
Simple algebraic data types for C

Pieter Hartel and Henk Muller

Version 8, 2nd September, 2010

Abstract

Adt is a simple tool in the spirit of Lex and Yacc that
makes monomorphic algebraic data types, polymorphic
built-in types like the list and an efficient form of pattern
matching available in C programs. C programs built with
ADTs typically use NULL pointers only to indicate don’t
care values, and not as sentinels. This reduces the scope
for errors involving NULL pointers. The Adt tool gener-
ates runtime checks, which catch many of the remaining
NULL pointer dereferences. The runtime checks may con-
sume a significant amount of CPU time; hence they can
be switched off once the program is suitably debugged.

1 Introduction

Brooks [3] advocates writing support tools to avoid repet-
itive and error prone work. A task that we have often en-
countered is the construction of an Algebraic Data Type
(ADT) and associated functions needed to build and tra-
verse a parse tree. Lex and Yacc deliver the raw parsing
power, but provide little support for writing the semantic
actions. Therefore, our contribution is a simple tool called
Adt that, on the basis of a set of monomorphic, user-
defined ADT specifications and/or polymorphic built-in
data types, generates C type and function declarations
that create and manipulate the corresponding data struc-
tures. The Adt tool is small and efficient, and it inter-
works well with Yacc.

The reader may wonder why we propose a new tool for
C. The reason is that C is still used, especially in embed-
ded systems, where speed and size matter. C is a “low
level” high level language, which gives programmers more
control than any other high level language [1]. Embed-
ded systems contain sophisticated code that makes heavy
use of dynamic data structures, for example MP3 players,
video game consoles, and navigation systems, where we
believe our Adt tool support would be welcome.

The plan of the paper is as follows. The next section
introduces ADTs. Section 3 describes how the Adt tool
realises ADT support for C. Section 4 describes the sup-
port for polymorphic built-in lists and trees. Section 5
describes the Adt tool itself in some detail. Section 6
reports on our experiences using the Adt tool.

2 Algebraic data types

An ADT is: a recursively defined sum of product type.
To explain what this means we define as an example the
ubiquitous binary tree:

base case A Leaf is a binary tree.

recursive case A Branch with two sub trees, both of
which are binary trees, is also a binary tree.

no junk Nothing else is a binary tree.

All three aspects of the ADT are present in the example.
In the second definition we see that a binary tree is de-
fined in terms of itself, this makes the ADT recursively
defined. The base case for a Leaf and the recursive case
for a Branch are the two summands of the sum type. The
two sub trees in the recursive case, both of which must be
present for a tree to be a binary tree, form the factors of
a product type. The last definition states that functions
operating on a binary tree do not have to take special pre-
cautions to deal with anything else than binary trees. The
definition follows what we will call the “recursive sum-of-
product” pattern.

2.1 Recursive sum-of-product pattern

The power of an ADT comes from the fact that we can use
the recursive sum-of-product pattern from the definition
also in functions to decompose objects of the ADT. For
example a function to count the number of nodes in a
binary tree would have two cases:

base case A Leaf has one node.

recursive case A Branch has as many nodes as 1 + the
number of nodes in the left sub tree + the number of
nodes in the right sub tree.

Again the three aspects of the ADT are present, but this
time in the function definition. In the recursive case we
see that the function calls itself recursively, to deal with
the left and right sub trees (recursively defined). For each
of the two possible forms of a binary tree we have a clause
that can deal with this form comprehensively (sum). One
is added to the number of nodes in the two sub trees

1

datatype tree = Leaf of (int)

| Branch of (int * tree * tree);

fun sum(Leaf(val)) = val;

| sum(Branch(val, left, right))

= val + sum(left) + sum(right);

main = sum(Branch(10, Leaf(20), Leaf(30)));

Figure 1: The SML binary tree and sum function.

added together. This combines the results from the two
factors in a result for the product (product). The fact that
every function operating on a binary tree follows the same
recursive sum-of-product pattern helps to avoid mistakes,
especially, if we can automate some of the tedious work
with the Adt tool. But first we will look at programming
languages that already support ADTs for inspiration.

2.2 Languages that support ADTs

There are many programming languages that provide
ADT support. Most of these are declarative languages,
such as Prolog [5], and Standard ML [15], but there are
also object oriented languages that support ADTs, such
as Scala [17]. We use Standard ML to illustrate how the
recursive sum-of-product pattern is used in that language.

To make our binary tree running example a bit more
interesting, we give, in Figure 1, the definition of a slightly
enhanced binary tree in Standard ML. The enhancement
consists of adding an integer value to every node, so that
we can add the values together, rather than simply count-
ing the nodes.

Both the data type declaration and the function decla-
rations follow the recursive sum-of-product pattern. The
vertical bar | separates the two definitions of the data
type as well as the two definitions of function declaration.
The two summands are each identified by a constructor:
Leaf(.) or Branch(.,.,.). The left hand sides of the
function definitions use pattern matching to deconstruct
a binary tree. Firstly, the constructor in the actual argu-
ment is matched to the constructor specified in the pattern
of the formal argument. Hence a tree like Leaf(20) will
be matched by the first function definition Leaf(val),
but not by the second. As part of the matching process,
the value stored in a node (here 20) is bound to the vari-
able val, so that it can be used in the function body. In
this case the function body returns the value to its caller.

The expression main constructs a sample binary tree
with three nodes and applies the sum function to the tree.
When executed, the answer will be computed as 60.

The Standard ML program is short and elegant, thanks
to the support provided for ADTs. We will now investi-
gate how C programmers approach the sum problem.

typedef struct tree_struct {

int val;

struct tree_struct *left;

struct tree_struct *right;

} tree;

tree *mkBRANCH(int val, tree *left, tree *right) {

tree *result = calloc(1,

sizeof(struct tree_struct));

if(result == NULL) {

printf("panic\n");

}

result->val = val;

result->left = left;

result->right = right;

return result;

}

int krsum1(tree *cur) {

if(cur == NULL) {

return 0;

} else {

return cur->val + krsum1(cur->left)

+ krsum1(cur->right);

}

}

int krsum2(tree_cc *cur) {

/*assert cur->left==NULL <==> cur->right==NULL*/

if(cur->left == NULL) {

return cur->val;

} else {

return cur->val + krsum1(cur->left)

+ krsum2(cur->right);

}

}

void test() {

tree *r = mkBRANCH(30, NULL, NULL);

tree *l = mkBRANCH(20, NULL, NULL);

tree *t = mkBRANCH(10, l, r);

printf("%d\n", krsum1(t));

}

Figure 2: C version of the binary tree and two sum func-
tions.

2

2.3 C does not have ADT support

C does not provide ADTs but it does provide the nec-
essary building blocks for ADT support, such as struct
and union. We will first look at the traditional way of
creating a binary tree in C, inspired by Kernighan and
Richie [12, Page 141].

Like the Standard ML program of Figure 1, the C pro-
gram of Figure 2 creates a binary tree with three nodes,
calls krsum1 to visit all three nodes, adds the values found
in the val fields, and prints 60.

The difference between the C data type tree and the
Standard ML version is that in C we have no explicit cases
for Branch and Leaf. Instead the two cases are distin-
guished implicitly by the conventional use of the special
pointer value NULL. The problem with this approach is
that C programmers use NULL pointers for two different
purposes. The first is to indicate the end of a list, or
the leaf nodes of a tree. In this case, a NULL pointer is
essentially used as a sentinel. If there are several differ-
ent data types in a program, the same NULL value is used
with each different data type thus preventing the com-
piler to spot type errors. The second use of NULL is to
indicate an uninitialized or don’t care value. These two
totally different meanings can lead to errors, for exam-
ple if an “uninitialised” value is interpreted as an “end
of list”. Tony Hoare, who invented the NULL pointer, has
called this his “billion dollar mistake” [9].

