
Portunes: analyzing multi-domain insider threats

Trajce Dimkov, Wolter Pieters, Pieter Hartel

Distributed and Embedded Security Group
University of Twente, The Netherlands

{trajce.dimkov, wolter.pieters, pieter.hartel}@utwente.nl

Abstract. The insider threat is an important problem in securing infor-
mation systems. Skilful insiders use attack vectors that yield the greatest
chance of success, and thus do not limit themselves to a restricted set
of attacks. They may use access rights to the facility where the system
of interest resides, as well as existing relationships with employees. To
secure a system, security professionals should therefore consider attacks
that include non-digital aspects such as key sharing or exploiting trust
relationships among employees. In this paper, we present Portunes, a
framework for security design and audit, which incorporates three secu-
rity domains: (1) the security of the computer system itself (the digital
domain), (2) the security of the location where the system is deployed
(the physical domain) and (3) the security awareness of the employees
that use the system (the social domain). The framework consists of a
model, a formal language and a logic. It allows security professionals to
formally model elements from the three domains in a single framework,
and to analyze possible attack scenarios. The logic enables formal speci�-
cation of the attack scenarios in terms of state and transition properties.

Keywords: insider threat, physical security, security awareness, security
model.

1 Introduction

Malicious insiders are a serious threat to organizations. Motivated by greed or
malice, insiders can disrupt services, modify or steal data, or cause physical dam-
age to the organization. Protecting assets from an insider is challenging [1] since
insiders have knowledge of the security policies in place, have certain privileges
on the systems and are trusted by colleagues. An insider may use the knowledge
of the security policies to avoid detection and use personal credentials or social
engineer colleagues to carry out an attack. An example of such a scenario is
the road apple attack [2], where an insider tricks an employee into plugging a
malicious dongle into a server located in a physically restricted area. Thus, the
environment in the organization where the insider operates spans all three se-
curity domains, physical security, digital security and security awareness of the
employees.
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istry of Economic A�airs under project number TIT.7628.



Current formal models for modeling insider threats [3,4,5] assume the insider
uses only digital means to achieve an attack. Therefore, these models do not
look into mobility of people and devices nor social interactions between people,
and focus only on modeling the security of a network or a host. For example,
there is a lot of research that focuses on modeling and analyzing network and
host con�gurations to generate, analyze and rank attack scenarios using attack
graphs [6].

Assuming that the insider uses only digital means to achieve an attack leaves
an essential part of the environment of interest not captured in the security
models. Indeed, a study performed by the National Threat Assessment Center
in the US (NTAC) [7] shows that 87% of the attacks performed by insiders
require no technical knowledge and 26% use physical means or the account of
another employee as part of the attack. Thus, a whole family of attacks, digitally-
enabled physical attacks and physically-enabled digital attacks [8], in which the
insider uses physical, digital and social means to compromise the asset cannot
be presented nor analyzed. Representing all three security domains in a single
formalism is challenging because the domains have di�erent properties which
makes them hard to integrate.

The contribution of this paper is Portunes1, a framework which integrates
all three security domains in a single environment, hereby enabling analysis of
multi-domain insider threats. Portunes consists of a model, a language and a
logic. The model is a high-level abstraction of the environment focusing on the
relations between the three security domains. It provides a conceptual overview
of the environment that is easy to understand by the user. The language is at
a relatively low level of abstraction, close to the enforcement mechanisms. The
language is able to describe security policies and mechanism which span the
three security domains. We use the language to automatically generate attack
scenarios across these domains. The Portunes logic is able to formally express
properties of models and model evolutions, which are used to specify undesired
goals and to select subset of attacks. The Portunes framework is implemented
using the Groove model checker, which allows graphical representation of a Por-
tunes model, easy implementation of the semantics of the Portunes language and
checking properties using the Portunes logic.

The rest of the paper is structured as follows. Section 2 formalizes the Por-
tunes model and Section 3 formalizes the Portunes language. Section 4 gives a
logic for presenting properties of a Portunes model. We use the road apple attack
as a running example of the scenarios Portunes is designed to represent. Section
5 discusses implementation issues and section 6 gives an overview of related
work which contributes to the design of Portunes. The �nal section concludes
the paper and identi�es future work.

1 After Portunes, the Roman god of keys

2



2 Portunes

This section presents the Portunes framework. We �rst present the requirements
which Portunes needs to satisfy and the motivation behind some of the design
decisions. Based on the requirements, we formally de�ne the Portunes model and
the Portunes language. To show the expressiveness of the framework, we use an
instance of the road apple attack as an example.

2.1 Requirements and motivation

The three security domains focus on di�erent aspects of security. Physical se-
curity restricts access to buildings, rooms and objects. Digital security is con-
cerned with access control on information systems. Finally, security awareness
of employees focuses on resistance to social engineering, and is achieved through
education of the employees.

Representing all three security domains in a single formalism is challenging.
Firstly, the appropriate abstraction level needs to be found. A too low level of
abstraction for each domain (down to the individual atoms, bits or conversa-
tion dynamics) makes the representation complicated and unusable. However,
abstracting away from physical spaces, data and relations between people might
omit details that contribute to an attack. Thus, a model integrating multiple
security domains needs to be expressive enough to present the relevant details
of an attack in each security domain. In previous work [9], we provided the basic
requirements for an integrated security model to be expressive enough to present
detailed attacks. Brie�y, an integrated security model should be able to present
the data of interest, the physical objects in which the data resides, the people
that manipulate the objects and the interaction between data, physical objects
and people.

Spatial node

Physical node

Digital node

Spatial layer

Object layer

Digital layer

Fig. 1. Graphic presentation of Portunes

Secondly, the domains have di�erent properties making them hard to inte-
grate. For example, mobility of digital data is not restricted by its locality as is
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the case with objects in the physical domain. Likewise, physical objects cannot
be reproduced as easily as digital data. An additional requirement for Portunes
is to restrict interactions and states which are not possible in reality. For ex-
ample, it is possible to put a laptop in a room, however, putting a room in a
laptop is impossible; a person can move only to a neighboring location, while
data can move to any location; data can be easily copied, while the reproduction
of a computer requires assembling of other objects or materials.

2.2 The Portunes model

To present the di�erent properties and behavior of elements from physical and
digital security, the Portunes model strati�es the environment of interest in three
layers: spatial, object and digital. The spatial layer presents the facility of the
organization, including rooms, halls and elevators. The object layer consists of
objects located in the facility of the organization, such as people, computers and
keys. The digital layer presents the data of interest. Strati�cation of the envi-
ronment in three distinct layers allows speci�cation of actions that are possible
only in a single layer (copying can only happen for digital entities) or between
speci�c layers (a person can move data, but data cannot move a person).

The Portunes model abstracts the environment of an organization in a strat-
i�ed graph and restricts the edges between layers to re�ect reality. A node ab-
stracting a location, such as an elevator or a room, belongs to the spatial layer
L and it is termed a spatial node. A node abstracting a physical object, such as
a laptop or a person, belongs to the object layer O and it is termed an object
node. A node abstracting data, such as an operating system or a �le, belongs
to the digital layer D and it is termed a digital node. The edges between spa-
tial nodes denote a neighbor relation and all other edges in the model denote
a containment relation. The ontology used in Portunes is given in Figure 2. An
edge (n,m) between two spatial nodes means n is a neighbor of m. This is a
symmetric relation where the direction of the edge is not important. For all other
nodes, an edge (n,m) means that node n contains node m; this is an asymmetric
relation.

layer node edge

spatial location
neighbors

contains

object physical object contains

contains

digital data
contains

Fig. 2. The ontology of Portunes
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The above statements are illustrated in Figure 1 and formalized in the fol-
lowing de�nition.

De�nition 1. Let G = (Node,Edge) be a directed graph and D : Node →
Layer a function mapping a node to Layer = {L,O,D}. A tuple (G,D) is a
Portunes model if it satis�es the following invariants C(G,D):

1. Every object node can have only one parent.
∀n ∈ Node : D(n) = O → indegree(n) = 1

2. One of the predecessors of an object node must be a spatial node.
∀n ∈ Node : D(n) = O → ∃m ∈ Node : D(m) = L ∧ ∃⟨m, ...., n⟩; where
⟨m, ...., n⟩ ∈ Edge+ denotes a �nite path from m to n, and Edge+ is a �nite
set of �nite paths.

3. There is no edge from an object to a spatial node.
@(n,m) ∈ Edge : D(n) = O ∧ D(m) = L

4. There is no edge from a digital to an object node.
@(n,m) ∈ Edge : D(n) = D ∧ D(m) = O

5. A spatial and a digital node cannot be connected.
@(n,m) ∈ Edge : (D(n) = D ∧ D(m) = L) ∨ (D(n) = L ∧ D(m) = D)

6. The edges between digital nodes do not generate cycles.
@⟨n, ...,m⟩ ∈ Edge+ : D(n) = ... = D(m) = D ∧ n = m

The intuition behind the invariants is as follows. An object node cannot be
at more than one place, thus an object node can have only one parent (1). An
object node is contained in a known location (2). An object node cannot contain
any spatial objects (3) (for example, a laptop cannot contain a room) nor can
a digital node contain an object node (4) (for example, a �le cannot contain a
laptop). A spatial node cannot contain a digital node and vice versa (5), and a
digital node cannot contain itself (6).

