'‘Relief and care','Opvangen en verzorgen');
insert into Process_Type values (20,

'Funeral arrangements','Uitvaartverzorging’);
insert into Process_Type values (21,
'Registration of victims','Registratie van slachtof
insert into Process_Type values (22,

'Providing primary needs',

'Voorzien in primaire levensbehoeften');

insert into Process_Type values (23,

‘Damage registration’,

'Registratie van schade en afhandeling’);

insert into Process_Type values (24,
'Environment protection’,'Milieuzorg");

insert into Process_Type values (25,
'Follow-up care','Nazorg");

insert into Process_Type values (26,
‘Alerting’,'Alarmering’);

insert into Process_Type values (27,
‘Care/logistics of disaster recovery staff',
‘Verzorging/logistiek rampbestrijdingspotentieel’);
insert into Process_Type values (28,
'‘Connection/communication’,'Verbindingen/communicat
insert into Process_Type values (29,
'Registration and reporting/archiving’,
'Registratie en verslaglegging/Archivering');
insert into Process_Type values (30,
'‘Evaluation’,'Evaluatie’);

/* Create Disaster_Type table, insert records */

CREATE TABLE Disaster_Type (

fers");

ie");

code NUMBER(2)

CONSTRAINT PK_Disaster_Type PRIMARY KEY,
value_EN VARCHAR2(50),

value_NL VARCHAR2(80),

group_NL VARCHAR2(50)

);

insert into Disaster_Type values (1,
‘Luchtvaartongeval','Aviation accident’,

'Rampen met betrekking tot verkeer en vervoer');

insert into Disaster_Type values (2,

‘Ongeval op het water','’Accident on water’,

'Rampen met betrekking tot verkeer en vervoer');

insert into Disaster_Type values (3,

‘Verkeersongeval op het land’,

‘Traffic accident on land',

'Rampen met betrekking tot verkeer en vervoer');

insert into Disaster_Type values (4,

'‘Ongeval met brandbare of explosieve stof,

'‘Accident with inflammable/ explosive material (in open air)’,
'Rampen met gevaarlijke stoffen');

insert into Disaster_Type values (5,

'‘Ongeval met giftige stof’,

'Accident with toxic gasses (in open air)’,
'Rampen met gevaarlijke stoffen');

insert into Disaster_Type values (6,
'‘Kernongeval','Nuclear accident’,

'Rampen met gevaarlijke stoffen');

insert into Disaster_Type values (7,

'‘Bedreiging volksgezondheid','Threat to public heal th',
'Rampen met betrekking tot de volksgezondheid");
insert into Disaster_Type values (8,
'Ziektegolf','Dispersal of disease’,

'Rampen met betrekking tot de volksgezondheid";
insert into Disaster_Type values (9,

‘Ongevallen in tunnels','Accidents in tunnels’,
'Rampen met betrekking tot de infrastructuur');
insert into Disaster_Type values (10,

'‘Branden in grote gebouwen','Fire in big buildings' ,
'Rampen met betrekking tot de infrastructuur');
insert into Disaster_Type values (11,

‘Instortingen van gebouwen','Collapse of big buildi ngs',
'Rampen met betrekking tot de infrastructuur');
insert into Disaster_Type values (12,

‘Uitval nutsvoorzieningen','Disruption of utility’,
'Rampen met betrekking tot de infrastructuur');
insert into Disaster_Type values (13,

'‘Paniek in menigten','Panic in large groups',
'Rampen met betrekking tot de bevolking');

insert into Disaster_Type values (14,
‘Grootschalige ordeverstoringen’,

‘Large-scale disturbance of public peace’,
'Rampen met betrekking tot de bevolking');

insert into Disaster_Type values (15,
'‘Overstromingen’,'Flood','Natuurrampen');

insert into Disaster_Type values (16,
‘Natuurbranden','Nature Fire','Natuurrampen');
insert into Disaster_Type values (17,

'Extreme weersomstandigheden’,

'Extreme weather conditions','Natuurrampen');
insert into Disaster_Type values (18, ",

‘Incident out of city boundaries, in which citizens
of that city are involved','Ramp op afstand’);

insert into Disaster_Type values (19, ",",");

[* Create Team_Type table & insert records */

CREATE TABLE Team_Type (

code NUMBER(2)

CONSTRAINT PK_Team_Type PRIMARY KEY,
value_EN VARCHAR2(40),

value_NL VARCHAR2(40)

);

insert into Team_Type values (1,

'First measurement team','Eerste meetploeg";
insert into Team_Type values (2,

‘Second till fifth measurement team’,

‘Tweede t/m vijffde meetploeg");

[* Create User_Role table & insert records */

CREATE TABLE User_Role (

code NUMBER(3)

CONSTRAINT PK_User_Role PRIMARY KEY,
value_EN VARCHAR2(40),

value_NL VARCHAR2(40)

);

[* Create Bravo_Measure table & insert records */

CREATE TABLE Bravo_Measure (

code NUMBER(2)

CONSTRAINT PK_Bravo_Measure PRIMARY KEY,
bravo_code VARCHARZ2(10),

colouring VARCHARZ2(20)

);

insert into Bravo_Measure values (1,
'‘Bravo I.1','blauw -> geel");

insert into Bravo_Measure values (2,
'‘Bravo 1.2','geel -> rood’);

insert into Bravo_Measure values (3,
'‘Bravo |.3','wit -> bruingroen’);

insert into Bravo_Measure values (4,
'‘Bravo 1.4','geel -> blauw");

insert into Bravo_Measure values (5,
‘Bravo 1.5','lichtgrijs -> blauw");

insert into Bravo_Measure values (6,
'‘Bravo II.1','blauw -> wit");

insert into Bravo_Measure values (7,
‘Bravo 11.2','wit -> oranje");

insert into Bravo_Measure values (8,
‘Bravo 11.3','wit -> lichtbruin’);

insert into Bravo_Measure values (9,
'‘Bravo 11.4','wit -> blauwviolet");
insert into Bravo_Measure values (10,
'‘Bravo I1.5','wit -> rood’);

[* Create Drawing_Symbol table & insert records */
CREATE TABLE Drawing_Symbol (

code NUMBER(2)
CONSTRAINT PK_Draw_Symbol PRIMARY KEY,

name_EN VARCHAR2(45),
name_NL VARCHAR2(45),
description VARCHAR2(200),
symbol BLOB

);

insert into Drawing_Symbol(code, name_EN, name_NL,
values (1,'Anker','Gas Leak',");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (2,'Brand','Fire',");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (3,'Defensie’,'Military',");

insert into Drawing_Symbol(code, name_EN, name_NL,

values (4,'Derden','Third Parties',/Anyone else bes

parties explicitly defined by other symbols, e.g vo

insert into Drawing_Symbol(code, name_EN, name_NL,
values (5,'Gemeente’,'Municipality',");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (6,'Brandweer’,'Fire-fighters',");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (7,'GHOR','Medical Services',");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (8,'Hulpverlening','Assistance’,");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (9,'Logistiek’,'Logistics’, 'Used to indicat

that might be relevant to logistics,such as water o
kind of supplies or even the position of the person
the logistics.");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (10,'NS','Train Station (NS)',

‘Train station or anything else that is related to

insert into Drawing_Symbol(code, name_EN, name_NL,
values (11,'Meetopdracht**''Measurement task’,

'This is a special symbol because after it is posit
map, a form is presented where a set of instruction
for a selected vehicle.");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (12,'Politie’,'Police',");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (13,'Provincie’,'Province Building',");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (14,'Rijk','Government Building',");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (15,'Rijkwaterstaat’,'Ministry for traffic a
management',");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (16,'Uitgangsstelling’,",'In case a buildin

the fire brigade has already made plans of position

vehicles should be placed. This symbol is used to i
these points.");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (17,'Versperring','Barricade’,");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (18,'Waarschuwing','Warning',");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (19,'Waterschap', ‘'Authority responsible
management',");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (20,'Zwaartepunt','Point of high importance'

is used to indicate a place of very high priority o
biggest damage has occurred.");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (21,'Lijn blauw','Blue Line','Used to draw a

on the map. Action is finalized by double-click.";

for

description)
description)
description)
description)
ides the
lunteers');
description)
description)
description)
description)
description)
e any place
r any other
in charge of

description)

trains.");
description)

ioned on the
s is defined

description)
description)
description)

description)
nd water

description)
g is on fire,
s where
ndicate exactly

description)
description)

description)
water

description)
,'This symbol
r where the

description)
line

insert into Drawing_Symbol(code, name_EN, name_NL,
values (22,'Lijn groen','Line Green','Used to draw

on the map. Action is finalized by double-click.");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (23,'Lijn rood','Red Line','Used to draw a |

on the map. Action is finalized by double-click.");

insert into Drawing_Symbol(code, name_EN, name_NL,
values (24,'Lijn zwart','Black Line','Used to draw

on the map. Action is finalized by double-click.";

insert into Drawing_Symbol(code, name_EN, name_NL,
values (25,'Vlak blauw','Polygon in Blue','Used to

a polygon on the map. Action is finalized by double
insert into Drawing_Symbol(code, name_EN, name_NL,
values (26,'Vlak groen','Polygon in Green','Used to

a polygon on the map. Action is finalized by double
insert into Drawing_Symbol(code, name_EN, name_NL,
values (27,'Vlak rood','Polygon in Red','Used to dr

a polygon on the map. Action is finalized by double
insert into Drawing_Symbol(code, name_EN, name_NL,
values (28,'Vlak zwart','Polygon in Black','Used to

a polygon on the map. Action is finalized by double

[* Create Safety_Region table & insert records */

CREATE TABLE Safety Region (
region_code NUMBER(2) CONSTRAINT PK_Safe_Region
region_name VARCHAR2(45)