The difference between the C functions of Figure 2 and
the Standard ML version is that in C we have to handle
the memory allocation and de-allocation for the binary
tree explicitly. To do this, we have packaged the calls
to the library function calloc in the function mkBRANCH,
which checks the return value from calloc, and which fills
in the three fields of the struct. We could have added
several more functions, such as a function to free the stor-
age occupied by a tree, getters and setters for the fields
etc. This is fine as long as there is only one dynamic data
structure in a program, but it gets tedious and error prone
to write a similar set of functions for different data types.
C programmers usually resort to a kind of polymorphism
by using functions with void * parameters and/or results.
Again this prevents the compiler from finding type errors,
thus making life harder on the programmer than neces-
sary.

Figure 2 actually shows two versions of the sum func-
tion. The first version krsum1 looks natural, whereas the
second version krsum2 looks unnatural. However, the for-
mer makes about twice as many recursive calls as the
latter. This means that natural looking C code is not
actually efficient!

It is our objective to avoid the billion dollar mistake as
well as void * pointers by creating efficient support for
ADTs in C. This is the topic of the rest of the paper.

tree = /* base case % */

LEAF(int val)

| /* recursive case % */

BRANCH(int val, tree *left, tree *right);

Figure 3: Tree ADT.

3 ADT support for C

The Adt tool allows C programmers to describe an ADT
in a syntax inspired by the Standard ML syntax of Fig-
ure 1. The tool reads the ADT specification and generates
a .h file and a .c file which provide all the C declarations
necessary to be able to use the recursive sum-of-product
pattern of programming in arbitrary C code.

To begin with we present the binary tree data type in
the input syntax of the Adt tool in Figure 3.

The differences between the Standard ML definition of
tree and the Adt tool version are threefold. We dispensed
with some keywords, such as datatype since the Adt tool
only deals with data types, and nothing else. Secondly,
we have given names (val, left, and right) to the sum-
mands so that we can refer to them by a meaningful name.
Thirdly, more subtly, to acknowledge that a binary tree is
a dynamic data structure explicitly allocated on the heap,
we use the * annotation of C to indicate pointers, and not
as in standard ML, to separate the summands.

In the next section we will discuss the C type definitions
generated by the Adt tool for the tree ADT. This will be
followed by a description of the C functions and macros
necessary to manipulate the tree in four different pattern
matching styles. We will refer to the collection of these
functions as the standard functions, to distinguish them
from the extra functions generated for the polymorphic
built-in types discussed in Section 4.

3.1 C type definitions

The two typedefs below are generated for the ADT tree.
No user defined code should access any of the fields di-
rectly; all access should be mediated by functions gener-
ated by the Adt tool, as discussed in the following sections.

typedef enum {tree_BIND=0,LEAF=1,BRANCH=2} tree_tag;

typedef struct tree_struct {

tree_tag tag;

int flag;

int lineno;

int charno;

char *filename;

union {

struct tree_struct **_binding;

struct {

int _val;

} _LEAF;

3

struct {

int _val;

struct tree_struct *_left;

struct tree_struct *_right;

} _BRANCH;

} data;

} tree;

The tag field is used to distinguish the various sum-
mands, which are represented here as members of the
union. The Adt tool ensures that all tags are unique,
which is useful for debugging. The flag field is use to
avoid printing shared structures more than once (See Sec-
tion 3.4). As one of the intended uses of the Adt tool
is building compilers, the lineno, charno, and filename
fields can be used for generating error messages. (These
three fields can be removed by selecting -e option of the
Adt tool.)

3.2 Constructor functions

The Adt tool generates two constructor functions for the
tree data type. These are mkLEAF and mkBRANCH as shown
below.

tree *mkLEAF(int _val);

tree *mkBRANCH(int _val, tree *_left, tree *_right);

The type and number of the arguments of the two
constructor functions correspond exactly to the type and
number of the factors of each product type. The construc-
tor functions use the calloc library function to allocate
the data on the heap. Checks for heap overflow are com-
piled in automatically.

tree *cptree(tree *subject);

void mvtree(tree *subject, tree *object);

Sometimes it is necessary to copy or move nodes. The
function cptree allocates storage on the heap and makes
an exact copy of the subject. The function mvtree copies
the contents of the subject to the object, thereby de-
stroying the old contents of the latter.

3.3 Destructor functions

Neither C nor the Adt tool support provide garbage col-
lection, hence the Adt tool generates functions to free the
space allocated by the constructor functions. The func-
tion frtree releases the node passed as a reference, the
function fdtree (the d stands for deep) releases the entire
tree:

void frtree(tree **subject);

void fdtree(tree **subject);

The free functions must be called with the address of
variable so that the variable can be set to NULL to indicate
that the node previously available through the variable is
no longer available. This helps to avoid de-allocated data
being used by accident. It is only a partial solution, as
there are usually other variables holding the same value,
which are not set to NULL. To achieve this too, something
like C++ Smart Pointers [21] would be needed, which
beyond the scope of this work because it requires garbage
collection.

The fdtree function assumes that the data structure
is a tree and not a graph. If this assumption is not valid,
the programmer will have to deallocate the graph using
an appropriate algorithm that calls frtree for individual
nodes.

3.4 Debugging functions

The Adt tool generates a debugging function called
prtree, which prints an indented representation of the
tree data structure. The print function uses a flag in each
node to remember whether the node has been printed, so
that it can handle graphs. The function cltree resets
this flag.

void prtree(int indent, tree *subject);

void cltree(tree *subject);

3.5 Access functions

A variety of access functions is available. The function
gttreetag returns the constructor tag, represented as one
of the enumerated types LEAF, and BRANCH. For each of the
factors in the product types there are get and set func-
tions, i.e. gtLEAFval gets the val factor of the product
with constructor tag LEAF:

int gttreetag(tree *subject);

int gtLEAFval(tree *subject);

void stLEAFval(tree *subject, int value);

int gtBRANCHval(tree *subject);

void stBRANCHval(tree *subject, int value);

tree *gtBRANCHleft(tree *subject);

void stBRANCHleft(tree *subject, tree *value);

tree *gtBRANCHright(tree *subject);

void stBRANCHright(tree *subject, tree *value);

The main purpose of the access functions is to make
sure that any access to a NULL pointer is detected as
early as possible, and to check that the tag is correct. For
example the Adt tool generates the following code for the
gtLEAFval function:

int gtLEAFval(tree *subject) {

if(subject == NULL) {

abort(...)

}

4

if(subject->tag != LEAF) {

abort(...)

}

return subject->data._LEAF._val;

}

Once the program is sufficiently debugged, one may
consider using (by setting a compilation flag) the following
macro definition instead:

#define gtLEAFval(subject) \

((subject)->data._LEAF._val)

The macro does not perform checks, and it will reduce
the runtime (See Section 3.7 for details).

3.6 Pattern matching functions

A powerful feature of languages with built-in support for
ADTs is pattern matching, where a pattern is matched
and bound to an instance of an ADT. The ADT tool sup-
ports pattern matching by functions with a mt prefix.

bool mttree(tree *pattern, tree *subject);

The function mttree requires two arguments, both of
type tree *. The first argument represents a pattern
to which the second argument subject is matched. The
mttree function compares both arguments, starting with
the root of each, recursively descending into the sub trees
of each argument. If the tags of the roots pattern and
subject match, the children of the roots will be compared
until either the pattern or the subject is exhausted.
Pointers to variables can be stored in a pattern which
will be bound when a match is made.

