
Noname manuscript No.
(will be inserted by the editor)

Modelling and Analysis Using GROOVE

Amir Hossein Ghamarian · Maarten de Mol ·
Arend Rensink · Eduardo Zambon · Maria Zimakova

the date of receipt and acceptance should be inserted later

Abstract In this paper we present case studies that describe
how the graph transformation tool GROOVE has been used
to model problems from a wide variety of domains. These
case studies highlight the wide applicability of GROOVE in
particular, and of graph transformation in general. They also
give concrete templates for using GROOVE in practice. Fur-
thermore, we use the case studies to analyse the main strong
and weak points of GROOVE.

1 Introduction

In this paper we take the perspective of one particular mod-
elling paradigm, graph transformation, and one particular
tool supporting this paradigm, GROOVE. We target the fol-
lowing groups of readers:

– Those who want to get a general impression of the scope
of graph transformation, and what a specification in this
paradigm looks like;

– Those who want to get acquainted with GROOVE, and
learn about its features and strengths;

– Those who already know graph transformation or
GROOVE, and want to have some templates and exam-
ples of how to apply it in different contexts.

1.1 Background

Graph transformation has been advocated as a flexible for-
malism, suitable for modelling systems with dynamic con-
figurations or states. This flexibility is achieved by the fact
that the underlying data structure, that of graphs, is capable
of capturing a broad variety of systems.

Department of Computer Science,
University of Twente, The Netherlands
{ghamarian, molm, rensink, zambon, mzimakova}@cs.utwente.nl

Essentially, whenever a system consists of entities with
relations between them, this can be naturally captured by
a graph in which the nodes stand for the entities and the
edges for the relations. If, in addition, a main characteristic
of such a system is that entities are created or deleted and the
relations between them can change, then the transformation
of those graphs comes into play.

A conceptual introduction to graph transformation can
be found in [19]. The focus of this article is different. Rather
than going into the theoretical background, we illustrate the
uses of graph transformation on the basis of one particular
tool that is capable of providing fast, hands-on experience,
namely GROOVE (see [29]). We present four case studies
from quite different domains, collected over the last three
years, that show different features of graph transformation in
general and of GROOVE in particular. Then, we more briefly
review a number of other, previously published applications.

1.2 Introduction to GROOVE

In this section we provide an overview of the features of
the GROOVE tool. We describe the latest version, 4.0. Some
of the older cases were developed with previous versions
and consequently do not use all tool features, even where it
would have been convenient to do so.

Graphs.
Graphs in GROOVE consist of labelled nodes and edges.1 An
edge is a binary arrow between two nodes. Node labels can
either be node types or flags; the latter can be used to model
a boolean condition, which is true for a node if the flag is
there and false if it is absent.

GROOVE can work either in an untyped or in a typed
mode. In the untyped mode, graphs can be arbitrary: there

1 Note that this is an extension: past versions of GROOVE only sup-
ported edge labels, node labels had to be mimicked by self-edges.

2

C

P P

A

parentparent

child

Legend:
A Ab Matched and preserved
A Ab Forbidden
A Ab Matched and deleted
A Ab Created

Fig. 1 Example GROOVE rule and legend

are no constraints on the allowed combinations of node
types, flags and edges. In the typed mode, all graphs must
be typable, meaning that they can be mapped into a special
type graph. The type graph determines the allowed combi-
nations of node types and edges.

Since typing is a new feature, only one case (Section 4)
uses node types, and another (Section 5) uses full types.

Simple rules.
Graphs are transformed by applying rules. A rule consists of
the following:

– A pattern that must be present in the host graph in order
for the rule to be applicable;

– Subpatterns that must be absent in the host graph in or-
der for the rule to be applicable;

– Elements (nodes and edges) to be deleted from the
graph;

– Elements (nodes and edges) to be added to the graph;
– Pairs of nodes that are to be merged.

All these elements are combined into a single graph; colours
and shapes are used to distinguish them. Fig. 1 shows a small
example containing most of these elements:

– The black (continuous thin) nodes and edges, in this case
two nodes labelled A and C, must be present and are pre-
served;

– The red (dashed fat) nodes and edges, in this case a
parent-labelled edge with a P-labelled target node, must
be absent in the graph;

– The blue (dashed thin) nodes and edges, in this case a
child-labelled edge from the A-node to the C-node, must
be present and are deleted;

– The green (continuous fat) nodes and edges, in this case
a parent-labelled edge with a P-labelled target node, are
created.

The overall effect of the rule is to search for A- and C-
nodes connected by a child-edge but without a parent-edge to
a P-node, and to modify this by removing the child-edge and
adding a parent-edge to a fresh P-node. For instance, the rule
can be applied to the graph on the left hand side of Fig. 2 in
two ways, one of which results in the graph on the right hand
side. (The other application removes the other child-edge.)

The core functionality of GROOVE is to recursively ap-
ply all rules from a predefined set (the graph transformation
system) to a given start graph, and to all graphs generated
by such applications. This results in a state space consisting

A

P

CC

A

child

parent

childchild

(a) Source graph

A

P

C

P

C

A

child

parent

child

parent

(b) Target graph

Fig. 2 Example application of the rule in Fig. 1

of the generated graphs. The strategy according to which the
state space is explored (e.g., depth-first, breadth-first or lin-
ear) can be set as a parameter.

Attributes.
Nodes in a graph typically stand for instances of some re-
source or concept. For modelling most systems, however, it
is also necessary to include data fields, containing booleans,
integer numbers or strings. Such data fields are usually
called attributes. GROOVE supports attributes by treating
them as special edges that do not point to a standard node,
but to a node that corresponds to a data value. Graphically
such edges are usually represented by expressions of the
form “x = 12”, rather than by x-labelled arrows pointing to
a 12-labelled node.

Regular expressions and wildcards.
Besides ordinary edges, a rule may include edges carrying
regular expressions. These will be matched in the host graph
by searching for a path whose labels satisfy the regular ex-
pression. Regular expressions may also contain wildcards,
which are matched by arbitrary labels. Moreover, wildcards
may be named: the names are used across different regular
expressions to specify that the (arbitrary) labels must coin-
cide. One may also constrain wildcards to take values only
from a given set, or outside a given set.

Arbitrary regular expressions may occur only in the pos-
itive or negative application conditions, and may not be
deleted or created. An exception are expressions consist-
ing only of a wildcard: these may always be deleted, and
a named wildcard may also be created.

For instance, an edge labelled ?x.(b|-c)* matches any path
starting with an arbitrary label, followed by any number of
b-edges or inverse c-edges (the prefix “-” specifies that a
subexpression should be followed in the inverse direction).
The same rule may contain a deleting ?x-edge, which must
match the same label as the first label found for the above
regular expression.

Quantification.
One of the special features of GROOVE is the support of uni-
versal quantification in rules (see [32]). A universally quan-
tified (sub)rule is one that will be applied to all subgraphs
that satisfy the relevant application conditions, rather than
just a single one as in the standard case. Such a rule can
itself be much more concise, and also result in a smaller

3

state space, than the equivalent set of rules that would ordi-
narily be needed. In fact, quantification can be nested in the
sense that universally quantified rules can contain further ex-
istential subrules, and vice versa. Among other things, this
makes it possible to formulate powerful application condi-
tions (see [30]).

Control.
The standard behaviour of GROOVE is to attempt the appli-
cation of arbitrary rules at any point in time. There are, how-
ever, two further methods to control and direct the applica-
tion of rules. A most straightforward mechanism is to assign
priorities to rules: low-priority rules may only be applied if
no higher-priority rule is applicable. A more sophisticated
mechanism is to use GROOVE’s control language.

A control program is imposed on top of a graph transfor-
mation system and specifies the allowed order of application
of the rules of that system, referring to the rules by name. For
instance, the control program a; try {b;} else {c;}

specifies that first the rule named “a” must be applied, af-
ter which “b” is tried; if “b” is not applicable, “c” is applied.
If rule “a” is not applicable in the beginning, then nothing
happens. Other constructs offered by the language include:

– Looping, including an “as-long-as-possible” construct;
– A random choice between rules;
– Simple (non-recursive) function calls.

State space exploration.
The most distinguishing feature of GROOVE, compared
with other graph transformation tools (see Section 7 for an
overview), is the fact that it does not just carry out a single
sequence of transformations from a given start state, but can
explore and store the entire state space of reachable graphs.
This provides a rich source of information for further analy-
sis. In fact, GROOVE offers a choice of the exploration strat-
egy to be used:

– Depth-first full exploration, also with on-the-fly LTL
model checking;

– Breadth-first full exploration. In some grammars, this
enables finding shortest paths to certain graphs;

– Linear, random linear, and conditional exploration. This
allows simulation without covering all states, for in-
stance if the state space is too large.

1.3 Structure

The remainder of this paper is structured as follows. In the
next four sections, we describe four GROOVE case studies
undertaken in the last few years:

– Section 2: Model transformation (from BPMN to BPEL);
– Section 3: Verification of a leader election protocol;
– Section 4: Analysis of security policies;
– Section 5: Simulation (modelling movements of ants).

For each of these case studies, apart from describing in some
detail the actual solutions, we stress the special aspects of
the problem and the GROOVE features used to solve it.

In Section 6 we briefly review a number of other ap-
plications of GROOVE in different domains. Finally, Sec-
tion 7 contains an evaluation of the tool, based on experi-
ences drawn from the case studies, along with a comparison
between GROOVE and other tools.

2 Model transformation: From BPMN to BPEL

This case study presents an example of a model-to-
model transformation. The source and target languages are
BPMN and BPEL respectively, which conform to the model
paradigm defined by OMG2. The task is to transform a stan-
dard representation of BPMN into a standard representation
of BPEL.

2.1 Case description

BPMN (defined by OMG, see [25]) and BPEL (defined by
OASIS, see [26]) are languages for describing business pro-
cesses. BPMN is a free-form graphical notation that is geared
towards user-friendly modelling, and BPEL is a block-based
notation that is geared towards transparent execution. This
case study presents a solution in GROOVE for transforming
(a subset of) BPMN to (a subset of) BPEL according to the
transformation method described in [28] and [27].

This transformation problem was one of the challenges
of the GraBaTs 2009 workshop [17] and the GROOVE so-
lution [9] was one of the 10 solutions that were submitted.
See the workshop homepage for a detailed description of all
solutions.

An example of equivalent BPMN and BPEL models is
shown in Fig. 3. It is taken from [10] and describes the pro-
cess of publishing an article, which starts when the abstract
is approved. The article is written and submitted to the ed-
itors. Then the writer waits for review results and submits
a revised article, which is subsequently reviewed again. De-
pending on the result, the process ends or the article is edited
and submitted to the editors again. The process ends with the
publishing of the article. These models will be used as the
running example in the remainder of this case study.

2.2 Case features

The following features of this case study are of particular
interest for this paper and for the application of graph trans-
formation in general:

2 http://www.omg.org

http://www.omg.org

4

Write Article

Submit Article

Revision

edit

Review Revision

�

(a) BPMN model (b) BPEL model

Fig. 3 Example model in BPMN and BPEL

Model transformation.
The translation of BPMN to BPEL is a model transformation
that should make use of meta models as the description of
allowed structure. This means that the GROOVE transforma-
tion should know about these meta models, and should op-
erate on input that conforms to the BPMN meta model and
produce output that conforms to the BPEL meta model.