)1
insert into Safety Region values (1,");

insert into Safety Region values (26,");

[* Create GRIP_level table & insert records */

CREATE TABLE GRIP_Level (

grip_level NUMBER(1) CONSTRAINT PK_GRIP_Lev PRIM

grip_descr VARCHAR2(200)
)i

insert into GRIP_Level values (0,");

insert into GRIP_Level values (5,");

[* Create Scale_Level table & insert records */

CREATE TABLE Scale_Level (
scale_level NUMBER(1) CONSTRAINT PK_Scale_Lev PR
scale_descr VARCHAR2(200)

);

insert into Scale_Level values (1,");

[* Create Triage_Val table & insert records */

CREATE TABLE Triage_Val (

triage_code NUMBER(1) CONSTRAINT PK_Triage PRIMA

triage_name VARCHAR2(45)
)i

description)
aline

description)
ine

description)
aline

description)
draw
-clik.";
description)
draw
-clik.");
description)
aw

-clik.";
description)
draw
-clik.";

PRIMARY KEY,

ARY KEY,

IMARY KEY,

RY KEY,

insert into Triage_Val values (1,");

insert into Triage_Val values (4,");

/* Create Gender table & insert records */

CREATE TABLE Gender (
gender_code NUMBER(1) CONSTRAINT PK_Gender PRIMA
gender_name VARCHAR2(6)

);

insert into Gender values (0,'male";
insert into Gender values (1,'female’);

/* Create Injury_Type table & insert records */

CREATE TABLE Injury_Type (
injury_code NUMBER(1) CONSTRAINT PK_Injury PRIMA
injury_name VARCHAR2(25)

insert into Injury_Type values (1,");

[* Create Relief_Centre table & insert records */

CREATE TABLE Relief_Centre (
rcentre_code NUMBER(1) CONSTRAINT PK_RCentre PRIM
rcentre_desc VARCHAR2(25)

);

insert into Relief_Centre values (1,");

[* Create Exposure_Type table & insert records */

CREATE TABLE Exposure_Type (
exposure_code NUMBER(1) CONSTRAINT PK_Exposure PR
exposure_desc VARCHAR2(25)

);

insert into Exposure_Type values (1,");

/* Create RadioExp_Type table & insert records */

CREATE TABLE RadioExp_Type (
radioexp_code NUMBER(1)

CONSTRAINT PK_RadioExp PRIMARY KEY,
radioexp_desc VARCHAR2(25)

);

insert into RadioExp_Type values (1,");

[* Create Chemic_Infection table & insert records *

RY KEY,

RY KEY,

ARY KEY,

IMARY KEY,

CREATE TABLE Chemic_Infection (
chinfect_code NUMBER(1)

CONSTRAINT PK_Chemicinfec PRIMARY KEY,
chinfect_desc VARCHAR2(25)

);

insert into Chemic_Infection values (1,");

[* Create existing Chemical_Type table & insert rec ords */

CREATE TABLE Chemical_Type (
chemical_code NUMBER(1)

CONSTRAINT PK_ChemicType PRIMARY KEY,
chemical_desc VARCHAR2(25)

);

insert into Chemical_Type values (1,");

[* Create Treatment_Place table & insert records */

CREATE TABLE Treatment_Place (
tplace_code NUMBER(1)

CONSTRAINT PK_TreatPlace PRIMARY KEY,
tplace_desc VARCHAR2(25)

);

insert into Treatment_Place values (1,");

[* Create Treatment_Type table & insert records */

CREATE TABLE Treatment_Type (
treatment_code NUMBER(1)

CONSTRAINT PK_TreatType PRIMARY KEY,
treatment_desc VARCHAR2(25)

);

insert into Treatment_Type values (1,");

The script that creates the tables of the data model explaingd in Section 3.4,
TablesNesT.SQL :

[* Create tables and constraints, primary key, fore ign keys, and
check constraints */

CREATE TABLE Incident (
incidentiD NUMBER(15)
CONSTRAINT PK_Incident PRIMARY KEY,
location MDSYS.SDO_GEOMETRY NOT NULL,
fenced_area MDSYS.SDO_GEOMETRY,
start_time DATE,
end_time DATE,
description VARCHAR2(200)

);

CREATE TABLE Hypothetical (
hypotheticallD NUMBER(15)

CONSTRAINT FK_Hypothetical REFERENCES Incident,
disaster_type NUMBER(2)

CONSTRAINT REF_Disaster

REFERENCES Disaster_Type,

CONSTRAINT PK_Hypothetical

PRIMARY KEY (hypotheticallD)

);

CREATE TABLE Realincident (

realincidentiD NUMBER(15)

CONSTRAINT FK_Reallncident REFERENCES Incident,
disaster_type DYNAMIC_NUM,
affected_area MOVING_REGION,
threatened_area MDSYS.SDO_GEOMETRY,
estimation_time TIMESTAMP,

GRIPlevel DYNAMIC_NUM,

scale DYNAMIC_NUM,

evacuation_area MDSYS.SDO_GEOMETRY,
escalation VARCHAR2(1000),
CONSTRAINT PK_Reallncident

PRIMARY KEY (reallncidentID)

)

NESTED TABLE affected_area STORE AS IncExtent,
NESTED TABLE disaster_type STORE AS IncDType,
NESTED TABLE scale STORE AS IncScale,
NESTED TABLE GRIPlevel STORE AS IncGRIP;

[* Disater types and GRIP levels should be speciali
dynamic_num type, their respective values restricte
types (in look-up table) and grip levels */

CREATE TABLE Complaint (
complaintiD NUMBER(15)
CONSTRAINT PK_Complaint PRIMARY KEY,
call_time TIMESTAMP NOT NULL,
location MDSYS.SDO_GEOMETRY,
incidentiD NUMBER(15) CONSTRAINT FK_Complaint_In
REFERENCES Reallncident,
report BLOB NOT NULL

);

CREATE TABLE Gasmal (
incidentiD NUMBER(15) CONSTRAINT FK_Gasmal_Incid
REFERENCES Reallncident,
shape MOVING_REGION,
label VARCHAR2(15),
prediction MOVING_REGION,
CONSTRAINT PK_Gasmal PRIMARY KEY (incidentID)

)
NESTED TABLE shape STORE AS GasmalShape,
NESTED TABLE prediction STORE AS GasmalPredict;

CREATE TABLE Sectormal (
incidentiD NUMBER(15) CONSTRAINT FK_Sectormal_In
REFERENCES Reallncident,
sectors VARCHAR2(20) NOT NULL,
label VARCHAR2(20),
description VARCHAR2(1000),
CONSTRAINT PK_Sectormal PRIMARY KEY (incidentID)

);

CREATE TABLE Process (
incidentiD NUMBER(15) CONSTRAINT FK_Process_Inci

sation of
d to disaster

cident

ent

cident

dent

REFERENCES Realincident,

process_type NUMBER(2) CONSTRAINT REF_Process
REFERENCES Process_Type,

start_time TIMESTAMP,

end_time TIMESTAMP,

CONSTRAINT PK_Process

PRIMARY KEY (incidentID, process_type)

);

CREATE TABLE Department (
departmentID NUMBER(15)
CONSTRAINT PK_Department PRIMARY KEY,
dept_code VARCHAR2(10) NOT NULL,
safety_region NUMBER(2) CONSTRAINT REF_SafeRegio
REFERENCES Safety_Region,
location MDSYS.SDO_GEOMETRY

);