The patterns can be created on the stack by macro def-
initions with the prefix in, or on the heap by functions
with the prefix pt. Since these forms of pattern match-
ing are relatively expensive it is also possible to a switch
statement with macros with prefix cs for the cases. Fi-
nally, it is possible to use the access functions directly to
deconstruct an object. These four different styles of pro-
gramming are discussed next. We begin by discussing the
solution that stores a pattern on the heap.

3.6.1 Pattern matching on the heap

We can write C code that corresponds to the Standard ML
code of Figure 1 by building a pattern on the heap that
is matched against an actual tree. A pattern is allocated
on the heap by functions with a pt prefix. The Adt tool
generates two such functions for the tree ADT:

tree *ptLEAF(int _val);

tree *ptBRANCH(int _val, tree *_left, tree *_right);

These functions are in fact, apart from the name, iden-
tical to constructor functions of Section 3.2.

To be able to bind actual values to variables, we need
the set of functions generated by the Adt tool with the
prefix bd.

int bdint(int *binding);

tree *bdtree(tree **binding);

For example a call like bdtree(&left) allocates a node
on the heap to save the address of the variable left, so
that the matching function knows where to store the result
of the match. To distinguish a binding node from the
regular Leaf and Branch nodes it has a special tag BIND.

The function ptsum uses functions with the pt and bd
prefixes as follows:

int ptsum(tree *cur) {

int val = -1;

tree *left, *right;

tree *leaf = ptLEAF(bdtint(&val));

if(!mttree(leaf, cur)) {

tree *branch = ptBRANCH(bdtint(&val),

bdtree(&left), bdtree(&right));

if(mttree(branch, cur)) {

val = val + ptsum(left) + ptsum(left);

}

fdtree(branch);

}

fdtree(leaf);

return val;

}

The pattern ptLEAF(...) creates a tree_struct on
the heap that stores the integer found in a LEAF node in
the local variable val. Similarly, when a match succeeds,
the pattern ptBRANCH(...) stores the integer value found
in a BRANCH node in the local variable val via the binder
bdint(&val), and it stores pointers to the left and right
children in the local variables left and right via the
binders bdtree(&left), and bdtree(&right). The calls
to the fdfree function are necessary to deallocate the
heap storage occupied by the patterns before the function
returns.

The C function ptsum is reasonably elegant. It is possi-
ble, using the same pair of pattern and matching functions
to create arbitrarily nested patterns. One of the points of
criticism could be that if the first match fails, the sec-
ond must succeed (by the no junk rule), thus making the
second if redundant. While this is true in case of the ex-
ample, in general this need not be the case, as there could
be values in the pattern that fail to match. For example
we could be interested in treating a Branch with a 0 value
differently from the others.

In the next section we will discuss a set of macros (with
the in prefix) that can be used to allocate patterns on the
stack instead of the heap. This improves the performance
but reduces flexibility.

5

3.6.2 Pattern matching in the stack

The macros with the in prefix that allocate patterns on
the stack are actually C99 style initialisers. This is not
a restriction of the usability of the Adt tool, as C99 is
supported by a variety of compilers, including GCC.

#define intree(binding) { \

.tag = tree_BIND, \

.data._binding = binding \

}

#define inLEAF(val) { \

.tag = LEAF, \

.data._LEAF._val = (int)val \

}

#define inBRANCH(val, left, right) { \

.tag = BRANCH, \

.data._BRANCH._val = (int)val, \

.data._BRANCH._left = left, \

.data._BRANCH._right = right \

}

The macros with the in prefix do exactly the same as
the functions with the pt prefix; the only difference is
in the storage area for the pattern (stack or heap). Since
the macros are implemented as initialisers, they cannot be
nested syntactically, hence the verbose formulation at the
beginning of the else branch below. However, arbitrary
dynamic nesting is still possible.

int insum(tree *cur) {

int val;

struct tree_struct valbind = inint(&val);

struct tree_struct leaf = inLEAF(&valbind);

if(mttree(&leaf, cur)) {

return val;

} else {

tree *left, *right;

struct tree_struct leftbind = intree(&left);

struct tree_struct rightbind = intree(&right);

struct tree_struct branch =

inBRANCH(&valbind, &leftbind, &rightbind);

if(mttree(&branch, cur)) {

return val + insum(left) + insum(left);

}

}

}

The C function insum is not particularly elegant
but demonstrates that patterns can be built that are
matched dynamically, and that local variables are bound
to matched values. Since the patterns are stored on the
stack, there is no need to free the patterns explicitly, thus
saving execution time.

3.6.3 A pattern matching case statement

The third style of pattern matching consists of macros
with a cs prefix as shown below. Only the constructor

can be matched; a local variable will be bound to each
field. It is thus not possible to nest the macros.

#define csLEAF(_tree_, val) \

case LEAF : \

val = _tree_->data._LEAF._val;

#define csBRANCH(_tree_, val, left, right) \

case BRANCH : \

val = _tree_->data._BRANCH._val; \

left = _tree_->data._BRANCH._left; \

right = _tree_->data._BRANCH._right;

With the cs macros it is possible to produce even more
legible code, which is also more efficient code than with
the pt functions and the in macros.

int cssum(tree *cur) {

int val;

tree *left, *right;

switch(gttreetag(cur)) {

csLEAF(cur, val)

return val;

csBRANCH(cur, val, left, right)

return val + cssum(left) + cssum(right);

}

}

We believe the code above to be readable, which is more
easily seen if we compare the code to the final version of
the sum function that uses access functions. This is the
topic of the next section.

3.6.4 Field access functions

The access functions of Section 3.5 can be used also to
deconstruct objects. This avoids pattern matching com-
pletely and is more in line with traditional C program-
ming:

int gtsum(tree *cur) {

switch(gttreetag(cur)) {

case LEAF :

return gtLEAFval(cur);

case BRANCH :

return gtBRANCHval(cur) +

gtsum(gtBRANCHleft(cur)) +

gtsum(gtBRANCHright(cur));

}

}

The code of gtsum above is a little cluttered with the
many access functions that are not present in cssum.
Therefore we argue that pattern matching helps to write
readable code. The version cssum of Section 3.6.3 is, in
our view, the best.

We have now completed the presentation of the stan-
dard functions generated for each ADT. Before we dis-
cuss polymorphic builtin types we will take stock of the

6

legend ptsum insum cssum gtsum krsum1 krsum2 ttsum

Section 3.6.1 3.6.2 3.6.3 3.6.4 2.3 2.3 4.3
Time per call 157±3 ns 16±1 ns 5±0 ns 5±0 ns 7±0 5±0 ns 7±0 ns
Times slower 31× 3.3× 1× 1× 1.4× 1× 1.4×
elegance +/- - ++ +/- - – +
nesting + + - - n.a. n.a. n.a.

Table 1: Performance and elegance of the four styles of pattern matching. All run time checks are off.

development thus far by looking at the performance of
the various sum functions. This is the topic of the next
section.

3.7 Quantitative Evaluation

The performance of the generated code depends on the
style of pattern matching used. To measure the perfor-
mance of the code we wrote a simple test program that
creates a graph with 30 maximally shared nodes that when
interpreted as a binary tree appears to have 230 nodes.
The data structure will fit into any cache, thus ensuring
that the computation is CPU bound. We have bench-
marked our test programs on a GNU/Linux system with
an Intel Xeon E5504 processor, which has a clock speed of
2 GHz. We enable the -O3 aggressive optimisation of the
GNU C compiler. The average run time over 10 runs in
ns per call to the sum function of all versions of the test
program is shown in Table 1.