Furthermore, the GROOVE translation should be aligned
with the standard (file) representation for BPMN and BPEL

models, which is by means of XML. By operating on XML,
the input for the transformation can be exported from UML

tools, and the output can be imported back again.

Deterministic transformation.
The algorithm should behave in a deterministic manner: for
each input BPMN model, it should always produce the same,
uniquely determined BPEL model.

Control flow.
The transformation algorithm used has a specific order in
which the input BPMN model is traversed. It begins by recog-
nising inner patterns, which are subsequently contracted into
BPEL blocks. This then allows the recognition and contrac-

tion of bigger patterns. The algorithm works its way to the
outer level until the model as whole has been transformed.

Due to the iterative nature of the algorithm, it is impor-
tant that individual contraction steps can be tracked in a user-
friendly manner. This allows the correct recognition of more
complex patterns to be integrated easily into the algorithm,
and ensures that problems in later stages can be debugged
effectively.

Pattern matching.
The power and usefulness of the transformation is measured
by the number of different BPMN patterns it can transform
to BPEL. Some patterns are more complex than others; for
instance a pattern with an arbitrary number of connecting
paths is more difficult to recognise (directly) than a pattern
with a fixed number of connecting paths. The number of pat-
terns that can be recognised, as well as the ease of recogni-
tion, are a challenge for the graph transformation formalism.

2.3 Aspects of solution

The GROOVE solution for this case study is structured in the
following five phases:

1. Initialise: translate BPMN (XML) to GROOVE (graph).
2. Analyse gateways: create explicit connections between

opening and closing gateways that belong together;
3. Analyse sequences: mark the beginning and the end of

sequences;
4. Contract patterns: transform recognised patterns (con-

nected gateways) into BPEL blocks;
5. Finalise: translate GROOVE (graph) to BPEL (XML).

The ‘wrapper’ phases 1 and 5 are translations between
XML and the internal (textual) representation of graphs that
is used by GROOVE. These translations cannot be expressed
within GROOVE, and have instead been realised by means of
custom XSLT [41] transformations, which have to be carried
out explicitly by the user. Two XSLT transformations for our
particular case are specified in [9].

Phases 2, 3 and 4 are realised within GROOVE by means
of graph transformation rules. In total, the translation con-
sists of 46 rules (9 for phase 2, 16 for phase 3, and 21 for
phase 4). The phases will be explained further below, using
the BPMN model in GROOVE of Fig. 4 as a running example.
Note that our representation is not structured according to a
meta model or type graph, because GROOVE did not support
those at the time.

Phase 2: analyse connecting gateways.
In this phase an explicit pattern edge is created between
pairs of gateways that belong together. In other words, pat-
tern recognition is performed, but without doing contraction.
This is achieved with the following algorithm:

5

Default

Task
id = ”Review Revision”

Start

Cond
value = ”edit”

End

DataXOR

Task
id = ”Submit Article”

Merge Task
id = ”Write Article”

Clock
id = ”Revision”

next

next
next

next

next

next

next

next

next

next

Fig. 4 Example model in GROOVE (after phase 1)

Connect

Connect

Fork|DataXOR|EventXOR|Merge

∀>0

last

posfrom

patternpattern

at

next

from at

first

Fig. 5 The CreateConnects rule in GROOVE (phase 2)

Connect ∀Connect

Connect

Connect
∀

DataXORMerge

at

from

from from

pattern

pos

pos

at

from

Fig. 6 The PatternWhile rule in GROOVE (phase 2)

1. For each outgoing edge next of each opening gateway,
create a Connect node that establishes a link between the
gateway and the target node of next;

2. Propagate Connect over basic units (and earlier recog-
nised patterns) until a closing gateway is found;

3. Recognise patterns by analyzing connections (i.e. if all
Connect nodes from an EventXOR gateway lead to the
same Merge gateway, then a Pick pattern was found).

Figs. 5 and 6 show two of the rules of this algorithm.
The rule in Fig. 5 creates the Connect nodes for a particu-
lar opening gateway. The non-vacuous universal quantifier
node (labelled ∀>0) ensures that a Connect is created for
each (and at least one) next edge in one go. The negative
application conditions ensure that the rule will only be ap-
plied once for each opening gateway.

The rule in Fig. 6 detects a While pattern. It matches
when the opening Merge and the closing DataXOR are con-
nected by Connect nodes in both directions. After a success-
ful match, the rule creates a pattern edge between the gate-
ways, and destroys all Connect nodes that start from either
the Merge or the DataXOR (again using a ∀ node).

The result of phase 2 on the running example is shown in
Fig. 7. The main point is the addition of the pattern edge. In
phase 2 also some additional administration, including the

Task
id = ”Submit Article”

Cond
value = ”edit”

MergeStart

DataXOR

Task
id = ”Write Article”

Task
id = ”Review Revision”

Clock
id = ”Revision”

End

next

next

next

next

next

next

next

next

pattern

next

Fig. 7 Example model in GROOVE (after phase 2)

Task
id = ”Submit Article”

Cond
value = ”edit”

MergeStart

DataXOR

Task
id = ”Write Article”

Task
id = ”Review Revision”

Clock
id = ”Revision”

End

Empty

end

begin

if next

next

next
begin

end

pattern

begin

end

Fig. 8 Example model in GROOVE (after phase 3)

detection of quasi-patterns, takes place. In the example this
results in the deletion of a Default node.

Phase 3: analyse sequences.
In this phase all the next edges in the graph are renamed to
better reflect their role. Edges leading to a ‘block’ (which
is either the largest possible sequence or a single unit that
is not part of a sequence) are renamed to begin, and edges
leading out of a block are renamed to end. Also, some other
cosmetic changes are made, including the renaming of edges
in recognised Repeat pattern to if and the insertion of Empty
node. In the example model, this leads to Fig. 8.

Phase 4: contract patterns.
In this phase the recognised BPMN patterns are contracted
into BPEL blocks. Because the patterns have already been
recognised in phase 2, and additional structure information
is available by means of phase 3, contraction is mainly an
administrative task only.

For each pattern, the following actions are carried out:

1. A BPEL block node is created, and the incoming and out-
going edges of the pattern as a whole are redirected to it.

2. The paths between the opening and closing gateways are
transferred to the newly created block node. This is only
possible on paths that have already been converted and
therefore consist of a single BPEL block only.

3. All the remaining BPMN elements are removed from the
graph, leaving only the BPEL block.

This is the same algorithm as in [28] and [27]. Note that
the constraint that paths must already have been converted

6

Contracted Cond

Empty

Merge Contracted

While
Empty

DataXOR

Contracted

?exit[next,end]

condition

?entry[begin,next]

bpel

?exit

value

pattern

end

?entry
bpel

bpel

begin

end

bpel

begin

body

if

Fig. 9 The ContractWhile rule in GROOVE (phase 4)

Mapping
id = ”Review Revision”

Mapping
id = ”Submit Article”

Sequence

Mapping
id = ”Write Article”

Mapping
id = ”Review Revision”

Sequence

Mapping
id = ”Submit Article” Mapping

id = ”Write Article”

While
condition = ”edit”

Wait
name = ”Revision”

Wait
name = ”Revision”

next

body

next

body

body

body

body

next
next

body

next

body

body

body

next

next

body

Fig. 10 Example model in GROOVE (after phase 4)

implies that contraction is carried out from the inside to the
outer level.

In Fig. 9 a rule is shown which transfers While paths
from a recognised DataXOR-Merge pair to BPEL nodes.
The path is assumed to be Contracted, and its repre-
sentation is changed to While. Note the wildcard label
?entry[begin,next], which matches on either begin or next
(see also Section 1.2), and stores its match in the ?entry
variable. This variable is then re-used in the rule to create
an edge with the same label.

The result of phase 4 on the example model is shown in
Fig. 10. This model can now be transformed into the final
BPEL model of Fig. 3(b) with a XSLT transformation [9].

2.4 Evaluation

The transformation of BPMN to BPEL can be realised in
GROOVE, with the help of wrapper XSLT transformations.
The encountered strong and weak points of the use of

GROOVE will be evaluated below in relation to the earlier
introduced case features.

Using GROOVE for model transformation.
The solution performs model-to-model transformation by
translating a standard XML representation of BPMN to a stan-
dard XML representation of BPEL. This requires an external
extension with XSLT, which is a weak point of GROOVE. On
the other hand, the friendly internal representation allows
customisation by means of XSLT to be defined easily, which
is a strong point of GROOVE.

The solution does not make use of a meta model or type
graph to define the structure of well-formed graphs. As a re-
sult, more effort was required, both for internalising BPMN

and BPEL models, and for communicating the custom repre-
sentation between different people working on the project.

This was a weak point of GROOVE when this case study
was performed, because at that time there was no support for
type graphs. However, this case study was one of the main
arguments to add type graphs to GROOVE, and the current
version of GROOVE no longer has this weak point.

Using GROOVE for deterministic behaviour.
Graph transformation can give rise to non-determinism: it is
allowed to apply rules in different orders, and the same rule
can sometimes be applied in different ways. This behaviour
is supported in GROOVE, as it builds a labelled transition
system (LTS) in which all explored rule applications can be
stored explicitly (see also Section 1.2).

In this case study, we are only interested in a single
transformation path that leads to a single result. For this
purpose, we constructed the system in such a way that the
rules are confluent, which ensures that all paths converge.
We then used the linear exploration strategy of GROOVE to
efficiently compute a single path to the end result. Using this
strategy, finding the output BPEL model can be performed by
GROOVE without building a branching LTS.

Using GROOVE for specific control flow.
The control flow of the algorithm was modelled in GROOVE

mainly by rule priorities, which ensure that certain rules are
always applied before others. In cases where this does not
suffice, additional information was added to the graph which
influences the enabledness of rules.

A specific strong point of GROOVE for building priori-
tised rule systems is its user-friendly interface, which allows
the LTS to be inspected in many ways. The possibility to
inspect the applicability of rules on each intermediate state
of the state space greatly helps in determining the right rule
priorities and the required rule interaction.

Using GROOVE for complex pattern matching.
The realised transformation in GROOVE is able to identify
arbitrary well-structured patterns (with an arbitrary num-
ber of paths between the opening and the closing gateway),
as well as several quasi-structured patterns. This expressive

7

p23

p47 p68

Fig. 11 A ring network of size three

power is mainly due to the separation of pattern recognition
and contraction (which is an aspect of the solution), but the
availability of quantified rules (see Section 1.2) in GROOVE

is a contributing factor as well. Examples of quantified rules
are shown in Figs. 5 and 6. This case study uses quantified
rules in a basic manner only; for a more elaborate use see
Section 4. Still, the use of quantified rules is a strong point
of GROOVE, also in this case study.

To summarise...
The transformation of BPMN to BPEL was reasonably easy
to express in GROOVE. The main contributing factors are the
user interface (w.r.t. the LTS), the linear exploration strategy
and the quantified rules. The ease of use was lessened a bit
due to the lack of support for XML I/O, and because no type
graphs were used in the solution. The latter was not possible
at the time this case study was performed, but can be done
with the current version of GROOVE.

3 Verification of a Leader Election protocol

In this section we present a case study that illustrates how
GROOVE can be used to verify communication protocols of
distributed systems.

3.1 Case description

A simple distributed leader election protocol [5] works as
follows. There is a set of processes arranged in a ring, i.e.,
every process has a unique predecessor and a unique suc-
cessor. Furthermore, each process has a unique identity and
there exists a total order over the set of identities (we assume
that identities are natural numbers). The leader will be the
process with the smallest identity, however this information
is not known at the start of the protocol.

