
ABSTRACT
Advertising is an important source of income for many
websites. To get the attention of the unsuspecting (and probably
uninterested) visitors, web advertisements (ads) tend to use
elaborate animations and graphics. Depending on the specific
technology being used, displaying such ads on the visitor's
screen may require a vast amount of CPU-power. Since present
day desktop-CPUs can easily use 100W or more, ads may
consume a substantial amount of energy. Although it is
important for environmental reasons to reduce energy consump-
tion, increasing the number of ads seems to be counterpro-
ductive.

The goal of this paper is to investigate the power consumption
of web advertisements. For this purpose we used an energy
meter to measure the differences in PC power consumption
while browsing the web normally (thus with ads enabled), and
while browsing with ads being blocked.

To simulate normal web browsing, we created a browser-based
tool called AutoBrowse, which periodically opens an URL from
a predefined list. To block advertisements, we used the Adblock
Plus extension for Mozilla Firefox. To measure also power
consumption with other browsers, we used in addition the
Apache HTTP server and its mod_proxy module to act as an ad-
blocking proxy server.

The measurements on several PCs and browsers show that, on
average, the additional energy consumption to display web
advertisements is 2.5W. To put this number into perspective, we
calculated that the total amount of energy used to display web
advertisement is equivalent of the total yearly electricity
consumption of nearly 2000 households in the Netherlands. It
takes 3,6 “average” wind turbines to generate this amount of
energy.

Keywords
Energy consumption, Adobe Flash, web browsing, advertising

1. INTRODUCTION
Many laptop users know that the amount of noise the cooling
fan of their laptop makes closely corresponds to the actual
workload of the CPU. And so did we. But we were surprised
that sometimes simply viewing websites also seemed to cause
the fan to start cooling. Closer inspection soon learned us that
this mostly seems to happen on web pages with “flashy” advert-
isements.

The business model of present day websites is often based on
revenue of advertising. These advertisements often take form as
“banners”, wide or tall graphics above or next to the content of
the web pages.

To maximize income by increasing exposure of the ads, there
usually are several banners on a single page. The result is that
ads have to compete with each other for attention of the unsus-

pecting, and often uninterested, visitor. To do so, the ad-
designers resort to animated images, and sometimes even large
animated overlays and videos.

There are currently two de-facto standard techniques for anima-
tion: animated GIFs, and Adobe Flash “Movies”. The latter is
popular for its ability to animate vector graphics, scripting
possibilities and ability to include normal video footage.

Driven by ecological, financial and laptop-battery-preserving
motives, CPU and operating system manufacturers try to
minimize the power consumption of CPUs, and computers in
general. They are fairly successful to minimize the energy
consumption of present day CPUs when the computer is idle,
but a desktop-CPU under full load can consume from about
45W to about 95W, depending on the model [1].

 1.1. Specific problem
Because putting a CPU under computational stress requires
power, and thus harms the environment, costs money, and
decreases battery live of laptops, it is best to keep the CPU-load
as low as possible, and only give it something “useful” to do.

However, web advertisements often seem to be quite CPU-
intensive when they are active, even though they occupy relat-
ively little display space. While the user might ignore these ads
displayed by his web browser, the CPU of his computer
certainly doesn't. Depending on the CPU model and the specific
design of the ad, the power consumed by the CPU for simply
displaying the advertisements might be significant. An example
of this is shown in the figures below.

The figures 1 and 2 are screenshots of the Windows XP task
manager, showing the total CPU-usage over a few minutes
time, while rendering and displaying the website www.tele-
graaf.nl in a web browser. In both cases, the site is opened just
once, after which no further actions were taken. The first
screenshot shows the CPU-usage of rendering and displaying
the website with advertisements enabled, while the second

R.J.G. Simons and A. Pras
Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente, Enschede, The Netherlands
E-mail: ut@randysimons.nl, a.pras@utwente.nl

The Hidden Energy Cost of Web Advertising

Figure 1: CPU usage of displaying a website (www.tele-
graaf.nl) with ads enabled.

Figure 2: CPU usage of displaying the same website, but with
ads blocked.

screenshot shows the CPU-usage of displaying the exact same
site, but with advertisements blocked.

The screenshots indicate that 50% to 100% of the CPU is used
only for displaying the Flash-advertisements on web page,
which amounts to about 15W of energy consumption for the
CPU used. For comparison, a contemporary laptop requires
around 15W when operational. However, this is just a single
example; not all advertisements we've seen put so much load on
the CPU. Others hardly use any CPU-power at all.