With 5ns on average per call, the functions cssum,
gtsum, and krsum2 are the winners.

With 7ns on average per call, the functions krsum1
and ttsum are a little slower. krsum1 makes unnecessary
recursive calls (See Section 2.3) and ttsum uses Curry-
ing [2, Chapter 1], which also requires extra calls (See
Section 4.3).

The versatility of nested patterns comes at a price. The
function insum, which allocates patterns on the stack, is
about 3 times slower than the fastest sum function. The
version ptsum, which allocates patterns on the heap, is
about 31 times slower than the fastest.

The runtime checks for NULL pointers are off in all of
the benchmarks. Turning them on only makes a signif-
icant difference to cssum and gtsum, because these ver-
sions use the access functions from Section 3.5. Turning
the NULL pointer checks on slows down cssum by a factor
1.2, whereas gtsum slows down by a factor 2.

As a conclusion we submit that C code with ADTs can
be even more efficient than traditional C code.

4 Polymorphic built-in types

The ADTs that the user can define are monomorphic,
which means that the data structure has a specific type.

However, our source of inspiration, i.e. the type system
of Standard ML, is polymorphic. This means that where
we have thus far used specific types one could use more
general, polymorphic types, which can be instantiated to
different specific types. For example instead of saying that
the values in a tree are of type int, in Standard ML one
might leave this decision for later and define a tree with
a polymorphic type like this:

datatype ’a tree = Leaf of (’a)

| Branch of (’a * tree * tree);

With this definition we can make a tree of integers, but
also a tree of strings, a tree of trees of integers etc, simply
by instantiating the type parameter ’a to int, string,
or (int tree) respectively.

Polymorphic types are powerful, but the implementa-
tion brings certain complications that are not appropriate
for a tool like Adt that is meant to be simple. Hence we
have decided not to extend the Adt with support for user
defined polymorphic functions. Instead, we offer polymor-
phism only for certain, often used types, such as lists and
trees, by building the types and the functions operating
on the types into the Adt tool itself. The built-in types are
actually extensions of the regular ADTs, and thus share
most of the machinery that we have already presented.
The three built-in types will be discussed in the following
section.

At present three polymorphic built-in types and the
most relevant functions operating on those types have
been implemented: the singly linked list, the doubly
linked list, and the binary tree. Implementing the dou-
bly linked list took one day of work, and implementing
the binary tree just one hour, so we expect that building
other polymorphic types into the Adt tool would not be
that time consuming.

The Adt tool generates the full complement of stan-
dard functions and macros as described in Sections 3.2
. . . 3.5 for the built-in types, as well as one or more extra
functions that are specific to the built-in type.

4.1 Singly linked list

For the singly linked list the Adt tool generates the stan-
dard functions as well as two extra functions that are often

7

used on lists: append and map. More functions could be
added. Consider as an example a list of trees defined thus:

forest = [tree *tree];

The type of the element of the list is tree * and the
name of the element is tree (there is a separate name
space for types, so the same identifier may be used).

The declaration of forest above is actually interpreted
as the regular monomorphic ADT below, but with a twist:
an extra field next field is added to link subsequent items
of the list together. The end of the list is indicated by the
NULL pointer as a sentinel, as in traditional C code.

forest = FOREST(tree *tree, forest *next);

This interpretation causes the Adt tool to generate all
the C types and standard functions that it generates for
any monomorphic ADT, including forest. On top of
this the Adt tool generates a number of extra functions;
two in this case. The prototypes of the append function
apforest and the map function itforest (it for iterate)
are:

forest *apforest(forest *subject, forest *object);

void itforest(void (*f) (void *, tree *), void *x,

forest *subject);

The function apforest traverses the spine of the
subject list to the last node and sets its next field
to point at the object list. A functional version of
apforest, which makes a copy of the spine of the subject
list, attaching the object list at the end of the copy could
be implemented easily.

The function itforest traverses the spine of the
subject list, supplying each element to the function f
passed as the first argument to itforest. To increase
the flexibility, itforest has a second argument x that is
passed to f at each call. x can be used to accumulate
results. This is the only place where void * pointers are
used in the Adt tool. This mechanism allows for the func-
tionality of Currying to be implemented. (See Section 4.3
for a more detailed example using the same mechanism.)

The notation [tree *tree] in the Adt in-
put syntax is actually syntactic sugar for
INSTANCE list (tree *tree). This notation is
meant to convey that we that are instantiating the
(implicit) type parameter of the polymorphic built-in
type list with (tree *tree). In the next two sections
we will see two more examples of type instantiation.

4.2 Doubly linked list

A doubly linked list can be instantiated with
INSTANCE dlist (...). Consider as an example a
doubly linked list of trees:

forest = INSTANCE dlist (tree *tree);

This declaration of forest is interpreted as the regular
ADT below. Here we are adding two fields, one for the
pointer to the next node, and one for the pointer to the
previous node (where the next node of the last element of
the list is the first and vice versa).

forest = FOREST(int val, forest *prev, forest *next);

The Adt tool generates the standard functions as well
as a set of extra functions taken from the C++ STL con-
tainer class list [7, Section 22.2.2]:

int size_forest(forest *subject);

bool empty_forest(forest *subject);

forest *front_forest(forest *subject);

forest *back_forest(forest *subject);

forest *push_back_forest(forest *subject,

forest *object);

forest *push_front_forest(forest *subject,

forest *object);

forest *pop_back_forest(forest *subject);

forest *pop_front_forest(forest *subject);

forest *erase_forest(forest *subject,

forest *start, forest *end);

forest *insert_forest(forest *subject,

forest *start, forest *object);

The remaining 19 member functions from the STL con-
tainer class could be added also.

4.3 Binary tree

Finally, we have implemented some support for binary
trees (See the Appendix for the full source code of the im-
plementation). The following Adt input is almost a com-
plete program, only the main program that calls ttsum
with a sample tree is missing.

%{

#include "primitive.h"

%}

tree = INSTANCE tree (int val);

%{

void f(void *x, int val) {

(int)x += val;

}

int ttsum(tree *t) {

int s = 0;

trtree(f, &s, t);

return s;

}

%}

This time we decided to follow the recursive sum-of-
product pattern for the implementation of the binary tree,
and interpret the tree instance as the following ADT:

8

tree = TREELEAF(int val)

| TREEBRANCH(int val, tree *left, tree * right);

The extra function generated here is trtree, which per-
forms an in-order traversal of the subject tree:

void trtree(void (*f) (void *, int), void *x,

tree *subject) {

switch(subject->tag) {

case TREELEAF:

f(x, subject->data._TREELEAF._val);

break;

case TREEBRANCH:

trtree(f, x, subject->data._TREEBRANCH._left);

f(x, subject->data._TREEBRANCH._val);

trtree(f, x, subject->data._TREEBRANCH._right);

break;

}

}

The function trtree uses Currying to apply the func-
tion f to the value contained in every node of the tree.
Since the actual function f adds the node value val it
receives to s, the latter will contain the sum of all node
values when the recursion terminates.

As we have seen in Table 1, this version of the sum
program is slowed down a little due to the overhead of
the calls to the Curried function f.