Every process generates a message (MId) with its own
identity and sends it to its successor. A received message
with content MId is treated as follows by a process with
identity PId:

– if MId < PId, the process forwards the message to its
successor;

– if MId = PId, the process declares itself the leader;
– if MId > PId, the process discards the message.

A ring network with three processes is shown in Fig. 11.
Each process has an identity and is connected to its succes-
sor.

3.2 Case features

The following features of this case study are particularly in-
teresting.

Prototyping.
The freedom that processes have in conducting different ac-
tions in different order due to the lack of a centralised con-
troller leads to a high degree of parallelism. This level of
parallelism is usually very hard to capture in models. Con-
sequently, analysis and verification of the protocols are also
very difficult. Therefore, a tool which enables the rapid pro-
totyping of such systems can be very useful in the process
of devising such protocols.

Verification.
The main reason for modelling this case is to verify certain
properties of the protocols for all different feasible scenar-
ios which can occur as the result of different interleaving of
events. To obtain this purpose we need to generate the whole
state space. Moreover, on the generated state space we need
to verify both liveness, i.e., the protocol always declares a
leader for all the configurations, and safety, i.e., never more
than one leader is elected. Therefore, all generated paths
need to be checked for these properties.

Generic rules.
The same protocol in this case should work for rings with
different sizes. In other words, the size of the start graph
can be chosen parametrically while the set of rules stays un-
changed.

3.3 Aspects of solution

Fig. 12 shows the start graph modelled in GROOVE. It con-
sists of an example network with three processes modelled
as nodes connected in a ring topology. There is an extra aux-
iliary node Ids containing identities ranging from 1 to 3. This
node is used to generate all possible permutations of pro-
cesses with different identities in the network. The graph can
easily be extended for any arbitrary number of processes.
Note that the selection of identities among numbers from 1
to n can be regarded as a canonical representation of any
arbitrary sequence of n identities.

As seen in Fig. 12, initially processes do not have any
identity assigned to them. Rule pk-id, shown in Fig. 13(a),
has the highest priority, and it assigns identities to the pro-
cesses before any other rule can be applied. GROOVE auto-
matically makes all possible non-deterministic choices of all
applicable rules in generating the state space. In this way, we

8

ProcessProcess

Process Ids
id = 3
id = 2
id = 1

next

nextnext

Fig. 12 The start state of a process ring of size three

Ids

Process

idid

id

(a) Rule pk-id

Process

Process

Message

active

at

id

active

next

id

(b) Rule c-msg

Fig. 13 Initialising rules of the leader election protocol

Process
active

true

Message

π0

lt

at

id

π1

id

(a) Rule d-msg

Process
active

true

Message

Process

id

at

at

gt

π1

next

π0

id

(b) Rule prop

Fig. 14 Message relaying rules of the leader election protocol

MessageProcess
active

true

leader

π1

idid

eq

at

π0

Fig. 15 Electing leader rule of the protocol

generate all different permutations of identity assignments
as required for the protocol verification. Rule c-msg, shown
in Fig. 13(b), creates the initial messages and marks the pro-
cesses as active to avoid the sending of more than one initial
message per process.

Fig. 14 shows rules d-msg and prop. The d-msg rule dis-
cards messages whose identity is higher than the identity of
the receiving process. Finally, rule prop relays a message on
a process if the identity of the message is smaller than that
of the process. Finally, rule elect shown in Fig. 15 elects the
leader when a process receives a message with its own iden-
tity.

s1

s2 s3 s4

s5 s6 s7s8 s9 s10

s11
s12

s13 s14 s15 s16s17s18

s19
s20 s21 s22s23s24

s25s26 s27 s28
s29 s30s31s32

s33s34s35
s36 s37s38

s39s40s41s42
s43s44

s45s46s47

s48s49s50s51
e-leader

s52
s53

s54 s55s56s57
e-leader

s58s59
e-leader

s60
e-leader

s61s62s63
e-leader

s64s65
e-leader

s66
e-leader

s67s68
e-leader

s69
e-leader

s70
e-leader

pk-idpk-idpk-id

pk-idpk-idpk-id

pk-idpk-idpk-id

pk-id pk-id pk-idpk-id pk-idpk-idpk-id pk-idpk-id pk-idpk-idpk-id

pk-id pk-id pk-idpk-id pk-id pk-id

c-msgc-msg c-msg c-msgc-msgc-msg

c-msg
c-msgc-msg c-msgc-msg c-msg c-msgc-msgc-msgc-msgc-msgc-msg

c-msgprop
c-msgd-msgc-msg d-msg c-msg propc-msg d-msgc-msgprop

d-msgd-msgpropc-msg c-msgc-msg
d-msg propprop c-msgc-msgc-msg

d-msgpropd-msgpropd-msgd-msgprop
propprop d-msgd-msgpropd-msgpropprop

propd-msgpropd-msgpropd-msgd-msgelect

d-msgproppropprop
d-msgpropd-msgd-msgpropd-msgelect prop

propd-msgelectd-msgelectd-msgd-msg

prop
d-msgpropelect prop d-msgpropd-msgd-msgelectd-msg prop

electd-msgd-msg

propd-msgelectprop d-msgelectd-msg d-msg

electd-msg d-msg

m
es

sa
ge

pa
ss

in
g

an
d

le
ad

er
el

ec
tio

n
rin

g
co

ns
tr

uc
tio

n

Fig. 16 The LTS of the protocol

The state space of the protocol is obtained by applying
the rules shown in Figs. 13, 14 and 15 on the start state of
Fig. 12. The state space is shown in Fig. 16 as a labelled
transition system (LTS) in GROOVE. States are displayed as
rectangles and the names of the rules applied for transfor-
mations from one state to the other are written as labels of
the transitions between states. The green state (s1) shows
the starting state and the red states (s66 and s70) show the
final states, namely, no other state can be reached from these
states by applying any rule.

The state space consists of two parts. In the upper section
(the states above states s11 and s12) only rule pk-id is ap-
plied to create the ring. The lower section is where the rules
related to the protocol itself are applied. A worthwhile point
about the upper part of the state space is that it creates all
permutations of a network with size n. For a network with
size n, there are n! different permutations of nodes which
determine the different number of orderings in which rule
pk-id can be applied on the nodes. However, we know that
due to the symmetry of a ring, only (n − 1)! different rings
exist with the same set of nodes. Not detecting the identi-
cal states in this case leads to a state space that is almost
n times bigger. GROOVE automatically finds the identical
states (isomorphic graphs) and avoids duplicating already
existing states. This can be seen in Fig. 16, all six (3!) dif-
ferent feasible orders of applications of pk-id are shown in
states s5 to s10, which are reduced to two states: s11 and
s12. The protocol is only checked on these two generated
rings.

9

Process
active
leader

(a) Rule e-leader

Process
leader

Process
leader

=

(b) Rule m-leaders

Fig. 17 The verification rules

Processes Rings States Transitions Time (s)
3 2 70 147 <1
4 6 677 1790 <1
5 24 9358 30457 6
6 120 168422 656214 66
7 720 4747432 23914934 4058
8 5040 out of memory

Table 1 Experimental results for leader election protocol

3.4 CTL Model checking

GROOVE allows us to verify properties specified in CTL
(Computation Tree Logic). To verify the generated LTS, we
add two rules to assist us with the model checking part.
Fig. 17 shows these rules. The liveness property holds if the
rule e-leader is applicable. The safety property is only true if
the rule m-leaders is not applicable.

The liveness property is preserved if we have no coun-
terexample to AF (e-leader), meaning that all paths in the
the LTS eventually lead to the choice of a leader. The safety
property can be verified if there is no counterexample to
AG(!m-leaders), which means that there should not be two
different leaders in any state of the LTS.

3.5 Experimental Results

We tested our rule set for rings with three to eight processes.
For our tests we used a machine with two Quad Core Xeon
2.66 GHz processors and 16 GB of memory.

The results are shown in Table 1. The first two columns
show the number of processes (size of the ring) and the
number of different configurations for the rings of the given
size, respectively. The results of the experiments are given
in three columns. The first two columns denote the num-
ber of states and transitions in the generated transition sys-
tem and the third column shows the total amount of time
used for both the state space generation and the verification.
We have verified our results using the formulae explained
in Section 3.4.

3.6 Evaluation

In this section, the strong and weak points of the given so-
lution are discussed in relation with the case features ex-
plained in Section 3.2.

Using GROOVE for prototyping.
We have modelled a leader election protocol which contains

a high degree of parallelism. The simplicity of the rules in
the proposed solution shows that the modelling phase was
intuitive. Part of this simplicity is due to the absence of typ-
ing. In this case, the use of a type graph is not necessary and
the solution does not benefit from it. Besides, all rules in
GROOVE are visual which is very useful in this case study.
In [17], more elaborate solutions were proposed, on three
different variants of the protocol, which is a good evidence
on how easy different variations of a problem can be mod-
elled and analysed.

Using GROOVE for verification.
For the given experiments, the whole state space was gen-
erated and both liveness and safety properties were verified
using CTL formulae. No counter example was found for our
experiments which proves the correctness of the protocol for
rings with size smaller than eight nodes. Furthermore, no
assumptions were imposed on the message relaying (except
that each process has a buffer of size n). Hence, we have ver-
ified that the protocol works regardless of the buffer policy
adopted (e.g., FIFO, LIFO, etc). This is a very interesting
general result.

Generic solution in GROOVE.
As seen from the solution, the same rule system works on
networks of different sizes. But the whole verification pro-
cess is not generic for a ring of an arbitrary size. However,
only the start graph needs to be adapted for any given ring
size, which can be done with little effort, while the rest of
the rule system stays intact.

To summarise...
GROOVE can be used as a rapid prototyping tool which is
easy to use in all three phases of modelling, analysis and ver-
ification. As the result, GROOVE can provide a great assis-
tance in devising network protocols where non-determinism
as well as parallelism are essential parts. However, the prob-
lem does not scale in GROOVE for problems with large sizes.
This is because the size of the state space grows dramatically
as the ring size increases. This is the well-known state space
explosion problem, common to all model checking tools.

4 Analysis of security policies

In this section we present an organisational security frame-
work and describe how GROOVE can be used to model and
analyse security properties within such a framework.

4.1 Case Description

The Portunes security framework (developed by Dimkov,
Pieters, and Hartel [12]) has two main goals: (1) to define
a unified model that captures the relations between physical,
digital and social security domains, and is able to describe

10

1

2 3

54 6 7

8 9 10

Spatial node

Physical node

Digital node
1 - Hall
2 - Secretary Room
3 - Computer Room
4 - Master Key
5 - Secretary
6 - Employee
7 - Server
8 - Secretary Key
9 - Memory Stick

10 - Sensitive Data

Fig. 18 Example of an environment graph of the Portunes framework

security attacks which span these three domains; and (2) to
provide analysis techniques to detect security breaches in
the environment of an organisation.

Environment graphs.
Portunes uses an environment graph as a snapshot of a cer-
tain configuration of the organisational environment. The
graph stratifies nodes in three layers. The spatial layer is
formed by the facilities of the organisation, e.g., rooms and
halls. The physical layer consists of objects located inside
the facilities, such as people, computers, and keys. The digi-
tal layer comprises software and data, such as operating sys-
tems and databases.