Theorem 1. A graph G = (Node,Edge) in a Portunes model (G,D) can have
cycles only in the spatial layer:
∃⟨n, ...,m⟩ ∈ Edge+ : n = m → D(n) = ... = D(m) = L

Proof. The proof is presented in the appendix.

Example 1: Road apple attack To show how Portunes can be used for
representing insider threats across domains, we will use the example of the road
apple attack [2]. In this attack, an insider installs malicious software on a dongle.
Then the insider gives the dongle to an employee. The giving of the dongle can
happen directly, where the insider convinces the employee to take the dongle, or
the insider can simply spread multiple infected dongles around the vicinity of the
employee's working place in hope that the employee will �nd and take one. After
the employee takes the dongle, she plugs it in a computer which is in a secure
location but connected to the Internet. Then the malicious software installs itself
to the computer and transfers the sensitive data from the employee's computer
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to a remote location. In this paper we will formalize the attack in the following
steps. First, the insider convinces the employee to take the dongle by abusing
her trust (social domain). Then, the employees goes to a server in a restricted
area and plugs in the dongle (physical domain). Finally, the malicious software
from the dongle transfers the sensitive data to a remote server (digital domain).

To describe the attack, the environment in which the attack takes place needs
to include information from all three security domains. Concerning physical se-
curity, the organization has a restricted area where a server with sensitive data
resides. Additionally there is a public area where employees can socialize. Re-
garding the digital domain, the sensitive data on the server is isolated from the
rest of the network, making the data accessible only locally. The security aware-
ness of the employees is such that they trust each other enough to share o�ce
material (for example: CDs and dongles).

D(hall)=D(secureRoom)=D(world)=L
D(remoteServer)=D(insider)=D(employee)=D(secureServer)=D(dongle)=O
D(serverData)=D(rootkit)=D

Fig. 3. The function D for the road apple attack environment

The segregation of the nodes among the layers is presented in Figure 3. The
nodes hall, secureRoom and world are spatial nodes, serverData and rootkit are
digital nodes. All other nodes are object nodes. An abstraction of the Portunes
model is graphically presented in Figure 4. The spatial nodes are presented as
red pentagons, the object nodes as green circles and the digital nodes as yellow
squares. The edges in the graph present the relationship between the nodes. For
example, the hall is neighboring the secure room and the secure room contains
a secure server which in turn contains server data.

In Section 3 we de�ne the language that formally speci�es the model and in
Section 3.2 we will revisit the example and show how the road apple attack takes
place using the formal speci�cation. In Section 4 we will show how to present
properties on the road apple example formally.

1 world

2 hall

3

4

secureRoom

remoteServer

5 insider

6 employee

7 secureServer

8 dongle

9 rootkit

10 serverData

4

3

65 7

8

9

21

10

Fig. 4. Graph of the road apple attack environment
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3 The Portunes language

In the previous section, we de�ned a graph-based model to present the facilities
of an organization, the objects in a facility and the data of interest. This model is
on a conceptual level, and it simpli�es the presentation of the environment to the
user. In this section we introduce the Portunes language. The language consists of
nodes, processes and actions, where a node in the Portunes language represents
a node in the Portunes model. The language formally describes the model and
makes it more suitable to describe and analyze the enforcement mechanisms as
well as to formally specify the interaction between the nodes.

The language captures two interactions, mobility and delegation. By making
all nodes �rst class citizens, every node can move. For example, a node rep-
resenting an insider can move through the organization and collect keys, which
increase the initial privileges of the insider. Similarly, a spatial node representing
an elevator can move between �oors in a building. In the Portunes language, a
delegator node can delegate a task to a delegatee node. By delegation here we
refer to the act of granting the delegatee additional privileges to carry out a task
on behalf of the delegator.

The above two interactions, mobility and delegation, are restricted by the
invariants from De�nition 1 and by the security policies associated with each
node. Policies on nodes from the spatial and object layer represent the physical
security. These policies restrict the physical access to spatial areas in the facility
and the objects inside the spatial areas. Policies on nodes from the digital layer
represent the digital security of the organization and focus on access control on
the data of interest. In the Portunes language people can interact with other
people. Policies on people give the social aspect of the model, or more precisely,
they de�ne under which circumstances a person trusts another person.

3.1 Overview of Klaim

The Portunes language is inspired by the Klaim family of languages. Klaim
(Kernel Language for Agent Interaction and Mobility) is an experimental kernel
programming language designed to model and program distributed concurrent
applications with code mobility [10]. The syntax of Klaim is presented in Figure
5.

Klaim relies on the concept of distributed tuple space. A tuple space is a
multiset of tuples. A tuple t is a container of information which can be either an
actual value such as an expression e, process P , or a locality ℓ formal �elds such
as value variables !x, process variables !X and locality variables !u. An example
of a tuple is: (5, "person", !var), where 5 and "person" are expressions and !var
is a value variable. Tuples are anonymous and Klaim uses pattern matching to
select tuples from a tuple space.

A node contains one tuple space and processes which can run in parallel.
A node can be accessed through its address. There are two kinds of addresses:
sites s and localities ℓ. Sites are absolute identi�ers through which nodes can be
uniquely identi�ed within a net and localities are symbolic names for nodes and
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N ::= Node
| 0 Empty net
| s ::ρ P Single node
| N1 ∥N2 Net composition

P ::= Process
| nil Null process
| act.P Action pre�xing
| P1 + P2 Choice
| P1|P2 Parallel composition
| X Process variable

| A⟨P̃ , ℓ̃, ẽ⟩ Process invocation

act ::= out(t)@ℓ | in(t)@ℓ | read(t)@ℓ | eval(P)@ℓ | newloc(u)

t ::= e | P | ℓ | !x | !X | !u | t1, t2

Fig. 5. Syntax of the Klaim language

have a relative meaning depending on the node where they are interpreted. Lo-
calities are associated with sites through allocation environments ρ, represented
as partial functions on each node.

Klaim processes may run concurrently and can perform �ve basic operations
over nodes. Three of them, in(t)@ℓ, read(t)@ℓ, out(t)@ℓ are used to manipulate
the tuples, newloc(u) creates a new node and eval(P )@ℓ spawns a process P for
execution at node ℓ

3.2 Syntax of the Portunes language

As with other members of the Klaim family, the syntax of the Portunes language
consists of nodes, processes and actions. The Portunes language lacks the tuple
spaces and the actions associated with tuple spaces, which are present in the
Klaim family of languages, and focuses on the connections between nodes. This
is because connectivity is the main interest from the perspective of security
modeling.

The syntax of the Portunes language is shown in Figure 6. A single node
l ::δs P consists of a name l ∈ L, where L is a universe of node names, a set
of node names s ∈ 2L, representing nodes that are connected to node l , an
access control policy δ and a process P . The relation between the graph of the
Portunes model and the expressions in the Portunes language is intuitive: a node
l in the graph represents a node with name l in the language, an edge (l, l′) in
the graph connects l to a node name l′ ∈ s of the node l ::δs P . Thus, the node
name uniquely identi�es the node in the model, while the set s de�nes which
other nodes the node contains or is a neighbor of. These two relations identify
the relative location of each element in the environment. A net is a composition
of nodes.
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N ::= Node
| l ::δs P Single node
| N1 ∥N2 Net composition

P ::= Process
| nil Null process
| P1 | P2 Process composition
| al.P1 Action pre�xing

a ::= Action
| login(l) Login
| logout(l) Logout
| eval(P)@l Spawning

Fig. 6. Syntax of the Portunes language

A process P is a composition of actions. Namely, nil stands for a process
that cannot execute any action and al.P1 for the process that executes action a
using privileges from node l ∈ L and then behaves as P1. The label l identi�es a
node from where the privileges originate, and it is termed the origin node. The
structure P1|P2 is for parallel composition of processes P1 and P2. A process
P represents a task. A node can perform a task by itself or delegate the task
to another node. Recursive and mutually recursive process de�nitions are not
allowed in the Portunes language. Thus, every behavior described using the
language has to have an end.

An action a is a primitive which manipulates the nodes in the language. There
are three primitives, login(l), logout(l) and eval(P )@l. The actions login(l) and
logout(l) provide the mobility of a node, by manipulating the set s. The action
eval(P )@l delegates a task P to a node l by spawning a process in node l.

Example 2: Road apple attack (continued) For a node representing a
room, secureRoom ::δs nil, the access control policy δ de�nes the conditions
under which other entities can enter or leave the secure room. The set s contains
the names of all nodes that are located in the room or connected to the room.
Let an insider and an employee be in a hall hall ::δ{insider, employee. secureRoom}
nil which is neighboring the secure room. An example of an insider delegating
a task to the employee is: insider ::δs eval(P )@employeeinsider where P is a
process denoting the task, employee is the node to which the task is delegated
and the label insider is the origin node. An employee entering the room as
part of the task delegated from an insider is presented through employee ::δs
login(secureRoom)insider.P ′, while an employee leaving the room employee ::δs
logout(secureRoom)insider.P ′′. This example shows that the actions login and
logout abstract from objects leaving or entering locations. The same actions can
be used to specify objects being put into or removed from other objects. To
keep the level of abstraction su�ciently high and consistent with the constructs
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presented by Bettini et al. [11], the action names are generic rather than named
speci�cally, such as "put/take" or "enter/leave".