Apart from Flash, Javascript is often used on websites for
marketing purposes. We recognize two forms: keyword advert-
ising [22] and web tracking software.

An example of keyword advertising is IntelliTXT [20]. When a
visitor opens a page containing the IntelliTXT-script, the script
scans the text on the web page, and converts some keyword or
sentences into clickable links to the advertiser's website. Since
the scanning is done on the client using Javascript, it requires
computational effort of the web browser.

Web tracking software, such as Google Analytics [9], is used on
websites to gather information on demographic, sociographic
and behavioural aspects of the visitors of websites. It can use
Javascript to enhance its capabilities, which now can include
the ability to monitor the exact links the visitors click, how
often and far the visitor scrolls his browser screen and how long
the visitor stays on the web pages. We concede that web
trackers are not advertisements, but the two are closely related:
the information gained by web trackers allows for better
targeted advertising. And just like advertising, web tracking can
be considered as an “unsolicited feature” on websites.

While we believe these Javascript-based advertising and
tracking software is relatively “energy efficient” compared to
some other (Flash)-based advertising, we did notice it requires
some CPU-effort when loading certain websites.

Since there usually is no indication on the power consumption
of the computer apart from the CPU cooling fan on laptops, the
user might be oblivious to the costs (monetary, ecological,
battery life) of these ads on websites. If the visual extravagance
doesn't bother him, there would be little reason to try to avoid
those ads.

In the Netherlands people aged 6 to 65 surf the web for 34.2
minutes each day on average in their free time [15][16]. If the
energy required for web advertisement on a single computer is
significant, the total power needed for these advertisements
yearly in the Netherlands could be quite substantial. How many
households could be powered with this energy? Or how many
wind turbines – costly hardware, and not free of ecological
issues as well – could be avoided?

It might be useful to find out what can be done to reduce the
energy consumption. And perhaps websites can change their
advertisers-policy, and only allow “green ads” to be published
on their website.

Given the current climate-crisis, this could very well be an extra
marketing-strategy for some sites.

 1.2. Related work
The website AnandTech made a comparison between web
browsers on laptops [2], to determine which browser was the
most energy efficient. As a side-project, they measured the
effect of web advertisements on the battery life of the tested

laptops, by blocking the ads using the Adblock Plus extension
[11] on Firefox.

They found that using Firefox the battery of the laptops lasted
longer with Adblock enabled, than with Adblock disabled. For
the AMD Athlon CPU the battery lasted 4.3% longer, on the
Intel Core 2 Duo CPU even 5.7% longer. Using the Intel Atom
CPU, the difference was negligible. However, they do note that
“Safari seems to want more CPU power than the Atom can
provide, with the result being the processor is often near 100%
utilization for significant amounts of time on Flash-heavy
sites”. This would indicate that the browser can also be of influ-
ence on the energy consumption of the ads.

 1.3. Research questions
We try to answer the following questions:

1. Does web advertising and tracking consume a significant
amount of energy?

2. How much energy is used for displaying advertisements
and banners compared to the total energy usage of a
computer, while browsing the web?

3. Is there a difference between platforms? (CPU architec-
ture, browser)

4. How much energy used for web advertisement is used in
the Netherlands yearly? How does this figure compare to
the total electrical energy used Dutch households? How
many wind turbines are needed to generate this power?

 1.4. Approach and structure
Directly measuring the direct energy consumption of ads by a
web browser is difficult. We've chosen for a sequential
approach: first we measured the energy consumption of the
entire PC while browsing with ads enabled, then we measured
the consumption while browsing with ads disabled. The differ-
ence, normalized to a period of one hour, is the amount of
energy used for displaying ads and tracking systems. This result
can then be compared to the energy consumption of the entire
PC.

Each test session (ads enabled and ads disabled) was run on the
same PC on the same web browser. We've conducted several
tests sessions, ranging from older, low end PCs to medium-end
PCs. Several browsers were tested as well. All in all typical set-
ups for generic home and office use.

For this approach we used and made some specific tools to aid
the measurements, which are detailed in chapter 2. Chapter 3
explains the set-up of the experiment and the use of the tools.
The results of the measurements are shown in chapter 4, and are
discussed in chapter 5. In chapter 6 we draw the conclusions,
and answer the research questions.

2. MEASUREMENT TOOLS
Our approach mentioned in section 1.4, hinges on three
methods: realistic and repeatable web browsing, consistent
blocking of ads and trackers, and accurate measurements of the
PCs used while browsing the web.