Fig. 18 shows an example of an environment graph in
Portunes where membership in each of the three layers is
identified by different node shapes. Edges between spatial
nodes represent neighbourhood. In this example, we have a
hall (node 1) that connects two other rooms (nodes 2 and
3). All other edges represent a containment relation. For in-
stance, we have a secretary room (2) that contains the master
key (4) and the secretary (5), which in turn is in possession
of her own key (8). For brevity, we will refer to nodes in the
environment graph with simple abbreviations of the names
given in Fig. 18.

Containment relation.
The environment graph presented in Fig. 18 is one element
of a set of possible entity configurations. Some of these enti-
ties (graph nodes) may have active behaviour. For example,
people can move around rooms and can exchange objects
that they are carrying. To capture this dynamic behaviour it
is necessary to transform one given environment graph into
another, by removing or adding containment edges. In order
for these containment changes to make sense in reality, they
must obey a containment relation �ln that defines whether a
node can contain another node or not.

The containment relation for our example is given in Ta-
ble 2, as a boolean table. A value of 1 indicates that the row
element can contain the column element. A value of 0, pre-
sented in Table 2 as an empty cell, shows that such contain-
ment is not possible. Relation �ln is not symmetric, e.g., we
have that MStick can contain SData but not vice-versa.

�ln 1 2 3 4 5 6 7 8 9 10
1 - Hall 1 1 1 1 1 1
2 - SRoom 1 1 1 1 1 1
3 - CRoom 1 1 1 1 1 1
4 - MKey
5 - Sec 1 1 1
6 - Emp 1 1 1
7 - Server 1 1
8 - SKey
9 - MStick 1

10 - SData

Table 2 Containment relation for the environment graph of Fig. 18

It is important to note that relation �ln is used only to
represent containments that are feasible in reality. This rela-
tion, however, does not enforce security policies.

Actions and access control policies.
An action is a primitive that manipulates nodes of an envi-
ronment graph. Portunes defines three basic actions:

– Login: which allows a node to “enter” another, i.e., the
action adds a containment edge to the graph;

– Logout: which allows a node to “leave” another, i.e., the
action removes a containment edge from the graph;

– Eval: which allows a node to “delegate” an action to an-
other node.

In the framework definition [12], the operational semantics
of these basic actions is formalised by a set of inference
rules.

Each node of the environment graph has one or more
access control policies that allow the execution of a subset
of basic actions, provided that the acting node has the proper
security privileges. An access control policy is composed by
three ways of authentication:

– Identity based: meaning that the acting node must have
the required identity (i.e., name) for the action to be al-
lowed;

– Location based: meaning that the acting node must be in
the required location for the action to be allowed;

– Credentials based: meaning that the acting node must
possess all elements of a set of credentials (physical or
digital nodes) for the action to be allowed.

Here we informally describe the security policies for
some of the nodes of the environment graph of Fig. 18. In
the next section, we show how these policies are modelled
in GROOVE (see Fig. 21).

– SRoom. To enter the secretary room: (i) no identity is
needed; (ii) the actor must be in the hall; and (iii) the
actor must have either the secretary key or the master
key. To leave the secretary room it suffices to be inside
it.

– CRoom. The security policies for node CRoom are sim-
ilar to SRoom with the exception that it is only possible
to enter the computer room with the master key.

11

– Server. The policy for node Server is location based, and
it states that it is only possible to login or logout in the
server from the computer room.

– Sec. The policy for node Sec is identity based and it de-
fines that the secretary allows the employee to perform
any basic action.

Attack scenarios.
Let us assume in our running example that the employee
has malicious intentions and wants to copy the sensitive data
stored in the server to his memory stick. Initially, he is not
able to do it, since he does not have the proper credentials
(the master key to open the computer room). However, there
is at least one sequence of actions that allows him to accom-
plish his goal. This constitutes an attack scenario.

A textual description of a possible attack scenario is as
follows. The secretary moves to the hall. There, the em-
ployee asks the secretary to borrow her key, for example,
to pick office supplies in her room. Since the secretary trusts
the employee (her access policy defines this), she lends him
her key. The employee then goes to the secretary room, re-
trieves the master key, moves back to the hall and returns
the secretary key to her. After she returns to her room, the
employee is able to enter the computer room and copy the
data from the server to his memory stick.

In the attack scenario just described, no security policy
is violated when the attack is performed. In our simple ex-
ample such security breach can easily be discovered, but in
more complex environments this task is far from trivial.

4.2 Case Features

For the framework to be useful in practise, its implementa-
tion should provide the following desired features.

Automatic generation of scenarios.
The interleaving of actions from different nodes gives rise to
a huge amount of non-determinism, which renders a manual
search for security breaches unfeasible. Tool automation is
therefore necessary to systematically search (i.e., generate)
attack scenarios. An additional important feature is the pos-
sibility to simulate an attack in a step-wise fashion, to allow
the user of the framework to reproduce and analyse the gen-
erated scenarios.

Scalability.
The environment graph describing an organisation can be
formed by hundreds or even thousands of nodes. The frame-
work implementation should properly scale to such graph
sizes, providing results within a reasonable time limit.

Generic solution.
Security policies differ from one organisational environment
to another, however the mechanism to enforce such policies
is described in the framework by generic inference rules.

Implementation of such rules should preserve their generic
property, to avoid the need to define specific security en-
forcement rules for each environment analysed.

Diverse audience.
The framework is intended to be used by a broad audience,
with different backgrounds, e.g., security consultants and
company managers. To ease the understanding of the func-
tionalities of the implementation, only elements of the secu-
rity domain should be visible. In particular, the theoretical
intricacies of the framework do not concern the users, as
long as the resulting analysis is sound.

4.3 Aspects of Solution

The GROOVE solution for this case study, i.e., our framework
implementation, is elaborated in the following manner:

1. A Portunes environment graph, the containment relation
�ln, and the environment security policies are all mod-
elled in a GROOVE state graph.

2. The behaviour described by Portunes operational seman-
tics, the enforcement of security policies, and the possi-
ble actions of active nodes are defined by transformation
rules in GROOVE.

3. Attack scenarios are generated by performing state space
exploration in GROOVE.

In the following we discuss each of these items in detail.

Environment graphs in GROOVE.
The mapping of Portunes environment graphs to GROOVE is
trivial. Fig. 19 shows the GROOVE counterpart of the envi-
ronment graph of Fig. 18. Nodes are identified by a proper
unique label that represent the entity, e.g., MKey. In addition,
each node has a proper type label, shown in bold in Fig. 19,
that encode the meaning of the geometric shapes used in
Portunes environment graphs.

In Portunes, edges have different meanings depending
on the nodes they connect, but this meaning is implicit in
the framework. In GROOVE all edges require a label. In-
stead of using different labels to represent neighbourhood
and containment, all Portunes edges are encoded in GROOVE

as edges labeled contains. This uniform representation does
not invalidate the modelling and simplifies the design of
transformation rules.

Containment relation in GROOVE.
The relation �ln is encoded in GROOVE by edges labelled
canContain. For every two nodes for which �ln holds, an
edge is added to the GROOVE state graph. Fig. 20 shows the
encoding of line 7 of Table 2 in GROOVE.

Access control policies in GROOVE.
The security policies of each entity are encoded in GROOVE

with additional policy nodes and edges. Each spatial, phys-
ical or digital node has one or more outgoing policy edges

12

Digital
SData

Spatial
Hall

Physical
MStick

Physical
MKey

Spatial
CRoom

Physical
SKey

Spatial
SRoom

Physical
Server

Physical
Sec

Physical
Emp

contains

contains

contains contains

contains

contains

contains

contains

contains

Fig. 19 The environment graph of Fig. 18 represented in GROOVE

Digital
SData

Physical
Server

Physical
MStickcanContaincanContain

Fig. 20 Sample of the containment relation �ln represented in
GROOVE

Physical
SKey

Spatial
SRoom

ln

Spatial
Hall

lt

ln

Physical
MKey

policy

lPolicy

cPolicy cPolicylPolicy

policy

lPolicy

policy

Fig. 21 Secretary room security policies represented in GROOVE

e
ln
lt

Physical
Emp

Physical
Sec

policy iPolicy

Fig. 22 Secretary security policies represented in GROOVE

that define its policies. A policy edge goes to a policy node
that lists the actions allowed by the policy (login – ln, logout
– lt, or eval – e) and specifies the security requisites of these
actions.

Figs. 21 and 22 depict the security policies for the secre-
tary room (node SRoom) and the secretary (node Sec), pre-
sented as text in the previous section. The room has three
access polices, two for login and one for logout, and the sec-
retary has a single policy for all actions. The requisites for
identity, location and credential based access are identified
by edges labelled iPolicy, lPolicy, and cPolicy, respectively.

Actions in GROOVE.
Describing the behaviour of active nodes using only the ba-
sic actions defined in Portunes is cumbersome. However,
more elaborate actions can be constructed from the basic
ones. In our solution, we use the following high level ac-
tions:

– Move: a node can move either up or down in the contain-
ment hierarchy of the environment graph;

– Pick: an active node can pick an inactive one that is in
the same location;

active destination

source canContain
contains

contains

credentials

move

Fig. 23 Rule that describes the intention of an active node to move up
in the environment

– Request: an active node can ask another node in the same
location to give up one of its possessions;

– Spawn: an active node can temporarily activate one of its
possessions and place it under an inactive node;

– Merge: an active node can deactivate and reacquire its
temporarily active nodes.

A node can perform a move action when the containment
relation is satisfied and the security policies allow the node
to logout from its source and login in its destination. In all
other actions, the same conditions for move also apply. Ad-
ditionally, in the request action, the security policies must
also allow a node to perform eval at its target.

Each of the high level actions just described is imple-
mented in GROOVE by a sequence of rules. To simplify the
design, we divided the rules in two groups: the ones who
describe behaviour and the ones who enforce security. The
behavioural rules describe the intention of an active node to
perform a certain action. Such behavioural rules are always
followed by one or more security rules that check the se-
curity requisites of the acting node and perform the action
when allowed.

Fig. 23 shows a behavioural rule where an active node
wants to move up in the environment. This is indicated by
the new move edge, along with the edges that mark source
and destination of the node and its security credentials. The
credentials are checked by the rule depicted in Fig. 24. This
rule uses nested quantifiers and therefore is matched over an
arbitrary number of policy edges.

To ensure that a behavioural rule is always followed by
a security rule, we use the control functionality of GROOVE.
A high level action (e.g., move) is defined by a function in
the control program, and this function is composed by a se-
quence of rule applications. A more detailed example of the
use of a control program in GROOVE is given in Section 5.

Attack scenarios in GROOVE.
The generation of an attack scenario is done in GROOVE by
means of a state space exploration. In order to guide the ex-
ploration, we define an additional rule that describes a spe-
cific security breach that should not occur. Fig. 25 presents
this rule for our running example. We have a security breach
when the employee manages to reach the hall in possession
of the memory stick with the sensitive data.