An origin node can grant a set of capabilities C = {ln, lt, e} to another node,
where ln is a capability to execute the action login, lt to execute the action
logout and e to execute the action eval. Which capabilities the origin node
can grant depends on its identity, location and credentials. The access control
policy δ is a function δ : (L ∪ {⊥}) × (L ∪ {⊥}) × 2L → 2C . The �rst and
the second parameter denote identity based access control and location based
access control respectively. If the identity or the location does not in�uence
the policy, it is replaced by ⊥. The third parameter denotes credential based
access control, which requires a set of credentials to allow an action. If a policy
is not a�ected by credentials, the third parameter is an empty set. A security
policy can present a situation where: 1) only credentials are needed, such as a
door that requires a key (⊥,⊥, {key}) 7→ {ln}, 2) only the identity is required,
such as a door that requires biometrics information (John,⊥, ∅) 7→ {ln}, or
3) only the location is required, such as data that can be reached only locally
(⊥, office, ∅) 7→ {ln}. The policy supports combinations of these attributes, such
as a door requiring biometrics and a key (John,⊥, {key}) 7→ {ln}. The policies
focus on the allowed action, not of the content of the action. For example, the
policy (insider,⊥, ∅) → {ln}, at a node employee, states the employee trusts
the insider su�ciently to accept any object from her. The least restrictive policy
that can be used is: (⊥,⊥, ∅) 7→ {ln, lt, e}.

world ::
(⊥,⊥,∅) 7→ {ln,lt}
{remoteServer, insider, hall} nil

|| hall ::
(⊥,⊥,∅) 7→ {ln,lt}
{employee, secureRoom} nil

|| secureRoom ::
(employee,⊥,∅) 7→ {ln,lt}
{secureServer} nil

|| remoteServer ::
(⊥,⊥,∅) 7→ {ln}
{} nil

|| insider ::
(⊥,⊥,∅) 7→ {ln,lt,e}
{dongle} P1

|| employee ::
(insider,⊥,∅) 7→ {ln} ; (employee,⊥,∅) 7→ {ln,lt,e}
{} P2

|| secureServer ::
(⊥,secureRoom,∅) 7→ {ln,lt} ; (⊥,secureServer,∅) 7→ {ln,lt}
{serverData} nil

|| dongle ::
(⊥,⊥,∅) 7→ {e} ; (dongle,⊥,∅) 7→ {ln,lt}
{rootkit} P3

|| rootkit ::
(dongle,⊥,∅) 7→ {ln,lt,e}
{} P4

|| serverData ::
(⊥,secureServer,∅) 7→ {e}
{} nil

Fig. 7. The road apple attack environment in the Portunes language

The three layers of nodes, spatial, object and digital, stratify the nodes and
guarantee that no invariants can be violated. We also need to avoid impossible
containment relationship between nodes from the same layer, such as a node
containing itself. We use types to de�ne ordering among nodes from the same
layer for a speci�c model. Each node has a type t ∈ T , where T is a �nite partially
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ordered set de�ned by the relation ≻≻ln. The function T maps a node to its
type T : N → T . The relation ≻≻ln provides ordering between nodes based
on their type. As a convention, we write types with a capital �rst letter. For
the model from the above example, T is de�ned as T = {Room,Person}, and
the ordering relation as ≻≻ln= {(Room,Person)}. The mapping between the
nodes and their types is: T (secureRoom) = T (hall) = Room, T (employee) =
T (insider) = Person. The ordering is not transitive: For example, a room can
contain a dongle and a dongle can contain digital data. But, the room cannot
contain the digital data. Also, the ordering is not re�exive: a dongle might not
be able to contain a dongle, nor an insider can contain an employee. The only
assumption on ≻≻ln is that it does not invalidate invariant 7 in De�nition 1,
or put di�erently, the relation does not allow the cycles between nodes in the
digital layer.

Example 3: Road apple attack (continued) In section 2.2 we introduced the
Portunes model of the environment where the road apple attack takes place. We
de�ned the relation between the elements through a graph and their strati�cation
in the graph through the function D. Now, we additionally de�ne the ≻≻ln

relation and the security policies on each of the nodes.
Figure 7 presents the environment as a net composition. The representation

contains detailed information about the security policies in place, making it
suitable for analysis. Note the policy at employee (employee,⊥, ∅) → {ln, lt, e}
which states that the employee will accept all actions originating from herself.
Removing this policy would prevent the node executing any action using its own
privileges.

The available types are T = {Space, Person, Server, ItObject,Data}. The
mapping and the Hasse diagram are given in Figure 8. The ordering relation is:

≻≻ln={(Space, Person),(Space, Server),(Space, ItObject),(Person, ItObject),
(Server, ItObject), (Person, Server), (ItObject,Data), (Server,Data)}

T (world) = T (hall) = T (secureRoom) = Space,
T (employee) = T (insider) = Person,
T (remoteServer) = T (secureServer) = Server,
T (rootkit) = T (serverData) = Data,
T (dongle) = ItObject.

ItObject

Person

Space

Server

Data

Fig. 8. Type de�nition of the nodes and the Hasse diagram

A net N is a formal representation of the Portunes model. A net N, together
with the mapping functions D, ≻≻ln on its nodes presents a single state of the
environment. The processes P1 to P4 represent intentions of the nodes insider,
employee, dongle and rootkit respectively.
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3.3 Auxiliary functions

Having de�ned the behavior of nodes using the three primitive actions, login,
logout and eval, we now look at the context where these actions can be executed.
A node l ::δs al

′
.P can be restricted in executing an action a from an origin node

l′ to a target node for four reasons: (1) the origin node might not have su�cient
privileges, (2) execution of an action invalidates the invariants in De�nition 1,
(3) the target node might not be in the vicinity of the node l or (4) the target
node is not physically able to contain the node. This section de�nes the auxiliary
functions for a given net N, which take care of these restrictions. The auxiliary
functions are de�ned in Figure 9 and are used in the operational semantics of
the language.

grant(lo, δt, a) = ∃k1, k2 ∈ L ∪ {⊥}, ∃K ∈ P(L) : a ∈δt(k1, k2,K) ∧

(k1 = lo ∨ k1 = ⊥)︸ ︷︷ ︸
(1)

∧ (k2 ∈ parentsN (lo) ∨ k2 = ⊥)︸ ︷︷ ︸
(2)

∧(K ⊆ childrenN (lo)︸ ︷︷ ︸
(3)

),

where parentsN (lo) = { lpo| lpo ::
δpo
spo R ∈ N ∧ lo ∈ spo} and

childrenN (lo) = { so| lo ::δoso R ∈ N}

lt≻ln l=


false iff (D(lt)=D∧(D(l)=O∨D(l)=S)∨(D(lt)=O∧D(l)=S)

∨(D(lt)=S∧D(l)=D)
T (lt)≻≻lnT (l) otherwise

l ≻e lt = (D(l) ̸= L ∧ D(lt) ̸= L)︸ ︷︷ ︸
(4)

∧¬(D(l) = D ∧ D(lt) = O)︸ ︷︷ ︸
(5)

∧ (lt ∈ childrenN (l)︸ ︷︷ ︸
(6)

∨(∃lp ::
δp
sp R ∈ N : l ∈ sp ∧ lt ∈ sp︸ ︷︷ ︸

(7)

) ∨ D(lt) = D︸ ︷︷ ︸
(8)

)

Fig. 9. Auxiliary function grant and ≻ relations

The grant function checks if an origin node lo has su�cient privileges to
execute an action a on a target node with policy δt. The �rst parameter is the
name of the origin node lo, the second parameter is the policies on the target node
δt and the third parameter is a label of an action a. A node can execute an action
depending on the identity lo of the origin node (1), its location parents(lo) (2)
or the keys children(lo) it contains (3). Note that the value of grant depends
solely of the origin node, not the node executing the process.

The relation lt ≻ln l states that node lt can contain a node l. The goal of this
relation is to ensure the invariants 3-6 in De�nition 1 are satis�ed during the net
evolution. From the relation we see that a digital node cannot contain spatial or
physical node, an object node cannot contain a spatial node and a spatial node
cannot contain a digital node.

The ordering relation l ≻e lt states that node l can delegate a task to node
lt by means of spawning a process. The relation restricts delegation of tasks
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between nodes depending on the layer a node belongs to and the proximity
between nodes. An object node can delegate a task to a digital node or another
object node, while a digital node can delegate a task only to another digital
node. Thus, spatial nodes cannot delegate tasks, nor can a task be delegated to
spatial nodes (4), and digital nodes cannot delegate tasks to object nodes (5).
Furthermore, a non-digital node can delegate a task only to nodes it contains (6)
or nodes that are in the same location (7). In digital nodes the proximity does
not play any role in restricting the delegation of a task (8). The decision (8)
assumes the world is pervasive and two digital nodes can delegate tasks from
any location as long as they have the appropriate privileges.