CREATE TABLE DeptResp4Proc (
departmentID NUMBER(15) CONSTRAINT FK_RespDept
REFERENCES Department,
incidentiD NUMBER(15),
process_type NUMBER(2),
start_time TIMESTAMP,
end_time TIMESTAMP,
CONSTRAINT FK_ProcessCtrl FOREIGN KEY
(incidentID, process_type) REFERENCES Process,
CONSTRAINT PK_DeptResp4Proc PRIMARY KEY
(departmentlD, incidentID, process_type)

);

CREATE TABLE DM_SUser (

userlD NUMBER(15) CONSTRAINT PK_User PRIMARY KEY
userBSN CHAR(9) NOT NULL,

deptiD NUMBER(15) CONSTRAINT FK_UserDept
REFERENCES Department

);

CREATE TABLE UserInProcess (
userlD NUMBER(15) CONSTRAINT FK_User_InProcess
REFERENCES DM_SUser,
incidentiD NUMBER(15),
process_type NUMBER(2),
role NUMBER(3) CONSTRAINT REF_UserRole
REFERENCES User_Role,
start_time TIMESTAMP,
end_time TIMESTAMP,
CONSTRAINT FK_Userln_Process FOREIGN KEY
(incidentID, process_type) REFERENCES Process
(incidentID, process_type),
CONSTRAINT PK_UserInProcess
PRIMARY KEY (userID, incidentID, process_type)

);

CREATE TABLE Vehicle (

vehicleID NUMBER(15) CONSTRAINT PK_Vehicle PRIMA
vehicle_code VARCHAR2(10) NOT NULL,

deptiID NUMBER(15) CONSTRAINT FK_Vehicle2Dept
REFERENCES Department,

calculatedETA TIMESTAMP

);

CREATE TABLE Team (
teamlD NUMBER(20) CONSTRAINT PK_Team PRIMARY KEY

ns

RY KEY,

name VARCHAR2(20),

team_type NUMBER(2) CONSTRAINT REF_Team
REFERENCES Team_Type,

no_members NUMBER(2),

leaderID NUMBER(15) CONSTRAINT FK_TeamLead
REFERENCES DM_SUser NOT NULL,

vehicleID NUMBER(15) CONSTRAINT FK_TravelWith
REFERENCES Vehicle,

location MOVING_POINT

)
NESTED TABLE position STORE AS TeamPosition;

CREATE TABLE Measurement (
taskID NUMBER(20) CONSTRAINT PK_Measurement PRIM
incidentiD NUMBER(15) CONSTRAINT FK_Meas_Incident
REFERENCES Reallncident ON DELETE SET NULL,
AGSuserIlD NUMBER(15) CONSTRAINT FK_AGS_userID
REFERENCES DM_SUser,
location MDSYS.SDO_GEOMETRY NOT NULL,
assignment_time TIMESTAMP NOT NULL,
task_explosionLEL CHAR(1) CONSTRAINT CHK_explosio
CHECK (task_explosionLEL in ("Y', 'N"),
gas_tube BINARY_FLOAT,
task_automess CHAR(1) CONSTRAINT CHK_automess_tas
CHECK (task_automess in ('Y', 'N"),
task_automess_sonda CHAR(1)
CONSTRAINT CHK_automess_sonda_task
CHECK (task_automess_sonda in ('Y', 'N"),
task_dosismeter CHAR(1) CONSTRAINT CHK_dosismeter
CHECK (task_dosismeter in ("Y', 'N")),
protection CHAR(1) CONSTRAINT CHK_protection_task
CHECK (protection in ("Y', 'N"),

teamID NUMBER(20) CONSTRAINT FK_Measurement_Team

REFERENCES Team ON DELETE SET NULL,

meas_time TIMESTAMP NOT NULL,

explosionLEL BINARY_FLOAT,

gas_tube _no NUMBER(2) CONSTRAINT REF_Bravo
REFERENCES Bravo_Measure(code),

pumping_no NUMBER(4),

concentration BINARY_FLOAT,

automessl BINARY_FLOAT,

automess2 BINARY_FLOAT,

automess_sonda BINARY_FLOAT,

dosismeter BINARY_FLOAT,

fed2gasmal TIMESTAMP,

task_details VARCHAR2(400),

meas_details VARCHAR2(400),

CONSTRAINT CHK_explosion CHECK (task_explosionLEL
explosionLEL IS NOT NULL) DISABLE,

CONSTRAINT CHK_gas_tube CHECK (gas_tube IS NULL O
(gas_tube_no IS NOT NULL AND pumping_no IS NOT NU
AND concentration IS NOT NULL)) DISABLE,
CONSTRAINT CHK_automess CHECK (task_automess <>
(automessl IS NOT NULL AND automess2 IS NOT NULL))
CONSTRAINT CHK_automess_sonda CHECK
(task_automess_sonda <> 'Y"

OR automess_sonda IS NOT NULL) DISABLE,
CONSTRAINT CHK_dosismeter CHECK (task_dosismeter
OR dosismeter IS NOT NULL) DISABLE

);

[* Data in this table will be stored in pieces: fir
measurement task, then the measurements for the giv
Constraints on the measurements are disabled becaus

ARY KEY,

n_task

_task

<>'Y'OR

R

LL

Y' OR
DISABLE,

<>'Y'

st the
en task id.
e the fields

will be empty at first. They can be checked later w

ALTER TABLE Measurement ENABLE VALIDATE CONSTRAINT

for the CHK_explosion constraint and similar for al

CREATE TABLE EventObject (

);

objectID NUMBER(20) CONSTRAINT PK_EventObject PRI
incidentiD NUMBER(15) CONSTRAINT FK_Object_Incide

REFERENCES Reallncident NOT NULL,

userlD NUMBER(15) CONSTRAINT FK_Object_Creater

REFERENCES DM_SUser,

drawing_symbol NUMBER(2) CONSTRAINT REF_Symbol

REFERENCES Drawing_Symbol,
geometry MDSYS.SDO_GEOMETRY NOT NULL,
description VARCHAR2(200)

CREATE TABLE ReliefCentre (

);

centrelD NUMBER(10) CONSTRAINT PK_RCentre PRIMARY

centre_type NUMBER(1) CONSTRAINT REF_RCentre
REFERENCES Relief_Centre,

capacity NUMBER(20),

location MDSYS.SDO_GEOMETRY

CREATE TABLE PatientCard (

);

patientiD NUMBER(15) CONSTRAINT PK_PatientCard

PRIMARY KEY,

incidentiD NUMBER(15) CONSTRAINT FK_Patient_Incid

REFERENCES Reallncident NOT NULL,

centrelD NUMBER(10) CONSTRAINT FK_Patient_RCentre

REFERENCES ReliefCentre,
gender NUMBER(1) CONSTRAINT REF_Gender
REFERENCES Gender,

name VARCHAR2(50),
birthdate DATE,

address VARCHAR2(50),
IDcard VARCHARZ2(50),
tel_family VARCHAR2(50),
place_found VARCHAR2(50),
allergy VARCHAR2(50),
medication VARCHAR2(50),
past. MR MEDICAL_HISTORY,
last_meal VARCHARZ2(50),

decontamination CHAR(1) CONSTRAINT CHK_decontamin

CHECK (decontamination in ("Y', 'N")),
accident-mech VARCHAR2(50),

head-diagnose VARCHAR2(50),

injury NUMBER(1) CONSTRAINT REF_Injury
REFERENCES Injury_Type,

left_pupilR CHAR(1) CONSTRAINT CHK_LPupil
CHECK (left_pupilR in ("Y', 'NY)),

right_pupilR CHAR(1) CONSTRAINT CHK_RPupil
CHECK (right_pupilR in ("Y', 'N"),

notes VARCHAR2(50),

triage_record TRIAGE,

triage_class NUMBER(1) CONSTRAINT REF_Triage
REFERENCES Triage_Val,

treatment TREATMENT,

remarks VARCHAR2(50)

CREATE TABLE Casualty (

incidentiD NUMBER(15) CONSTRAINT FK_Casualty_Inci

ith a command:
CHK_explosion;
| others */

MARY KEY,
nt

KEY,

ent

ation

dent

REFERENCES Reallncident,

psycologicP DYNAMIC_NUM,

triagel DYNAMIC_NUM,

triage2 DYNAMIC_NUM,

triage3 DYNAMIC_NUM,

triage3n DYNAMIC_NUM,

triage4 DYNAMIC_NUM,

dead DYNAMIC_NUM,

CONSTRAINT PK_Casualty PRIMARY KEY (incidentID)

)

NESTED TABLE psycologicP STORE AS DynPsychologic,
NESTED TABLE triagel STORE AS DynTriagel,
NESTED TABLE triage2 STORE AS DynTriage2,
NESTED TABLE triage3 STORE AS DynTriage3,
NESTED TABLE triage3n STORE AS DynTriage3n,
NESTED TABLE triage4 STORE AS DynTriage4,
NESTED TABLE dead STORE AS DynDeath;