GROOVE has an exploration option which performs a
breadth-first search until an application of a certain rule is

13

lt ln

∀ ∀

∀ ∀i1:∃ i2:∃
∀ l1:∃ l2:∃ ∀

c1:∃ c2:∃

policy policy

cPolicy

l2:containsl1:contains
at

lPolicy

cPolicy

lPolicy
source

at

at

iPolicy

at at

in

contains

credentials

at

iPolicy

in

i1:= i2:=

in

in in

in

contains destination

c2:containsc1:contains

move

Fig. 24 Rule that checks security credentials and perform a move action

Physical
MStick

Digital
SData

Spatial
Hall

Physical
Empcontains

contains

contains

Fig. 25 Rule that defines a security breach

found. By using this option with the breach rule we instruct
GROOVE to search for the shortest attack scenario, i.e., a
trace from the breach rule application to the start state. This
trace can be highlighted in the LTS and each of its steps in-
spected in GROOVE. If the exploration terminates without
a trace being found, we can assert that the security poli-
cies prevent the given breach. For our running example, the
shortest attack trace found by GROOVE is formed by 22 rule
applications.

4.4 Evaluation

The functionalities of the Portunes framework were prop-
erly implemented using GROOVE. In the following we give
a more specific evaluation of each of the case features.

Using GROOVE to automatically generate scenarios.
The ability to perform state space exploration of graph pro-
duction systems is one of GROOVE’s strongest points and it
makes the tool very suitable for this case. The possibility to
guide the exploration to search for a specific security breach
is of particular interest.

Scalability of GROOVE solution.
The implementation of Portunes that we present in this sec-
tion is a proof-of-concept, designed to be simple and easy to
understand. In particular, a point that was not properly ad-
dressed is scalability. Tests show that performance degrades
fast when start graphs grow to more than hundreds of nodes.
To tackle this problem, Dimkov et al. developed a more
elaborated GROOVE solution [11], with a similar modelling
of environment graphs but a different set of transformation
rules. To further improve the performance they are now de-
veloping exploration algorithms tuned to this particular case
and will extend GROOVE to their own needs. This is possi-

ble because GROOVE is open source software and provides
an externalisation API that allows the tool to be extended in
a simple way.

Genericity of GROOVE solution.
All rules defined in our solution are generic, in the sense
that they are not tuned to a certain environment graph. This
means that the same set of rules can be used in every anal-
ysis, and the user only needs to provide the start graph that
describes the initial configuration of the environment and the
rule that constitutes a security breach.

A feature of GROOVE that permits such a generic solu-
tion is the use of nested rules. A nested rule allows changes
to be made to sets of sub-graphs at the same time, rather
than just to the image of an existentially matched LHS. An
example of a nested rule is shown in Fig. 24.

The use of nested rules allows complex actions to be ex-
pressed neatly within small rules. Without quantifiers, the
rule would have to be split in a constant part and a to-be-
repeated part. Also, it may be necessary to explicitly add
control to the part that must be repeated, to ensure that its
beginning and its end can be detected statically. Since all
transformations specified in nested rules are performed in
one transition, this type of rule also reduces the state space
of the graph transition system. Having nested rules is a clear
strong point of GROOVE.

Diverse audience of GROOVE solution.
Tools based on graph transformation usually have a strong
visual appeal. The graphical interface of GROOVE offers a
large set of visual capabilities that are both powerful to use
and easy to master. In this case, we believe that the graphical
visualisation of rules is an improvement over the original in-
ference rules of Portunes. Furthermore, the tool keeps all the
theoretical aspects of graph transformation under the hood,
and presents a simple “push-button” interface. This helps to
capture the interest of a larger group of users, as witnessed in
a masters’ course on security, where Portunes and GROOVE

were used in teaching.

To summarise...
The dynamic behaviour of entities can be easily modelled
in terms of graph transformations, making GROOVE an ad-

14

equate tool for this case study. The GROOVE functionalities
highlighted in this case are: guided state space exploration,
nested transformation rules, and graphical user interface.
The issue with scalability of the solution is being tackled
by the creators of Portunes.

A detailed description of the framework can be found
in [12], and the implementation is available from the Por-
tunes project in SourceForge [11].

5 The AntWorld case study

This case exemplifies the use of GROOVE as a tool for proto-
typing the behaviour of a given system. The system itself is
a “toy problem”, used in the GraBaTs 2008 transformation
tool contest (see [33]).

5.1 Case description

The AntWorld simulation consists of an ant hill sitting in the
middle of a large area. The ants are moving around searching
for food. If an ant finds food, it brings the food home to its
ant hill in order to grow new ants. On its way home, the ant
drops pheromones marking the path to the food reservoir. If
an ant without food leaves the hill or if a searching ant hits
a pheromone mark, the ant follows the pheromone path to
the food. This behaviour should result in the well known ant
trails.

The area grid.
The area in which the ants move consists of a grid of nodes.
In order to enable the ants to go home on a straight path if
they have found some food, the area grid shall look like a
spider’s web, cf. Fig. 26. (In this figure, the ants have not
yet found any food; consequently none of the fields have
associated pheromones.)

The AntWorld simulation works in rounds. Within each
round, each ant makes one move. Afterwards, the area may
expand, pheromones may evaporate, and new ants may be
born.

– Initially, the area grid consists only of the hill and the
first two circles. In addition, the hill contains 8 ants. No
food is initially provided.

– Whenever an ant enters the currently outermost circle
(i.e. the border of the yet known area), a new circle of
nodes is “discovered” and should be created. Every 10th
node of this new circle carries 100 parts of food.

– After each round, the pheromones shall evaporate. Thus,
after each round, on each grid node, the number of phe-
romones shall be multiplied by 0.95 (rounded to the next
smaller natural number).

– After each round, the hill shall consume the food
brought to it and it shall create one new ant per deliv-
ered food part. These new ants spread out in the next
round.

Ant moves.
The ant behaviour depends on the following modes:

– An ant without food is in search mode. If an ant in search
mode is on a field with food, it takes one piece of food
and enters the food carrying mode.

– Otherwise, an ant in search mode checks the neighbours
in the next outer circle for pheromones. If there are such
neighbours with more than 9 parts of pheromones, the
ant randomly chooses one of them.

– If an ant is in search mode and none of the above condi-
tions apply, the ant moves to any of its neighbour fields
based on a fair random choice.

– In food carrying mode, an ant follows the links towards
the inner circle. During its way home, on each visited
grid node (including the ‘food’ node), the ant drops 1024
parts of pheromones. This guides other ants to the food
place.

– If an ant in food carrying mode is on the hill node, it
drops the food and enters search mode again.

Goals.
The goals of the case study were as follows:

– Tools shall model and run the AntWorld according to the
above rules.

– For performance measurement, tools shall report, for
reasonable numbers of rounds, the number of circles of
the grid, the number of ants created, and the total execu-
tion time.

– If possible, tools shall provide animations showing the
ants and how they search for food and form ant trails.

5.2 Case features

The following features of this case study are of particular
interest.

Prototyping.
The central problem of this case study is to encode the be-
haviour of a particular system — in this case, the system of
an anthill, as formulated in a number of rules. Thus, the case
study tests the ability of a modelling environment to provide
a model that faithfully encodes the given rules.

Control flow.
Part of the problem of prototyping is that the rules of ant
movement and the extension of the area grid are complex;
in fact, they are composed of multiple steps, or phases. The

15

Axis
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Hill
food = 0
pheromones = 0

Field
pheromones = 0

Axis
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Ant

Ant
Field
pheromones = 0

Food
pieces = 100

Field
pheromones = 0

Ant

Field
pheromones = 0

Axis
pheromones = 0

Axis
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Axis
pheromones = 0

Axis
pheromones = 0

Ant

Field
pheromones = 0

Field
pheromones = 0

Ant

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Ant
Ant

Field
pheromones = 0

Field
pheromones = 0

Axis
pheromones = 0

Field
pheromones = 0

Axis
pheromones = 0

Field
pheromones = 0

Ant

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Food
pieces = 100

Field
pheromones = 0

nextnext

next

next

out

at

out

out

next

next

next

next

next

next

next

at

next

out

out

out

out

at

next

out
at

next

next

out

next

out

out

out

next

out

next

next

next

out

next

at

out

at

out

next

next

next

next

at

out

out

out

next

out

nextout

out

next

out

next

next

at

out

next

at

out

next

next

out

at

at

out

out

out

next

out

out

next

next

out

outout

out

out

Fig. 26 Example layout for the ant hill’s area grid

easiest way to model them faithfully is to make this compo-
sition explicit, by using some form of control flow.

Simulation.
The purpose of the prototype is to study the emerging be-
haviour of the ant colony. For instance, the model should
show the formation of ant trails seen in nature. For this pur-
pose, the most important feature required of the modelling
environment is the ability to actually simulate the rules, ei-
ther in a single-step mode or in an automatic multi-step
mode, and observe their effect. Moreover, the behaviour of
the ants is highly non-deterministic; the simulation should
be able to reflect this, in the sense that different runs should
result in different outcomes.

Animation.
The simulation goal clearly states the desirability of provid-
ing animated behaviour of the system.

Performance.
For the (multi-step) simulation to give rise to interesting re-

sults, the more steps it consists of the better; also, for a rea-
sonable coverage of possible behaviours it is important to re-
run the simulation. Both factors require a high performance
of the simulation environment. Note that the case has the
interesting characteristic that the system (the ant hill) never
stops growing; this will have a negative impact on perfor-
mance.

5.3 Aspects of solution

Since the case description is already in a rule-based format,
modelling is relatively easy: essentially, we need to develop
a graph representation on which all rules should be made to
work. However, some aspects require a bit of care.

The process that we have followed in arriving at the so-
lution consists of several steps. In the first step, we proto-
type the desired behaviour as directly as possible, without
considering the performance of the resulting rules and with-
out using type checking. This is refined in further steps:

16

large performance gains can be obtained by reducing non-
determinism where possible, by avoiding regular expres-
sions, and by guiding the search plan. Typing is useful for
documentation and maintenance, but (in the current imple-
mentation) does not speed up the simulation.

Rounds and phases.
To ensure that the system displays the required behaviour in
rounds, and within each round goes through the prescribed
steps, we need to restrict the applicability of rules: at any
given stage of the simulation, only a limited number of rules
(viz., only those to do with the active phase) should be en-
abled. In order to achieve this, we use the following control
program:

until (stop) do { main(); }

function main() {
alap { reproduce; }
turn();
evaporate;
if (on_edge) { grow(); }
end_turn;

}

function turn() {
while (select_ant) {

try { drop_food; }
else try { pickup_food; }
try { move_home; }
else try { move_search; }
else { move_random; }

}
}

function grow() {
expand_start;
until (expand_end) do {

try { expand_axis; }
else { expand_normal; }

}
put_all_food;
cleanup_index;

}

This will execute the function main until stop matches. main
directly reflects the phases in the case description: ants re-
produce, ants move (in the function turn), pheromones
evaporate, the area grid may grow (in the function grow),
and finally the turn counter is increased.

The function turn specifies that, as long as a new ant
can be selected (as determined by the turn-edge, which is
updated to the next round as soon as an ant is selected), this
ant can attempt to drop or pick up food, after which it makes
a move through the grid. In fact the rule select ant attempts
to find an ant that has not yet moved in this turn, and marks
it as selected; the other rules in turn match the selected ant,
and the move *-rules deselect it. Some of the rules are shown
in Fig. 27.