 2.1. Automatic consistent web browsing
For accurate and consistent results we set out to automate the
web browsing for the measurements. The following require-
ments were considered:

1. The pages visited should be realistic, containing a
realistic amount of realistic ads.

2. The web browsing should be plausible “human-like”:

1. Visit relatively popular websites.

2. Periodically navigate from one page to another.

3. Open up more than one browser tab or window.

3. Repeatable; if the exact same test was run twice, it
should produce the same results.

4. Cross-platform; it should work on several platforms,
on several contemporary web browsers.

We believe that if these criteria are met, the results are close
enough to real life web browsing behaviour to be able to answer
the research questions in section 1.3.

 2.1.1. AutoBrowse
To run consistent tests in compliance with the requirements
stipulated in the beginning of section 2.1, we developed a
JavaScript-tool called “AutoBrowse”, which can be run directly
in any present-day web browser [14].

The basic function of AutoBrowse is to periodically open a link
from a predefined list of web links in a new browser tab or
window. When a certain maximum number of tabs or windows
have been opened, the oldest is closed. At the end of the list,
AutoBrowse simply restarts from the top of the list.

When opening the AutoBrowse page, the user can alter the list
of links to be opened, the interval between every opened link,
and the maximum number of opened tabs or windows. After
changing the default values, the “reset”-button must be pushed
to apply the changes. If the user is satisfied with the parameters,
he can start the procedure by pressing the “start/pause”-button.
AutoBrowse will now open each link in a new tab or window.
The progress is shown in the title bar or tab of AutoBrowse.

It should be noted that it can make a difference whether the
links are opened in new tabs or in new windows. Tabs always
overlap each other, thus only one tab can be active at any given
time. It might be possible that Flash and browsers suspend
rendering or updating invisible tabs, thereby reducing the
energy consumption. Windows, on the other hand, might only
partially overlap each other or even not at all. Browsers are
thereby forced to render the screen, resulting in more energy
consumption.

Due to limitations in Javascript, AutoBrowse has no influence
in whether the links are opened in new tabs, or in new windows.
Mozilla Firefox and Opera default to open new pop-ups as tabs,
whereas Apple Safari, Google Chrome, Microsoft Internet
Explorer 7 and 8 open pop-ups as new windows. In Firefox,
Opera and Internet Explorer, this behaviour can be altered.
Safari on Windows and Chrome currently lack this option; pop-
ups are always opened in a new window.

 2.2. Blocking ads and trackers
Several methods for blocking advertisements and trackers have
been investigated. They can be divided into two groups:

1. Blocking of URLs. Whenever a web page -and thus
the browser- requests a document from an URL, this
URL is matched against a black-list. If the URL
matches with one or more URLs in the black-list, the
request is aborted or denied.

2. Content filtering. The (HTML) content of retrieved
web pages is checked against a rule-based filter. The
parts of the content that match one or more rules are
scrapped or replaced, thereby preventing that the
filtered content is shown on screen.

Both methods can be implemented either inside or outside the
browser. Also, both methods can be combined: filters can
employ both URL blocking and content filtering for better
results.

Implementations inside the browsers are always browser-
specific, and not all contemporary browsers support this option.

External implementations are usually designed as an HTTP-
proxy. This method works with every browser, as long as the
browser can route the HTTP-requests through an HTTP-proxy.
In practise, all browsers support this option.

 2.2.1. False positives and negatives
Whichever option is chosen, care must be taken to avoid incor-
rect classification of the URLs or content. But unlike anti-spam
solutions for e-mail where false positives should be avoided at
all costs, a few false positives are of little concern, as long as
it's insignificant and/or are “compensated” by false negatives.

However, filtering shouldn't be too strict. For example, simply
disallow all Flash-based content would also block many videos
on popular websites as YouTube.

 2.2.2. Investigated filtering options
The following browsers and their options have been investig-
ated:

Opera, with built-in URL-filter
This browser has built-in support for URL-based filtering,
using a black-list. Items on this list can contain wildcards.
Whenever the browser retrieves a document, the document's
URL is checked against the blocked content list. If a match
is found, the browser aborts the request.

Mozilla Firefox, with Adblock Plus
By default Firefox has no filtering capabilities. However,
the free add-on Adblock Plus [11] adds both URL and
content filtering. Ready-made configuration files can be
downloaded for both ad-blocking and tracker-blocking. The
syntax for filtering-rules is more powerful than Opera's, and
includes regular expressions. Content filtering is based
mainly on CSS-selectors for popular sites, which targets
known ads very precisely.

Easylist is a popular configuration file for Adblock. It can
be supplemented by Easylist Privacy, which adds tracker-
blocking.