CREATE TABLE DamagePA (
incidentiD NUMBER(15) CONSTRAINT FK_DamagePA _Inci dent
REFERENCES Reallncident,
trapped DYNAMIC_NUM,
missing DYNAMIC_NUM,
people2evac DYNAMIC_NUM,
people2decontam DYNAMIC_NUM,
animal2decontam DYNAMIC _NUM,
peopledshelter DYNAMIC_NUM,
people2feed DYNAMIC_NUM,
animal2feed DYNAMIC_NUM
CONSTRAINT PK_DamagePA PRIMARY KEY (incidentID)

)

NESTED TABLE trapped STORE AS DynTrapped,

NESTED TABLE missing STORE AS DynMissing,

NESTED TABLE people2evac STORE AS Dynp2evac,
NESTED TABLE people2decontam STORE AS Dynp2decont,
NESTED TABLE animal2decontam STORE AS Dyna2decont,
NESTED TABLE people4shelter STORE AS Dynp4shelter,
NESTED TABLE people2feed STORE AS Dynp2feed,
NESTED TABLE animal2feed STORE AS Dyna2feed;

CREATE TABLE DamagedBuilding (

incidentiD NUMBER(15) CONSTRAINT FK_DamageBuild_| ncident
REFERENCES Realincident,

BAGcode VARCHAR2(20),

CONSTRAINT PK_DamageBuild PRIMARY KEY (incidentID)

);

CREATE TABLE DamagedCar (

incidentiD NUMBER(15) CONSTRAINT FK_DamageCar_Inc ident
REFERENCES Realincident,

plate_no VARCHAR2(15),

CONSTRAINT PK_DamageCar PRIMARY KEY (incidentID)

);

The script that creates indices for all the foreign key columns and spatial indices,
Indices.SQL

[* Create indices for foreign keys */

CREATE INDEX IX_Complaint_Incident
ON Complaint (incidentID);

CREATE INDEX IX_Department_Code
ON Department (dept_code);

CREATE INDEX IX_DeptResp_Process
ON DeptResp4Proc (incidentID, process_type);

CREATE INDEX IX_DMuser_BSN ON DM_SUser (userBSN);
CREATE INDEX IX_DMuser_Dept ON DM_SUser (deptID);

CREATE INDEX IX_DMuser_inProc
ON User_In_Process (incidentID, process_type);

CREATE INDEX IX_Vehicle_Code
ON Vehicle (vehicle_code);

CREATE INDEX IX_Vehicle_Dept ON Vehicle (deptID);
CREATE INDEX IX_Team_Leader ON Team (leaderID);
CREATE INDEX IX_Team_Vehicle ON Team (vehiclelD);

CREATE INDEX IX_Meas_incident
ON Measurement (incidentID);

CREATE INDEX IX_Meas_Team ON Measurement (teamID);
CREATE INDEX IX_Meas_AGS ON Measurement (AGSuserID)

CREATE INDEX IX_Event_Incident
ON EventObiject (incidentID);

CREATE INDEX IX_Event_Type
ON EventObject (drawing_symbol);

CREATE INDEX IX_Patient_Incident
ON PatientCard (incidentID);

CREATE INDEX IX_Patient_Centre
ON PatientCard (centrelD);

[* Spatial indices for Incident, Reallncident,

Complaint, Department, Measurement, EventObject, Re
Metadata should exist before creating the spatial i
values entered into SDO_DIM_ELEMENT are fictitious.
UPDATECd later with the real values. */

[* Metadata and spatial indices for Incident */

INSERT INTO USER_SDO_GEOM_METADATA VALUES
('Incident’,
'location’,
SDO_DIM_ARRAY(
SDO_DIM_ELEMENT ('X', 85000, 150000, 0.05)
SDO_DIM_ELEMENT ("Y', 467000, 515000, 0.05)
90112);

CREATE INDEX SIX_Incident_loc ON Incident (location
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

INSERT INTO USER_SDO_GEOM_METADATA VALUES
('Incident’,
'fenced_area/,

liefCentre.
ndex. The
Should be

SDO_DIM_ARRAY(
SDO_DIM_ELEMENT (X', 85000, 150000, 0.05)
SDO_DIM_ELEMENT ('Y', 467000, 515000, 0.05)
90112);

CREATE INDEX SIX_Incident_fenced ON Incident (fence
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

[* Metadata and spatial indices for Reallncident */

INSERT INTO USER_SDO_GEOM_METADATA VALUES
('Realincident’,
‘threatened_area’,
SDO_DIM_ARRAY(
SDO_DIM_ELEMENT (X', 85000, 150000, 0.05)
SDO_DIM_ELEMENT ("Y', 467000, 515000, 0.05)
90112);

CREATE INDEX SIX_Incident_threatened
ON Realincident (threatened_area)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

INSERT INTO USER_SDO_GEOM_METADATA VALUES
('Realincident’,
‘evacuation_area’,
SDO_DIM_ARRAY(
SDO_DIM_ELEMENT ('X', 85000, 150000, 0.05)
SDO_DIM_ELEMENT ('Y', 467000, 515000, 0.05)
90112);

CREATE INDEX SIX_Incident_evacuation
ON Realincident (evacuation_area)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

[* Insert metadata & create spatial index of Compla

INSERT INTO USER_SDO_GEOM_METADATA VALUES
(‘Complaint’,
'location’,
SDO_DIM_ARRAY(
SDO_DIM_ELEMENT (X', 85000, 150000, 0.05)
SDO_DIM_ELEMENT ("Y', 467000, 515000, 0.05)
90112);

CREATE INDEX SIX_Complaint_loc ON
Complaint (location) INDEXTYPE IS MDSYS.SPATIAL_IND

[* Metadata & spatial index for Department */

INSERT INTO USER_SDO_GEOM_METADATA VALUES
(‘Department’,
‘location’,
SDO_DIM_ARRAY(
SDO_DIM_ELEMENT ('X', 85000, 150000, 0.05)
SDO_DIM_ELEMENT ('Y", 467000, 515000, 0.05)
90112);

CREATE INDEX SIX_Department_loc ON Department (loca
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

[* Metadata & spatial index for Measurement */

INSERT INTO USER_SDO_GEOM_METADATA VALUES
('Measurement’,
‘location’,

d_area)

int */

EX;

tion)

SDO_DIM_ARRAY(
SDO_DIM_ELEMENT (X', 85000, 150000, 0.05) ,
SDO_DIM_ELEMENT ('Y', 467000, 515000, 0.05)),
90112);

CREATE INDEX SIX_Measurement_loc ON
Measurement (location) INDEXTYPE IS MDSYS.SPATIAL | NDEX;

[* Metadata & spatial index for Drawing Objects */

INSERT INTO USER_SDO_GEOM_METADATA VALUES
(‘'EventObject’,
‘geometry’,
SDO_DIM_ARRAY/(
SDO_DIM_ELEMENT ('X', 85000, 150000, 0.05) ,
SDO_DIM_ELEMENT ("Y', 467000, 515000, 0.05)),
90112);

CREATE INDEX SIX_EventObject_geo ON
EventObject (geometry) INDEXTYPE IS MDSYS.SPATIAL | NDEX;

/* Metadata & spatial index for ReliefCentre */

INSERT INTO USER_SDO_GEOM_METADATA VALUES
('ReliefCentre’,
'location’,
SDO_DIM_ARRAY(
SDO_DIM_ELEMENT (X', 85000, 150000, 0.05) ,
SDO_DIM_ELEMENT ("Y', 467000, 515000, 0.05)),
90112);

CREATE INDEX SIX_ReliefCentre_loc ON
ReliefCentre (location) INDEXTYPE IS MDSYS.SPATIAL _ INDEX;

The script that creates views and fills their metadata, VieWSNeST.éQL :

[* Create views for the spatiotemporal data and met adata for the
views, which is needed for visualisation, e.g. in F ME, but also if

we create later a functional (spatial) index in the field. ALL
METADATA entered from this scrip into SDO_DIM_ELEME NT are
FICTITIOUS. Should be UPDATEG later with the real v alues. */

[* Create a view to see the change of extent of the current
incident, i.e. with maximal ID, then insert metadat a for the view

*

CREATE OR REPLACE VIEW IncidentExt (STime, Geometry) AS

SELECT ie.meas_time, ie.region_geo
FROM THE(SELECT affected_area
FROM Realincident
WHERE reallncidentID = (SELECT MAX(reallnc identID)
FROM Reallncident)
) ie;

INSERT INTO USER_SDO_GEOM_METADATA VALUES
('IncidentExt’,
‘Geometry’,
SDO_DIM_ARRAY(
SDO_DIM_ELEMENT (X', 85000, 150000, 0.05) ,
SDO_DIM_ELEMENT ("Y', 467000, 515000, 0.05)),
90112);

[* Create view for the Gasmal (changes) of the curr ent incident,
then insert metadata for this view */

CREATE OR REPLACE VIEW GasmalExt (STime, Geometry) AS
SELECT gs.meas_time, gs.region_geo
FROM THE(SELECT shape
FROM Gasmal
WHERE Incidentld = (SELECT MAX(Incidentld)
FROM Gasmal)

) gs;

INSERT INTO USER_SDO_GEOM_METADATA VALUES
(‘GasmalExt',
‘Geometry’,
SDO_DIM_ARRAY(
SDO_DIM_ELEMENT (X', 85000, 150000, 0.05)
SDO_DIM_ELEMENT ("Y', 467000, 515000, 0.05)),
90112);

[* Create a view to track the position of a team.