Counterint

Ant int

turn

selected

turn nextTurn

turn

(a) Rule select ant

Field Ant

Field

selected

at

out|-out|next|-next

at

(b) Rule move random

Field

1024

int

Field

Ant
food

int

at

pheromones

at

π1

add

out

π0

selected

pheromones

(c) Rule move home

Fig. 27 Selection and move rules

Field

int

95

∀

0
int

100

int

pheromones

at at

at

π0π0

pheromones

at
pheromones

at at

π1π1

mul

div

Fig. 28 5% of all pheromones evaporate

Field
last
food: int
index: int
pheromones: int

Counter
antCount: int
endTurn: int
fieldCount: int
nextTurn: int
ringCount: int
turnCount: int

Food
pieces: int

Slot Hill

Ant
food
selected
turn: int

Axis

ant

next, out

start

at

at next, out

Fig. 29 Type graph for the AntWorld solution

Note that move random uses a regular expression to spec-
ify that movement may occur backwards or forwards along
out- or next-edges.

For another rule, evaporate, the control program does not
show a loop, even though the rule should be applied to all
fields with a positive number of pheromones. This is because
this behaviour lends itself to be specified using a quantified
rule, shown in Fig. 28.

Typing.
Fig. 29 shows the type graph for the GROOVE AntWorld so-
lution. Without going into all the details, we mention one
interesting aspect, namely that GROOVE supports multiple
inheritance: Hill is a subtype both of Field and of Slot. The
latter is used to control the ordering of the ants, which we
use to select them deterministically; see below.

17

Counterint

Hill Slot

Ant int

Slot

turn

selected

ant

ant ant

ant

turn

ant

nextTurn

turn

ant

Fig. 30 Determinised ant selection rule

Non-determinism.
Matching and applying transformation rules are inherently
non-deterministic. Non-determinism in principle affects the
performance adversely, because the search for rule matches
takes more time. In this case, the non-determinism partly re-
flects the problem that is modelled, but other parts of the sys-
tem behaviour are completely deterministic. For instance,
the function grow in the control program, which has the ef-
fect of extending the grid with an additional ring, is triggered
non-deterministically (by the movement of an ant) but, once
triggered, can proceed completely deterministically. In fact,
the corresponding rules (not shown here) have been con-
structed in such a way that their effect is deterministic.

The ant movement, on the other hand, is supposed to
be non-deterministic, and in fact should vary across simu-
lation runs. This is achieved by the so-called random linear
evaluation strategy of GROOVE: at every state, a single ran-
dom choice is made between enabled rule applications, af-
ter which simulation proceeds at the new target state. This
is, therefore, quite different from the full state space explo-
ration in the leader election case (Sections Section 3).

However, let us also consider the order in which ants are
selected for movement within a turn. Rule select ant, shown
in Fig. 27 above, selects an ant randomly among the ones
that have not yet moved this turn. The random linear ex-
ploration strategy requires that all matches be found, after
which one is chosen randomly. This means that, in a sin-
gle turn, the number of matches calculated for select ant is
quadratic in the number of ants (for instance, for 1000 ants
we have to calculate

∑1000
i=1 i = 500, 500 matches). Given

that, in fact, the order in which ants move is hardly relevant
to the behaviour of the system, we can improve the ant selec-
tion. A simple idea is to impose a linear order over the ants,
reflecting their age (i.e., the order in which they are born),
and letting ants move in this order. This means that (among
other things) the rule in Fig. 27 changes to Fig. 30.

Simulation.
We have simulated our rule system using the 64-bit Sun
JVM 1.6 (build 16) with 1G (startup) – 4G (maximum) of
memory, under Windows XP Pro x64, on a machine with
2 Intel Core CPUs at 3.00 GHz. The results are collected in
Tables 3 and 4. All figures reported are averages over 5 runs.

Version Time (s) Reduction
Start 510.7
Determinised 245.8 50%
Guided 124.0 51%
Split 54.5 56%

Table 3 Performance improvement due to rule system optimisation

Turns Time (s) Rings Fields Ants
25 0.7 7 222 20
50 2.9 8 279 204
75 9.9 13 678 581

100 54.5 16 1001 1344
150 675.0 27 2833 3993

Table 4 Results for increasing total turn counts

It should be noted, however, that (due to the random nature
of the ant moves) the number of fields and ants, and hence
the running time, show a large variance. This implies that not
too much weight should be put on the exact figures. How-
ever, by looking at their relative values, we can see clearly
the performance improvement.

Table 3 shows the running times for 100 turns using a
succession of refined models:

Start This is the initial prototype, in which no performance
tuning was done.

Determinised This is a version where the ant selection pro-
cess was determinised by using a fixed order of ants, as
described above (see Fig. 30).

Guided This is a version in which the pattern matching
strategy was aided manually with hints about the opti-
mal search plan. The idea is to match “rare” edges first
(see also [21]); this can be set through a GROOVE option.

Split This is a version where the move random rule of
Fig. 27 was replaced by a choice between four rules,
each of which implements one of the choices in the reg-
ular expression.

It can be observed that especially the removal of non-
determinism in the ant selection had an enormous benefit
on the performance. Although the table does not show this,
we can also report that (as should be expected) the speedup
factors grow for longer runs.

Table 4 shows the performance of GROOVE for simula-
tion runs of increasing length. It is clear that the running
times increase more than linearly with the size of the grid
and the number of ants; moreover, the number of ants stays
comfortably above the number of grid nodes. Given that the
ratio of parts of food to grid nodes is 10:1, however, the
number of ants is actually lower than might be expected.

In [24] and especially [20] an extensive complexity anal-
ysis of the AntWorld case can be found. An evaluation of the
GROOVE performance with respect to that of other tools fol-
lows below.

18

5.4 Evaluation

Using GROOVE for prototyping.
The example brings out the prototyping advantages of
GROOVE very well. It is possible to encode the problem
at hand directly, without having to think about or resort to
special data structures. Graphs, rules and their effects can
be inspected visually. Since GROOVE by default remembers
entire transformation sequences, the debugging possibilities
are good. The recent extension to type graphs also helps in
maintaining consistency of the rule set.

Using control flow in GROOVE.
GROOVE’s control language does quite well in capturing the
intended system behaviour on a high level. Without the con-
trol language, it would have been necessary to include more
auxiliary structures into the graphs themselves, in order to
make sure that the phases as required in the problem de-
scription are indeed followed.

There is a possible extension to the control language that
is quite interesting in the light of this case. The idea is to ex-
tend rule invocations with parameters. For instance, instead
of using a selected-edge in the graph to distinguish an ant se-
lected by select ant, one could also use a variable in the con-
trol language to store the node identity. The function move

would then become
function turn() {

node x;
while (select_ant(x)) {

try { drop_food(x); }
else try { pickup_food(x); }
try { move_home(x); }
else try { move_search(x); }
else { move_random(x); }

}
}

This both improves the understandability of the rule sys-
tem and offers possibilities to improve the matching of the
rules (see the performance section below).

Using GROOVE for simulation.
This case does not involve full state space exploration (since
there is a large amount of non-determinism in the ant moves,
the state space size is truly enormous). Random linear explo-
ration is used for simulation. This works well; the fact that
(in GUI mode) GROOVE stores all intermediate steps and
can display them, as well as the non-deterministic branches
that were not taken, is a great help in constructing a correct
solution.

Using GROOVE for animation.
GROOVE essentially offers no facilities for animation. Simu-
lation can be performed in automatic mode, but in that case
the host graph is not animated.

The performance of GROOVE.
One way to judge the performance is to compare our so-

lution with other tools. In [15,24,20] we can find three
other graph transformation-based solutions to this case, con-
structed in FUJABA, VMTS and VIATRA2, respectively. From
the figures presented there it is clear that those tools per-
form orders of magnitude faster than GROOVE; for instance
FUJABA can simulate 1000 rounds in 17 seconds and VMTS

does the same in 32 seconds. The only comparable solution
is given by VIATRA2 with local matching only, which takes
800 seconds to simulate 150 rounds, compared to our aver-
age of 675 seconds. However, VIATRA2’s incremental and
hybrid matching algorithms improve upon this by orders of
magnitude.

For this difference in performance we offer the following
explanations:

– The core functionality of GROOVE is to construct the
state space, and this is what the performance is geared
towards. In the AntWorld case, the only benefit we can
draw from this is the ability to inspect traces that lead up
to a certain result.

– GROOVE interprets all transformation rules, in contrast
to FUJABA and VMTS which (partially) compile the rules
to native code. In fact for FUJABA this is the core func-
tionality: it is meant as a high-level modelling tool that
produces Java code.

– Measurements have shown that around 90% of the
GROOVE execution time is spent in matching. In contrast
to VIATRA2 and VMTS, we have not yet invested much
effort in optimising the search plans or implementing in-
cremental algorithms (however, this is currently under-
way). A telling point is that, without these optimisations,
indeed the performance of VIATRA2 is comparable to
that of GROOVE.
In FUJABA, the rules are in fact formulated in such a
way that matching is trivial — which essentially means
that writing “good” (fast) rules encompasses the manual
creation of a good search plan.

To summarise...
The AntWorld simulation can be properly expressed in
GROOVE. Key features of the tool relevant for the solution
are: the random linear exploration strategy, attributed rules,
and the control language. The performance of the tool and
its lack of animation are an issue for this case study; how-
ever, the study also gives some hints on how to fine tune the
performance of GROOVE after an initial solution for a prob-
lem is constructed.

6 Additional work

In this section we present additional research that uses the
GROOVE tool as part of the proposed solution for various
problems. We only give a brief description of each work

19

since they all utilise a subset of the GROOVE features that
were presented in previous sections. The purpose here is to
provide further examples that illustrate the usability of the
tool in several different domains.

Control flow semantics of programming languages.
The standard way to present the syntax of a programming
language is by giving the syntax definition in (some variant
of) Backus–Naur Form (BNF). On the other hand, there is no
commonly accepted representation to describe a program-
ming language semantics, which is usually only described in
natural language. Any attempt at software verification suf-
fers greatly from this, since natural language is inherently
ambiguous and the semantics of common programming lan-
guages is usually fairly complex. In an attempt to solve this
problem, Smelik, Rensink, and Kastenberg [35] propose to
specify the control flow semantics of imperative program-
ming languages using GROOVE. In their work, they produce
one or more graph transformation rules for each syntactic
element of the language (expressions, conditionals, etc). To-
gether, these rules not only formally describe the control
flow semantics of the language but also can be used to con-
struct the control flow graph (CFG) of programs. The input
of this method is the Abstract Syntax Tree (AST) obtained
from source code. In GROOVE, the AST is used as a start
graph and its corresponding CFG is obtained by performing
a linear exploration of the rules. The structure formed by
AST + CFG (called a program graph) provides a complete
static representation of the program, which can be used in
program simulation or verification, for example. In order to
show the feasibility of the proposed approach, the authors
chose Java as their working language and developed rules
in GROOVE to capture the control flow semantics of all lan-
guage constructs, including exception handling.

Execution semantics of programming languages.
In [22], Kastenberg, Kleppe, and Rensink describe the ex-
ecution semantics of a simple object-oriented programming
language in terms of graph transformation rules. A program
graph (such as the one described in the previous item) is
used as input and each rule application simulates the execu-
tion of a program instruction. By means of GROOVE’s state
space exploration capabilities it is possible to generate finite
execution traces of a program and model check for errors. In
this setting, GROOVE can be seen as a non-deterministic exe-
cution engine for the language defined by the transformation
rules. This correlates to other software model checking ap-
proaches such as the Java PathFinder project [39], on which
the execution language is Java byte-code and the standard
Java Virtual Machine is replaced by a non-deterministic one.