This concludes the discussion of the polymorphic built-
in data types and the extra functions that they generate.
We have shown that the Adt tool supports both the re-
cursive sum-of-product pattern as well as the traditional
C style with NULL pointers as sentinels.

It would not be difficult to extend the repertoire of
built-in types, for example taking the other STL container
classes as a source of inspiration. However, we suggest
that this is done as future work.

4.4 C-style polymorphic functions

While it has been a deliberate design choice to avoid the
use of void * as much as possible (the only exceptions
are the functions with the it prefix for singly linked lists
and the function with the tr prefix for binary trees), this
has the drawback that user defined functions cannot be
polymorphic. However, it is possible to build C-style poly-
morphism on top of the facilities provided by the Adt tool.
For example creating a C-style “polymorphic” list could
be achieved as follows:

voidlist = [void *v];

This creates the full complement of functions, including:

voidlist *mkVOIDLIST(void *_v, voidlist *_next);

void *gtVOIDLISTv(voidlist *subject);

%{

#include "primitive.h"

%}

input = INPUT(string header, body *body,

string trailer);

body = [def *def];

def = DEF(string comment, ident *ident,

product *product, adt *adt);

adt = ADT(sum *sum, string class,

product *parameters);

sum = [summand *summand];

summand = SUMMAND(string comment, ident *ident,

product *product);

product = [factor *factor];

factor = FACTOR(string comment, int visibility,

ident *type, string star, ident *field);

ident = IDENT(string ident);

Figure 4: The data type specification of the Adt tool.

The mkVOIDLIST function stores any pointer type in the
list, and gtVOIDLISTv retrieves the pointer again. There
is no need for explicit type casts when these functions are
used. No type errors will detected by the C compiler.
Only the use of unique tags guarantees that at least at
runtime, incorrect use of the elements of a void list is
detected.

5 The Adt tool

Having described how the Adt tool is used, we will now
describe two aspects of the tool itself. The first aspect
is that the Adt tool has been used to build itself. The
specification of the ADTs in the input syntax of the Adt
tool is shown in Figure 4.

The specification introduces nine ADTs, input, body,
def, adt, etc. We have already introduced the details of
the notation, so here we just point out one design deci-
sion. Some types are pointers and others are not. The
Adt tool gives the programmer control over this, whereas
most other tools reviewed in the related work section as-
sume that all fields of a product type are pointers. For
example in ASDL [25] all primitive types are pointers. By
exposing the representation of a field, our notation is less
abstract but at the same time it provides the user with
an appropriate level of control.

The YACC grammar of the Adt tool is shown in Fig-
ure 5. This shows how the functions such as mkINPUT,
mkBODY, etc. generated by the Adt tool are used in the

9

input : text body text

{ root = mkINPUT($1, $2, $3); }

;

text : TEXT

| /**/ { $$ = NULL; }

;

comment : COMMENT

| /**/ { $$ = NULL; }

;

body : def { $$ = mkBODY($1, NULL); }

| def ’;’{ $$ = mkBODY($1, NULL); }

| def ’;’ body

{ $$ = mkBODY($1, $3); }

;

def : comment ident ’=’ adt

{ $$ = mkDEF($1, $2, NULL, $4); }

| comment ident ’=’ ’(’ product ’)’ adt

{ $$ = mkDEF($1, $2, $5, $7); }

;

adt : sum { $$ = mkADT($1, NULL, NULL); }

| ’[’ product ’]’

{ $$ = mkADT(NULL, "list", $2); }

| INSTANCESY TOKEN ’(’ product ’)’

{ $$ = mkADT(NULL, $2, $4); }

;

sum : summand{ $$ = mkSUM($1, NULL); }

| summand ’|’ sum

{ $$ = mkSUM($1, $3); }

;

summand : comment ident ’(’ product ’)’

{ $$ = mkSUMMAND($1, $2, $4); }

| comment ident

{ $$ = mkSUMMAND($1, $2, NULL); }

;

product : factor { $$ = mkPRODUCT($1, NULL);}

| factor ’,’ product

{ $$ = mkPRODUCT($1, $3); }

;

factor : comment flags ident ’*’ ident

{ $$ = mkFACTOR($1,$2,$3,"*",$5); }

| comment flags ident ident

{ $$ = mkFACTOR($1,$2,$3,"", $4); }

;

flags : HIDDENSY

{ $$ = FACTOR_HIDDEN; }

| SHORTCUTSY

{ $$ = FACTOR_SHORTCUT; }

| STRUCTURALSY

{ $$ = FACTOR_STRUCTURAL; }

| /**/ { $$ = FACTOR_STRUCTURAL; }

;

ident : TOKEN { $$ = mkIDENT($1); }

;

Figure 5: The Yacc specification of the Adt tool

semantic actions that create a parse tree. We note the
uncluttered appearance of the semantic actions.

The second aspect concerns a number of convenient fea-
tures that have not been touched upon yet.

• The input production rule shows that a body (which
is a set of ADTs) can be preceded and followed by
some text. This is used to a header and a trailer
to the generated C code. For example the first three
lines of Figure 4 %{...%} form a header, listing the
include file to be used in the generated code. The
trailer is empty in this case. Similarly, it is possible to
begin the productions for def, summand, and factor
with a comment, as illustrated by the occurrences of
/*...*/ in Figure 3.

• The Adt tool can generate a template traversal func-
tion for each ADT in the input (driven by the com-
mand line option -t). This is useful as a start-
ing point for writing code. Unfortunately, any later
changes in the ADT specification will have to be in-
corporated manually in the traversal functions that
have been edited in the mean time.

• The Adt tool can also generate a LaTeX document for
the ADTs (driven by the command line option -l),
with comments appropriately edited. For example all
occurrences of % (See Figure 3) are replaced by the
identifier immediately following the comment.

We have tried to make the Adt tool as lean and mean
as possible, implementing only those features that we felt
were essential.

6 Qualitative evaluation

In this section we assess the strengths and weakness of
the Adt tool using the Adt tool itself based on two real-
world case studies. We look at fitting ADTs in a new
program, at retrofitting ADTs into an existing program,
at the avoidance of void * pointers, at NULL pointer
checks, and at the use of NULL pointers in general.

The Adt tool itself represents a small case study. The
ADT specification of Figure 4 comprises 22 lines (9 data
types). This is expanded to 723 lines for the header file
and 2054 lines (195 functions) for the code. About 18% of
all the Adt code is generated by the tool itself, in which
errors typical for humans (such as cut and paste errors)
do not occur.

The Adt tool has been written such that the only oc-
currences of the -> operator are in the code generated
by the Adt tool. This ensures that any dereference of a
NULL pointer is caught as early as possible by the run
time checking code generated by the Adt tool. We found
that the best way to use the Adt tool is with discipline.
We offer two suggestions.

10

Firstly the ADTs are best designed using the recursive
sum-of-product pattern. The design of the data types
would naturally go hand in hand with the development
of the Yacc grammar. If the semantic actions look un-
cluttered, as in Figure 5, the ADTs are probably well
designed.

Secondly any code is best developed after the ADTs,
again using the recursive sum-of-product pattern. With-
out this discipline, one soon discovers that changing the
ADT causes significant changes in the interface functions,
in turn requiring extensive editing to the code that uses
the interface functions.

6.1 Fitting versus retro fitting

The two medium size case studies that we have are a Sys-
tem C compiler that was developed using the Adt tool
from scratch, and a state-of-the-art commercial network
intrusion detection system (NIDS) for which retrofitting
ADTs was considered.

