
Space-Time Discontinuous Galerkin Finite Element

Method for Two-Fluid Flows.

W.E.H. Sollie, O. Bokhove, J.J.W. van der Vegt∗

Department of Applied Mathematics, Institute of Mechanics, Processes and Control
Twente, University of Twente, P.O.Box 217, 7500 AE, Enschede, The Netherlands

Abstract

A novel numerical method for two-fluid flow computations is presented,
which combines the space-time discontinuous Galerkin finite element dis-
cretization with the level set method and cut-cell based interface tracking.
The space-time discontinuous Galerkin (STDG) finite element method offers
high accuracy, an inherent ability to handle discontinuities and a very local
stencil, making it relatively easy to combine with local hp-refinement. The
front tracking is incorporated via cut-cell mesh refinement to ensure a sharp
interface between the fluids. To compute the interface dynamics the level
set method (LSM) is used because of its ability to deal with merging and
breakup. Also, the LSM is easy to extend to higher dimensions. Small cells
arising from the cut-cell refinement are merged to improve the stability and
performance. The interface conditions are incorporated in the numerical flux
at the interface and the STDG discretization ensures that the scheme is con-
servative as long as the numerical fluxes are conservative. The numerical
method is applied to one and two dimensional two-fluid test problems using
the Euler equations.

Keywords:

cut-cell, space-time discontinuous Galerkin, front tracking, level set,
two-fluid flow.

∗Corresponding author.
Email addresses: w.e.h.sollie@math.utwente.nl (W.E.H. Sollie),

o.bokhove@math.utwente.nl (O. Bokhove), j.j.w.vandervegt@math.utwente.nl
(J.J.W. van der Vegt)

January 7, 2011

1. Introduction

Fluid flows with interfaces involve combinations of gasses, liquids and
solids and have many applications in nature and industry. Examples include
flows with bubbles, droplets or solid particles, wave-structure interactions,
dam breaking, bed evolution, Rayleigh-Taylor and Kelvin-Helmholtz instabil-
ities and industrial processes such as bubble columns, fluidized beds, granular
flows and ink spraying. The flow patterns in these problems are complex and
diverse and can be approached at various levels of complexity. Often the
interface is not static but moves with the fluid flow velocity and in more
complex cases interface topological changes due to breakup and coalescence
processes may occur. Solutions often have a discontinuous character at the
interface between different fluids, due to surface tension and other effects.
In addition, the density and pressure differences across the interface can be
very high, like in the case of liquid-gas flows. Also, the existence of shock
or contact waves can introduce additional discontinuities into the problem.
Because of the continuous advances in computer technology the numerical
simulation of these problems is becoming increasingly affordable. However,
there are several issues related to solving flows with interfaces numerically.
These include issues regarding accuracy and conservation of the flow field
quantities near the interface, robustness and stability of the interface cou-
pling, complex geometries, unstructured mesh generation and motion, mesh
topological changes and computational efficiency. A numerical method which
has received much attention in recent years and which is especially suited for
dealing with flows with strong discontinuities and unstructured meshes is the
discontinuous Galerkin finite element method.

In this article a novel discontinuous Galerkin front tracking method for
two-fluid flows is presented, which is accurate, versatile and can alleviate
some of the problems commonly encountered with existing methods. In order
to explain and motivate the choices made for the numerical method, first
the most important aspects of the space-time discontinuous Galerkin finite
element method are discussed. This is followed by a discussion of important
existing techniques for dealing with interfaces. Based on this discussion the
interface related choices in the method are explained. Finally, the research
objectives are stated.

For a complete survey of discontinuous Galerkin (DG) methods and their
applications, see [11]. The main feature of DG methods is that they al-
low solutions to be discontinuous over element faces. The basis functions

2

are defined locally on each element with only a weak coupling to neighbor-
ing elements. The computational stencil is therefore very local; hence, DG
methods are relatively easy to combine with parallel computation and also
hp-refinement, where a combination of local mesh refinement (h-adaptation)
and adjustment of polynomial order (p-adaptation) is used. Another impor-
tant property is that DG discretizations are conservative. The DG method
has order of accuracy O(hp+1) for smooth solutions and order of accuracy
O(h1/2) for discontinuous solutions ([31, 55]). Front capturing and track-
ing techniques can help to improve the accuracy of the DG method around
discontinuities. Near discontinuities higher order DG solutions will exhibit
spurious oscillations. These oscillations may be removed by using slope lim-
iting, shock fitting techniques or artificial dissipation in combination with
discontinuity detection.

The space-time discontinuous Galerkin finite element method (STDG)
introduced by van der Vegt and van der Ven ([66]) is a space-time variant of
the DG method which is especially suited for handling dynamic mesh motions
in space-time (See also [6, 28, 55, 67]). It features a five-stage semi-implicit
Runge-Kutta scheme with coefficients optimized for stability in combination
with multigrid for accelerated convergence to solve the (non)linear algebraic
equations resulting from the STDG discretization.

Many methods have been proposed for computing flows with interfaces
or, to be more general, fronts. By looking at the front representation in the
mesh one can distinguish between front capturing and front tracking meth-
ods. Other methods exist, such as particle methods and boundary integral
methods, but these are not relevant for the current discussion.

In front capturing methods a regular stationary mesh is used and there
is no explicit front representation. Instead, the front is either described by
means of marker particles, like in the marker and cell method, or by use of
functions, such as in the volume of fluid and level set methods. The earliest
numerical method for time dependent free surface flow problems was the
marker and cell (MAC) method [12, 24]. Being a volume marker method it
uses tracers or marker particles defined in a fixed mesh to locate the phases.
However, the large number of markers required to obtain sufficient accuracy
makes the method expensive.

In the Volume of Fluid (VoF) method [25, 42, 50, 74] a fractional volume
or color function is defined to indicate the fraction of a mesh element that
covers a particular type of fluid. Algorithms for volume tracking are designed
to solve the equation ∂c/∂t+∇̄·(cu) = 0, where c denotes the color function,

3

u the local velocity at the front, t the time and ∇̄ = (∂/∂x1, · · · , ∂/∂xd) the
spatial gradient operator in d-dimensional space. In the VoF method typi-
cally a reconstruction step is necessary to reproduce the interface geometry
from the color function. More accurate VoF techniques like the Piecewise
Linear Interface Construction (PLIC) method attempt to fit the interface
by means of piecewise linear segments. VoF methods are easy to extend to
higher dimensions and can be parallelized readily due to the local nature
of the scheme. They can automatically handle reconnection and breakup.
Current VoF methods can conserve mass but have difficulty in maintaining
sharp boundaries between different fluids, and interfaces tend to smear. In
addition, these methods can give inaccurate results when high interface cur-
vatures occur. The computation of surface tension is not straightforward and
in addition spurious bubbles and drops may be created. Recently, Greaves
has combined the VoF method with Cartesian cut-cells with adapting hier-
archical quadtree grids [22], which alleviates some of these problems.