It seems reasonable to look for teams involved in t he current
incident. For the moment we do not keep a direct re lation Team-
Incident in the data model, but we can get this thr ough the
relation Team-DM_SUser, which means we will add a j oin in the
query: */

CREATE OR REPLACE VIEW TeamTracking AS
SELECT t.teamid, t.team_type, t.name, t.no_membe rs, p.*
FROM Team t, TABLE(t.location) p;

INSERT INTO USER_SDO_GEOM_METADATA VALUES
(‘TeamTracking',
‘Geometry’,
SDO_DIM_ARRAY/(
SDO_DIM_ELEMENT ('X', 85000, 150000, 0.05)
SDO_DIM_ELEMENT ('Y", 467000, 515000, 0.05))
90112);

[* More views may be needed; to be created as above L

66

OTB Research Institute for the Built Environment

Appendix B: Oracle scripts creating the database schema
with temporal data at record level

This appendix contains Oracle scripts with the DDL statements to create the
structures for the data model in Oracle Spatial by employing only regular tables. The
temporal and spatiotemporal data are handled at the record level. The DDL
statements are again organised in several scripts with a main script,
CreateDMRegT.SQL , that calls all the others: the script Types.SQL that creates
the new data types needed for GHOR information; the script LookupTables.SQL
to create and fill the look-up tables; a script, TablesRegT.SQL , that creates tables
of the data model (Figure 3.13); and the script Indices.SQL to create spatial
indices and indices for columns that are foreign keys. Below are given only the main
script and the script that creates the tables. The other scripts called by the main script
are provided in Appendix A.

The main script, CreateDMRegT.SQL :

[* Creates the data model for operational data of G DI4DM.
Every temporal or spatiotemporal attribute is store d
in a separate table. */

spool gdi4dm_struct.log
set trimspool on

set trim on

set echo on

[* Delete existing database, tables & records, type s,
indices, views, metadata */
@ClearAll_RegT.SQL

/* Create new data types, needed for GHOR informati on */
@Types.SQL

[* Create and fill the look-up tables */
@LookupTables.SQL

[* Create tables */

@TablesRegT.SQL

/* Create indices: foreign keys and spatial indices */
@Indices.SQL

[* More metadata & spatial indices are to be create d for the
regular tables that store the spatiotemporal data * /

commit;

set trimspool off

The script that creates the tables of the data model explaingd in Section 3.4,
TablesRegT.SQL :

[* Create tables and constraints, primary key, fore ign keys, and

check constraints */

[* Tables for Incident, Hypothetical and Reallncide nt;
separate tables for temporal and spatiotemporal att ributes
affected_area, disaster_type, GRIPlevel, and scale. */

CREATE TABLE Incident (
incidentiD NUMBER(15)
CONSTRAINT PK_Incident PRIMARY KEY,
location MDSYS.SDO_GEOMETRY NOT NULL,
fenced_area MDSYS.SDO_GEOMETRY,
start_time DATE,
end_time DATE,
description VARCHAR2(200)
);
CREATE TABLE Hypothetical (
hypotheticallD NUMBER(15)
CONSTRAINT FK_Hypothetical REFERENCES Incident,
disaster_type NUMBER(2)
CONSTRAINT REF_Disaster
REFERENCES Disaster_Type,
CONSTRAINT PK_Hypothetical
PRIMARY KEY (hypotheticallD)
)i
CREATE TABLE Reallncident (
reallncidentiD NUMBER(15)
CONSTRAINT FK_Reallncident REFERENCES Incident,
threatened_area MDSYS.SDO_GEOMETRY,
estimation_time TIMESTAMP,
evacuation_area MDSYS.SDO_GEOMETRY,
escalation VARCHAR2(1000),
CONSTRAINT PK_Realincident
PRIMARY KEY (realincidentID)
)i
CREATE TABLE AffectedA (
incidentiD NUMBER(15) CONSTRAINT FK_Inc_AffectedA
REFERENCES Incident,
meas_time TIMESTAMP,
affected_area MDSYS.SDO_GEOMETRY,
CONSTRAINT PK_AffectedA PRIMARY KEY (incidentID, m
);
CREATE TABLE DisasterT (
incidentiD NUMBER(15) CONSTRAINT FK_Inc_DisasterT
REFERENCES Incident,
meas_time TIMESTAMP,
disaster_type NUMBER(2) CONSTRAINT REF_Disaster
REFERENCES Disaster_Type,
CONSTRAINT PK_DisasterT PRIMARY KEY (incidentID, m
)i
CREATE TABLE GRIPlevel (
incidentiD NUMBER(15) CONSTRAINT FK_Inc_GRIPlevel
REFERENCES Incident,
meas_time TIMESTAMP,
grip_level NUMBER(1) CONSTRAINT CHK_GRIP
CHECK (grip_level >= 0 AND grip_level <= 5),
CONSTRAINT PK_GRIPIlevel PRIMARY KEY (incidentID, m
);
CREATE TABLE IncScale (
incidentiD NUMBER(15) CONSTRAINT FK_IncScale
REFERENCES Incident,
meas_time TIMESTAMP,
scale NUMBER(1) CONSTRAINT CHK_SCALE
CHECK (scale >= 1 AND scale <= 10),

eas_time)

eas_time)

eas_time)

CONSTRAINT PK_IncScale PRIMARY KEY (incidentIlD, me as_time)
)i

[* assuming agreed scale levels 1-10 */

CREATE TABLE Complaint (
complaintiD NUMBER(15) CONSTRAINT PK_Complaint PRI MARY KEY,
call_time TIMESTAMP NOT NULL,
location MDSYS.SDO_GEOMETRY,
incidentiD NUMBER(15) CONSTRAINT FK_Complaint_Inci dent
REFERENCES Reallncident,
report BLOB NOT NULL

);
[* Gasmal tables */

CREATE TABLE Gasmal (
incidentiD NUMBER(15) CONSTRAINT FK_Gasmal_Inciden t
REFERENCES Realincident,
label VARCHAR2(15),
CONSTRAINT PK_Gasmal PRIMARY KEY (incidentID)
)i
CREATE TABLE GasmalShape (
incidentiD NUMBER(15) CONSTRAINT FK_Inc_GasmalShap e
REFERENCES Realincident,
meas_time TIMESTAMP,
shape MDSYS.SDO_GEOMETRY,
CONSTRAINT PK_GasmalShape PRIMARY KEY (incidentlD,
meas_time)
)i
CREATE TABLE GasmalPred (
incidentiD NUMBER(15) CONSTRAINT FK_Inc_GasmalPred
REFERENCES Reallncident,
meas_time TIMESTAMP,
prediction MDSYS.SDO_GEOMETRY,
CONSTRAINT PK_GasmalPred PRIMARY KEY (incidentID, meas_time)

);

CREATE TABLE Sectormal (
incidentiD NUMBER(15) CONSTRAINT FK_Sectormal_Inci dent
REFERENCES Reallncident,
sectors VARCHAR2(20) NOT NULL,
label VARCHAR2(20),
description VARCHAR?2(1000),
CONSTRAINT PK_Sectormal PRIMARY KEY (incidentID)

)i
CREATE TABLE Process (

incidentiD NUMBER(15) CONSTRAINT FK_Process_Incide nt
REFERENCES Reallncident,
process_type NUMBER(2) CONSTRAINT REF_Process

REFERENCES Process_Type,

start_time TIMESTAMP,

end_time TIMESTAMP,

CONSTRAINT PK_Process PRIMARY KEY (incidentID, pro cess_type)