The SystemC compiler translates SystemC 1.0 to
VHDL. The compiler has an ADT specification of 103
lines (16 data types), expanding to 3042 lines for the
header file and 8884 lines for the code. The whole com-
piler consists of 14,760 lines of hand written Lex, Yacc,
Adt and C code (thus excluding any machine generated
code). If it had been written without the Adt tool, an-
other 4,226 lines of C would have had to be written by
hand which are now generated by the Adt tool. Again
the machine generated code represents a significant frac-
tion (22%) of the total amount of code that is free from
trivial errors.

Writing the System C compiler from scratch using the
Adt tool saved us work. We avoided writing the repetitive
code for data structure access that the Adt tool generated
for us, and as such it avoided us writing code in which
trivial errors could hold us up.

The NIDS performs anomaly based network intrusion
detection. The NIDS comprises 30,567 lines of C code
with heavy pointer handling. There are 11 data structures
held together by doubly linked lists of void * and trees of
void *, and there are 6,756 uses of -> in the NIDS code.
Many of the -> dereference to void * pointers that point
to a data structure that is not a-priori known, and all of
these could be NULL too.

We translated all the 11 data structures of the NIDS
into Adt notation, using the polymorphic built-in doubly
linked list and the polymorphic built-in tree. The NIDS
makes list instances of four different types, so instead of
one set of list access function, now we have four sets of
machine generated access functions, each of which can be
type checked by the C compiler. The NIDS makes one

instance of a tree. In principle, this should get rid of
many of the void * pointers in the code.

However, we have not been able to carry through the
code renovation as, we struggled to try and replace all
occurrences of -> in the NIDS with the strongly typed
access functions. Because many references are through
void * pointers this replacement is non trivial, and each
-> will have to be analysed by hand to decide which of
the four element types for the list is appropriate.

We conclude that retrofitting ADTs to existing source
code can be a significant task, especially if code has been
obfuscated by the use of void * pointers.

6.2 Avoiding Void Pointers

Studying the design of the NIDS highlights the use of
void * for the implementation of sum types, and for the
implementation of polymorphism. In many cases void *
pointers can be avoided because only a limited set of in-
stances is used, and unions with structs and tags could be
used instead. Instead, void * pointers are often used be-
cause the use of unions and tags is too cumbersome to be
done by hand. With tool support the situation changes.

We argue that code that does not use void * pointers is
more transparent, and easier to understand and maintain.
Especially when the code is maintained by people who
were not part of the original implementation team, it can
be virtually impossible to second guess void * pointers
(similarly to using the Object class in Java 1.4 or earlier).
Using tools such as Adt from the beginning would have
avoided typing ambiguity, and avoided obfuscating the
code.

6.3 NULL pointer checks

Code that is written using the Adt tool does not need to
use the -> operator. All occurrences are inside the code
generated by the Adt tool. This ensures that any derefer-
ence of a NULL pointer is caught as early as possible by
the run time checking code generated by the Adt tool.

For example the creators of the runtime analyzer Pu-
rify [20] observe that over 60% of the errors found by
Purify are uninitialized memory read errors (caused es-
sentially by a NULL pointer dereference). Similarly, the
makers of the static analyzer PREfix [4] observe that more
than 50% of all warnings reported by PREfix are NULL
pointer dereferences.

The Adt tool wraps all pointer manipulation code in
functions or macros that are instrumented with the same
checks that Purify and PREfix implement to catch NULL
pointer dereferences. Purify and PREfix implement fur-
ther checks that the Adt tool does not provide, but these
checks come at a considerable performance cost. For
example Purify slows down execution by a factor of 5,
whereas using the Adt tool may even speed up code.

11

We conclude that the Adt delivers some of the benefits
of Purify or PREfix at no performance cost for projects
where source code is created from scratch. Retrofitting
ADTs on existing code is costly.

6.4 Avoiding NULL pointers as a pro-
gramming method

We have already discussed the dangers of using NULL
pointers in Section 2.3, and we have shown that the recur-
sive sum-of-product pattern avoids using NULL pointers
as sentinels: thinking about algebraic data types natu-
rally leads one to think about the base case(s) and the
recursive case(s) separately, which are then bundled in a
sum type. As a result of this algebraic thinking, none of
the 20 data structures in the SystemC compiler use NULL
pointers as sentinels, whereas all of the 11 data structures
in the NIDS do.

There are still many NULL pointers in C code generated
by the Adt tool for the reason that the polymorphic built-
in singly linked list is implemented using the traditional
C style sentinel with a NULL pointer. This is a design
choice that we made to show that Adt generated code
does not have to be different from traditional C code. By
contrast, our implementation of the built-in tree data type
using the recursive sum-of-product pattern shows that in
principle Adt generated code can be completely free from
NULL pointers.

7 Related work

The literature provides a large variety of tools that sup-
port ADTs.

Firstly all declarative programming languages provide
ADTs and pattern matching. Some object oriented lan-
guages, such as the Java derivative Pizza [18], Scala [17],
offer the same powerful support for ADTs and pattern
matching as found in declarative languages. In all these
cases the compiler has to process the entire source code,
whereas our approach requires the Adt tool to process
only the ADT definitions. The TOM approach [16] is in-
teresting because it represents an intermediary stage in
between two extremes above: the TOM compiler only
translates the type declaration and pattern matching con-
structs that are embedded in a host language, such as C or
Java. However, this cannot be done without a special sep-
arate type checker, which thus makes the Tom approach
more powerful, but at the same time less simple than ours.

Secondly, it is possible to use ADTs and pattern match-
ing in a standard language, usually C++. For example
McNamara and Smaragdakis [14] focus on the polymor-
phic typing issues and Läufer [13] focuses on the higher
order issues. Standard C is not sufficiently powerful to
support ADTs. The limits of what is possible in standard

C are described by Ianello, who offers a programming dis-
cipline that achieves some of the advantages of working
with ADTs [10]. The price to be paid is a severely re-
duced ability to type check programs.

Thirdly, there exists a large variety of tools dedicated
to building abstract syntax trees for compilers. The Ast
generator [8] and ASDL [25] focus on the development of
intermediate representations that can be marshalled and
unmarshalled in a variety of programming languages. The
TTT tool [22] implements ADTs in C using runtime type
checking, whereas our approach uses compile time type
checking. The ApiGen tool [23] implements abstract syn-
tax trees in Java, focusing on maximal sub-term sharing.
By contrast, our Adt tool leaves decisions about sharing
to the programmer. The tool proposed by Overbey and
Johnson [19] focuses on rewriting abstract syntax trees
for the purpose of code renovation. The work of de Jong
and Olivier [6] focuses on the maintainability of the code
generated for ADTs. By contrast, the Adt tool does not
help with either code renovation or maintainability.

The main purpose of the ATerm library is the exchange
of ADTs between programs written in languages such as
C and Java [24]. The ATerm provides powerful pattern
matching constructs and garbage collection. On the other
hand it assumes that the ADTs are use only in a functional
manner, hence typical C idioms that use destructive up-
dates cannot be supported. By contrast the Adt tool al-
lows destructive updates but requires the programmer to
manage the storage.

The fourth category does not propose a specific method
to support building abstract syntax trees. For example
Smart C [11] is a type aware macro processor that can
be used to rewrite fragments of C programs. This can be
used to catch dereferencing of NULL pointers, which is
one of the main advantages of the Adt tool.