The Level Set Method (LSM) was introduced by Osher and Sethian in
[36] and further developed in [1, 52, 56]. For a survey, see [53]. In the LSM an
interface can be represented implicitly by means of the 0-level of a level set
function ψ(x, t). The evolution of the interface is found by solving the level
set equation ∂ψ/∂t + u · ∇̄ψ = 0, with u the interface velocity. To reduce
the computational costs a narrow band approach can be used, which limits
the computations of the level set to a thin region around the interface. To
enhance the level set accuracy it can be advected with the interface velocity,
which for this purpose is extended from the interface into the domain. In
case the level set becomes too distorted a reinitialization may be necessary.
Various reinitialization algorithms are available based on solving a Hamilton-
Jacobi partial differential equation [26, 37, 40]. Although the choice of the
level set function is somewhat arbitrary, the signed distance to the interface
tends to give the best accuracy in computing the curvature of the interface.
Also, the LSM is easy to extend to higher dimensions and can automatically
handle reconnection and breakup. The LSM, however, is not conservative
in itself. Recent developments include the combination of the VoF method
with the Level Set Method [57].

Front capturing methods have the advantage of a relatively simple for-
mulation. The main drawback of these methods lies in the need for complex
interface shape restoration techniques, which often have problems in restoring
the smooth and continuous interface shape, particularly in higher dimensions.

In front tracking and Lagrangian methods the front is tracked explicitly

4

in the mesh. Front tracking was initially proposed in [47] and further devel-
oped in [19, 33, 64] and [65]. For a survey, see [27] and [48]. The evolution of
the front is calculated by solving the equation ∂x/∂t = u at the front, where
x is a point at the front and u its velocity. Glimm et al. [20] have combined
front tracking with local grid based interface reconstruction using interface
crossings with element edges. More recently they have proposed a fully con-
servative front tracking algorithm for systems of nonlinear conservation laws
in [21].

Front tracking methods are often combined with either surface markers
or cut-cells to define the location of the front. In the cut-cell method [4, 13,
39, 61, 62, 72] a Cartesian mesh is used for all elements except those which
are intersected by the front. These elements are refined in such a way that
the front coincides with the mesh. At a distance from the front the mesh
remains Cartesian and computations are less expensive. A common problem
with cut-cell methods is the creation of very small elements which leads to
problems with the stiffness of the equations and causes numerical instability.
One way to solve this problem is by element merging as proposed in [73].

In Lagrangian or moving mesh methods [17, 18, 35, 49] the mesh is mod-
ified to follow the fluid. In these methods the mesh can become considerably
distorted, which gives problems with the mesh topology and stretched el-
ements. In the worst case, frequent remeshing may be necessary ([2, 32]).
In cases of breakup and coalescence, where the interface topology changes,
these methods tend to fail.

Front tracking methods are good candidates for solving problems that
involve complex interface physics. They are robust and can reach high accu-
racy when the interface is represented using higher order polynomials, even
on coarse meshes. A drawback of front tracking methods is that they require
a significant effort to implement, especially in higher dimensions.

The numerical algorithm for two-fluid flows presented here combines a
space-time discontinuous Galerkin (STDG) discretization of the flow field
with a cut-cell mesh refinement based interface tracking technique and a
level set method (LSM) for computing the interface dynamics. The STDG
discretization can handle interface discontinuities naturally, is conservative
and has a very compact computational stencil. The level set method has the
benefit of a simple formulation which makes it easier to extend the method to
higher dimensions and also provides the ability to handle topological changes
automatically. The interface tracking serves to maintain a sharp interface
between the two fluids. This allows for different equations to be used for each

5

fluid, which are coupled at the interface by a numerical interface flux, based
on the interface condition. In addition, front tracking methods typically have
high accuracy. Cut-cell refinement is used since it has the benefit of being
local in nature and also is relatively easy to extend to higher dimensions.

An alternative approach to tracking singular surfaces with STDG meshes
can be found in [38], where a space-time advancing front strategy (’tent
pitching’, [63]) is used to accomplish solution based tracking.

The outline of this article is as follows. In Section 2 the flow and level set
equations are introduced. In Section 3 the background and refined meshes
are discussed and the mesh refinement procedure is presented. In Section
4 the flow and level set discretizations, and the Runge-Kutta semi-implicit
time integration method for the solution of the algebraic equations resulting
from the numerical discretization are discussed. In Section 5 the two-fluid
algorithm is presented. In Section 6 some test results are presented. Section
7 contains the final discussion and conclusions.

2. Equations

2.1. Two-fluid flow equations

Considered are flow problems involving two fluids as illustrated in Figure
1. The two fluids are separated in space-time by an interface S. Let i = 1, 2
denote the fluid index. Furthermore, let x = (t, x̄) = (x0, · · · , xd) denote
the space-time coordinates, with d the spatial dimension, x̄ = (x1, · · · , xd)
the spatial coordinates and t ∈ [t0, T] the time coordinate, with t0 the initial
time and T the final time. The space-time flow domain for fluid i is defined
as E i ⊂ R

d+1. The (space) flow domain for fluid i at time t is defined as
Ωi(t) = {x̄ ∈ R

d|(t, x̄) ∈ E i}. The space-time domain boundary for fluid
i, ∂E i is composed of the initial and final flow domains Ωi(t0) and Ωi(T),
the interface S and the space boundaries Qi = {x ∈ ∂E i|t0 < t < T}. The
two-fluid space-time flow domain is defined as E = ∪iE

i, the two-fluid (space)
flow domain at time t as Ω(t) = ∪iΩ

i(t) and the two-fluid space-time domain
boundary as ∂E = ∪i∂E

i. Let wi denote a vector of Nw flow variables for
fluid i. The bulk fluid dynamics for fluid i are assumed to be given as a
system of conservation laws:

∂wi

∂t
+ ∇̄ · F i(wi) = 0, (1)

6

x

t

y

Ω (t)