Proximodo
Proximodo is a proxy server with content and URL filtering
capabilities [5]. It targets much more than just ad-blocking,
but it still is one of its main features. The filtering syntax
and options are very flexible, and include regular expres-
sions.

By default it does not employ URL-filtering, but it relies
primarily on content filtering. Proximodo's content-filtering
techniques seem to rely on heuristics to recognize ads.

Privoxy
The Privoxy proxy server aims to improve privacy while
browsing the web [13]. Like Proximodo it has a wide range
of options and features. But unlike Proximodo, manual
configuration is required in order to get ads and tracker-
blocking, without modifying the content and/or requests.

Squid
Squid is specifically designed as an optimizing and caching
proxy server [19]. This nature can interfere too much with
the tests, and therefore this option was quickly abandoned.

Apache webserver + mod_proxy
Despite the fact that the Apache web server is primarily an
HTTP server for websites [3], it can easily be converted in a
non-caching, full pass-through proxy server, by enabling the
mod_proxy module [4].

The normal installation and configuration procedure of
Apache is less convenient than the other options listed here.
However, an all-in-one package such as XAMPP makes it
easier. Also, we happen to have prior experience with
Apache and the mod_proxy-module.

Mod_proxy doesn't support content filtering, but it is
possible to use regular expression based rules [14].

 2.2.3. Decision for filtering options
The Adblock extension for Firefox, in combination with the
Easylist configuration files, does an excellent job filtering both
advertisements and web trackers. During the years of Opera-
use, our Opera blocked content lists have proven to be very
successful as well, even though the list is much shorter.

However, while both options are good solutions, they are
browser-specific. A proxy-based solution is browser-inde-
pendent.

While the specialised solutions Proximodo and Privoxy
undoubtedly can eventually perform excellently, the standard
configurations do more than simply blocking, but perform other
“clean-up tasks” as well, which is not what we want. Moreover,
Proximodo's default lists performed less than Adblock and our
Opera's blocked content list. During the investigation, Prox-
imodo v0.2.5 crashed on occasion, which rendered it too
impractical for the tests.

It turned out to be easy to convert our wildcard-based Opera's
blocked content list to a regex-based-rule for Apache with
mod_proxy. In effect, this set-up provides the exact same result
as Opera's blocked content list, but now implemented in a
cross-browser way.

We already had Apache with mod_proxy installed on a laptop.
When the laptop is placed inside the LAN of the test-PCs, we
could simply configure all the web browsers to use the laptop
with Apache/mod_proxy as a proxy server. Thus, this solution

is a browser- and platform-agnostic advertisement and tracker
filtering solution, which can be used with little effort for all
browsers and platforms.

All on all, our conclusion is that Opera's blocked content list
and Adblock for Firefox are good options, when testing using
those browsers. The solution using a laptop with Apache,
mod_proxy and the adaptation of our Opera's blocked content
list is very practical for general use with all browsers and plat-
forms.

 2.3. Measuring energy consumption
For the actual measurement of the energy consumption, we
used a Voltcraft Energy Monitor 3000 [6]. This is a consumer-
grade measuring device, amongst others capable of measuring
the current power use in W with a resolution of 0.1W, and
cumulative energy consumption, displayed as kWh, with a
resolution of 1Wh.

The device has a built-in clock, with a resolution of 0.01 hour.
In combination with the kWh-measurement, this provides an
averaged power usage of the measured device in W.

However, due to the fact the resolution of the energy consump-
tion is just 1Wh, a measurement of one full hour has to be made
in order to get averaged results with a resolution of 1W. A two
hour measurement results in a resolution of 0.5W, etc.

3. MEASUREMENT ENVIRONMENT

 3.1. Obtaining the browse list
The AutoBrowse tool uses a list of URLs, which it will open in
order. The next task is to devise such a list. The URLs should
meet requirement 1 and 2 of the list at the beginning of section
2.1.

At first, we've obtained a list of websites nominated for the
Dutch “website of the year”-award. This list was reasonably
diverse, and the listed websites are reasonably popular. But on
closer inspection, this list didn't satisfy requirement 1: all the
URLs in the list pointed to the homepage of the websites.
However, homepages are often little more than portals for the
rest of the site. In many of these cases, the homepages
contained less advertisements than the actual content pages of
the sites.

We then looked for a list of deeplinks to popular sites. For this,
we looked at the website Digg, which is “[...] a place for people
to discover and share content from anywhere on the web. From
the biggest online destinations to the most obscure blog, Digg
surfaces the best stuff as voted on by our users” [7]. The “top
stories”, such as posted on the main page, are good candidates:
popular, deep links to wide variety of websites.