)i
CREATE TABLE Department (

departmentID NUMBER(15) CONSTRAINT
PK_Department PRIMARY KEY,
dept_code VARCHAR2(10) NOT NULL,

safety_region NUMBER(2) CONSTRAINT REF_SafeRegions
REFERENCES Safety_Region,
location MDSYS.SDO_GEOMETRY

);

CREATE TABLE DeptResp4Proc (

departmentID NUMBER(15) CONSTRAINT FK_RespDept
REFERENCES Department,

incidentID NUMBER(15),

process_type NUMBER(2),

start_time TIMESTAMP,

end_time TIMESTAMP,

CONSTRAINT FK_ProcessCtrl FOREIGN KEY
(incidentID, process_type) REFERENCES Process,
CONSTRAINT PK_DeptResp4Proc PRIMARY KEY
(departmentlD, incidentID, process_type)

);

CREATE TABLE DM_SUser (

useriD NUMBER(15) CONSTRAINT PK_User PRIMARY KEY,
userBSN CHAR(9) NOT NULL,
deptID NUMBER(15) CONSTRAINT FK_UserDept

REFERENCES Department
)i

CREATE TABLE User_In_Process (
userlD NUMBER(15) CONSTRAINT FK_User_InProcess
REFERENCES DM_SUser,
incidentiD NUMBER(15),
process_type NUMBER(2),
role NUMBER(3) CONSTRAINT REF_UserRole
REFERENCES User_Role,
start_time TIMESTAMP,
end_time TIMESTAMP,
CONSTRAINT FK_UserIn_Process FOREIGN KEY
(incidentID, process_type) REFERENCES Process,
CONSTRAINT PK_UserInProcess
PRIMARY KEY (userID, incidentID, process_type)

);
CREATE TABLE Vehicle (

vehicleID NUMBER(15) CONSTRAINT PK_Vehicle PRIMARY KEY,
vehicle_code VARCHAR2(10) NOT NULL,
deptiD NUMBER(15) CONSTRAINT FK_Vehicle2Dept

REFERENCES Department,
calculatedETA TIMESTAMP

);
/* Team tables */

CREATE TABLE Team (
teamID NUMBER(20) CONSTRAINT PK_Team PRIMARY KEY,
name VARCHAR2(20),
team_type NUMBER(2) CONSTRAINT REF_Team
REFERENCES Team_Type,
no_members NUMBER(2),
leaderID NUMBER(15) CONSTRAINT FK_Team_Leader
REFERENCES DM_SUser NOT NULL,
vehicleID NUMBER(15) CONSTRAINT FK_Travel_With
REFERENCES Vehicle
);
CREATE TABLE TeamPosition (
teamID NUMBER(15) CONSTRAINT FK_Team_Position
REFERENCES Team,
meas_time TIMESTAMP,
position MDSYS.SDO_GEOMETRY,
CONSTRAINT PK_TeamPosition PRIMARY KEY (teamID, me as_time)

);

CREATE TABLE Measurement (

KEY,

);

taskiD NUMBER(20) CONSTRAINT PK_Measurement PRIMAR

incidentiD NUMBER(15) CONSTRAINT FK_Measurement_In cident
REFERENCES Reallncident ON DELETE SET NULL,

AGSuserlD NUMBER(15) CONSTRAINT FK_AGS_userID
REFERENCES DM_SUser,

location MDSYS.SDO_GEOMETRY NOT NULL,

assignment_time TIMESTAMP NOT NULL,

task_explosionLEL CHAR(1) CONSTRAINT CHK_explosion _task
CHECK (task_explosionLEL in ("Y', 'N)),

gas_tube BINARY_FLOAT,

task_automess CHAR(1) CONSTRAINT CHK_automess_tas k
CHECK (task_automess in ('Y', 'N"),

task_automess_sonda CHAR(1)

CONSTRAINT CHK_automess_sonda_task

CHECK (task_automess_sonda in ("Y', 'N"),

task_dosismeter CHAR(1) CONSTRAINT CHK_dosismeter _task
CHECK (task_dosismeter in ("Y', 'N")),

protection CHAR(1) CONSTRAINT CHK_protection_task

CHECK (protection in ("Y', 'N"),

teamID NUMBER(20) CONSTRAINT FK_Measurement_Team
REFERENCES Team ON DELETE SET NULL,

measurement_time TIMESTAMP NOT NULL,

explosionLEL BINARY_FLOAT,

gas_tube _no NUMBER(2) CONSTRAINT REF_Bravo
REFERENCES Bravo_Measure(code),

pumping_no NUMBER(4),

concentration BINARY_FLOAT,

automessl BINARY_FLOAT,

automess?2 BINARY_FLOAT,

automess_sonda BINARY_FLOAT,

dosismeter BINARY_FLOAT,

fed2gasmal TIMESTAMP,

task_details VARCHAR2(400),

meas_details VARCHAR2(400),

CONSTRAINT CHK_explosion CHECK (task_explosionLEL <>'Y'OR

explosionLEL IS NOT NULL) DISABLE,
CONSTRAINT CHK_gas_tube CHECK (gas_tube IS NULL OR

(gas_tube_no IS NOT NULL AND pumping_no IS NOT NUL L AND
concentration IS NOT NULL)) DISABLE,

CONSTRAINT CHK_automess CHECK (task_automess <>'Y 'OR
(automessl IS NOT NULL AND automess2 IS NOT NULL)) DISABLE,

CONSTRAINT CHK_automess_sonda CHECK

(task_automess_sonda <>'Y"

OR automess_sonda IS NOT NULL) DISABLE,

CONSTRAINT CHK_dosismeter CHECK (task_dosismeter < >'Y'OR
dosismeter IS NOT NULL) DISABLE

[* Data in this table will be stored in pieces: fir st the
measurement task, then the measurements for the giv en task id.
Constraints on the measurements are disabled becaus e the fields

will be empty at first. They can be checked later w

Measurement ENABLE VALIDATE CONSTRAINT CHK_explosio n for the
CHK_explosion constraint; similar for all others */
CREATE TABLE EventObject (

objectld NUMBER(20) CONSTRAINT PK_EventObject PR IMARY
KEY,

incidentiD NUMBER(15) CONSTRAINT FK_Object_Inciden t

REFERENCES Reallncident NOT NULL,
userlD NUMBER(15) CONSTRAINT FK_Object_Creater

ith ALTER TABLE

REFERENCES DM_SUser,

drawing_symbol NUMBER(2) CONSTRAINT REF_Symbol

REFERENCES Drawing_Symbol,
geometry MDSYS.SDO_GEOMETRY NOT NULL,
description VARCHAR2(200)

)i
CREATE TABLE ReliefCentre (

centrelD NUMBER(10) CONSTRAINT PK_RCentre PRIMARY

centre_type NUMBER(1) CONSTRAINT REF_RCentre
REFERENCES Relief_Centre,
capacity NUMBER(20),
location MDSYS.SDO_GEOMETRY
)i

CREATE TABLE PatientCard (
patientiD NUMBER(15) CONSTRAINT PK_PatientCard
PRIMARY KEY,
incidentiD NUMBER(15) CONSTRAINT FK_Patient_Incid
REFERENCES Reallncident NOT NULL,
centrelD NUMBER(10) CONSTRAINT FK_Patient_RCentre
REFERENCES ReliefCentre,
gender NUMBER(1) CONSTRAINT REF_Gender
REFERENCES Gender,
name VARCHAR2(50),
birthdate DATE,
address VARCHAR2(50),
IDcard VARCHAR2(50),
tel_family VARCHAR2(50),
place_found VARCHAR2(50),
allergy VARCHAR2(50),
medication VARCHAR2(50),
past. MR MEDICAL_HISTORY,
last_meal VARCHARZ2(50),
decontamination CHAR(1) CONSTRAINT CHK_decontamin
CHECK (decontamination in ("Y', 'N)),
accident-mech VARCHAR2(50),
head-diagnose VARCHAR2(50),
injury NUMBER(1) CONSTRAINT REF_Injury
REFERENCES Injury_Type,
left_pupilR CHAR(1) CONSTRAINT CHK_LPupil
CHECK (left_pupilR in ("Y', 'NY)),
right_pupilR CHAR(1) CONSTRAINT CHK_RPupil
CHECK (right_pupilR in ('Y', 'N"),
notes VARCHAR2(50),
triage_record TRIAGE,
triage_class NUMBER(1) CONSTRAINT REF_Triage
REFERENCES Triage_Val,
treatment TREATMENT,
remarks VARCHAR2(50)