ε2ε1

(t)2 1Ω

S

t=t0

t=T

Fluid 2Fluid 1

Figure 1: An example two-fluid flow problem in space-time. Here E i and Ωi(t) denote the
space-time and space flow domains for fluids i = 1, 2; and, S denotes the interface between
the two fluids in space-time.

where ∇̄ = (∂/∂x1, . . . , ∂/∂xd) denotes the spatial gradient operator and
F i(wi) = (F i

1, · · · , F
i
d) the spatial flux tensor for fluid i with F i

j the j-th flux
vector and j = 1, · · · d. Reformulated in space-time (1) becomes:

∇ · F i(wi) = 0, with

F i(wi) = (wi, F i(wi)), (2)

and ∇ = (∂/∂t, ∇̄) the space-time gradient operator and F i(wi) the space-
time flux tensor. The flow variables are subject to initial conditions:

wi(0, x̄) = wi
0(x̄), (3)

boundary conditions:

wi(t, x̄) =Bi
B(w

i,wi
b) on Qi/S (4)

with wi
b the prescribed boundary data at Qi, and interface conditions:

wi(t, x̄) =Bi
S(w

1,w2) on S. (5)

Since the actual flow variables, fluxes and initial, boundary and interface
conditions are problem specific they shall be provided when the test cases
are discussed.

7

2.2. Level set equation

To distinguish between the two fluids a level set function ψ(x) is used:

ψ(t, x̄) =











< 0 in Fluid 1

> 0 in Fluid 2

= 0 at the interface.

(6)

Initially, the level set function is defined as the minimum signed distance to
the interface:

ψ(t, x̄) = α inf
∀x̄S∈S(t)

‖x̄− x̄S‖, (7)

where α = −1 in Fluid 1 and α = +1 in Fluid 2, x̄S denotes a point at the
interface S(t) and ‖.‖ is the Euclidian distance. The evolution of the level
set is determined by an advection equation:

∂ψ

∂t
+ ā · ∇̄ψ = 0, (8)

where ā = (a1, · · · , ad) is a vector containing the level set velocity, which will
be taken equal to the flow velocity. The level set function is subject to initial
conditions:

ψ(0, x̄) =ψ0(x̄), for x̄ ∈ Ω(t0). (9)

At the domain boundary the level set is subject to solid wall boundary con-
ditions:

ā(t, x̄) · n̄ =0, for (t, x̄) ∈ Q, (10)

where n̄ denotes the space outward unit normal vector at the domain bound-
ary.

3. Meshes

3.1. Two-fluid mesh

To simplify computations, the two-fluid domain is subdivided into a num-
ber of space-time slabs on which the equations are solved consecutively. In-
terval (t0, T) is subdivided into Nt intervals In = (tn, tn+1), with t0 < t1 <

8

0t

t1

t2

N −1t

Nt
t = T

N −1t

x
t

t

W 2
h

W 1
h

0

Interface

I

I

Figure 2: Two-fluid mesh.

· · · < tNt
= T and based on these intervals domains E i are subdivided into

space-time slabs Ii
n = {x ∈ E i|t ∈ In}. For every space-time slab Ii

n a tes-
sellation T i,n

h of non-overlapping space-time elements Ki,n
j ⊂ R

d+1 is defined:

T i,n
h =

{

Ki,n
j ⊂R

d+1|

N i
h

⋃

j=1

K̄i,n
j = Īi

n

and Ki,n
j

⋂

Ki,n
j′ = ∅ if j 6= j′, 1 ≤ j, j′ ≤ N i,n

h

}

(11)

with N i,n
h the number of space-time elements in the space-time slab Ii

n for
fluid i and where K̄i,n

j = Ki,n
j ∪ ∂Ki,n

j denotes the closure of the space-time

element. The tessellations T i,n
h , i = 1, 2 will be referred to as the two-fluid

or refined mesh T n
h (see Figure 2), since they will be constructed from a

background mesh by performing local mesh refinement. The tessellations
T i,n
h define the numerical interface Si,n

h as a collection of finite element faces.
The numerical interface is assumed to be geometrically identical in both
tessellations, S1,n

h = S2,n
h . Let Γi,n = Γi,n

I ∪ Γi,n
B ∪ Γn

S denote the set of all
fluid i faces Si,n

m , with Γi,n
I the set of internal faces, Γi,n

B the set of boundary
faces, and Γn

S the set of interfaces. Every internal face connects to exactly
two elements in T i,n

h , denoted as the left element Kl and the right element

9

Kr. Every boundary face connects to one element in T i,n
h , denoted as the

element Kl. Every interface connects to one element from T 1,n
h and also to

one element from T 2,n
h .

The finite element space Bk
h(T

i,n
h) associated with the tessellation T i,n

h is
defined as:

Bk
h(T

i,n
h) = {w ∈ L2(E i

h) : w|K ◦GK ∈ P k(K̂), ∀K ∈ T i,n
h } (12)

with E i
h the discrete flow domain, L2(E i

h) the space of square integrable func-
tions on E i

h, and P
k(K̂) the space of polynomials of degree at most k in the

reference element K̂. The mapping GKi,n
j

relates every element Ki,n
j to a

reference element K̂ ⊂ R
d+1:

GKi,n
j

: K̂ → Ki,n
j : ξ 7→ x =

N i,n
F,j

∑

k=1

xk(K
i,n
j)χk(ξ) (13)

with N i,n
F,j the number of vertices and xk(K

i,n
j) the coordinates of the vertices

of space-time element Ki,n
j . The finite element shape functions χk(ξ) are

defined on the reference element K̂, with ξ = (ξ0, · · · , ξd) the coordinates
in the reference element. Given a set of basis functions φ̂m defined on the
reference element, the basis functions φm : Ki,n

j → R are defined on the

space-time elements Ki,n
j ∈ T i,n

h by means of the mapping GKi,n
j
:

φm = φ̂m ◦G−1

Ki,n
j

. (14)

On the two-fluid mesh the approximated flow variables are defined as:

wi
h(t, x̄)|Ki,n

j
=

∑

m

Ŵi
m(K

i,n
j)φm(t, x̄) (15)

with Ŵi
m the expansion coefficients of fluid i. Each element in the two-fluid

mesh contains a single fluid. Therefore, in every element one set of flow
variables is defined. Because the basis functions are defined locally in every
element the space-time flow solution is discontinuous at the element faces.