Computer-aided evolution of object-oriented designs.
Evolution mechanisms are structures that prepare software
for future changes. These mechanisms have to be imple-
mented in the software from the get-go, which takes addi-

tional effort, but allows expected changes to be applied af-
terwards with minimum effort. In [6], Ciraci, van den Broek
and Aksit introduce CDE, a tool that aids the application
of evolution mechanisms using graph transformations ex-
pressed in GROOVE. The supported evolution mechanisms
are expressed as (sequences of) fixed generic graph rules,
which are instantiated by CDE with the relevant identifiers
from the software to be changed. The software itself is ex-
pressed in ARGOUML3 and is exported to a graph format
using XMI. Then, the transformation is applied in GROOVE,
and the output is imported again in ARGOUML. This entire
process is carried out by CDE.

Aspect interference detection.
Aspect Oriented Programming (AOP) is a paradigm of pro-
gramming in which supporting functions are isolated from
the main program’s business logic. It aims to increase the
modularity by allowing the separation of the cross-cutting
concerns. An aspect can alter the behaviour of the base
code by applying advice (additional behaviour) at various
join points (points in the program). Aspects that in isolation
behave correctly, may interact when combined. A change
made by interactions of aspects to each other’s behaviour is
called aspect interference. In [1], Aksit, Rensink and Staijen,
show an approach to detecting aspect interference. Aspect
compositions are modelled in GROOVE as a graph produc-
tion system. A graph-based model of a join point is gener-
ated from the source-code of the system. The run-time se-
mantics of the AOP language is also specified as a graph
transformation rule system. The graph-based model of the
join point is transformed to a runtime-state representation.
Combined with the production system, the execution of the
aspects is simulated. The simulation results in an LTS, which
is used for analysis and verification of the system at its join
points.

Semantics of Activity Diagrams.
There is much research done about formal modelling and
verification of workflows using different formal languages.
In [13] and [18], Engels and Hausmann have introduced the
notion of dynamic metamodeling (DMM) as a semantics de-
scription technique for Visual Modelling Languages. Graph
transformation is used to define the behaviour as a system
of transitions. The traditional graph rules were extended in
their work by defining a new concept of rule invocation.
There are two kinds of rules in DMM: big-step and small-
step rules. Big-step rules act as traditional rules and small-
step rules should be invoked by big-step rules. Using these
kinds of rules, modelling of complex systems can be simpli-
fied. Hausmann then defines semantics for UML activity dia-
grams using the concept of DMM. Subsequently, Soltenborn
[36] uses DMM and defines semantics for UML activity dia-

3 http://argouml.tigris.org

http://argouml.tigris.org

20

grams for modelling and verification of workflows. He uses
GROOVE to perform such verification.

Modelling Dynamic Reconfigurations.
In [23], Krause et al. propose an approach for defining re-
configurations for the coordination language Reo [2] using
graph-rewriting techniques. In their work, they apply the
ideas of high-level-replacement (HLR) systems to the co-
ordination language Reo and show how they can be used
to model dynamic reconfigurations of Reo connectors. They
also provide a full implementation of this reconfiguration
approach for Reo, including tools for defining, verifying
and executing dynamic reconfigurations. For verification,
they have implemented conversion tools that produce out-
put for the Attributed Graph Grammar (AGG) system [37]
and GROOVE. Using these two tools, Krause et al. perform
confluence and termination checks for reconfiguration rules
as well as state space exploration and model checking of dy-
namic reconfigurations.

Applying Formal Methods to Gossiping Networks.
A gossiping network consists of a large number of nodes that
communicate with adjacent nodes only, spreading informa-
tion in the same way people spread gossip through a commu-
nity. In [7], Crouzen, van de Pol and Rensink apply formal
methods to analyse properties of gossiping networks. The
applied methods and tools include µCRL2, GROOVE, Con-
tinuous Time Markov Chains, Markov Reward Models and
model checking. In this whole, GROOVE is used for describ-
ing the behaviour of the gossiping network, and for applying
symmetry reduction to detect and remove equivalent states.
This allows bigger networks to be handled by the formal
methods. The symmetry reduction is realised in GROOVE by
the isomorphism check that is applied automatically when
exploring a state space.

7 Conclusion

To conclude we first give an overview of the case studies
presented in this paper. Following the overview we discuss
future extensions and features planned for GROOVE. Last,
we give a short comparison between GROOVE and other
graph transformation tools and make some final remarks.

7.1 Overview of case studies

The case studies discussed in Sections 2 to 5 have quite
different characteristics and the GROOVE solutions pre-
sented stress different features of the tool. Table 5 shows
an overview of the main points discussed in each section.

The first line of the table shows the general area of each
case. It is reasonable to assume that problems from similar
areas may have a similar solution in GROOVE. The following

three lines present design choices that the user must make
when modelling a problem in GROOVE:

Typing The use of type graphs considerably changes the
degree of freedom in modelling. Untyped graphs do not
impose any restrictions and allow the fast conception of
an initial solution. Typed models may take longer to de-
velop, but ensure a certain consistency in the solution
and ease the presentation. It is evident that certain kind
of problems may benefit from typing, e.g., the BPMN

to BPEL case, whereas problems with few typing struc-
ture, such as in the leader election case, have little to
gain in a typed setting. As a rule of thumb, at least node
types should be used. They impose virtually no mod-
elling overhead and improve readability of the solution.

Control All cases presented use a method to control rule
application. The control method may change during the
modelling process. An initial design usually starts with
no control and then moves to rule priorities when neces-
sary. If the interaction between rules becomes complex,
for example when a set of rules may disable/enable sev-
eral other rules at different priority levels, then control
programs are normally used.

Strategy The strategy used for state space exploration has a
large impact on the performance of the tool. The strategy
choice depends on the characteristics of the problem.
Cases where the order of rule application is irrelevant
and rule application always leads to a single final state
(confluent grammar) usually employ a linear exploration
strategy, e.g., the BPMN to BPEL case. It is the opposite
for cases where the interleaving of rule applications is
crucial. Full state space exploration is usually necessary
for the verification of dynamic behaviour (leader elec-
tion case). Finally, when the state space is too large, par-
tial exploration may be used for bug hunting (security
analysis case).

The fifth line of Table 5 summarises which features of
GROOVE were particularly relevant for the solution of the
case study. These features have been discussed in depth in
the corresponding sections.

A final solution is often reached after some refinement
iterations (as illustrated in the AntWorld case), and each it-
eration gives new insights on the problem being handled and
provides an idea on where to improve next. In all cases the
interactivity of GROOVE’s graphical interface was very use-
ful and helped in the solution development cycle.

7.2 Future extensions

Based on the case studies carried out, we are working on and
planning some tool extensions that will further enhance the
usability and power of GROOVE.

21

Case BPMN to BPEL Leader Election Organisational Security AntWorld

Area Model transformation Verification Analysis Simulation

Typing No, but would be useful No, and would not be useful Node types Full types

Control Rule priorities Rule priorities Control program Control program

Strategy Linear exploration Full state space exploration Find rule application Random linear exploration

Relevant
Features

Quantified rules
Wildcards and regular
expressions

Model checking
Symmetry reduction by
isomorphism checking

Quantified rules Attributes

Interface GUI helps debugging GUI helps prototyping GUI helps analysis of results GUI helps prototyping

Table 5 Overview of the case studies presented

Performance improvements. A key factor in most case
studies is the performance of GROOVE. We are inves-
tigating two ways to improve performance. First, using
incremental pattern matching, as studied in [4], we ex-
pect a big performance increase over the current match-
ing algorithm. Second, abstraction, as studied in [31], is
expected to result in smaller overall state spaces, which
will be particularly advantageous for the verification-
type case studies, such as the leader election and security
cases.

Control parameters. We are working on an extension to
the control language with rule parameters. These pa-
rameters will allow a more fine-grained control over the
place in a graph where a rule should be applied. For in-
stance, if a sequence of rules should all be applied to
the same node, currently the first rule has to mark that
node with a special edge and the subsequent rules have
to test for that edge. Using parameters, the control pro-
gram would specify directly that the subsequent rules
have to match at the node “found” by the first rule.

Transactions. A single rule expresses an atomic change
to a graph, but not all atomic changes can be captured
by single rules. Quantification extends the expressive-
ness of rules enormously, but there are still many cases
in which one would like to specify an atomic change
that is too complex to be expressed by a single rule. We
therefore intend to implement a notion of graph trans-
action, which atomically combines a (controlled) set or
sequence of rule applications. This will also help in state
space reduction, since such transactions cannot be “in-
terrupted” by other rule applications.

7.3 Comparison with other tools

In this section, we compare GROOVE with other general
graph transformation tools and tools which use graph trans-
formation as an engine to achieve some other goal, like
model transformation.

The comparison is summarised in Table 6 and covers six
different criteria. These criteria have been chosen based on

the key features used in solving the cases presented in this
article (see Table 5).

The first criterion is the focus of the tools, i.e., the
main goal for which these tools are designed and optimised.
We have three different categories: general purpose, model
transformation, and high performance. We call a tool a high
performance tool if it incorporates design decisions that in-
crease performance, possibly at the cost of generality; for
instance by restricting the allowed graph structures to reflect
programmable data structures. It should be noted that the fo-
cus criterion only shows the emphasis of the tools and does
not imply restrictions on usage. For instance, GROOVE is
categorised as a general purpose tool, however, in Section 2
we saw that GROOVE can be used for model transformation
as well. Similar remarks hold for other tools.

The second criterion is typing. All tools support type
graphs or meta models and in all tools except GROOVE, type
graphs are mandatory, i.e., models must have a type graph.
GROOVE is the only tool in which the use of typing is op-
tional.

The third criterion is the control functionality of the
tools. In most tools the order of rule applications can be con-
trolled using an imperative language. In VIATRA2, FUJABA,
VMTS, and PROGRES this language has advanced features
like recursion. AGG and ATOM3 only support priorities. The
control language of GROOVE is not as advanced as some
of the other tools, but GROOVE supports priorities for rules,
as well. Additionally, GROOVE has advanced quantification
features which are compared separately in another criterion.

The fourth criterion is the ability of the tools with re-
spect to rule application (exploration) strategies. Most of
the tools support more than one strategy, such as random,
manual, rule priority-based, or customised through the use
of the control language. However, all these variant strategies
only explore one linear trace of rule applications. GROOVE,
however, can explore the entire state space generated from
different rule application sequences. In fact, it supports mul-
tiple full state space exploration strategies.

The fifth criterion concerns advanced rule features, that
increase the expressiveness of individual rules. As seen

22

Tool Focus Typing Control Exploration Advanced Rule Features Editing

AGG [37] General purpose Required Priority Linear Critical pair analysis Graphical

ATOM3 [8] Model transformation Required Priority Linear Graphical

FUJABA [14] High performance Required Imperative (advanced) Linear Set nodes Graphical

GREAT [3] Model Transformation Required Imperative Linear Match condition Graphical

GRGEN [16] High performance Required Imperative Linear Textual

PROGRES [34] General purpose Required Imperative (advanced) Linear Set nodes
Star rules
Regular expressions

Graphical

VIATRA2 [38] Model transformation Required Imperative (advanced) Linear Textual

VMTS [40] Model transformation Required Imperative (advanced) Linear Textual

GROOVE General purpose Optional Imperative
Priority

Multiple Quantification
Wildcards
Regular expressions

Graphical

Table 6 Comparison between GROOVE and other tools

throughout this paper, GROOVE supports nested quantifica-
tions. In this respect, no other tool is capable of specify-
ing graph conditions as concise as GROOVE [32]. PROGRES

and FUJABA have set nodes which are in fact single uni-
versal quantified nodes. PROGRES also has star rules, i.e.,
rules that are entirely universally quantified. GREAT pro-
vides match conditions which is a limited version of univer-
sally quantified rules. VIATRA2 supports quantification and
recursive rules in the pattern definition as part of the con-
trol language. Furthermore, GROOVE supports wildcards on
edge labels, allowing paths in graphs to be specified using
regular expressions. No other tool supports this. AGG has
one particular feature, namely, critical pair analysis of rules,
which checks whether two rules interfere with each other.
This feature is used to determine statically if a graph gram-
mar is confluent.

