
MIREX:

MapReduce Information Retrieval Experiments

Djoerd Hiemstra and Claudia Hauff
University of Twente, The Netherlands
{d.hiemstra, c.hauff}@cs.utwente.nl

Abstract

We propose to use MapReduce to quickly test new retrieval approaches
on a cluster of machines by sequentially scanning all documents. We
present a small case study in which we use a cluster of 15 low cost ma-
chines to search a web crawl of 0.5 billion pages showing that sequential
scanning is a viable approach to running large-scale information retrieval
experiments with little effort. The code is available to other researchers
at: http://sourceforge.net/projects/mirex/

1 Introduction

A lot of research in the field of information retrieval aims at improving the
quality of search results. Search quality might for instance be improved by
new scoring functions, new indexing approaches, new query (re-)formulation
approaches, etc. To make a scientific judgment of the quality of a new search
approach, it is good practice to use so-called benchmark test collections, such as
those provided by TREC [10]. The following steps typically need to be taken:

1. The researcher codes the new approach by adapting an experimental
search system, such as Lemur [5], PF/Tijah [8], or Terrier [9];

2. The researcher uses the system to create an inverted index on the docu-
ments from the test collection;

3. The researcher puts the queries to the experimental search engine and
gathers the top X search results (a common value for TREC experiments
is X = 1000);

4. The researcher compares the top X to a golden standard by computing
standard evaluation measures such as mean average precision.

In our experience, Step 1, actually coding the new approach, takes by far the
most effort and time when conducting an information retrieval experiment. Cod-
ing new retrieval approaches into existing search engines like Lemur, PF/Tijah

1

and Terrier is a tedious job, even if the code is maintained by members of the
same research team. It requires detailed knowledge of the existing code of the
search engine, or at least, knowledge of the part of the code that needs to be
adapted. Radical new approaches to information retrieval, i.e., approaches that
need information that is not available from the search engines inverted index,
require reimplementing part of the indexing functionality. Such radical new ap-
proaches are therefore not often evaluated, and most research is done by small
changes to the system.

In his WSDM keynote lecture, Dean [3] describes how MapReduce [4] is used
at Google for experimental evaluations. New ranking ideas are tested off-line on
human rated query sets similar to the queries from TREC. Running such off-
line tests has to be easy for the researchers at Google, possibly at the expense of
the efficiency of the prototype. So, it is okay if it takes hours to run for instance
10,000 queries, as long as the experimental infrastructure allows for fast and
easy coding of new approaches. A similar experimental setup was followed by
Microsoft at TREC 2009: Craswell et al. [2] use DryadLINQ [12] on a cluster
of 240 machines to run web search experiments. Their setup also sequentially
scans all document representations, providing a flexible environment for a wide
range of experiments. The researchers plan to do many more to discover its
benefits and limitations.

The work at Google and Microsoft shows that sequential scanning over large
document collections is a viable approach to experimental information retrieval.
Some of the advantages are:

1. Researchers spend less time on coding and debugging new experimental
retrieval approaches;

2. It is easy to include new information in the ranking algorithm, even if
that information would not normally be included in the search engine’s
inverted index;

3. Researchers are able to oversee all or most of the code used in the exper-
iment;

4. Large-scale experiments can be done in reasonable time.

We show that indeed sequential scanning is a viable experimental tool, even if
only a few machines are available. In Section 2 we describe the MapReduce
search system. Sections 3 and 4 contain experimental results and concluding
remarks.