3.2. Background mesh

In the construction of the two-fluid mesh T n
h it was assumed that every

element contains exactly one fluid or equivalently that the interface is rep-
resented by a set of finite element faces. In order to define a mesh which

10

satisfies this requirement, a level set function ψh is defined on a space-time
background mesh T n

b .
For every space-time slab In a tessellation T n

b of space-time elements
Kn

b,j̃
⊂ R

d+1 is defined:

T n
b =

{

Kn
b,j̃

⊂R
d+1|

Nb
⋃

j̃=1

K̄n
b,j̃

= Īn

andKn
b,j̃

⋂

Kn
b,j̃′

= ∅ if j̃ 6= j̃′, 1 ≤ j̃, j̃′ ≤ Nb

}

(16)

with Nb the number of space-time elements. The tessellation T n
b will be

referred to as the background mesh. In two and three space-time dimen-
sions the background mesh is composed of square and cube shaped elements,
respectively. The finite element space, mappings and basis functions are
identical to those defined for the refined mesh in Section 3.1 except when
dealing with the background mesh these will be denoted using a subscript
b. On the background mesh a discontinuous Galerkin approximation of the
level set is defined as:

ψh(t, x̄)|Kn

b,j̃
=

∑

m

Ψ̂m(K
n
b,j̃
)φm(t, x̄), (17)

with Ψ̂m the level set expansion coefficients. A discontinuous Galerkin dis-
cretization is used because the level set is advected with the flow velocity
and will develop discontinuities in the vicinity of shock waves. In addition,
a discontinuous Galerkin approximation of the level set velocity is defined as
(later the flow velocity projected on the background mesh):

āh(t, x̄)|Kn

b,j̃
=

∑

m

Âm(K
n
b,j̃
)φm(t, x̄). (18)

3.3. Mesh refinement

After solving the level set equation the interface shape and position are
approximately known from the 0-level set. In order to define a mesh for two-
fluid flow computations, the background mesh is refined by means of cut-cell
mesh refinement. In the refined mesh the interface is represented by a set of
faces on which the level set value is approximately zero.

11

Algorithm 1 Mesh refinement algorithm.

FOR every element Kn
b,j̃

in T n
b DO

Calculate intersection of 0-level set ψc = 0 with Kn
b,j̃

Select refinement rule
Create and store interface physical nodes xI

FOR all child elements ĵ defined by the refinement rule DO

Create Ki,n

h,ĵ
and store in T i,n

h

END DO
END DO

Generate faces for T i,n
h

FOR every element Ki,n
h,j in T i,n

h

Initialize data on Ki,n
h,j

END DO

The discontinuous nature of the level set approximation is not desirable
for the mesh refinement, since it can result in hanging nodes. Hence the level
set is smoothed before performing the mesh refinement. Assuming computa-
tions have reached time slab In the level set approximation ψh is smoothed
by first looping over all elements in In and storing the multiplicity and the
sum of the values of ψh in each vertex. For every vertex in In the continuous
level set value ψc

h is calculated by dividing the sum of the ψh values by the
vertex multiplicity. In every background element in In, ψh is then reinitial-
ized using the ψc

h values in the element vertices. To ensure continuity of the
mesh only the values of the level set in the background elements belonging
to the previous time slab In−1 are used at the faces between the previous
and the current time slab.

The mesh refinement algorithm is defined in Algorithm 1. The algorithm
consists of a global element refinement step, in which all the elements of the
background mesh are refined consecutively according to a set of refinement
rules, followed by a face generation step to create the connectivity between
the refined elements. The refinement rules define how a single element will
be refined given an intersection with a 0-level set. The face generation is
straightforward and will not be discussed.

Given a smoothed level set, the element refinement is executed separately
for each background element. For a given background element, it is first
checked if the element contains more than one fluid by evaluating the level
set at each vertex of the element. If the level set has the same sign in

12

every vertex, the element contains only one fluid and is copied directly to
the refined mesh T n

h . Alternatively, the type of cut is determined from the
level set signs. Depending on the cut type, the element is refined, based on a
predefined element refinement rule for that type, see Sections 3.4 and 3.5, and
the cut coordinates. The resulting elements are stored in T n

h . The element
refinement rules have been designed such that for two neighboring elements
the shared face is refined identically at both sides. Hence, no hanging nodes
will occur in the refined mesh. The interface cut coordinates xI for an edge
cut by the interface are calculated as:

xI =
xAψh(xB)− xBψh(xA)

ψh(xA)− ψh(xB)
, (19)

where xA and xB denote the coordinates of the edge vertices. For simplicity it
is assumed that the level set is non-zero and can only be positive or negative
in the vertices.

Because the refinement type is only based on the level set signs in the
background element vertices, in cases where more than one interface inter-
sects an element an ambiguity will occur where exactly the interface lies and
the refinement rule will give rise to elements for which the fluid type is am-
biguous. However, the fluid types of these elements can easily be found by
computing the level set signs in the element midpoints.

The mesh refinement algorithm allows for freedom in choosing the element
refinement rules. However, the refined mesh should have full connectivity to
avoid difficulties with face integration. Element refinement rules have been
developed for two and three dimensions, similar to [20], and these will be
discussed next for a set of base types. In the implementation each cut is
linked to one of these base types by means of the rotational and transla-
tional symmetries of the background element for which algorithmic details
are available in [54].

3.4. 2D Refinement

In 2D the background mesh consists of square elements. The classification
of the 2D cuts is based on the values of the level set in the four vertices of
the square. Each cut type is defined as a series of four signs corresponding
to the level set signs in the four vertices. For example one type is defined by
−−++. Switching to a binary representation with − and + corresponding
to 0 and 1, respectively, we can assign the number 0011 = 3. Since a square

13

Table 1: Binary codes of the 2D base types. Each code represents a combination of level
set signs for each of the 4 background element vertices, where a negative (positive) level
set sign is represented by a 0 (1).

index binary code number
0 0111 7
1 0011 3
2 0110 6

2 3

10
−

+ +

+
(0)

2 3

10
−

+ +

−
(1)

2 3

10
−

+

+

−

(2)
2 3

10

5

4 (0)

2 3

10

5 6

(1)

2 3

10

5 6

4

7

(2)

Figure 3: The vertex level set signs (top) and the corresponding element refinements
(bottom) for the 2D base types.

has 4 vertices, there are 24 = 16 possibilities. In 2D three base types have
been defined as given in Table 1. In Figure 3 (top) the signs of the level set
in each vertex for every type are shown. Level set configuration 2 allows for
two possible linear interface cuts both of which are handled by the element
refinement rule. The element refinements for the 2D base types are shown in
Figure 3 (bottom) and defined in Table 2.