The expressions from Figure 9 focus on the relation between nodes. The
grant function provides the security constraints in the language based on the
location and identity nodes, while the ≻ln, ≻≻ln and ≻e relations provide non-
security constraints derived from the layer the nodes belong to and their location.
In addition, we put a restriction on the processes inside a node, to distinguish
tasks originating from a single node. We call such processes simple processes,
and de�ne an additional auxiliary function origin, which helps to determine if
a process is a simple process.

De�nition 2. Let origin : Proc → 2L be a function which returns all the action
labels of a given process.

origin(nil) = {}, origin(al.P ) = {l} ∪ origin(P )

A process P , which is either nil or which contains actions only from one origin
node is a simple process: origin(P ) ⊆ {l0}

In the semantics of the Portunes language this function forbids processes
from one origin to spawn processes from other origins. For example, the process
de�nition

insider ::δs (eval(logout(hall)employee.login(secureRoom)employee)@insider)insider

is not allowed. This process de�nition can be interpreted as: the insider delegates
herself a task to enter the secure room using the privileges from the employee.
The execution of this process does not require any interaction with the employee
and does not represent a realistic scenario. We also found that the "behavior"
of processes can be better mapped in real life scenarios if they execute actions
only from a single origin. Naturally, a node can still execute processes from other
origins in parallel.

3.4 Operational semantics

Following Bettini et al. [11], the semantics of the Portunes language is divided
into process semantics and net semantics. The process semantics is given in
terms of a labeled transition relation

a−→ and describes both the intention of a
process to perform an action and the availability of resources in the net. The
label a contains the name of the node executing the action, the target node, the
origin node and a set of node names which identify which nodes the target node
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contains. The net semantics is given in terms of a transition relation ⇒ describes
possible net evolutions and relies on the labeled transition relation

a−−→ from the
process semantics.

origin(P ) ⊆ {lo} lt ≻ln l grant(lo, δt, ln)

l ::δs login(lt)
lo .P∥ lt ::δtst Q

login(l,lt,lo,st)−−−−−−−−−−→ l ::δs P∥ lt ::δtst∪{l} Q
[login]

origin(P ) ⊆ {lo} grant(lo, δt, lt) l ∈ st

l ::δs logout(lt)
lo .P∥ lt ::δtst Q

logout(l,lt,lo,st)−−−−−−−−−−−→ l ::δs P∥ lt ::δtst\{l} Q
[logout]

origin(P ) ⊆ {lo} origin(Q) ⊆ {lo} l ≻e lt grant(lo, δt, e)

l ::δs eval(Q)@llot .P∥ lt ::δtst R
eval(l,lt,lo,Q)−−−−−−−−−→ l ::δs P∥ lt ::δtst R|Q

[eval]

l ::δs P
a−−→ l ::δs P

′

l ::δs P |Q a−−→ l ::δs P
′
|Q

[pComp]

Fig. 10. Process semantics

The process semantics of the language is de�ned in Figure 10. A node can
login to another node [login] if it has su�cient privileges to perform the action
(grant), if the node can be contained in the target node (≻ln) and if the process
is a simple process with origin node lo (origin). As a result of executing the
action, node l enters node lt, or put di�erently, the target node lt now contains
node l. For a node to logout from a target node [logout], the target node must
contain the node (l ∈ st), the origin node must have proper privileges (grant)
and the process must be a simple process with origin node lo (origin). The
action results in l leaving lt, speci�ed through removing its node name from st.
Spawning a process [eval] requires both the node executing the action and the
target node to be close to each other or the target node to be digital (l ≻e lt),
the origin node should have the proper privileges (grant) and both processes
P and Q need to be simple processes with origin node lo (origin). The action
results in delegating a new task Q to the target node, which contains actions
originating from the same origin node as the task P . Note that for delegation to
occur, in the Portunes language it is su�cient for the employee (delegatee) to
trust the insider(delegator), rather than requiring mutual trust between them.
The reason behind this design decision is that we are interested whether the
insider can convince the employee to execute a task, rather than whether the
insider trusts the employee.

The net semantics in Figure 11 uses the process semantics to de�ne the
possible actions in the Portunes language. Spawning a process is limited solely
by the process semantics [neteval]. To move, a node executes the logout and
login actions in sequence [netmove]. Both actions should have the same origin
node and should be executed by the same node. Furthermore, an object node can
move only to a node in its vicinity, while digital nodes do not have this restriction
(lt1 ∈ st2 ∨ lt2 ∈ st1 ∨D(l) = D). Data can be copied, which is presented by data
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N
eval(l,lt,lo,P )−−−−−−−−−→ N1

N
neteval(l,P,lt)
=========⇒ N1

[neteval]
N1

a
==⇒ N

′
1

N1 ∥N2
a

==⇒ N
′
1 ∥N2

[nComp]

N
logout(l,lt1 ,lo,st1 )
−−−−−−−−−−−−→ N1 N

login(l,lt2 ,lo,st2 )
−−−−−−−−−−−→ N2 D(l) = D

N
netcopy(l,lt1 ,lt2 )
===========⇒ N2

[netcopy]

N
logout(l,lt1 ,lo,st1 )
−−−−−−−−−−−−→N1 N1

login(l,lt2 ,lo,st2 )
−−−−−−−−−−−→N2 (lt1 ∈st2∨lt2 ∈st1∨ D(l)=D)

N
netmove(l,lt1 ,lt2 )
===========⇒ N2

[netmove]

Fig. 11. Net semantics

entering a new node without leaving the previous [netcopy]. Although the data
can be copied, it still needs permission from both the node it resides at lt1 and
from the node it is copied to lt2 . In the rule this is presented by a possibility
of the net N evolving into both net N1(logout) and N2(login). However, only
the transition to the net N2(login) is applied. The standard rules for structural
congruence apply and are presented in Figure 12.

(ProcCom) P1|P2 ≡ P2|P1

(NetCom) N1∥N2 ≡ N2∥N1

(Abs) P1|nil ≡ P1

Fig. 12. Structural congruence of processes and nets

De�nition 3. Vicinity of a node l with a parent node lt1 is de�ned by all nodes
lt2 that share the same parent node (lt2 ∈ st1) or the child of lt2 is a parent of l:
(lt1 ∈ st2).

Proposition 1. Nodes from the object and spatial layer can move only to nodes
in their vicinity.

Proof. (Sketch) Follows from the netmove premise: lt1 ∈ st2 ∨ lt2 ∈ st1 .

Proposition 2. Nodes from the object and spatial layer can evaluate processes
only to child and sibling nodes.

Proof. (Sketch) The property follows from the premise of the eval action: ≻e.

Theorem 2. Let (G,D) be a Portunes model and N be a net which represents
the model using the Portunes language. The function Map maps a net in a Por-
tunes model, such that C(Map(N),D) holds. The evolutions of the net N do not
invalidate the invariants C.

Proof. The proof is presented in the appendix.

15



Example 4: Road apple attack(continued) In Section 3.2 we formally spec-
i�ed the environment where the road apple attack occurs. By using the language
semantics it is now possible to reason about possible attack scenarios. An attack
scenario is presented through de�ning the processes in the nodes, that lead to
an undesired state.

P1=logout(world).login(hall). (a )
eval(logout(insider).login(hall).logout(hall).
login(employee))@dongle (b )

P2=logout(hall).login(secureRoom).
eval(logout(employee).login(secureRoom).
logout(secureRoom).login(secureServer))@dongle. (c )

P3=eval(logout(dongle).login(secureServer))@rootkit
P4=eval(login(remoteServer))@serverData

Fig. 13. Process de�nitions enabling the road apple attack

Figure 13 shows an example of the actual road apple attack as four processes,
P1, P2, P3 and P4. All actions in the process P1 have an origin node insider,
in P2 an origin node employee, in P3 an origin node dongle and in P4 an origin
node rootkit. For clarity, the labels on the actions representing the origin node
are omitted from the process de�nitions.

4

3

65 7

89

21

10

1 world

2 hall

3

4

secureRoom

remoteServer

5 insider

6 employee

7 secureServer

8 dongle

9 rootkit

10 serverData

Fig. 14. Portunes model of the road apple attack environment after the execution of
the attack

The insider (P1) goes in the hall and waits for the employee (process P1 until
reaches point a). Then, the insider gives the employee the dongle containing the
rootkit, which the employee accepts (P1 reaches b). Later, the employee plugs the
dongle in the secure server (P2 reaches c) using its own credentials and the server
gives the dongle (P3) access to the local data. When the rootkit (P4) reaches the
server, it copies all the data to the remote server. The above actions represent
the road apple attack with a dongle automatically running when attached to a
computer [12]. After executing the processes from Figure 13, the data will reside
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in the remote server, presented through an edge (remoteServer, data) in the
Portunes model in Figure 14.
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1 world
2 hall
3 secureRoom

10 serverData4 remoteServer
5 insider
6 employee

7 secureServer
8 dongle
9 rootkit

Fig. 15. Example of a net evolution

A net and two possible evolutions are presented in Figure 15. Both of these
evolutions lead to the insider obtaining the server data.

Securing the environment from insider threats requires (1) aligning the poli-
cies on nodes with the organizational policies and (2) checking if an insider can
achieve a speci�c goal. Examples of such organizational policies are the server
data should never leave the secure server or no person except the employee can
enter the secure server. These policies specify the behavior of the whole environ-
ment instead of a single node.