Digg provides a REST-based API to retrieve at most 100 links
at once. The standard result is an XML-document which
contains the links with other details. We used this API to get
two documents with the 200 most popular stories, containing
URLs and other meta-data. Using an XPath-query we then
extracted the URLs from the list [14]. This resulting list of
URLs is used for the test sessions using AutoBrowse.

 3.2. Interval between visits
AutoBrowse opens a new URL from the browse list every 30
seconds by default. While this might or might not be a good
value for the average time spend by a human on a web page is
over little importance; the browse list is considered a “random”
list of representative web sites, thus on average, over a longer
period, the time a single page is visible is mostly irrelevant.

However, there are factors which should be considered:

• Smaller intervals causes more pages to be loaded and
rendered within the same period, increasing the CPU-
time spend for rendering the page, and thus the total
power consumption.

• It often takes a couple of seconds before the (poten-
tially CPU-intensive) ads are shown when the URL is
opened, thus lowering the total power consumption
when browsing with ads enabled.

• Some advertisements appear to have a limited number
of animation-cycles. After the animation sequence has
played for a certain amount of times, the animation
stops, which can significantly reduce the CPU-load.

We maintained the default 30 seconds interval for most of the
tests.

 3.3. Number of open tabs/windows
Almost all current-day popular web browsers support tabs.
Instead of spawning a new window when the user clicks on a
link with target=”_blank”-attribute, the browser opens the link
in a new tab. Users can also manually open new tabs.

This option, and particularly due to the fact that many websites
use the target=”_blank”-attribute on links to external pages,
users often have several websites open at any given time. Wein-
reich et al. determined in 2006 that users had 2.1 open tabs on
average [21].

Because the number of open tabs and windows, and thus the
number of open web pages with “active” advertisements can be
of influence on the energy consumption, AutoBrowse opens
each link in a new tab, while closing the oldest tab. This beha-
viour mimics the human web browsing behaviour.

The maximum number for this experiment of tabs or windows
that AutoBrowse opens is set to 3. While this is more than the
2.1 open tabs as determined by Weinreich et al., we believe that
due to the increased number of browsers supporting tabs since
2006 -especially Internet Explorer-, this trend is rising.

 3.4. Ad blocking
As was determined in section 2.2.3, the Adblock-extension for
Firefox in combination with the Easylist configuration files, and
the laptop with Apache + mod_proxy with our own configura-
tion [14] are the best candidates for the blocking of advertise-
ments and web trackers.

For all tests, except some sessions with Firefox, the
laptop/Apache-proxy server was used.

 3.5. PC configurations
For this experiment we used a variety of PCs, ranging from
low-end to medium/high-end. We believe these can be

considered fairly average, and can provide valid results. The
details of the PCs are listed in table 1 below.

Before the test sessions the screens savers and power manage-
ment functionality of the display were disabled. Both options
could interfere with correct measurements: a screen saver might
cause the browsers to stop updating the screen, as it is invisible
anyway. Power management might suspend large portions of
the GPU, reducing the power consumption. And when a person
is browsing the web, obviously neither the screen saver, nor
power management is active.

Also, no other activities were done on the PC while measuring
power consumption.

Table 1: PCs used for the experiment

PC CPU GPU Operating
system

Flash
version

1 Intel Q6300
Quad core
@ 2,5GHz

Nvidia
GF 7600 GS
v8.16.11.9107

Windows
Vista SP2

v10.0

2 AMD AthlonXP
1700+
Single core
@ 1,47GHz

ATi Radeon
5500
v8.33.0.0

Windows
XP SP3

v10.0

3 Intel 6600
Dual core
@ 2,4GHz

Nvidia
GF 7600 GS
v6.14.11.8585

Windows
XP SP3

v10.0

4 Intel Pentium M
735
Single core
@ 1,8GHz

ATi Radeon
9700M

Windows
XP SP2

v10.0

 3.6. Browser configurations
Various browsers have been used for the test. Some browsers
are available as a “portable” version [12], [10]. Were possible,
the portable version was used; it provides a clean and typical
installation, can operate independent of other browsers installed
on the PC, and does not interfere with the rest of the PC.

The used browsers and their configurations for the experiment
were:

Apple Safari
This browser, version 4.0.4 for Windows, had to be installed
normally on the PC. It was a clean, typical installation, and
no special settings were made.