3.5. 3D Refinement

In 3D the background mesh consists of cubical elements. Like in the 2D
refinement, the 3D types are classified based on the values of the level set
in the vertices. Thirteen configurations were identified, and these are given
in Table 3. In Figure 4 the signs of the level set in each vertex for every
base type are shown. It should be noted that level set configurations 6− 12
allow for multiple interface cuts. This ambiguity is solved by making sure
that for each level set configuration the element refinement rule is such that

14

Table 2: 2D base type element refinements.
Type
index

Child
index

Child LNI Fluid
type

0 0 {0, 4, 5} 0
1 {4, 1, 3} 1
2 {5, 3, 2} 1
3 {5, 4, 3} 1

1 0 {0, 1, 5, 6} 0
1 {5, 6, 2, 3} 1

2 0 {0, 4, 5} 0
1 {4, 1, 6} 1
2 {6, 3, 7} 1
3 {7, 2, 5} 0
4 {5, 4, 7, 6} 0 or 1

Table 3: Binary codes of the 3D base types. Each code represents a combination of level
set signs for each of the 8 background element vertices, where a negative (positive) level
set sign is represented by a 0 (1).

index binary code number index binary code number
0 00100000 32 7 00100100 36
1 00100010 34 8 01100100 100
2 10100010 162 9 10100101 165
3 10101010 170 10 00101101 45
4 10110010 178 11 00101001 41
5 10100011 163 12 01101001 105
6 00101000 40

also multiple element cuts can be handled. The corresponding interfaces
are shown in Figure 5. In order to define the element refinement of the 13
base types, first a surface refinement is defined, which is based on the 2D
refinements illustrated in Figure 3. Element refinements have been manually
devised based on the surface refinements. The element refinements for the
13 base types are given in Tables 4 and 5. In some of the refinements an
additional node is used, which is located at the interface center and has local
node index (LNI) 20. Due to the high complexity the 3D element refinements
are not illustrated [54].

3.6. Merging

The occurrence of small elements in the refined mesh tends to cause nu-
merical stability and performance problems. To solve these problems an
element merging procedure was developed.

Let Ki,n
k , k = 0, · · · , Nĵ denote a collection of elements which need be

15

−

+

6

54

1

7

2 3

0

−

−

−

−−

−

(0)

+

6

54

1

7

2 3

0

−

−

−

−−

−

+

(1)

+

6

54

1

7

2 3

0

−

−

−

−+

−

+

(2)

+

6

54

1

7

2 3

0

+

−

−

−+

−

+

(3)

+

6

54

1

7

2 3

0

−

+

−+

−

+

−

(4)

+

6

54

1

7

2 3

0

+

−

−+

−

+

−

(5)

+

6

54

1

7

2 3

0

−

−

−

−

+

−

−

(6)

+

6

54

1

7

2 3

0

−

−

−

−

−

− +

(7)

+

6

54

1

7

2 3

0

−

−

−

−

− +

+ (8)

+

6

54

1

7

2 3

0

−

−

− +

−+

+

(9)

+

6

54

1

7

2 3

0

−

−

+

−

+

−

+

(10)

+

6

54

1

7

2 3

0

−

−

−

−

+

−

+

(11)

+

6

54

1

7

2 3

0

−

−

−

+

+

−

+

(12)

Figure 4: The vertex level set signs for the 3D base types.

16

6

54

1

7

2 3

0

11

14

9

(0)

6

54

1

7

2 3

0

11

17
19

9

(1)

6

54

1

7

2 3

0 8

11

12

17
19

(2)
6

54

1

7

2 3

0 8

11

19

16

(3)

6

54

1

7

2 3

0 8

12

15

17
19

10

(4)

6

54

1

7

2 3

0 8

11

12

17

18

15

(5)
6

54

1

7

2 3

0

11

12

14

17

16

9

(6)

6

54

1

7

2 3

0

11

13

14

18

16

9

(7)

6

54

1

7

2 3

0 8

11

14

10

9

16

18

(8)
6

54

1

7

2 3

0 8

11

19

13

16

14

12

15

(9)

6

54

1

7

2 3

0

11

12

14

17
19

9

13

15

18

(10)

6

54

1

7

2 3

0

15

17

18

19

9

12

16

11

14

(11)
6

54

1

7

2 3

0 8

13

15

17

18

19

10

9

12

16

11

14

(12)

Figure 5: The interface cuts for the 3D base types. For types 6 − 12 the level set config-
uration allows for alternative cuts not shown here, which are supported by the element
refinement rule for that type.