First, Portunes can �nd inconsistencies between organizational and node
policies by �nding processes that violate an organizational policy. Second, af-
ter aligning the node policies with the organizational policies, a user can still
check if an insider can achieve a speci�c goal, without violating any node policies.
Expressing organizational policies and formally specifying goals for an insider is
the subject of the next section.

4 Expressing properties of Portunes models

In section 3 we de�ned a language to describe a Portunes model and used the road
apple attack as an example. However, we de�ned the goal of the road apple attack
informally, saying that eventually the data should end up at the remote server.
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The informal presentation of properties in the model is not suitable for stating
complex goals because of the ambiguity in informal statements. Furthermore, a
formal de�nition of the desired properties allows a computer aided analysis of a
Portunes model.

In this section we de�ne a logic for Portunes in order to (1) describe ad-
versarial goals and (2) de�ne organizational policies which should hold for all
evolutions of a Portunes model. The logic is primarily aimed to help penetration
testers describe speci�c adversarial goal and isolate speci�c subsets of attack
scenarios. A logic for Portunes can also aid security auditors to specify organi-
zational policies that should always hold in the organization. Then Portunes can
search for scenarios where a person invalidates an organizational policy without
invalidating any policies speci�ed on the nodes.

4.1 Motivating examples

The requirements presented in this section are distilled from observing multiple
Portunes models obtained through a use case and a series of penetration tests.
In the use case, we modeled a �ve story building and observed the policies on
individual objects and the general organizational policies. We also performed a
series of physical penetration tests using social engineering [13]. From the attack
traces obtained from the tests, we looked at which properties a penetration tester
might be interested in. We present our �ndings in three general requirements.

For each requirement, we provide four motivating examples from which the
majority present properties from the road apple attack and are linked to the
nodes in Figure 4. The examples are numerated in the form x.y, where x spec-
i�es the requirement the example is trying to clarify, and y is the number of
the example. The �rst two examples from each requirement specify properties
that are useful for penetration testers, while the second two examples specify
properties that are of interest to security auditors.

Requirement 1: The logic should be able to specify knowledge, location and
possession. We consider that an attack has occurred when unauthorized person
eventually (a) learns con�dential information, (b) reaches a restricted location
or (c) gains possession of an object.

Example 1.1 The server data reaches a remote server.
Example 1.2 The insider learns the employee's password.

Similarly, if we want to specify organizational goals, we can translate the prop-
erties as high level policies. These goals should be satis�ed for all evolutions of
the model.

Example 1.3 The server data should never leave the secure server.
Example 1.4 Only an employee can enter the secure room.
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Requirement 2: The logic should be able to distinguish among multiple evo-
lutions leading to the same goal. In a penetration test, where the quality of the
security is measured by how close the tester gets to the target (the number of
circumvented layers of protection), the tester is interested for speci�c class of
attack scenarios.

Example 2.1 The insider enters the secure room and steals the data.
Example 2.2 The insider gives a dongle to the employee and steals the data.

The scenario de�ned by the process de�nitions in Figure 13 satis�es the property
of example 2.1 and example 2.2 is satis�ed by the scenario de�ned by the pro-
cess de�nitions in Figure 16. Both scenarios, eventually achieve the same result.
However, a penetration tester might be more interested in scenarios satisfying
the �rst example where the insider as part of the data theft manages to enter the
secure room because in these scenarios she circumvents more protection layers
and is in that sense these scenarios are better. Therefore, logic should be able
to distinguish among multiple evolutions, however it is the user who associates
value judgments on the evolutions.

P1=logout(world).login(hall).eval(P ′)@secureServer
P ′=eval(login(remoteServer)@serverData
P2=eval(logout(hall).login(secureRoom))@insider
P3=nil
P4=nil

Fig. 16. Alternative attack scenario

From a defensive point of view, a security auditor might be interested in
specifying the proper execution order of procedures for accomplishing a task.

Example 2.3 A person can enter the secure room only through the hall.
Example 2.4 Whenever the employee receives money, the money is depo-

sited in the secure room.

Requirement 3: The logic should enable segregation of scenarios based on the
social interaction between people, namely trust and delegation. In Portunes trust
is presented through security policies on people, while delegation is described
through remote evaluation of processes on people. For example, P2 in Figure 16,
shows that the employee asks the insider to enter the secure room, or in other
words delegates a task to the insider, which the insider gladly accepts. However,
in P1 in Figure 13, the insider gives the dongle to the employee, and the employee
trusts the insider su�ciently to accept the dongle.

In some penetration tests the interaction between the tester and an employee
is forbidden by the rules of engagement, or it is considered as a risky action
because the outcome of the interaction is unpredictable. In other tests the main
goal of the tester is to investigate the reaction of the employees when in speci�c
situations. For the �rst or for the second reason, penetration testers need to
isolate attack scenarios that include social interaction.
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Example 3.1 The insider steals the data by tricking the employee.
Example 3.2 The insider steals the data without interacting with people.

From defensive point of view, the security auditor might want to check poli-
cies on the hierarchy of the organization:

Example 3.3 No person should delegate tasks to the boss.
Example 3.4 Only the boss should delegate tasks to other employees.

Examples
Requirement 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4

a y n y y y y y y y y n n
1 b n y n n n n n n n n n n

c n n n n n n n y n n n n

2 n n y y y y y y y y y y

3 n n n n n y n n y y y y

Fig. 17. The requirements and the examples that motivate the requirements.

In Figure 17 we provide an overview of the requirements and show which
property the logic should be capable to express to specify each motivating ex-
ample. For example, expressing the property in Example 3.2 requires the logic
to be able to express location, to show that the data is in a server controlled
by the insider (requirement 1.a), to segregate among subsets of net evolutions,
to select only evolutions where the insider tricks the employee (requirement 2)
and to express interactions between people, to show the interaction between the
insider and the employee (requirement 3).

4.2 Net and net evolution predicates

Motivated by the examples above, we now present the logic for expressing prop-
erties of a Portunes model. First we introduce the syntax of predicates for loca-
tions, actions and processes and provide their semantics. Using these predicates
we can specify properties on process de�nitions for a given net. Next, we present
the predicates on the transition labels that describe the net evolutions. Finally,
we present the semantics of the modal logic used for describing the properties
of a given net.

4.3 Net predicates

Syntax of location predicates:

lp ::= 1l | u | l
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Location predicates can be a generic location (1l), a type (u) or a location
(l). L is a universe of node names, LN ⊆ L is a �nite set of names for a given
net N and LocN is a �nite set of location predicate atoms for a given net N .

Examples of location predicates are: the predicate insider is satis�ed by all
nodes named insider, the predicate Space is satis�ed by all nodes of type Space
and 1l is satis�ed by all nodes in the net.

Syntax of action predicates:

ap ::= lt(lp) | ln(lp) | e(pp)@lp

Every action from the Portunes language is represented by a predicate. The
predicate lt(lp) is satis�ed by all logout(l) where l satis�es the location predicate
lp. Similarly, the action predicate ln(lp) is satis�ed by all login(l) actions where
l satis�es the location predicate lp and e(pp)@lp is satis�ed by all eval(P )@l,
where the process P satis�es the predicate pp and the node l satis�es the pred-
icate lp. A is a universe of actions, AN ⊆ A is a �nite set of actions in a given
net N and ActN is a �nite set of action predicates for a given net N .

A few examples of action predicates are: the predicate lt(insider) is satis�ed
by all the actions logout(insider) , ln(Space) is satis�ed by all login actions that
perform login to a node of type Space, and e(1p)@employee is satis�ed by all
eval actions that delegate a process to a node that satisfy the predicate employee.

Syntax of process predicates:

pp ::= 1p | pp ∧ pp | aplp → pp

The process predicate 1p is satis�ed by all processes and a conjunction of two
process predicates pp ∧ pp is satis�ed by processes that satisfy both predicates.
The predicate aplp → pp is satis�ed by processes that contain an action satisfying
the action predicate ap with an origin node satisfying the predicate lp followed by
a process that satis�es the pp predicate. We de�ne P as a universe of processes,
PN ⊆ P as a �nite set of processes in a given net N and ProcN as a �nite set
of process predicates for a given net N .

For example, the net:

N ::= insider ::δ{money}P || employee ::δ{secret}Q || hall ::δ{insider,employee}

de�nes an environment where an employee and an insider are in the same hall.
The intention of the insider to give money to the employee can be presented
through the process predicate:

(e(ln(employee)insider → 1p)@moneyinsider) → 1p.

The process predicate has the form aplp → pp, where the action predicate ap is
e(ln(employee)insider → 1p)@money, the origin predicate of ap is insider and pp
is the predicate 1p. The action predicate ap is of the form e(pp)@lp where the pro-
cess predicate is again of the from aplp → pp, or e(ln(employee)insider → 1p and
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the locality predicate of the form money. This process predicate will be satis�ed
by all processes originating from insider that contain an action eval(P )@money.
Moreover the process P must contain an action login(employee) originating from
insider. Similarly the intention of the employee to give a secret to the insider is
presented through the predicate:

(e(ln(insider)employee → 1p)@secretemployee) → 1p.