Safari opens new pop-ups in a new window, instead of new
tab. AutoBrowse has no influence in this behaviour, but
because most people will open new tabs rather than new
windows, we looked for a way to change this behaviour of
Safari. Unfortunately, while the Mac OS X-version of Safari
can be instructed to open pop-ups as new tabs using the
TargetedClicksCreateTabs = true configuration
option, this option has no effect on the Windows version
used.

Another problem was that Safari had only a global setting
for blocking or allowing pop-ups. Because AutoBrowse
uses pop-ups, all pop-ups had to be allowed. Fortunately
only a few websites use (unwanted) pop-ups these days.
During testing, those pop-ups were closed manually.

Microsoft Windows Internet Explorer
The current version 8 of Internet Explorer was used. It was
installed normally on the PC – a true portable version is
impossible. However, because this browser wasn't the
default browser used on the systems, it had been in a clean
and unmodified, typical state.

Internet Explorer 8 supports tabbed browsing. By default,
pop-ups are blocked, but can be allowed per domain. New
pop-ups are opened in a new windows, but this setting can
be altered, so they are opened as new tabs instead.

On occasion, websites caused a (javascript)-error, in which
case Internet Explorer showed a message box on screen.
When this happens, AutoBrowse cannot automatically close
the corresponding tab. On such occasions, we closed the tab
manually.

Mozilla Firefox
In all cases, the portable version of Firefox 3.5.5 was used.
This version has disk caching disabled. As per typical
installation, unwanted pop-ups are disabled, but this can be
overridden on a per-domain basis. New pop-ups (those
opened by AutoBrowse) are opened in a new tab.

Opera
We used the portable version of Opera v10.10. Apart from
the disabled disk cache this provides a very typical installa-
tion. Just like Firefox, unwanted pop-ups are disabled by
default, but can be enabled on a per-domain basis. For the
test, we've enabled pop-ups for the AutoBrowse domain.

Adobe Flash, however, is a system-wide installation. The port-
able versions of the browsers use the Flash already installed on
the system. In all situations, this was the current version 10.0.

 3.7. Measurement procedure
After a PC and browser have been chosen, a test session can be
prepared.

1. The mains of the PC – and only the PC – are
connected to the mains through the energy meter.

2. Non-essential USB devices, such as printers, photo
cameras, mobile phones, are disconnected, as they
can draw up to 2.5W each from the PC [18], which
might distort the measurement.

3. The PC is started. At the desktop, the screen saver and
power management for the display are disabled.

4. The chosen web browser is started, and configured to
open pop-ups as new tabs, if possible. Also, pop-ups
from the domain hosting AutoBrowse is added to the
allow-list for pop-ups. The browser cache is cleared.

5. The AutoBrowse web page is requested. Settings are
changed, if necessary, after which the “reset” button
is pressed.

6. The time tracker of the power meter is reset, and
immediately the “start/pause” button in AutoBrowse
is pressed.

7. After at least two hours, the exact elapsed time and
energy consumption as is recorded by the energy
meter is read, and written down in a log.

8. The reset button in AutoBrowse is pressed.

9. The browser is prepared for filtering, e.g. Adblock is
installed and configured, or the proxy settings are
made to use the laptop with Apache/mod_proxy as
proxy server. The browser cache is cleared, and the
browser is restarted.

10. AutoBrowse is opened again, and the same para-
meters as in step 5 are set.

11. The time tracker of the power meter is reset, after
which the “start/pause” button in AutoBrowse is
pressed.

12. Again, after about two hours, the exact elapsed time
and energy consumption is written down in a log.

This procedure is repeated on several PCs, with varying
browsers.

4. RESULTS
Table 2 shows the results of the measurements. The average
power is the measured consumption divided by the time for the
test. The difference in the average power consumption between
the normal browsing and the ads/tracker blocked browsing is
the averaged energy in watts used to display the advertisement
on the websites.

Table 2: Result of measurements. Power consumption of PCs, while browsing the web.