17

Table 4: Element refinements for 3D base types.
Type

in-

dex

Child

in-

dex

Child LNI Fluid

type

Type

in-

dex

Child

in-

dex

Child LNI Fluid

type

0 0 {11, 1, 3, 5, 7} 0 10 {7, 15, 18, 20} 1

1 {9, 0, 1, 4, 5} 0 11 {3, 1, 15, 20} 0

2 {1, 5, 9, 11} 0 12 {5, 18, 1, 20} 0

3 {2, 9, 11, 14} 1 13 {18, 15, 1, 20} 0

4 {14, 4, 5, 6, 7} 0 14 {2, 11, 6, 20} 1

5 {4, 5, 9, 14} 0 15 {3, 15, 11, 20} 0

6 {5, 7, 11, 14} 0 16 {7, 6, 15, 20} 1

7 {5, 9, 11, 14} 0 17 {11, 15, 6, 20} 1

1 0 {0, 1, 9, 4, 5, 17} 0 18 {20, 7, 18, 6, 17} 1

1 {1, 3, 11, 5, 7, 19} 0 19 {20, 18, 5, 17, 4} 0

2 {1, 11, 9, 5, 19, 17} 0 6 0 {1, 11, 9, 20} 0

3 {2, 9, 11, 6, 17, 19} 1 1 {1, 3, 11, 20} 0

2 0 {20, 8, 1, 11, 3} 0 2 {20, 9, 14, 12, 17} 0 or 1

1 {20, 0, 8, 2, 11} 1 3 {5, 1, 16, 20} 0

2 {4, 12, 17, 20} 0 4 {12, 16, 1, 20} 0

3 {12, 0, 2, 20} 1 5 {20, 5, 7, 1, 3} 0

4 {6, 17, 2, 20} 1 6 {3, 7, 11, 20} 0

5 {12, 2, 17, 20} 1 7 {14, 11, 7, 20} 0

6 {12, 8, 0, 20} 1 8 {5, 16, 7, 20} 0

7 {8, 5, 1, 20} 0 9 {16, 17, 7, 20} 0

8 {12, 5, 8, 20} 0 10 {9, 14, 11, 2} 1

9 {4, 5, 12, 20} 0 11 {9, 11, 14, 20} 0 or 1

10 {20, 1, 5, 3, 7} 0 12 {12, 16, 17, 4} 1

11 {20, 2, 11, 6, 19} 1 13 {12, 17, 16, 20} 0 or 1

12 {20, 11, 3, 19, 7} 0 14 {7, 14, 17, 6} 0

13 {17, 5, 4, 20} 0 15 {7, 17, 14, 20} 0

14 {19, 7, 5, 20} 0 16 {1, 12, 9, 0} 0

15 {6, 19, 17, 20} 1 17 {1, 9, 12, 20} 0

16 {17, 19, 5, 20} 0 7 0 {0, 1, 9, 20} 0

3 0 {0, 8, 2, 11, 4, 16, 6, 19} 1 1 {1, 11, 9, 20} 0

1 {8, 1, 11, 3, 16, 5, 19, 7} 0 2 {1, 3, 11, 20} 0

4 0 {0, 8, 2, 12} 1 3 {0, 9, 4, 20} 0

1 {1, 8, 5, 10} 0 4 {9, 14, 4, 20} 0

2 {2, 10, 3, 15} 1 5 {14, 6, 4, 20} 0

3 {2, 6, 17, 19} 1 6 {0, 1, 13, 20} 0

4 {2, 19, 15, 8, 10} 1 7 {13, 16, 0, 20} 0

5 {2, 17, 19, 12, 8} 1 8 {4, 0, 16, 20} 0

6 {4, 5, 12, 17} 0 9 {1, 13, 3, 20} 0

7 {5, 7, 15, 19} 0 10 {18, 3, 13, 20} 0

8 {5, 8, 10, 19, 15} 0 11 {7, 3, 18, 20} 0

9 {5, 12, 8, 17, 19} 0 12 {3, 11, 7, 20} 0

5 0 {20, 0, 8, 2, 11} 1 13 {6, 7, 14, 20} 0

1 {20, 8, 1, 11} 0 14 {14, 7, 11, 20} 0

2 {0, 2, 12, 20} 1 15 {4, 6, 16, 20} 0

3 {6, 17, 2, 20} 1 16 {16, 6, 18, 20} 0

4 {4, 12, 17, 20} 0 17 {18, 6, 7, 20} 0

5 {12, 2, 17, 20} 1 18 {9, 11, 14, 20} 0

6 {0, 12, 8, 20} 1 19 {9, 14, 11, 2} 0 or 1

7 {1, 8, 5, 20} 0 20 {13, 16, 18, 20} 1

8 {4, 5, 12, 20} 0 21 {13, 18, 16, 5} 0 or 1

9 {8, 12, 5, 20} 0

18

Table 5: Element refinements for 3D base types (continued).
Type

in-

dex

Child

in-

dex

Child LNI Fluid

type

Type

in-

dex

Child

in-

dex

Child LNI Fluid

type

8 0 {1, 10, 8, 5, 18, 16} 1 6 {0, 12, 1, 20} 0

1 {14, 16, 18, 8, 10} 0 or 1 7 {12, 16, 1, 20} 0

2 {16, 18, 14, 6} 0 8 {16, 5, 1, 20} 0

3 {14, 8, 10, 9, 11} 0 or 1 9 {5, 18, 1, 20} 0

4 {4, 16, 14, 6} 0 10 {18, 15, 1, 20} 0

5 {4, 14, 16, 9} 0 11 {15, 3, 1, 20} 0

6 {14, 8, 16, 9} 0 or 1 12 {3, 15, 11, 20} 0

7 {9, 4, 16, 0, 8} 0 13 {6, 14, 19, 20} 0

8 {18, 7, 14, 6} 0 14 {20, 11, 15, 14, 19} 0 or 1

9 {18, 14, 7, 11} 0 15 {5, 16, 18, 20} 0

10 {14, 10, 11, 18} 0 or 1 16 {6, 19, 17, 20} 0

11 {11, 18, 7, 10, 3} 0 17 {20, 17, 19, 16, 18} 0 or 1

12 {2, 9, 11, 14} 1 18 {9, 11, 14, 20} 0 or 1

9 0 {2, 11, 14, 0, 8, 12} 1 19 {12, 17, 16, 20} 0 or 1

1 {3, 15, 11, 1, 13, 8} 0 20 {18, 19, 15, 20} 0 or 1

2 {7, 19, 15, 5, 16, 13} 1 21 {9, 14, 11, 2} 1

3 {6, 14, 19, 4, 12, 16} 0 22 {12, 16, 17, 4} 1

4 {11, 15, 14, 19, 8, 13, 12, 16} 0 or 1 23 {18, 15, 19, 7} 1

10 0 {0, 1, 9, 20} 0 12 0 {0, 8, 9, 20} 0

1 {9, 1, 11, 20} 0 1 {3, 11, 10, 20} 0

2 {3, 11, 1, 20} 0 2 {20, 8, 10, 9, 11} 0 or 1

3 {0, 9, 12, 20} 0 3 {0, 9, 12, 20} 0

4 {6, 17, 14, 20} 0 4 {6, 17, 14, 20} 0

5 {20, 12, 9, 17, 14} 0 or 1 5 {20, 12, 9, 17, 14} 0 or 1

6 {20, 12, 13, 0} 0 6 {0, 12, 8, 20} 0

7 {20, 13, 15, 1, 3} 0 7 {5, 13, 16, 20} 0

8 {3, 15, 11, 20} 0 8 {20, 16, 13, 12, 8} 0 or 1

9 {6, 14, 19, 20} 0 9 {3, 10, 15, 20} 0

10 {20, 11, 15, 14, 19} 0 or 1 10 {5, 18, 13, 20} 0

11 {6, 17, 19, 20} 0 11 {20, 18, 15, 13, 10} 0 or 1

12 {9, 11, 14, 20} 0 or 1 12 {3, 15, 11, 20} 0

13 {9, 14, 11, 2} 1 13 {6, 14, 19, 20} 0

14 {12, 17, 13, 20} 0 or 1 14 {20, 11, 15, 14, 19} 0 or 1

15 {17, 19, 13, 20} 0 or 1 15 {6, 19, 17, 20} 0

16 {19, 15, 13, 20} 0 or 1 16 {5, 16, 18, 20} 0

17 {19, 17, 13, 5} 1 17 {20, 17, 19, 16, 18} 0 or 1

18 {17, 4, 5, 12, 13} 1 18 {9, 11, 14, 20} 0 or 1

19 {19, 5, 7, 13, 15} 1 19 {12, 17, 16, 20} 0 or 1

11 0 {0, 1, 9, 20} 0 20 {8, 13, 10, 20} 0 or 1

1 {9, 1, 11, 20} 0 21 {18, 19, 15, 20} 0 or 1

2 {3, 11, 1, 20} 0 22 {9, 14, 11, 2} 1

3 {0, 9, 12, 20} 0 23 {12, 16, 17, 4} 1

4 {6, 17, 14, 20} 0 24 {8, 10, 13, 1} 1

5 {20, 12, 9, 17, 14} 0 or 1 25 {18, 15, 19, 7} 1

19

merged, determined by means of a merging strategy to be discussed later.
The merged element Ki,n

m,ĵ
is defined as:

Ki,n

m,ĵ
=

N
ĵ

⋃

k=0

Ki,n
k . (20)

For each merged element Ki,n

m,ĵ
the minimum and maximum bounding points

xmin
ĵ

and xmax
ĵ

are defined componentwise as:

xmin
ĵ,l

= min
∀x∈Ki,n

m,ĵ

xl, x
max
ĵ,l

= max
∀x∈Ki,n

m,ĵ

xl, l = 0, . . . , d, (21)

with d the space dimension. Let xmin
j̃

and xmax