Two processes that satisfy these predicates are:

P =eval(logout(insider)...login(employee))@moneyinsider

Q =eval(logout(employee)...login(insider))@secretemployee

4.4 Semantics of state predicates

Having de�ned the syntax of the predicates, now we present the semantics in the
form of the functions: L : LocN → 2LN ,AC:ActN → 2AN ,P : ProcN → 2PN ,
which take a predicate lp, pp or ap and return a set of locations, processes
and actions that satisfy the predicates respectively. The sets LN , AN and PN

are derived from a named Portunes model presented by a speci�c net N . The
semantics are de�ned in Figure 18.

L J1lK = LN ACJlt(lp) K = {logout(l) | ∃l : l ∈ L JlpK}
L Ju K = {l | T (l)=u} ACJln(lp)K = {login(l) | ∃l : l ∈ L JlpK}
L J l K = {l} ACJe(pp)@lpK = {eval(P )@l | ∃l, P : l∈ L JlpK, P ∈PJppK}
P J1pK = PN

P Jpp1 ∧ pp2K = PJpp1K ∩ PJpp2K
P Japlp→ppK = {P | ∃a,l,Q :a∈ACJapK, l∈ L JlpK, origin(a)= l, P

a−→+
Q,Q∈PJppK}

Fig. 18. Interpretation of location, action and process predicates

The relation P
a−−→+

Q is satis�ed when: ∃P ′ : P →∗ P ′, P ′ a−→ Q, where →∗

is the re�exive, transitive closure of →.

L J1lK returns the set of locations LN , L JuK returns a set of locations that
belong to a speci�c type and L JlK returns a speci�c location l ∈ LN . PJ1pK
returns all processes in the net and PJpp1 ∧ pp2K returns the processes that
satisfy both predicates pp1 and pp2. PJaplp → ppK returns the processes that
can execute an action satisfying the predicate ap, using an origin satisfying the
predicate lp, and then evolve in a process that satis�es the predicate pp.

A process P from a net N satis�es the predicate pp, i� P ∈ PJppK. Analo-
gously, action a from a net N satis�es the predicate ap i� a ∈ ACJapK and a
location l from a net N satis�es the predicate lp i� l∈LJlpK.
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4.5 Transition label predicates

The process predicates present a set of actions that a single process might per-
form, and not actual net evolutions. In other words, a process predicate speci�es
an intention not an execution. The transition labels, which present evolutions of
a net are de�ned in Figure 19.

lab ::= netmove(l, l, l) A ::= ◦
| neteval(l, P, l) |A ∪A
| netcopy(l, l, l) |A ∩A

|A−A
| src(lp)
| trg(lp)
| prt(lp)
| nm(lp1, lp2, lp3)
| ne(lp1, pp, lp2)
| nc(lp1, lp2, lp3)

Fig. 19. Syntax of transition labels and transition label predicates

We de�ne the syntax and semantics of label predicates, where the locations
and processes are replaced by location and process predicates. We use ◦ to denote
all transition labels and ∪, ∩ and − to denote union, intersection and exclusion
of two sets of transition labels. The predicates src, prt and trg denote transi-
tion labels which have a speci�c source, parent or target node. The predicate
nm(lp1, lp2, lp3) denotes transitions labeled netcopy where the �rst parameter
of the transition label satis�es the location predicate lp1, the second parameter
lp2 and the third parameter lp3. Similarly, ne and nc denote the neteval and
netcopy transition labels respectively.

A J ◦ K = LabN
A JA1 ∪A2K = AJA1K ∪ AJA1K
A JA1 ∩A2K = AJA1K ∩ AJA1K
A JA1 −A2K = {a | a ∈ AJA1K, a ̸∈ AJA2K}
A J src(lp) K = {a | a ∈ AJnm(l, 1l, 1l) ∪ nc(l, 1l, 1l) ∪ ne(l, 1p, 1l)K, l ∈ LJlpK}
A J trg(lp) K = {a | a ∈ AJnm(1l, 1l, l) ∪ nc(1l, 1l, l) ∪ ne(1l, 1p, l)K, l ∈ LJlpK}
A J prt(lp) K = {a | a ∈ AJnm(1l, l, 1l) ∪ nc(1l, l, 1l)K, l ∈ LJlpK}
A Jnm(lp1, lp2, lp3)K = {netmove(l1, l2, l3)| l1 ∈ L Jlp1K, l2 ∈ L Jlp2K, l3 ∈ L Jlp3K}
A Jne(lp1, pp, lp2) K = {neteval(l1, P, l3) | l1 ∈ L Jlp1K, l2 ∈ L Jlp2K, P ∈ P Jpp K}
A Jnc(lp1, lp2, lp3) K = {netcopy(l1, l2, l3) | l1 ∈ L Jlp1K, l2 ∈ L Jlp2K, l3 ∈ L Jlp3K}

Fig. 20. Semantics of transition label predicates
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We use LabN to denote a �nite set of label predicates de�ned over a given
net N and LPN to denote a �nite set of transition labels. The function that
de�nes the meaning of the label predicates A : LabN → 2LPN is given in Figure
20.

For example, the predicate prt(insider) is satis�ed by all transition labels
which add or remove an object or data from the node satisfying the location pred-
icate insider, trg(employee) is satis�ed by all transition labels in which an object
or data is given, or a task is delegated to a node satisfying the location predicate
employee and nm(Person, 1l, secureRoom)−nm(employee, 1l, secureRoom) is
satis�ed by all transition labels in which node of type Person other than the
node satisfying the predicate employee move to a node that satis�es the predi-
cate secureRoom.

4.6 Logic for Portunes models

De�nition 4. (Hennessy-Milner Logic) The set of HML formulas [14] for Por-
tunes is given by the BNF grammar:

ϕ ::= tt | ¬ϕ | ϕ ∧ ϕ | c(lp, lp) | ⟨A⟩ϕ

The formula tt is always satis�ed. The formula ¬ϕ is satis�ed by a net that
does not satisfy ϕ, while ϕ1 ∧ ϕ2 is satis�ed by a net that satis�es both ϕ1

and ϕ2. The formula c(lp1, lp2) is satis�ed by a net in which a node with a name
satisfying the predicate lp2 belongs to the set s of a node satisfying the predicate
lp1. Finally, ⟨A⟩ϕ is satis�ed by a net that satis�es the formula ϕ and is a result
of a transition with a label that satis�es A. Formulas like [A]ϕ and ϕ1 ∨ ϕ2 can
be derived from the logic: [A]ϕ = ¬⟨A⟩¬ϕ and ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2).

For example, c(remoteServer, serverData) is satis�ed by all nets where the
server data is located in the remote server and ⟨nm(insider, hall, secureRoom)⟩tt
is satis�ed by all nets where the insider moves from the hall to the secure room.
We provide more examples of he formulas in the following section.

Let Net be a set of all nodes for a given network N , and Φ the set of all the
formulas. The semantics is de�ned using the function M : Φ → 2Net :

MJttK = Net
MJ¬ϕK = Net−MJϕK
MJϕ1 ∧ ϕ2K = MJϕ1K ∩MJϕ2K
MJ⟨A⟩ϕK = {N | ∃a,N1 : N

a
==⇒+

N1, a ∈ A JAK, N1 ∈ MJϕK}
MJc(lp1, lp2)K = {N | ∃l1, l2 : l2 ∈ childrenN (l1), l1∈L (lp1), l2∈L (lp2)}

Fig. 21. Semantics of the logic

A net N satis�es a formula ϕ if and only if N ∈ M JϕK, and we write N |= ϕ.

We write N
a

==⇒+
N1 i� ∃N ′ : N =⇒∗ N ′, N ′ a

==⇒ N1. where =⇒∗ is a re�exive,
transitive closure of =⇒.

The above formulas allow us to specify properties of the net for a single state,
for all states in which the net evaluates and properties on the net evolutions.
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4.7 Examples revisited

In section 3.2 we used the Portunes language to describe the road apple attack
formally, an attack where the adversary uses physical, social and digital means
to gain possession of sensitive data. We use the road apple and the examples
from the previous section to (1) describe adversarial goals and (2) formally de-
�ne high level policies which should hold for all evolutions of the net.

Example 1.1 The server data reaches a remote server.

⟨◦⟩c(remoteServer, serverData)

Example 1.2 The insider learns the employees password.

⟨◦⟩c(insider, employeePassword)

In Example 1.1 and 1.2 the goal is de�ned by a node being at a speci�c lo-
cation. Using similar logic constructs, we can express goals including knowledge
of information (person contains data) and possession (when person contains ob-
ject). Note that in the above examples we are not interested in the initial state
of the net, but in an eventual state in the future.

Example 1.3 The server data should never leave the secure server.

¬⟨nm(serverData, secureServer, 1l)⟩tt∧¬⟨nc(serverData, secureServer, 1l)⟩tt

Example 1.4 Only an employee can enter the secure room.

¬⟨nm(Person, 1l, secureRoom)− nm(employee, 1l, secureRoom)⟩tt

Examples 1.3 and 1.4 describe organizational policies which should never be
invalidated. Here we also see how location (similarly knowledge and possession)
can be used to de�ne an organizational policy.

Example 2.1 The insider steals the data by entering the secure room.

⟨nm(insider, 1l, secureRoom)⟩(⟨◦⟩c(remoteServer, serverData))

Example 2.2 The insider steals the data by giving the employee a dongle.