The Adt tool is simpler and smaller than all of the
above. The Adt tool provides only one thing, i.e. ADTs
and pattern matching, and it does this in the simplest and
most efficient way possible. From a specification of a set
of ADTs the tool generates a .h and a .c file that provides
the C programmer with the functionality needed to build
and pattern match ADTs. There is no support for lan-
guages other than C, there is no support for marshalling
and unmarshalling, automated sharing, or garbage collec-
tion. The Adt tool does not perform type checking, this
is left to the C compiler. We believe that in the whole
spectrum of possibilities, the Adt tool is as simple as pos-
sible.

8 Conclusions and Future work

The Adt tool is simple and effective. It does not pro-
vide the rich functionality of the tools discussed in related
work, but it supports monomorphic, user-defined ADTs,

12

pattern matching and polymorphic built-in types such as
lists and trees. We have shown that the design choices
that we have made lead to a simple, yet usable tool.

The Adt tool offers four styles of pattern matching on
ADTs. The two styles that allow nested patterns are less
efficient than the styles that allow flat patterns only. The
most elegant style is also the fastest, but it does not of-
fer nesting. The style that offers nesting with reasonable
performance is the least elegant.

The Adt tool supports three polymorphic types that
have been built into the tool. We argue that adding other
polymorphic built-in types is probably as simple as im-
plementing an STL container class for C++.

We describe the lessons learned while using the Adt
tool to build a new compiler and to renovate an existing
network intrusion detection system. The main conclusion
is that C code developed with Adt can even be faster than
traditional C code, and the code is likely to contain fewer
errors than C code developed without the Adt tool.

The Adt tool is available online from
http://eprints.eemcs.utwente.nl/17771. We
welcome all contributions, but especially implementa-
tions of the C++ STL container classes in the form of
polymorphic built-in types.

Acknowledgments

We thank the anonymous reviewers for their insights and
helful comments. We are grateful to SecurityMatters BV
for providing us with the data for the commercial NIDS
case study.

References

[1] M. Barr and A. J. Massa. Programming em-
bedded systems: with C and GNU development
tools. O’Reilly Media, Inc., 2006. Available from
World Wide Web: http://oreilly.com/catalog/
9780596009830. 1

[2] R. S. Bird and P. L. Wadler. Introduction to func-
tional programming. Prentice Hall, New York, 1988.
7

[3] F. P. Brooks. The Mythical man month – Essays
on software engineering. Addison Wesley, Reading,
Massachusetts, second edition, 1995. 1

[4] W. R. Bush, J. D. Pincus, and D. J. Sielaff.
A static analyzer for finding dynamic program-
ming errors. Software: Practice and Experi-
ence, 30(7):775–802, Jun 2000. Available from
World Wide Web: http://dx.doi.org/10.
1002/(SICI)1097-024X(200006)30:7<775::
AID-SPE309>3.0.CO;2-H. 11

[5] W. F. Clocksin and C. S. Mellish. Programming in
Prolog. Springer, third edition, 1987. 2

[6] H. A. de Jong and P. A. Olivier. Generation of
abstract programming interfaces from syntax defini-
tions. J. of Logic and Algebraic Programming, 59(1-
2):35–61, Apr 2004. Available from World Wide
Web: http://dx.doi.org/10.1016/j.jlap.2003.
12.002. 12

[7] P. Deitel and H. M. Deitel. C++ : How to
Program. Pearson Education, Upper Sad-
dle River, New Jersey, seventh edition, 2010.
Available from World Wide Web: http:
//www.pearsonhighered.com/educator/product/
C-How-to-Program/9780136117261.page. 8

[8] J. Grosch and H. Emmelmann. A tool box for com-
piler construction. In 3rd Int. Workshop on Compiler
Compilers (CC), volume 477 of LNCS, pages 106–
116, Schwerin, Germany, Oct 1990. Springer. Avail-
able from World Wide Web: http://dx.doi.org/
10.1007/3-540-53669-8_77. 12

[9] C. A. R. Hoare. Null references: The bil-
lion dollar mistake. In Int. Sofware Develop-
ment Conference (QCon), London, UK, Mar
2009. Unpublished. Available from World
Wide Web: http://www.qconlondon.com/
london-2009/presentation/Null+References:
+The+Billion+Dollar+Mistake. 3

[10] G. Iannello. Programming abstract data types, it-
erators and generic modules in C. Software: Prac-
tice and Experience, 20(3):243–260, Mar 1990. Avail-
able from World Wide Web: http://dx.doi.org/
10.1002/spe.4380200303. 12

[11] M. Jacobs and E. C. Lewis. SMART C: A seman-
tic macro replacement translator for C. In 6th IEEE
Int. Workshop on Source Code Analysis and Manip-
ulation (SCAM), pages 95–106. IEEE Computer So-
ciety, Sep 2006. Available from World Wide Web:
http://dx.doi.org/10.1109/SCAM.2006.28. 12

[12] B. W. Kernighan and D. W. Ritchie. The C program-
ming language. Prentice Hall, Englewood Cliffs, New
Jersey, 1978. 3

[13] K. Laufer. A framework for Higher-Order func-
tions in C++. In Conf. on Object-Oriented
Technologies (COOTS), page Article 8, Mon-
terey, California, Jun 1995. Usenix Associ-
ation. Available from World Wide Web:
http://www.usenix.org/publications/library/
proceedings/coots95/laufer.html. 12

13

http://oreilly.com/catalog/9780596009830
http://oreilly.com/catalog/9780596009830
http://dx.doi.org/10.1002/(SICI)1097-024X(200006)30:7<775::AID-SPE309>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1097-024X(200006)30:7<775::AID-SPE309>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1097-024X(200006)30:7<775::AID-SPE309>3.0.CO;2-H
http://dx.doi.org/10.1016/j.jlap.2003.12.002
http://dx.doi.org/10.1016/j.jlap.2003.12.002
http://www.pearsonhighered.com/educator/product/C-How-to-Program/9780136117261.page
http://www.pearsonhighered.com/educator/product/C-How-to-Program/9780136117261.page
http://www.pearsonhighered.com/educator/product/C-How-to-Program/9780136117261.page
http://dx.doi.org/10.1007/3-540-53669-8_77
http://dx.doi.org/10.1007/3-540-53669-8_77
http://www.qconlondon.com/london-2009/presentation/Null+References:+The+Billion+Dollar+Mistake.
http://www.qconlondon.com/london-2009/presentation/Null+References:+The+Billion+Dollar+Mistake.
http://www.qconlondon.com/london-2009/presentation/Null+References:+The+Billion+Dollar+Mistake.
http://dx.doi.org/10.1002/spe.4380200303
http://dx.doi.org/10.1002/spe.4380200303
http://dx.doi.org/10.1109/SCAM.2006.28
http://www.usenix.org/publications/library/proceedings/coots95/laufer.html
http://www.usenix.org/publications/library/proceedings/coots95/laufer.html

[14] B. McNamara and Y. Smaragdakis. Functional pro-
gramming in C++. In 5th ACM SIGPLAN Int.
Conf. on Functional programming, pages 118–129,
Montréal, Canada, Aug 2000. ACM, New York.
Available from World Wide Web: http://dx.doi.
org/10.1145/351240.351251. 12

[15] R. Milner, M. Tofte, R. Harper, and D. B. MacQueen.
The definition of Standard ML (Revised). MIT Press,
Cambridge, Massachusetts, 1997. 2

[16] P.-E. Moreau, C. Ringeissen, and M. Vittek. A
pattern matching compiler for multiple target lan-
guages. In 12th Int. Conf. on Compiler Construc-
tion (CC), volume 2622 of LNCS, pages 61–76, War-
saw, Poland, Apr 2003. Springer. Available from
World Wide Web: http://dx.doi.org/10.1007/
3-540-36579-6_5. 12