j̃

denote the minimum and

maximum bounding points of background element Kn
b,j̃
. It is assumed that all

background mesh elements are of equal size and shape; hence, xmax
j̃

−xmin
j̃

=

hb,j̃ = hb = constant. For each merged element the minimum and maximum
lengths relative to the background element are defined as:

ǫmin
ĵ

= min
l=0,··· ,d

xmax
ĵ,l

− xmin
ĵ,l

hb,l
, ǫmax

ĵ
= min

l=0,··· ,d

xmax
ĵ,l

− xmin
ĵ,l

hb,l
. (22)

In addition two predefined parameters, ǫMIN = 0.9 and ǫMAX = 1.9, are
introduced. The merging strategy is defined for each fluid i individually as
follows:

• Step 1: For each background element Kn
b,j̃

retrieve the collection of all

child elements that contain fluid i. For this collection of elements com-
pute ǫmin and ǫmax and store these values on the background element. If
the background element does not contain fluid i elements it is unavail-
able for merging and ǫmin = ǫmax = 0.0. If ǫmin < ǫMIN the collection
defines a small or thin merged element and requires merging involving
one or more neighboring background elements. If ǫmin > ǫMIN the col-
lection itself defines a valid merged element. Step 1 is illustrated in
Figure 6.

• Step 2: Using a loop over the faces in the background mesh, it is
determined for each background element Kn

b,j̃
which neighboring ele-

ments Kn
b,k, k = 0, . . . , Nj̃ are usable for merging, which is the case if

the neighboring element contains a collection of fluid i elements with
ǫmin > ǫMIN . Step 2 is illustrated in Figure 7.

20

ε

 =
 ε

 =

m
in

m

ax
1.

0

ε

 =
m

ax
1.

0

εminε = ε =min max 1.0 εmax

εm
in

Figure 6: Illustration of the first step in the merging strategy. The dotted lines represent
the background element and the solid lines represent the collection of child elements of one
of the fluid types. The collection on the left has an ǫmin > ǫMIN and hence is considered
a valid merged element in itself. The collections in the middle and on the right are have
a small ǫmin and require merging with a neigboring element.

minε =1.0 minε =0.0

minε < εMIN

minε < εMIN

minε > εMIN

1 20

4 5

876

3

Fluid 0
Fluid 1

Figure 7: Illustration of the second step in the merging strategy for fluid type 0 and
background element 4. The background elements are shown in dotted lines and the 0-level
set is shown as a dashed line. Background element 4 has an ǫmin < ǫMIN and hence
requires merging with one or more of the neighboring elements 1, 3, 5 and 7. Elements
1 and 3 both contain enough fluid 0 (ǫmin > ǫMIN) and hence are valid candidates for
merging, while element 5 and element 7 do not contain enough fluid 0 (ǫmin < ǫMIN) and
hence are invalid candidates for merging.

21

• Step 3: The merged elements are determined in three steps. Each step
corresponds to a different type of merging, and these are illustrated in
Figure 8. After a background element has been used in merging it is
marked as UNAVAILABLE.

– Type 1: For each available individual background element Kn
b,j̃

check if ǫmin > ǫMIN and if it has at least two available neighboring
elements for which ǫmin < ǫMIN . If so, merge all refined elements
Ki,n

j with the correct fluid type i contained in these background
elements.

– Type 2: For each available individual background element Kn
b,j̃

check if ǫmin < ǫMIN . If so loop over all available neighbor-
ing elements Kn

b,k, k = 0, · · · , Nj̃ with Nj̃ the number of avail-
able neighboring elements. For each combination of the back-
ground element Kn

b,j̃
and a neighboring element Kn

b,k determine

ǫmin
k . Find the k̃ for the combination which has the largest size,
ǫmin
k̃

> ǫmin
k , k = 0, · · · , Nj̃. Merge all refined elements Ki,n

j with
the correct fluid type i contained in the background elements Kn

b,j̃

and Kn
b,k̃
.

– Type 3: For each available individual background element Kn
b,j̃

check if ǫmin > ǫMIN . If so check if it contains more than one
element Ki,n

j with the correct fluid type i and if so merge these
elements.

The merged elements tend to have complex shapes which makes it difficult
to find suitable reference elements and basis functions. To alleviate this
problem a bounding box element is introduced ([16]), which is simple shaped
and contains the merged element. This merging procedure is illustrated for
two dimensions in Figure 9 and an example of a mesh with merged elements
in two dimensions is shown in Figure 10.

Let Ki,n

M,ĵ
denote the bounding box of the merging element Ki,n

m,ĵ
. The fi-

nite element space, mappings and basis functions used for the bounding box
elements are identical to those defined for the refined mesh but will be de-
noted using a subscript M . On the bounding box element the approximated

22

Type 1 Type 2 Type 3

Figure 8: The three types of merged elements. The solid lines represent the refined
elements that will be combined into a single merged element. The dotted lines represent
the background mesh and the dashed lines represent the interface at positions not occupied
by the merged element.