)i
[* Casualty tables */

CREATE TABLE PsychologyPat (

incidentiD NUMBER(15) CONSTRAINT FK_IncPsycologicP

REFERENCES Reallncident,
meas_time TIMESTAMP,
psycologicP NUMBER(15),

CONSTRAINT PK_Psycologic PRIMARY KEY (incidentID,

);
CREATE TABLE Triagel (

incidentiD NUMBER(15) CONSTRAINT FK_Inc_Triagel

REFERENCES Realincident,

KEY,

ent

ation

meas_time)

meas_time TIMESTAMP,

triagel NUMBER(15),

CONSTRAINT PK_Triagel PRIMARY KEY (incidentlD, mea
)i
CREATE TABLE Triage2 (

incidentiD NUMBER(15) CONSTRAINT FK_Inc_Triage2

REFERENCES Reallncident,

meas_time TIMESTAMP,

triage2 NUMBER(15),

CONSTRAINT PK_Triage2 PRIMARY KEY (incidentlD, mea
);
CREATE TABLE Triage3 (

incidentiD NUMBER(15) CONSTRAINT FK_Inc_Triage3

REFERENCES Reallncident,

meas_time TIMESTAMP,

triage3 NUMBER(15),

CONSTRAINT PK_Triage3 PRIMARY KEY (incidentlD, mea
);
CREATE TABLE Triage3n (

incidentiD NUMBER(15) CONSTRAINT FK_Inc_Triage3n

REFERENCES Reallncident,

meas_time TIMESTAMP,

triage3n NUMBER(15),

CONSTRAINT PK_Triage3n PRIMARY KEY (incidentID, me
)i
CREATE TABLE Triage4 (

incidentiD NUMBER(15) CONSTRAINT FK_Inc_Triage4

REFERENCES Reallncident,

meas_time TIMESTAMP,

triage4d NUMBER(15),

CONSTRAINT PK_Triage4 PRIMARY KEY (incidentlD, mea
);
CREATE TABLE Death (

incidentiD NUMBER(15) CONSTRAINT FK_Inc_Death

REFERENCES Reallncident,

meas_time TIMESTAMP,

death NUMBER(15),

CONSTRAINT PK_Death PRIMARY KEY (incidentID, meas_

)i
[* Tables of damage on people&animals */

CREATE TABLE Trapped (
incidentiD NUMBER(15) CONSTRAINT FK_Inc_Trapped
REFERENCES Reallncident,
meas_time TIMESTAMP,
trapped NUMBER(15),
CONSTRAINT PK_Trapped PRIMARY KEY (incidentID, mea
)i
CREATE TABLE Missing (
incidentiD NUMBER(15) CONSTRAINT FK_Inc_Missing
REFERENCES Reallncident,
meas_time TIMESTAMP,
missing NUMBER(15),
CONSTRAINT PK_Missing PRIMARY KEY (incidentlD, mea
);
CREATE TABLE P2Evacuate (

incidentiD NUMBER(15) CONSTRAINT FK_Inc_P2Evacuate

REFERENCES Reallncident,

meas_time TIMESTAMP,

people2evac NUMBER(15),

CONSTRAINT PK_P2Evacuate PRIMARY KEY (incidentID,
);
CREATE TABLE P2decont (

s_time)

s_time)

s_time)

as_time)

s_time)

time)

s_time)

s_time)

meas_time)

);

incidentiD NUMBER(15) CONSTRAINT FK_Inc_P2decont
REFERENCES Reallncident,

meas_time TIMESTAMP,

people2decontam NUMBER(15),

CONSTRAINT PK_P2decont PRIMARY KEY (incidentIlD, me

CREATE TABLE A2decont (

);

incidentiD NUMBER(15) CONSTRAINT FK_Inc_A2decont
REFERENCES Realincident,

meas_time TIMESTAMP,

animal2decontam NUMBER(15),

CONSTRAINT PK_A2decont PRIMARY KEY (incidentID, me

CREATE TABLE P4shelter (

);

incidentiD NUMBER(15) CONSTRAINT FK_Inc_P4shelter
REFERENCES Reallncident,

meas_time TIMESTAMP,

peopledshelter NUMBER(15),

CONSTRAINT PK_P4shelter PRIMARY KEY (incidentID, m

CREATE TABLE P2feed (

);

incidentiD NUMBER(15) CONSTRAINT FK_Inc_P2feed
REFERENCES Reallncident,

meas_time TIMESTAMP,

people2feed NUMBER(15),

CONSTRAINT PK_P2feed PRIMARY KEY (incidentID, meas

CREATE TABLE A2feed (

);

incidentiD NUMBER(15) CONSTRAINT FK_Inc_A2feed
REFERENCES Reallncident,

meas_time TIMESTAMP,

animal2feed NUMBER(15),

CONSTRAINT PK_A2feed PRIMARY KEY (incidentID, meas

CREATE TABLE DamagedBuilding (

incidentiD NUMBER(15) CONSTRAINT FK_DamageBuild_|
REFERENCES Reallncident,

BAGcode VARCHAR2(20),

CONSTRAINT PK_DamageBuild PRIMARY KEY (incidentID

);

CREATE TABLE DamagedCar (

incidentiD NUMBER(15) CONSTRAINT FK_DamageCar_Inc
REFERENCES Realincident,

plate_no VARCHAR2(15),

CONSTRAINT PK_DamageCar PRIMARY KEY (incidentID)

);

as_time)

as_time)

eas_time)

_time)

_time)

ncident

ident

Reports published before in this series

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

GISt Report No. 1, Oosterom, P.J. van, Research issues in integrated querying of geometric and thematic
cadastral information (1), Delft University of Technology, Rapport aan Concernstaf Kadaster, Delft 2000,
29 p.p.

GISt Report No. 2, Stoter, J.E., Considerations for a 3D Cadastre, Delft University of Technology,
Rapport aan Concernstaf Kadaster, Delft 2000, 30.p.

GISt Report No. 3, Fendel, EM. en A.B. Smits (eds.), Java GIS Seminar, Opening GDMC, Delft 15
November 2000, Delft University of Technology, GISt. No. 3, 25 p.p.

GISt Report No. 4, Oosterom, P.J.M. van, Research issues in integrated querying of geometric and
thematic cadastral information (2), Delft University of Technology, Rapport aan Concernstaf Kadaster,
Delft 2000, 29 p.p.

GISt Report No. 5, Oosterom, P.J.M. van, C.W. Quak, J.E. Stoter, T.P.M. Tijssen en M.E. de Vries,
Objectgerichtheid TOP10vector: Achtergrond en commentaar op de gebruikersspecificaties en het
conceptuele gegevensmodel, Rapport aan Topografische Dienst Nederland, E.M. Fendel (eds.), Delft
University of Technology, Delft 2000, 18 p.p.

GISt Report No. 6, Quak, C.W., An implementation of a classification algorithm for houses, Rapport aan
Concernstaf Kadaster, Delft 2001, 13.p.

GISt Report No. 7, Tijssen, T.P.M., C.W. Quak and P.J.M. van Oosterom, Spatial DBMS testing with
data from the Cadastre and TNO NITG, Delft 2001, 119 p.

GISt Report No. 8, Vries, M.E. de en E. Verbree, Internet GIS met ArcIMS, Delft 2001, 38 p.

GISt Report No. 9, Vries, M.E. de, T.P.M. Tijjssen, J.E. Stoter, C.W. Quak and P.J.M. van Oosterom, The
GML prototype of the new TOP10vector object model, Report for the Topographic Service, Delft 2001,
132 p.

GISt Report No. 10, Stoter, J.E., Nauwkeurig bepalen van grondverzet op basis van CAD
ontgravingsprofielen en GIS, een haalbaarheidsstudie, Rapport aan de Bouwdienst van Rijkswaterstaat,
Delft 2001, 23 p.

GISt Report No. 11, Geo DBMS, De basis van GIS-toepassingen, KvAG/AGGN Themamiddag, 14
november 2001, J. Flim (eds.), Delft 2001, 37 p.

GISt Report No. 12, Vries, M.E. de, T.P.M. Tijssen, J.E. Stoter, C.W. Quak and P.J.M. van Oosterom,
The second GML prototype of the new TOP10vector object model, Report for the Topographic Setvice,
Delft 2002, Part 1, Main text, 63 p. and Part 2, Appendices B and C, 85 p.

GISt Report No. 13, Vries, M.E. de, T.P.M. Tijssen en P.J.M. van Oosterom, Comparing the storage of
Shell data in Otacle spatial and in Oracle/ArcSDE comptessed binaty format, Delft 2002, .72 p.
(Confidential)

GISt Report No. 14, Stoter, J.E., 3D Cadastre, Progress Report, Report to Concernstaf Kadaster, Delft
2002, 16 p.