[17] M. Odersky, L. Spoon, and B. Venners. Program-
ming in Scala. Artima, Mountain View, California,
2007. Available from World Wide Web: http://www.
artima.com/shop/programming_in_scala. 2, 12

[18] M. Odersky and P. L. Wadler. Pizza into Java:
Translating theory into practice. In 24th Principles
of programming languages (POPL), pages 146–159,
Paris, France, Jan 1997. ACM, New York. Avail-
able from World Wide Web: http://dx.doi.org/
10.1145/263699.263715. 12

[19] J. L. Overbey and R. E. Johnson. Generating
rewritable abstract syntax trees - A foundation for
the rapid development of source code transformation
tools. In A Foundation for the Rapid Development of
Source Code Transformation Tools, volume 5452 of
LNCS, pages 114–133, Toulouse, France, Sep 2008.
Springer. Available from World Wide Web: http:
//dx.doi.org/10.1007/978-3-642-00434-6_8. 12

[20] H. D. Owens, B. F. Womack, and M. J. Gonzalez.
Software error classification using Purify. In 4th Int.
Conf. on Software Maintenance (ICSM), pages 104–
113, Monterey, California, Nov 1996. IEEE. Avail-
able from World Wide Web: http://dx.doi.org/
10.1109/ICSM.1996.564994. 11

[21] A. Savidis. The implementation of generic smart
pointers for advanced defensive programming. Soft-
ware: Practice and Experience, 34(10):977–1009,
Aug 2004. Available from World Wide Web: http:
//dx.doi.org/10.1002/spe.600. 4

[22] W. J. Toetenel. TTT - A simple type-checked C
language abstract data type generator. In R. Nigel
Horspool, volume IFIP Conf. Proceedings 117, pages
263–276, Berlin, Germany, Feb 1998. Chapman &
Hall. 12

[23] M. van den Brand, P.-E. Moreau, and J. Vinju. Gen-
erator of efficient strongly typed abstract syntax trees
in Java. IEE Proceedings: Software, 152(2):70–78,
Apr 2005. Available from World Wide Web: http:
//dx.doi.org/10.1049/ip-sen:20041181. 12

[24] M. G. T. van den Brand, H. A. de Jong, P. Klint,
and P. A. Olivier. Efficient annotated terms. Softw.
Pract. Exper., 30(3):259–291, Mar 2000. Available
from World Wide Web: http://dx.doi.org/
10.1002/(SICI)1097-024X(200003)30:3<259::
AID-SPE298>3.0.CO;2-Y. 12

[25] D. C. Wang, A. W. Appel, J. L. Korn, and
C. S. Serra. The Zephyr abstract syntax
description language. In Conf. on Domain-
Specific Languages (DSL), page Paper 17,
Santa Barbara, California, Oct 1997. Usenix
Association. Available from World Wide Web:
http://www.usenix.org/publications/library/
proceedings/dsl97/wang.html. 9, 12

Appendix

The two functions in Figure 6 represent the implemen-
tation of the polymorphic built-in type tree. The first
function builds an ADT from an instance of a tree, and
the second function generates the extra function with the
tr prefix. Both functions are compact because they make
heavy use of the functions generated by the Adt tool for
the ADT of 4. The second function consists almost en-
tirely of printf statements, indicating that code genera-
tion is simple indeed.

14

http://dx.doi.org/10.1145/351240.351251
http://dx.doi.org/10.1145/351240.351251
http://dx.doi.org/10.1007/3-540-36579-6_5
http://dx.doi.org/10.1007/3-540-36579-6_5
http://www.artima.com/shop/programming_in_scala
http://www.artima.com/shop/programming_in_scala
http://dx.doi.org/10.1145/263699.263715
http://dx.doi.org/10.1145/263699.263715
http://dx.doi.org/10.1007/978-3-642-00434-6_8
http://dx.doi.org/10.1007/978-3-642-00434-6_8
http://dx.doi.org/10.1109/ICSM.1996.564994
http://dx.doi.org/10.1109/ICSM.1996.564994
http://dx.doi.org/10.1002/spe.600
http://dx.doi.org/10.1002/spe.600
http://dx.doi.org/10.1049/ip-sen:20041181
http://dx.doi.org/10.1049/ip-sen:20041181
http://dx.doi.org/10.1002/(SICI)1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y
http://www.usenix.org/publications/library/proceedings/dsl97/wang.html
http://www.usenix.org/publications/library/proceedings/dsl97/wang.html

void instantiate_adt_tree(char *def_nm, adt *cur) {

product *product1 = gtADTparameters(cur);

ident * ident1 = mkIDENT(flipcase(def_nm, "leaf"));

summand *summand1 = mkSUMMAND("", ident1, product1);

factor *left2 = mkFACTOR("", FACTOR_STRUCTURAL, mkIDENT(def_nm), "*", mkIDENT("left"));

factor *right2 = mkFACTOR("", FACTOR_STRUCTURAL, mkIDENT(def_nm), "*", mkIDENT("right"));

product *product2 = func_approduct_3(gtADTparameters(cur), mkPRODUCT(left2, NULL), mkPRODUCT(right2, NULL));

ident * ident2 = mkIDENT(flipcase(def_nm, "branch"));

summand *summand2 = mkSUMMAND("", ident2, product2);

sum *sum = mkSUM(summand1, mkSUM(summand2, NULL));

stADTsum(cur, sum);

}

void high_level_instance_tree_traverse(char *def_nm, product *prod, adt *cur) {

char *constr1_nm = gtIDENTident(gtSUMMANDident(gtSUMsummand(gtADTsum(cur))));

char *constr2_nm = gtIDENTident(gtSUMMANDident(gtSUMsummand(gtSUMnext(gtADTsum(cur)))));

product *combined = func_approduct(prod, gtADTparameters(cur));

printf("void tr%s(void (*f) (void *, ", def_nm);

formal_product(combined);

printf("), void *x, %s *subject) {\n", def_nm);

printf("\tcheck_ptr(subject, \"tr%s\");\n", def_nm);

printf("\tswitch(subject->tag) {\n");

printf("\tcase %s :\n", constr1_nm);

printf("\t\tf(x, ");

actual_product(constr1_nm, combined);

printf(");\n");

printf("\t\tbreak;\n");

printf("\tcase %s :\n", constr2_nm);

printf("\t\ttr%s(f, x, subject->data._%s._left);\n", def_nm, constr2_nm);

printf("\t\tf(x, ");

actual_product(constr2_nm, combined);

printf(");\n");

printf("\t\ttr%s(f, x, subject->data._%s._right);\n", def_nm, constr2_nm);

printf("\t\tbreak;\n");

printf("\t}\n");

printf("}\n\n");

}

Figure 6: The complete support for polymorphic built-in trees.

15

	Introduction
	Algebraic data types
	Recursive sum-of-product pattern
	Languages that support ADTs
	C does not have ADT support

	ADT support for C
	C type definitions
	Constructor functions
	Destructor functions
	Debugging functions
	Access functions
	Pattern matching functions
	Pattern matching on the heap
	Pattern matching in the stack
	A pattern matching case statement
	Field access functions

	Quantitative Evaluation

	Polymorphic built-in types
	Singly linked list
	Doubly linked list
	Binary tree
	C-style polymorphic functions

	The Adt tool
	Qualitative evaluation
	Fitting versus retro fitting
	Avoiding Void Pointers
	NULL pointer checks
	Avoiding NULL pointers as a programming method

	Related work
	Conclusions and Future work