Normal browsing Ads/trackers blocked

PC Br
ow

se
r

O
pe

n
ta

bs

Fi
lte

r m
et

ho
d

se
co

nd
s/

pa
ge

Ti
m

e
(h

ou
r)

Ti
m

e
(h

ou
r)

1 Firefox 3.5.5 3 Adblock Plus / EasyList + EasyPrivacy 20 2.03 138 68.0 2.03 135 66.5 1.5
1 Safari 4.0.4 3 Apache filter proxy 30 2.09 162 77.5 2.09 154 73.7 3.8
1 Firefox 3.5.5 10 Adblock Plus / EasyList + EasyPrivacy 30 2.11 148 70.1 2.11 143 67.8 2.4
1 Firefox 3.5.5 3 Apache filter proxy 30 2.09 142 67.9 2.09 138 66.0 1.9
2 IE8 3 Apache filter proxy 30 2.08 221 106.3 2.08 214 102.9 3.4
2 Firefox 3.5.5 3 Apache filter proxy 30 2.04 214 104.9 2.04 209 102.5 2.5
3 Firefox 3.5.5 3 Apache filter proxy 30 2.29 231 100.9 3.1 304 98.1 2.8
4 Opera 10.10 3 Apache filter proxy 30 2.11 34 16.1 2.15 31 14.4 1.7

Average (W): 76.5 74.0 2.5

M
ea

su
re

d
co

ns
um

pt
io

n
(W

h)

Av
er

ge
 p

ow
er

(W

)

M
ea

su
re

d
co

ns
um

pt
io

n
(W

h)

Av
er

ag
e

po
w

er

(W
)

Di
ffe

re
nc

e
(P

ow
er

 u
se

d
fo

r
ad

s)
 (W

)

On average, the power consumption used by our test-PCs and
browsers while browsing the web was 76.5W with ads/trackers
enabled, and 74.0W with ads/trackers blocked. Thus, 2.5W is
used solely for web trackers and displaying ads. In other terms:
given the baseline of 74.0W, web advertisements increase the
energy consumption by 3.4%.

5. DISCUSSION
The increase in energy consumption of 3.4% due to advertise-
ment is comparable to the decrease of a laptop's battery life of
about 5%, as measured by AnandTech on the laptops with
desktop-like CPUs [2]. However, AnandTech used only a very
few websites in their test.

Still, the figure of 5% is remarkable: a laptop has a built-in
display, which requires about the same amount of energy
regardless whether the image it shows is static, or animated.
Thus, if the display would be taken out of the equation, as is the
case in our test, the loss of battery life would be even more than
5%. This is supported by the measurement of our own laptop,
PC 4, which had its internal display disabled in favour of an
external display. Table 2 indicates an increase of 12% in energy
consumption due to web advertisement for this PC.

Some other interesting facts might be derived from the figures
in table 2: Firefox with 10 open tabs used more energy than
when having 3 open tabs. This might be due to the fact that
some websites had videos playing, which were not necessarily
ads, but which kept playing even if their tab was invisible.
More open tabs meant the videos played longer before the tab
was closed by AutoBrowse. Because video decoding is rather
CPU-intensive, it increases the energy consumption.

Another observation is that both Apple Safari and Microsoft
Internet Explorer 8 seem to require more energy than Firefox
3.5 However, accurate measurement of Safari and Internet
Explorer using AutoBrowse was difficult, as Safari couldn't be
persuaded to open new tabs instead of new windows; Internet
Explorer occasionally showed a Javascript message box, and
thereby prevented AutoBrowse to close the tab. We had to close
those tabs manually.

The final result of 2.5W difference due to ads remains an
approximation, due to several circumstances:

• The energy meter had a resolution of 1Wh.

• Ad blocking wasn't always successful; some ads
slipped through the filters.

• The number of test sessions conducted is limited.

6. CONCLUSIONS
This paper discussed the differences in energy consumption of
web browsing with ads enabled, and ads disabled. While the
difference is relatively small, it is clear that advertisements on
web pages do require a significant amount of energy.

From our research we found that the power required to render
and display web advertisements is 2.5W. Without ads, the PCs
used an average of 74.0W. Thus, web advertisements increase
the total energy consumption of PCs by 3.4%.

The precise energy consumption depends on the browser used.
For example, Internet Explorer 8 used 38% more energy than
Firefox 3.5.5, just for rendering ads. For adds, Safari on
Windows even required 100% more energy than Firefox,

although this number should be used with care, since we had to
use different measurement procedures (in Safari AutoBrowse
opened new windows instead of new tabs).

Because of these browser differences, the average power
consumption is probably even more than the 2.5W measured in
our experiments, especially since Internet Explorer is still more
popular than Firefox and Opera, which render adds more effi-
ciently.

Our experiments were conducted on four different platforms,
ranging from an old laptop to a quad core contemporary PC. On
these platforms, the differences in energy consumption by ads
was generally less than 1W. This indicates that the platform has
little effect on the total energy consumption by adds.