⟨nm(dongle, 1l, employee)⟩(⟨◦⟩c(remoteServer, serverData))

In the above two examples, we de�ne two strategies how the insider might
get access to the data. Both properties might be satis�ed by a single net evo-
lution. For example, the insider enters the o�ce and then gives the dongle to
the employee, or vice versa. Adding additional desired or non-desired conditions
further segregates the possible evolutions of the net, allowing the penetration
tester to focus only on those evolutions she is interested in.

Example 2.3 A person can enter the secure room only through the hall.
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¬⟨nm(Person, Space, secureRoom)− nm(Person, hall, secureRoom)⟩tt

Example 2.4 Whenever the employee receives money, the money is de-
posited in the secure room.

⟨nm(money, 1l, employee)⟩(⟨nm(money, employee, secureRoom)⟩tt)

In the examples 2.3 and 2.4, the transition label predicates are satis�ed only
by a speci�c subset of the transition labels. Namely, all locations from where
an employee can move inside the room, except the hall are forbidden. Or, as
is the case of example 2.4, the property speci�es only net evolutions where an
employee receives money and then the money is eventually sent to the secure
room.

Example 3.1 The insider steals the data by tricking the employee.

⟨ne(insider, 1p, employee)⟩(⟨◦⟩c(remoteServer, serverData))

Example 3.2 The insider steals the data without interacting with people.

¬⟨ne(insider, 1p, P erson)⟩(⟨◦⟩c(remoteServer, serverData))

In some penetration tests, the rules of engagement forbid any interaction with
the employees. In other tests, the main goal is to see the resilience of the employ-
ees against social engineering. Examples 3.1 and 3.2 show how we can segregate
attack scenarios that include contact with a speci�c person, or contain no con-
tact with people.

Example 3.3 No person should delegate tasks to the boss.

¬⟨ne(Person, 1p, boss)⟩tt

Example 3.4 Only the boss should delegate tasks to other employees.

¬⟨ne(Person, 1p, Person)− ne(boss, 1p, Person)⟩tt

In example 3.3 and 3.4 we show how the social aspects of the Portunes model
can be used as organizational policies. Finding a delegation from an employee
to a boss, or from an employee to another employee would mean that there is
inconsistency in the policies imposed on the employees with the organizational
policies.

The examples 1.1, 1.2, 2.1, 2.2, 2.4 and 3.1 present desirable properties on
the environment, by de�ning a set of desirable a) transitions ⟨A⟩tt, b) states
⟨◦⟩c(lp, lp) or c) transitions and states ⟨A⟩(⟨◦⟩c(lp, lp) that should occur in a net
evolution. Similarly, by adding a negation in front of the formulas we can specify
undesirable properties (examples: 1.3, 1.4, 2.3, 3.2, 3.3, 3.4). One can imagine
properties which include both, desired and undesired states and transitions.
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5 Implementation

The Portunes framework can be encoded in most of the model checking tools,
such as NuSMV [15] and SPIN [16]. We implemented a proof of concept of
the framework in the Groove model checker [17]. Groove is a tool designed for
modeling object-oriented systems using graph transformations as a basis for
model transformation and operational semantics. We chose Groove as a model
checker because (1) encoding the Portunes framework in a graph is natural,
(2) Groove o�ers an easy and modi�able way to de�ne the semantics, (3) the
generated scenarios are easy to visualize and simulate and (4) Groove is open-
source, allowing the implementation of custom heuristics in the state exploration
strategies. Encoding Portunes in other model checking tools might improve the
performance of the framework and we consider it as future work.

We �rst developed a mapping to translate a net into a Groove state graph,
then applied the semantics of the Portunes language through Groove rules and
�nally used part of the logic presented in Section 4 to describe state and evolution
properties.

neighbours neighbours

Fig. 22. The road apple in Groove

Translating a net into initial state. To present the net in a graph, we mapped
the nodes, the policies and the types u into an attributed graph. The road apple
example from Figure 7 is presented (without types of the nodes) using Groove
in Figure 22.

Since all the information in Groove is presented as an attributed graphs, we
encoded the policies as nodes. Figure 23 provides an example how the policies
on employee are implemented in Groove:

(insider,⊥, ∅) 7→ {ln} ; (employee,⊥, ∅) 7→ {ln, lt, e}
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. The two edges labeled policy from employee to the set of capabilities {ln, lt, e}
and {ln} de�ne two policies. If the policy grants a capability based on the identity
of the origin node, then an iPolicy edge points to the identity that is required.
Similarly, policies that require the origin node to be at a speci�c location are
presented with lPolicy edges and policies that require the origin node to have
speci�c credentials are presented using cPolicy edges.

Fig. 23. An example of two policies using Groove

Encoding the Portunes semantics. The net semantics from Figure 11 are
presented in Groove as graph transformation rules. The premises of a rule are
presented in Groove as a left side graph, while the results of applying the rule as
a right side graph. Whenever Groove �nds a state which contains the left side
graph as a subgraph, it applies a transition and replaces the left side graph with
the right side graph.

Expressing the logic in Groove. Groove is capable of expressing �rst-order
logic [18], including the propositions in our logic. State properties in Groove are
implemented through rules. For example, the formula

c(world, remoteServer) ∧ c(remoteServer, serverData)

can be presented as a rule that describes a sub-graph in the state graph (Figure
24). During the state exploration, Groove checks if a state contains the sub-
graph, and thus satis�es the property presented through the logic.

Groove is also able to model-check CTL formulas [19] which is a more ex-
pressive logic than the modal logic on the net evolutions presented in Section 4.
However, in the current proof of concept implementation, we did not de�ne the
process de�nitions. Adding process de�nitions on nodes requires modi�cation of
the code in Groove and we consider it as a future work.

Fig. 24. Expressing properties in Groove

We successfully executed the road apple example in Groove. The complete
state space contained 600 states and 2796 transitions. To reduce the number of
states we used in the implementation the monotonicity assumption introduced
by Ammann et al. [20]. The assumption states that the premise of a given rule
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is never invalidated by the successful application of another rule. In the physical
world, this assumption means a person able to enter a room can never lose
this ability, presenting the most pessimistic scenario where the insider never
loses a capability. In the Portunes language, the assumption implies that a node
never loses a node it contains, thus in every node l ::δs P elements can be only
added to the set s. Since [netmove] removes an element from s, it invalidates
the monotonicity assumption. Thus, in the implementation we identi�ed the
[netmove] rule with the [netcopy] rule.

As a result of the monotonicity assumption, it is possible to specify rules in
Groove, that only add new edges in the state graph. In a graph of N nodes,
there are maximum of N2 edges possible, and since we do not create any new
nodes, the state exploration �nishes in maximum O(N2) steps.

The �nal state from the exploration contains information about all possible
movements of the nodes. Figure 25 presents the �nal state from the road apple
example, where for example, the sever data can end up at three di�erent objects.

6 7

910

8

4

1

5

2 3 1 world

2 hall

3

4

secureRoom

remoteServer

5 insider

6 employee

7 secureServer

8 dongle

9 rootkit

10 serverData

Fig. 25. The �nal state of the road apple example

Ammann et al. [20] also show that the order of applying the transitions is not
important. Because the monotonicity assumption states that the precondition
of a given transition is never invalidated by another transition, when there are
multiple transitions possible from a speci�c state, it is not important which
transition is executed �rst.

In linear exploration, when there are multiple transitions from one state,
only one random transition is applied. The process continues until no more
transitions are possible. Using the monotonicity assumption in this exploration
strategy signi�cantly reduces the state space. In the road apple example the
state space was reduced to 16 states and 15 transitions.

As a next step, we are interested in (1) using Portunes for generating at-
tack scenarios for physical penetration tests where the testers are allowed to use
physical access and social engineering to obtain a digital asset and (2) the usabil-
ity of the implementation. Previously we developed methodologies for physical
penetration testing using social engineering [13] and used the methodologies in
orchestrating 15 penetration tests [21].
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Currently we are orchestrating 20 additional penetration tests using the same
methodologies, where half of the penetration teams use the Portunes framework
to generate the attack scenarios and the other half use brainstorm for scenarios.
All the models generated by the penetration testers proved to be smaller than
50 nodes, for which Groove needed less then 10 seconds to search the state
space using linear exploration. The implementation was able to produce realistic
scenarios that the penetration testers actually executed. From the study we hope
to obtain profound knowledge on the classes of attacks the framework is suitable
for presenting and with which constructs the framework should be extended.
After the tests we will use the experience of the penetration testers with the
tool to perform a study on the usability of the implementation. We are currently
analyzing the data and the results will be presented in a future work.

6 Related work

The design of the Portunes model and Portunes language is in�uenced by sev-
eral research directions, such as insider threat modeling, physical modeling and
process calculi. This section lists several papers which in�uenced the design of
Portunes and describes how Portunes extends or deviates from them.