The final criterion is whether a tool provides a graphical
user interface for editing graphs and rules, or is text-based
only.

7.4 Final remarks

In this paper we give a flavour of how systems can be
modelled and analysed with our graph transformation tool,
GROOVE. The case studies presented cover quite different
domains, which, together with the additional work given in
Section 6, demonstrates that GROOVE is a flexible tool that
can be used to solve problems from several different areas.

Another important point is that GROOVE is very easy to
install and use. The interactive GUI helps the user to exper-
iment with, analyse, and improve the grammar constructed.
This implies that GROOVE is eminently suited for fast pro-
totyping.

The grammars for the case studies discussed in this pa-
per are available at the GROOVE project website (http:
//groove.sourceforge.net/). The binaries and
source code of the tool can also be downloaded from the
same address, as well as some documentation, such as a user
manual and tutorials.

References

1. Aksit, M., Rensink, A., Staijen, T.: A graph-transformation-based
simulation approach for analysing aspect interference on shared
join points. In: AOSD ’09: Proceedings of the 8th ACM interna-
tional conference on Aspect-oriented software development, New
York, NY, USA, ACM (2009) 39–50

2. Arbab, F.: Reo: A channel-based coordination model for compo-
nent composition. Mathematical Structures in Computer Science
14(03) (2004) 329–366

3. Balasubramanian, D., Narayanan, A., van Buskirk, C., Karsai, G.:
The graph rewriting and transformation language: Great. In: Pro-
ceedings of the Third International Workshop on Graph Based
Tools (GraBaTs 2006). Volume 1 of ECEASST., EASST (2006)

4. Bergmann, G., Horváth, Á., Ráth, I., Varró, D.: A benchmark eval-
uation of incremental pattern matching in graph transformation.
In Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G., eds.: Inter-
national Conference on Graph Transformations (ICGT). Volume
5214 of LNCS., Springer (2008) 396–410

5. Chang, E., Roberts, R.: An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Commu-
nication ACM 22(5) (1979) 281–283

6. Ciraci, S., van den Broek, P., Aksit, M.: Framework for computer-
aided evolution of object-oriented designs. In: 32nd Annual IEEE
International Computer Software and Applications, 2008. COMP-
SAC ’08. (July 2008) 757–764

7. Crouzen, P., van de Pol, J.C., Rensink, A.: Applying formal meth-
ods to gossiping networks with mCRL and GROOVE. ACM SIG-
METRICS performance evaluation review 36(3) (December 2008)
7–16

8. de Lara, J., Vangheluwe, H.: ATOM3 : A tool for multi-formalism
and meta-modeling. In: Fundamental Approaches to Software En-
gineering (FASE). Volume 2306 of LNCS. (2002) 174–188

http://groove.sourceforge.net/
http://groove.sourceforge.net/

23

9. de Mol, M.J., Zimakova, M.V.: A GROOVE solution for the BPMN
to BPEL model transformation. Technical Report TR-CTIT-09-31,
Centre for Telematics and Information Technology, University of
Twente, Enschede (August 2009)

10. Dikmans, L.: Transforming BPMN into BPEL: Why and How.
Oracle Technology Network, http://www.oracle.com/
technology/pub/articles/dikmans-bpm.html
(September 2008)

11. Dimkov, T.: Portunes security framework. http:
//sourceforge.net/projects/portunes/.

12. Dimkov, T., Pieters, W., P., H.: Portunes: representing attack sce-
narios spanning through the physical, digital and social domain.
In: ARSPA-WITS, Springer (2010) To appear.

13. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta-
Modeling: A graphical approach to the operational semantics of
behavioral diagrams in UML. In A. Evans, S. Kent, B.S., ed.:
Proceedings of the 3rd international conference on the Unified
Modeling Language (UML 2000), York (UK), Berlin/Heidelberg,
Springer (2000) 323–337

14. The FUJABA Toolsuite. (2006) Homepage: http://www.
fujaba.de.

15. Geiger, L., Zündorf, A.: FUJABA case studies for GraBaTs 2008
– lessons learned. Software Tools for Technology Transfer (2010)
To appear.

16. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GR-
GEN: A fast SPO-based graph rewriting tool. In Corradini, A.,
Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G., eds.: Inter-
national Conference on Graph Transformations (ICGT). Volume
4178 of LNCS., Springer (2006) 383–397

17. 5th International Workshop on Graph-Based Tools (the contest).
(2009) See http://is.ieis.tue.nl/staff/pvgorp/
events/grabats2009/.

18. Hausmann, J.H.: Dynamic Meta Modeling: A Semantics Descrip-
tion Technique for Visual Modeling Languages. PhD thesis, Uni-
versity of Paderborn, Germany (2005)

19. Heckel, R.: Graph transformation in a nutshell. Electr. Notes
Theor. Comput. Sci. 148(1) (2006) 187–198

20. Horváth, Á., Bergmann, G., Ráth, I., Varró, D.: Experimental as-
sessment of combining pattern matching strategies with VIATRA2.
Software Tools for Technology Transfer (2010) To appear.

21. Horváth, Á., Varró, G., Varró, D.: Generic search plans for
matching advanced graph patterns. In Ehrig, K., Giese, H., eds.:
Graph Transformation and Visual Modelling Techniques (GT-
VMT). Volume 6 of Electronic Communications of the EASST.
(2007)

22. Kastenberg, H., Kleppe, A., Rensink, A.: Defining object-oriented
execution semantics using graph transformations. In Gorrieri, R.,
Wehrheim, H., eds.: Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS). Volume 4037 of LNCS., Springer
(2006) 186–201

23. Krause, C., Maraikar, Z., Lazovik, A., Arbab, F.: Modeling dy-
namic reconfigurations in Reo using high-level replacement sys-
tems. Science of Computer Programming (2009) To appear.

24. Mészáros, T., Mezei, G., Levendovszky, T., Asztalos, M.: Manual
and automated performance optimization of model transformation
systems. Software Tools for Technology Transfer (2010) To ap-
pear.

25. Object Management Group: Business Process Model and No-
tation, V1.2. (January 2009) See http://www.omg.org/
spec/BPMN/1.2/.

26. Organization for the Advancement of Structured Information
Standards: Web Services Business Process Execution Language,
V2.0. (April 2007) See http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-2.0.pdf.

27. Ouyang, C., Dumas, M., ter Hofstede, A., van der Aalst, W.:
Pattern-based translation of BPMN process models to BPEL web
services. International Journal of Web Services Research (JWSR)
5(1) (2008)

28. Ouyang, C., van der Aalst, W., Dumas, M., ter Hofstede, A.:
Translating BPMN to BPEL. Quensland University of Tech-
nology, Brisbase, Australia. E-Print, revised version http://
eprints.qut.edu.au/5266/. (July 2006)

29. Rensink, A.: The GROOVE simulator: A tool for state space
generation. In Pfaltz, J.L., Nagl, M., Böhlen, B., eds.: Applica-
tions of Graph Transformations with Industrial Relevance, (AG-
TIVE). Volume 3062 of LNCS., Springer (2004) 479–485 See
http://sourceforge.net/projects/groove.

30. Rensink, A.: Representing first-order logic using graphs. In
Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G., eds.: In-
ternational Conference on Graph Transformations (ICGT). Vol-
ume 3256 of LNCS., Springer Verlag (2004) 319–335

31. Rensink, A., Distefano, D.S.: Abstract graph transformation. In
Mukhopadhyay, S., Roychoudhury, A., Yang, Z., eds.: Software
Verification and Validation, Manchester. Volume 157 of Electronic
Notes in Theoretical Computer Science., Elsevier (May 2006) 39–
59

32. Rensink, A., Kuperus, J.H.: Repotting the geraniums: on nested
graph transformation rules. In Boronat, A., Heckel, R., eds.: Graph
transformation and visual modelling techniques (GT-VMT). Vol-
ume 18 of Electronic Communications of the EASST., EASST
(2009)

33. Rensink, A., Van Gorp, P.: Graph transformation tool contest
2008. Software Tools for Technology Transfer (2009) Special
section; in preparation. See also http://fots.ua.ac.be/
events/grabats2008.

34. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES approach:
language and environment. In Ehrig, H., Engels, G., Kreowski,
H.J., Rozenberg, G., eds.: Handbook of graph grammars and
computing by graph transformation: applications, languages, and
tools. Volume 2. World Scientific Publishing Co., Inc. (1999) 487–
550

35. Smelik, R., Rensink, A., Kastenberg, H.: Specification and con-
struction of control flow semantics. In Grundy, J., Howse, J., eds.:
Visual Languages and Human-Centric Computing (VL/HCC),
Brighton, U.K., Los Alamitos, IEEE Computer Society Press
(2006) 65–72

36. Soltenborn, C.: Analysis of UML Workflow diagrams with dy-
namic Meta Modeling Techniques. Master’s thesis, University of
Paderborn, Germany (2006)

37. Taentzer, G.: AGG: A graph transformation environment for mod-
eling and validation of software. In: Applications of Graph Trans-
formations with Industrial Relevance, (AGTIVE). Volume 3062 of
LNCS., Springer (2004) 446–453

38. Varró, D., Balogh, A.: The model transformation language of
the VIATRA2 framework. Science of Computer Programming
68(3) (2007) 187–207 Homepage: http://www.eclipse.
org/gmt/VIATRA2/.

39. Visser, W., Havelund, K., Brat, G.P., Park, S.: Model checking
programs. In: Automated Software Engineering (ASE). (2000)
3–12

40. Visual Modeling and Transformation System. (2008) Home-
page: http://www.aut.bme.hu/Portal/Vmts.aspx?
lang=en.

41. W3C: XSL Transformations (XSLT), V1.0, Recommendation.
(November 1999) See http://www.w3.org/TR/xslt.

http://www.oracle.com/technology/pub/articles/dikmans-bpm.html
http://www.oracle.com/technology/pub/articles/dikmans-bpm.html
http://sourceforge.net/projects/portunes/
http://sourceforge.net/projects/portunes/
http://www.fujaba.de
http://www.fujaba.de
http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009/
http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009/
http://www.omg.org/spec/BPMN/1.2/
http://www.omg.org/spec/BPMN/1.2/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-2.0.pdf
http://eprints.qut.edu.au/5266/
http://eprints.qut.edu.au/5266/
http://sourceforge.net/projects/groove
http://fots.ua.ac.be/events/grabats2008
http://fots.ua.ac.be/events/grabats2008
http://www.eclipse.org/gmt/VIATRA2/
http://www.eclipse.org/gmt/VIATRA2/
http://www.aut.bme.hu/Portal/Vmts.aspx?lang=en
http://www.aut.bme.hu/Portal/Vmts.aspx?lang=en
http://www.w3.org/TR/xslt