Using figures of SPOT [15] and Statistics Netherlands [16] for
2008, we estimated that the Dutch population spent about 2.7
billion hours browsing the web. Since every hour of web
browsing requires 2.5Wh for the advertisements, this amounts
to 6.8 billion Wh used for web ads. According to ECN, the
average electric energy consumption of a Dutch household was
3558kWh in 2008 [8]. Thus, the total energy used for
displaying web advertisements is equivalent to the total yearly
electric energy consumption of 1891 Dutch households.

On average a wind turbine in the Netherlands in 2008 generated
1888kWh [17]. To generate the 6.8 billion kWh needed for web
advertisement by wind energy, it would take the total energy
output of 3,6 “average” wind turbines.

 6.1. Further work
While this study makes clear that web advertisement and
tracking does require a measurable amount of energy, the
number of tests conducted was limited and insufficient to
answer the following questions:

• Why do some ads require more energy than others? Is
there a “quick fix” for designers and developers to
reduce the required CPU-usage?

• As more and more web browsers run each tab or
window in a separate process, does a multi-core CPU
has any advantages or disadvantages when it comes to
energy consumption for ads?

• Apart from the energy consumption by the local PC,
what is the energy costs for transporting the data of
all those ads across the internet?

• Will increasing monitor sizes and resolutions have
additional effect on the energy consumption, for
example since they allow more and larger ads to be
displayed at once?

• Do alternatives for Adobe Flash, such as SVG and
Canvas, perform better or worse?

7. REFERENCES
[1] AMD: AMD Athlon™ II Processor Competitive

Comparison,
http://www.amd.com/us/products/desktop/processors/athlo
n-ii-x2/Pages/AMD-athlon-ii-x2-processor-competitive-
comparison.aspx

[2] AnandTech: Browser Face-Off: Battery Life Explored,
http://anandtech.com/mobile/showdoc.aspx?i=3636

[3] Apache foundation: Welcome! - The Apache HTTP Server
Project, http://httpd.apache.org/

[4] Apache foundation: Apache Module mod_proxy,
http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

[5] Boucher, Antony: Proximodo,
http://proximodo.sourceforge.net/

[6] Conrad Electronic Benelux: Energy Monitor 3000 -
Energiekosten meter (Dutch),
http://shop.conrad.nl/elektronica-
meetapparatuur/meetinstrumenten/energiekosten-
meter/125331.html

[7] Digg: What is Digg?, http://about.digg.com/

[8] ECN: Gemiddeld energiegebruik per huishouden,
http://www.energie.nl/index2.html?stat/trends024.html

[9] Google: Google Analytics | Official Website,
http://www.google.com/analytics

[10] Obermair, Markus: Opera@USB mobile Opera - portable
Opera for USB, http://www.opera-
usb.com/operausben.htm

[11] Palant, Wladimir: Adblock Plus: Save your time and
traffic, http://adblockplus.org/

[12] PortableApps: Mozilla Firefox, Portable Edition,
http://portableapps.com/apps/internet/firefox_portable

[13] Privoxy Developers: Privoxy - Home Page,
http://www.privoxy.org/

[14] Simons, R.J.G.: The Hidden Energy Cost of Web
Advertising,
http://randysimons.nl/125,english/149,energy-
consumption-of-web-ads/

[15] SPOT: Tabellen bij het Tijdbestedingsonderzoek 2008,
http://www.spot-
interactive.nl/downloads/tabellenWebsite2008.pdf

[16] Statistics Netherlands: Bevolking; geslacht, leeftijd en
burgerlijke staat, 1 januari 2009,
http://statline.cbs.nl/StatWeb/publication/?
DM=SLNL&PA=7461bev&D1=a&D2=a&D3=1-
100,121-130&D4=0,57-
59&HDR=T,G3&STB=G1,G2&VW=T

[17] Statistics Netherlands: Windenergie op land; productie en
capaciteit per provincie,
http://statline.cbs.nl/StatWeb/publication/default.aspx?
DM=SLNL&PA=70960NED&D1=a&D2=a&D3=17-
18&VW=T

[18] USB Implementers Forum: USB Frequently Asked
Questions,
http://www.usb.org/developers/usbfaq/#pow_dis

[19] Various developers: squid : Optimising Web Delivery,
http://www.squid-cache.org/

[20] Vibrant: What is IntelliTXT™?,
http://www.vibrantmedia.com/advertisers/in-
text_advertising/faq.asp#4

[21] Weinreich, Harald et al., 2008: Not Quite the Average:An
Empirical Study of Web Use. In: ACM Transactions on the
Web, vol 2, no 1, page 5:15

[22] Wikipedia contributors: Keyword advertising,
http://en.wikipedia.org/wiki/Keyword_advertising