2 Sequential Search in MapReduce

MapReduce is a framework for batch processing of large data sets on clusters of
commodity machines [4]. Users of the framework specify a mapper function that
processes a key/value pair to generate a set of intermediate key/value pairs, and
a reducer function that processes intermediate values associated with the same

2

intermediate key. The pseudo code in Figure 1 outlines our sequential search
implementation. The implementation does a single scan of the documents, pro-
cessing all queries in parallel.

mapper (DocId, DocText) =
FOREACH (QueryID, QueryText) IN Queries
Score = experimental score(QueryText, DocText)
IF (Score > 0)
THEN OUTPUT(QueryId, (DocId, Score))

reducer (QueryId, DocIdScorePairs) =
RankedList = ARRAY[1000]
FOREACH (DocId, Score) IN DocIdScorePairs
IF (NOT filled(RankedList) OR
Score > smallest score(RankedList))

THEN ranked insert(RankedList, (DocId, Score))
FOREACH (DocId, Score) IN RankedList
OUTPUT(QueryId, DocId, Score)

Figure 1: Pseudo code for linear search

The mapper function takes pairs of document identifier and document text
(DocId, DocText). For each pair, it runs all benchmark queries and outputs
for each matching query the query identifier as key, and the pair document
identifier and score as value. In the code, Queries is a global constant per
experiment. The MapReduce framework runs the mappers in parallel on each
machine in the cluster. When the map step finishes, the framework groups
the intermediate output per key, i.e., per QueryId. The reducer function then
simply takes the top 1000 results for each query identifier, and outputs those
as the final result. The reducer fucntion is also applied locally on each machine
(that is, the reducer is also used as a combiner [4]), making sure that at most
1000 results have to be sent between machines after the map phase finishes.

3 Case Study: ClueWeb09

The ClueWeb09 test collection consists of 1 billion web pages in ten languages,
collected in January and February 2009. The dataset is used by several tracks
of the TREC conference [10]. We used the English pages from the collection,
about 0.5 billion pages equalling 12.5 TB (2.5 TB compressed). The size of
the ClueWeb09 collection cannot be handled by a single machine, unless one is
willing to buy special hardware. We ran our experiments on a small cluster of 15
machines; each machine costs about e 1000. The cluster runs Hadoop version
0.19.2 out of the box [11].

3

3.1 Time to code the experiment

After gaining some experience with Hadoop by having M.Sc. students doing
practical assignments, we wrote the code for sequential search, and for anchor
text extraction in less than a day. Table 1 gives some idea of the size of the
source code compared to that of experimental search systems. Note that this
is by no means a fair comparison: The existing systems are general purpose
information retrieval systems including a lot of functionality, whereas the linear
search system only knows a single trick. Still, in order to adapt the systems
below, one at least has to figure out what code to adapt.

Code base #files #lines size (kb)
MapReduce anchors & search 2 350 13
Terrier 2.2.1 300 59,000 2,000
MonetDB/PF/Tijah 0.32.2 920 1,393,000 40,600
Lemur/Indri 4.11 1,210 540,000 19,500

Table 1: Size of code base per system

3.2 Time to run the experiment

Anchor text extraction on all English documents of ClueWeb09 takes about 11
hours on our cluster. The anchor text representation contains text for about
87 % of the documents, about 400 GB in total. A subsequent TREC run using
50 queries on the anchor text representation takes less than 30 minutes. Our
linear search system implements a fairly simple language model with a length
prior without stemming or stop words. It achieves expected precision at 5, 10
and 20 documents retrieved of respectively 0.42, 0.39, and 0.35 (MTC method),
similar to the best runs at TREC 2009 [1].

Figure 2 shows how the system scales when processing up to 5,000 queries,
using random sets of queries from the TREC 2009 Million Query track. Re-
ported times are full Hadoop job times including job setup and job cleanup av-
eraged over three trials. Processing time increases only slightly if more queries
are processed. Whereas the average processing time per query is about 35 sec-
onds per query for 50 queries, it goes down to only 1.6 second per query for
5,000 queries. For comparison, the graph shows the performance of “Lemur-
one-node”, i.e., Lemur version 4.11 running on one fourteenth of the anchor
text representation on a single machine. A distributed version of Lemur search-
ing the full full anchor text representation would not do faster: It would be
as fast as the slowest node, it would need to send results from each node to
the master, and to merge the results. Lemur-one-node takes 3.3 seconds per
query on average for 50 queries, and 0.44 seconds on average for 5,000 queries.
The processing times for Lemur were measured after flushing the file system
cache. Although Lemur cannot process queries in parallel, the system’s perfor-
mance benefits a lot from receiving a lot of queries. Lemur’s performance scales