GISt Report No. 15, Zlatanova, S., Research Project on the Usability of Oracle Spatial within the RWS
Organisation, Detailed Project Plan (MD-NR. 3215), Report to Meetkundige Dienst — Rijkswaterstaat,
Delft 2002, 13 p.

GISt Report No. 16, Verbree, E., Driedimensionale Topografische Terreinmodellering op basis van
Tetraéder Netwerken: Top10-3D, Report aan Topografische Dienst Nederland, Delft 2002, 15 p.

GISt Report No. 17, Zlatanova, S. Augmented Reality Technology, Report to SURFnet bv, Delft 2002,
72 p.

GISt Report No. 18, Vries, M.E. de, Ontsluiting van Geo-informatie via netwerken, Plan van aanpak,
Delft 2002, 17p.

GISt Report No. 19, Tijssen, T.P.M., Testing Informix DBMS with spatial data from the cadastre, Delft
2002, 62 p.

GISt Report No. 20, Oosterom, P.J.M. van, Vision for the next decade of GIS technology, A research
agenda for the TU Delft the Netherlands, Delft 2003, 55 p.

GISt Report No. 21, Zlatanova, S., T.P.M. Tijssen, P.J.M. van Oosterom and C.W. Quak, Research on
usability of Oracle Spatial within the RWS organisation, (AGI-GAG-2003-21), Report to Meetkundige
Dienst — Rijkswaterstaat, Delft 2003, 74 p.

GISt Report No. 22, Verbree, E., Kartografische hoogtevoorstelling TOP10vector, Report aan
Topografische Dienst Nederland, Delft 2003, 28 p.

GISt Report No. 23, Tijssen, T.P.M., M.E. de Vries and P.J.M. van Oosterom, Comparing the storage of
Shell data in Oracle SDO_Geometry version 91 and version 10g Beta 2 (in the context of ArcGIS 8.3),
Delft 2003, 20 p. (Confidential)

GISt Report No. 24, Stoter, J.E., 3D aspects of property transactions: Comparison of registration of 3D
properties in the Netherlands and Denmark, Report on the short-term scientific mission in the CIST —
G9 framework at the Department of Development and Planning, Center of 3D geo-information,
Aalborg, Denmark, Delft 2003, 22 p.

GISt Report No. 25, Vetbree, E., Comparison Gridding with ArcGIS 8.2 versus CPS/3, Report to Shell
International Exploration and Production B.V., Delft 2004, 14 p. (confidential).

GISt Report No. 26, Penninga, F., Oracle 10g Topology, Testing Oracle 10g Topology with cadastral
data, Delft 2004, 48 p.

GISt Report No. 27, Penninga, F., 3D Topography, Realization of a three dimensional topographic
terrain representation in a feature-based integrated TIN/TEN model, Delft 2004, 27 p.

GISt Report No. 28, Penninga, F., Kartografische hoogtevoorstelling binnen TOP10NL, Inventarisatie
mogelijkheden op basis van TOP10NL uitgebreid met een Digitaal Hoogtemodel, Delft 2004, 29 p.

29.

30.

31

32.

33.

34.

35.

30.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.
47.
48.
49.
50.

51.
52.

53.

GISt Report No. 29, Verbree, E. en S.Zlatanova, 3D-Modeling with respect to boundary representations
within geo-DBMS, Delft 2004, 30 p.

GISt Report No. 30, Penninga, F., Introductie van de 3e dimensie in de TOP10NL; Voorstel voor een
onderzoekstraject naar het stapsgewijs introduceren van 3D data in de TOP10NL, Delft 2005, 25 p.

GISt Report No. 31, P. van Asperen, M. Grothe, S. Zlatanova, M. de Vries, T. Tijssen, P. van Oosterom
and A. Kabamba, Specificatie datamodel Beheerkaart Nat, RWS-AGI report/GIST Report, Delft, 2005,
130 p.

GISt Report No. 32, E.M. Fendel, Looking back at Gi4DM, Delft 2005, 22 p.

GISt Report No. 33, P. van Oosterom, T. Tijssen and F. Penninga, Topology Storage and the Use in the
context of consistent data management, Delft 2005, 35 p.

GISt Report No. 34, E. Verbree en F. Penninga, RGI 3D Topo - DP 1-1, Inventarisatic huidige
toegankelijkheid, gebruik en mogelijke toepassingen 3D topografische informatie en systemen, 3D Topo
Report No. RGI-011-01/GISt Report No. 34, Delft 2005, 29 p.

GISt Report No. 35, E. Verbree, F. Penninga en S. Zlatanova, Datamodellering en datastructurering voor
3D topografie, 3D Topo Report No. RGI-011-02/GISt Report No. 35, Delft 2005, 44 p.

GISt Report No. 36, W. Looijen, M. Uitentuis en P. Bange, RGI-026: LBS-24-7, Tussenrapportage DP-1:
Gebruikerswensen LBS onder redactie van E. Vetbree en E. Fendel, RGI LBS-026-01/GISt Rapport No.
36, Delft 2005, 21 p.

GISt Report No. 37, C. van Strien, W. Looijen, P. Bange, A. Wilcsinszky, J. Steenbruggen en E. Verbree,
RGI-026: LBS-24-7, Tussenrapportage DP-2: Inventarisatie geo-informatie en -services onder redactie
van E. Verbree en E. Fendel, RGI LBS-026-02/GISt Rapport No. 37, Delft 2005, 21 p.

GISt Report No. 38, E. Verbree, S. Zlatanova en E. Wisse, RGI-026: LBS-24-7, Tussenrapportage DP-3:
Specificke wensen en eisen op het gebied van plaatsbepaling, privacy en beeldvorming, onder redactie van
E. Verbree en E. Fendel, RGI LBS-026-03/GISt Rapport No. 38, Delft 2005, 15 p.

GISt Report No. 39, E. Verbree, E. Fendel, M. Uitentuis, P. Bange, W. Looijen, C. van Strien, E. Wisse
en A. Wilcsinszky en E. Verbree, RGI-026: LBS-24-7, Eindrapportage DP-4: Workshop 28-07-2005
Geo-informatie voor politie, brandweer en hulpverlening ter plaatse, RGI LBS-026-04/GISt Rapport No.
39, Delft 2005, 18 p.

GISt Report No. 40, P.J.M. van Oosterom, F. Penninga and M.E. de Vries, Trendrapport GIS, GISt
Report No. 40 / RWS Report AGI-2005-GAB-01, Delft, 2005, 48 p.

GISt Report No. 41, R. Thompson, Proof of Assertions in the Investigation of the Regular Polytope,
GISt Report No. 41 / NRM-ISS090, Delft, 2005, 44 p.

GISt Report No. 42, F. Penninga and P. van Oosterom, Kabel- en leidingnetwerken in de kadastrale
registratie (in Dutch) GISt Report No. 42, Delft, 2006, 38 p.

GISt Report No. 43, F. Penninga and P.J.M. van Oosterom, Editing Features in a TEN-based DBMS
approach for 3D Topographic Data Modelling, Technical Report, Delft, 2006, 21 p.

GISt Report No. 44, M.E. de Vries, Open source clients voor UMN MapServer: PHP/Mapscript,
JavaScript, Flash of Google (in Dutch), Delft, 2007, 13 p.

GISt Report No. 45, W. Tegtmeier, Harmonization of geo-information related to the lifecycle of civil
engineering objects — with focus on uncertainty and quality of surveyed data and derived real world
representations, Delft, 2007, 40 p.

GISt Report No. 46, W. Xu, Geo-information and formal semantics for disaster management, Delft,
2007, 31 p.

GISt Report No. 47, E. Verbree and E.M. Fendel, GIS technology — Trend Report, Delft, 2007, 30 p.
GISt Report No. 48, B.M. Meijers, Variable-Scale Geo-Information, Delft, 2008, 30 p.

GISt Report No. 48, Maja Bitenc, Kajsa Dahlberg, Fatih Doner, Bas van Goort, Kai Lin,Yi Yin, Xiaoyu
Yuan and Sisi Zlatanova, Utilty Registration, Delft, 2008, 35 p.

GISt Report No 50, T.P.M. Tijssen en S. Zlatanova, Oracle Spatial 11g en ArcGIS 9.2 voor het beheer
van puntenwolken (Confidential), Delft, 2008, 16 p.

GISt Report No. 51, S. Zlatanova, Geo-information for Crisis Management, Delft, 2008, 24 p.

GISt Report No. 52, P.J.M. van Oosterom, INSPIRE activiteiten in het jaar 2008 (partly in Dutch), Delft,
2009, 142 p.

GISt Report No. 53, P.J.M. van Oosterom with input of and feedback by Rod Thompson and Steve
Huch (Department of Environment and Resource Management, Queensland Government), Delft, 2010,
60 p.