Dragovic et al. [22] are concerned with modeling the physical and digital
domain to determine data exposure. Their model de�nes a containment relation
between layers of protection. Data security is determined not by access control
policies, but by the number of layers of protection above the data and the con�-
dentiality provided by each layer. The Portunes model uses a similar relation to
present the location of elements, but uses access control policies to describe secu-
rity mechanisms. Scott [23] focuses on the mobility of software-agents in a spatial
area and usage policies that de�ne the behavior of the agents depending on the
locality of the hosting device. The mobility of the agents is restricted through
edges on a graph. The Portunes model adds semantics to the graph structure by
giving meaning to the nodes and edges and de�nes invariants enforced directly
into the semantics of the language. Mathew et al. [24] use capability acquisition
graphs to describe the physical structure of a building. The nodes in the graphs
are static, and the graph can present the progress of the insider in the graph.
In our solution the structure of the model evaluates as the attack progresses,
and the insider can interact with other employees in order to obtain additional
capabilities.

Klaim [10] is a process calculus for agent interaction and mobility, consisting
of three layers: nodes, processes and actions. There are several Klaim dialects, in-
cluding µKlaim [25], OpenKlaim [11] and acKlaim [26]. The goal of the acKlaim
language, which is closest to our work, is to present insider threats by combining
the physical and digital security domain. Mobility is presented by remote eval-
uation of processes. The Portunes language builds upon these Klaim dialects.
Firstly, the actions for mobility and embedding of objects (login, logout) are
similar to OpenKlaim. Secondly, the security policies expressed in the Portunes
language are similar to acKlaim and µKlaim. However, in the Portunes language
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mobility is represented by moving nodes rather than evaluating processes. Fi-
nally, the Portunes language lacks tuple spaces which are present in all other
Klaim variants, because their meaning in the physical world is completely re-
placed by the containment set s in the nodes. The absence of tuple spaces reduces
the number of possible process de�nitions, allowing their automatic generation.

The modal logic to reason about properties of a Portunes model and formally
present goals of attack scenarios is inspired by the logic for mobile agents of De
Nicola et al. [27]. The logic for mobile agents allows speci�cation of mobile system
properties speci�ed in Klaim, or more speci�cally, the tuples residing at speci�c
nodes and the actions that a system performs during its evolution. Our approach
uses similar notation and constructs, but adapts the semantics of the logic to the
constructs of the Portunes language. First, the Portunes language does not have
variables nor logical localities, but does have node types. Thus, the predicates
for variables are absent, we do not distinguish between physical and logical
localities, and we introduce the type predicate u. Second, the Klaim language
has a di�erent set of actions, thus the predicates for Klaim actions are replaced
with predicates that re�ect Portunes actions. Finally, the Portunes language
does not have tuples, thus all tuple predicates from the transition labels and
transition label predicates are absent. Because Portunes does not use variables
nor logical spatialities all binding constructs and mapping are also absent from
the logic.

The implementation of the Portunes framework produces scenarios that in-
validate a security goal or an organizational policy. These scenarios are described
graphically similarly to the scenario graphs proposed by Wing [28]. Because the
attack scenarios can be presented as attack graphs, the same analysis can be ap-
plied used in the attack graph community, such as ranking of the scenarios [29],
identifying critical assets in the model [30], cost-e�ective protection strategies
from speci�c attacks [31] and providing quantitative measurement on the overall
security of the environment [32]. The main di�erence of the scenarios produced
by Portunes and the scenarios produces by other models is that the Portunes
scenarios contain an additional information about the physical layout of the
environment and possible interactions between people, rather than information
only on the computer network.

7 Conclusion and Future work

The main contribution of this paper is the mapping of security aspects of the
physical and social domain together with the digital domain into a single frame-
work named Portunes. This approach allows generating and analyzing attack
scenarios which span all tree domains, and thus helps in the protection against
insider threat.

The framework consists of a high-level model and a language inspired by the
Klaim family of languages. To capture the three domains e�ciently, Portunes
is able to represent 1) physical properties of elements, 2) mobility of objects
and data, 3) identity, credential and location based access control and 4) trust
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and delegation between people. In this work we also present a logic to express
state and transition properties of the Portunes language. We implemented the
framework in an existing model checking tool to generate scenarios where the
policies on the individual objects are not violated, but still lead to a security
bridge.

We aimed at abstraction level of the three domains to be su�ciently high to
be easy to use, but still su�ciently detailed to provide useful results. One can
envision extending the framework with constructs such as negotiation between
people, behavioral patterns or detection mechanisms, to increase the detail of
the produced attack scenarios. We bring the language close to practitioners, by
providing an abstract model that hides the details of the language from the
user, a logic to help users specify their goals and a graphical implementation
of the language in a model checker. This proof of concept implementation can
be further developed to suit the needs of penetration testing teams and security
auditors.

The applicability of Portunes is demonstrated using the example of the road
apple attack, showing how an insider can attack without violating existing se-
curity policies by combining actions from all three domains. Currently we are
using Portunes to automatically generate attack scenarios for penetration test-
ing teams that use physical access and social engineering to gain possession of a
digital asset. So far, we found out that Portunes can produce su�ciently detailed
realistic attack scenarios for testers to execute. Future results of this study will
provide an insight on the types of scenarios Portunes can produce as well as the
usability of the implementation.
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APPENDIX

Proof (of Theorem 1). The theorem follows from three properties, which we
prove in turn:

1. There are no cycles between layers.
2. There are no cycles in the object layer.
3. There are no cycles in the digital layer.

1. There are no cycles between layers
̸ ∃⟨n0...ni...nk⟩ : n0 = nk ∧ D(n0) ̸= D(ni)
Lets assume that such a cycle exists:
∃⟨n0...ni...nk⟩ : n0 = nk ∧ D(n0) ̸= D(ni)
Thus, there are at least two edges in the graph which connect nodes from
di�erent layers:
∃(nj−1, nj), (nl, nl+1) ∈ Edge : D(nj−1) ̸= D(nj) ∧ D(nl) ̸= D(nl+1) ∧
D(nj−1) = D(nl+1) ∧ D(nj) = D(nl)
From the invariants 3, 4, 5 (tabulated in Table 1) follows that such a pair of
edges does not exist.

Layer 1 Layer 2 Edge Edge
(L1) (L2) from L1 to L2 from L2 to L1

L O + - (invariant 3)

L D - (invariant 5) - (invariant 5)

O D + - (invariant 4)
Table 1. Invariants 3,4,5 forbid any cycles between layers.

2. There are no cycles in the object layer.
̸ ∃⟨n, ...,m⟩ : D(n) = ... = D(m) = O ∧ n = m
Lets assume such a cycle exists:
∃⟨n, ...ni...,m⟩ : D(n) = ...D(ni) ... = D(m) = O ∧ n = m.
From invariant 2,
∃m ∈ Node : D(m) = L ∧ ∃⟨m, ....n

′

i−1, ni⟩, follows
∃(n′

i−1, ni), (ni−1, ni). If n
′

i−1 ̸= ni−1 there is a contradiction with invari-

ant 1. Otherwise D(n
′

i−1) = O, and the analysis is repeated for the path

⟨m, ....n
′

i−1⟩. Because ⟨m, ....n
′

i−1⟩ is �nite, at one point the path reaches

a spatial node, and n
′

i−1 ̸= ni−1. This again contradicts with invariant 1.
Thus, such cycle does not exist.

3. There are no cycles in the digital layer.
̸ ∃⟨n, ...,m⟩ : D(n) = ... = D(m) = D ∧ n = m
This comes directly from invariant 6.
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Proof (of Theorem 2). Suppose there is a net N1 which satis�es the invariants
C(Map(N1),D). Suppose exists a net N2 which is a product of a net transfor-
mation on N1. ∃N2 : N1 ⇒ N2. We need to prove that C(Map(N2),D) also
holds.

The relation ⇒ is used in the net actions neteval, netcopy and netmove.

1. neteval does not cause any changes of the structure of the net. Thus any
execution of neteval cannot invalidate an invariant.

2. netmove removes an edge (lt1 , l) and generates a new one (lt2 , l). We need

to show that the
login(l,lt2 ,lo,st2 )−−−−−−−−−−−→ action does not invalidate any invariant.

Suppose the rule invalidates an invariant.

(a) Let D(l) = O. After
logout(l,lt1 ,lo,st1 )−−−−−−−−−−−−→, indegree(l) = 0. Latter, when

login(l,lt2 ,lo,st2 )−−−−−−−−−−−→ is applied, indegree(l) = 1. Thus, invariant 1 is not
invalidated.

(b) Let D(l) = O. After
login(l,lt2 ,lo,st2 )−−−−−−−−−−−→ is applied, from ≻ln, D(lt2) = L or

D(lt2) = O. The former case does not invalidate the second invariant by
de�nition. Since C(Map(N1),D), ∃m ∈ Node : ∃⟨m...lt2⟩ ∧ D(m) = S,
the latter case also does not invalidate the second invariant.

(c) The invariants 3, 4, 5 are not invalidated by the de�nition of ≻ln.
(d) The last invariant is not invalidated because of the assumption in ≻≻.

3. The e�ect of netcopy is an additional edge in the graph edge (lt, l) generated

by the relation
login(l,lt,lo,st)−−−−−−−−−−→. The premise of netcopy enforces a restriction

D(lt) = D. Additional restriction comes from the relation ≻ln, which allows
an edge to be generated only between a node from the object and digital
layer D(l) = D ∧ D(lt) = O or between two nodes from the digital layer
D(l) = D∧D(lt) = D. The former does not invalidate any of the invariants,
while the latter is restricted by the assumption on ≻≻.
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