4

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

pr
oc

es
si

ng
 ti

m
e

(m
in

ut
es

)

number of queries

MapReduce
Lemur, one node

Figure 2: Processing time for query set sizes

sublinearly because it caches intermediate results. Still, at 5,000 queries Lemur-
one-node is only 3.6 times faster than the MapReduce system. For experiments
at this scale, the benefits of the full, distributed Lemur are probably negligible.

3.3 Related work

The idea to use sequential scanning of documents to research new retrieval ap-
proaches is certainly not new: We know of at least one researcher who used
sequential scanning over ten years ago for his thesis [7]. Without high-level
programming paradigms like MapReduce, however, efficiently implementing se-
quential scanning is not a trivial task, and without a cluster of machines the
approach does not scale to large collections.

Lin [6] used Hadoop MapReduce for computing pairwise document similari-
ties. Our implementation resembles Lin’s brute force algorithm that also scans
document representations linearly. Our approach is simpeler because our pre-
processing step does not divide the collection into blocks, nor does it compute
document vectors.

4 Conclusion

A faster turnaround of the experimental cycle can be achieved by making cod-
ing of experimental systems easier. Faster coding means one is able to do more
experiments, and more experiments means more improvement of retrieval per-
formance. We implemented a full experimental retrieval system with little effort
using Hadoop MapReduce. Using 15 machines to search a web crawl of 0.5 bil-
lion pages, the proposed MapReduce approach is less than 10 times slower than

5

a single node of a distributed inverted index search system on a set of 50 queries.
If more queries are processed per experiment, the processing times of the two
systems get even more close. The code used in our experiment is open source and
available to other researchers at: http://sourceforge.net/projects/mirex/

Acknowledgments

Many thanks to Sietse ten Hoeve, Guido van der Zanden, and Michael Meijer
for early implementations of the system. The research was partly funded by the
Netherlands Organization for Scientific Research, NWO, grant 639.022.809. We
are grateful to Yahoo Research, Barcelona, for sponsoring our cluster.

References

[1] C.L.A. Clarke, N. Craswell, and I. Soboroff. Overview of the TREC 2009
web track. In Proceedings of the 18th Text REtrieval Conference (TREC).
NIST Special Publication 500-278, 2009.

[2] N. Craswell, D. Fetterly, M. Najork, S. Robertson, and E. Yilmaz. Microsoft
Research at TREC 2009: Web and relevance feedback tracks. In Proceedings
of the 18th Text REtrieval Conference (TREC). NIST Special Publication
500-278, 2009.

[3] J. Dean. Challenges in building large-scale information retrieval systems:
invited talk. In Proceedings of the second ACM International Conference on
Web Search and Data Mining (WSDM), 2009.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In Proceedings of the 6th Symposium on Operating System Design
and Implemention (OSDI), 2004.

[5] Lemur Toolkit. http://www.lemurproject.org/

[6] J. Lin. Brute Force and Indexed Approaches to Pairwise Document Similar-
ity Comparisons with MapReduce. In Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information re-
trieval, 2009.

[7] D. Hiemstra. Using Language Models for Information Retrieval. Ph.D.
thesis, University of Twente, 2001.

[8] PF/Tijah XML search system. http://dbappl.cs.utwente.nl/pftijah/

[9] Terrier IR Platform. http://ir.dcs.gla.ac.uk/terrier/

[10] E.M. Voorhees and D.K. Harman, editors. TREC Experiment and Evalu-
ation in Information Retrieval. MIT Press, 2008.

6

[11] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, 2009.

[12] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Kumar, and
J. Currey. DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language. In Proceedings of the 8th
Symposium on Operating System Design and Implemention (OSDI), 2008.

7