Bounding box elementMerged elementCollection of elements

Figure 9: A collection of elements, their merged element and its bounding box element,
in physical space.

23

x

y

-0.02 0 0.02
0

0.01

0.02

0.03

Figure 10: Refined mesh showing the merged elements as colored collections of child
elements.

flow variables are defined as:

wi
h(t, x̄)|Ki,n

M,ĵ

=
∑

m

Ŵi
m(K

i,n

M,ĵ
)φm(t, x̄) (23)

with Ŵi
m the flow coefficients of fluid i. Each merged element contains

exactly one fluid. For all elements Ki,n
k ⊂ Ki,n

m,ĵ
the flow evaluation is redefined

as an evaluation in the bounding box element:

wi
h(x)|Ki,n

k
= wi

h(x)|Ki,n

M,ĵ

. (24)

Integration of a function f(wi

h
) over a merged element Ki,n

m,ĵ
is performed by

integrating over all the individual elements and summing the contributions:

∫

Ki,n

m,ĵ

f(wi
h)dK =

N
ĵ

∑

k=0

∫

Ki,n
k

f(wi
h)dK. (25)

Hence, there are no hanging nodes.

24

4. Space-time discontinuous Galerkin discretization

4.1. Flow discretization

The discontinuous Galerkin finite element approximation for two-fluid
flows on the refined mesh T i,n

h is found by multiplying (2) with an arbitrary
test function v ∈ Bk

h(T
i,n
h) and integrating over all elements in the domains

E1 and E2; further application of Gauss’ theorem results in:

−
∑

Ki,n
j ∈T i,n

h

∫

Ki,n
j

∇v · F i(wi) dK

+
∑

Si,n
m ∈Γi,n

I

∫

Si,n
m

F i,l(wi,l) · nl
K vl + F i,r(wi,r) · nr

K vr dS

+
∑

Si,n
m ∈Γi,n

B

∫

Si,n
m

F i,l(wi,l) · nl
K vl dS

+
∑

Si,n
m ∈Γi,n

S

∫

Si,n
m

F i,l(wi,l) · nl
K vl dS = 0, (26)

where F i,K and wi,K are the limiting trace values at the face S of element
Ki,K , K = l, r.

Let the trace vKh of a function vh on a face S with respect to the element
KK , K = l, r be defined as vKh = limǫ↓0 vh(x− ǫnK

K), where n
K
K = (n0, . . . , nd)

is the space-time outward unit normal vector at the face S with respect to
element KK . Left and right normal vectors of a face are related as nl

K =
−nr

K. The element local trace v±h of a function vh on a face S is defined as
v±h = limǫ↓0 vh(x ± ǫnK). The average {{F}} of a scalar or vector function
F on the face Sm ∈ ΓI is defined as {{F}} := 1

2
(F l + F r), where l and r

denote the traces at elements Kl and Kr, respectively. The jump [[F]] of a
scalar function F on the face Sm ∈ ΓI is defined as [[F]] := F lnl + F rnr

and the jump [[G]] of a vector function G on the face Sm ∈ ΓI is defined as
[[G]] := Gl ·nl +Gr ·nr. The jump operator satisfies on ΓI the product rule
[[FG]] = {{F}}[[G]] + [[F]]{{G}}.

By using a conservative flux, F l(wl)·nl
K = −F r(wr)·nr

K; hence, [[F(w)]] =

25

0, the integration over the internal faces is rewritten as:

∑

Si,n
m ∈Γi,n

I

∫

Si,n
m

F i,l(wi,l) · nl
K vl + F i,r(wi,r) · nr

K vr dS

=
∑

Si,n
m ∈Γi,n

I

∫

Si,n
m

{{F i(wi)}} · [[v]] dS. (27)

So far the formulation (26) has been strictly local, in the sense that neigh-
boring elements and also the initial, boundary and interface conditions are
not incorporated. In order to do this, numerical fluxes are introduced. At in-
ternal faces the flux in (27) is replaced by a numerical flux Hi

I(w
i,l,wi,r,nK),

which is consistent: H(w,w,nK) = F(w) ·nl
K, and conservative. Likewise at

the boundary faces the flux is replaced by a numerical flux Hi
B(w

i,l,wi,r
b ,nK),

which is also consistent. At the interface the flux is replaced by a numerical
interface flux Hi

S(w
i,l,wi,r

s ,nK), with wi,r
s the ghost state at the interface

for fluid i. Using the fact that for a conservative flux {{H(wl,wr,nK)}} =
H(wl,wr,nK) and replacing the trial and test functions by their approxima-
tions in the finite element space Bk

h(T
i,n
h), the weak formulation is defined

as:
Find wi

h ∈ Bk
h(T

i,n
h) such that for all vh ∈ Bk

h(T
i,n
h):

−
∑

Ki,n
j ∈T i,n

h

∫

Ki,n
j

∇vh · F
i(wi

h) dK

+
∑

Si,n
m ∈Γi,n

I

∫

Si,n
m

Hi
I(w

i,l
h ,w

i,r
h ,nK) (v

l
h − vr

h) dS

+
∑

Si,n
m ∈Γi,n

B

∫

Si,n
m

Hi
B(w

i,l
h ,w

i,r
b ,nK)v

l
h dS

+
∑

Si,n
m ∈Γi,n

S

∫

Si,n
m

Hi
S(w

i,l
h ,w

i,r
s ,nK)v

l
h dS = 0,

i = 1, 2, n = 0, · · · , Nt − 1. (28)

Introduction of the polynomial expansion (15) in (28) and using the basis
functions φl for the test functions gives the following discretization in each

26

space-time element Ki,n
j :

Li,n
kl (Ŵ

n;Ŵn−1) = 0, i = 1, 2, n = 0, · · · , Nt − 1,

k = 0, · · · , Nw − 1, l = 0, . . . , N i,n
B,j − 1 (29)

with Nt the number of time slabs, Nw the number of flow variables and N i,n
B,j

the number of basis functions. The nonlinear operator Li,n
kl is defined as:

Li,n
kl =−

∫

Ki,n
j

(∇φl)j · F
i
kj(w

i
h)dK

+
∑

Si,n
m ∈∂Ki,n

j ∩Γi
I

∫

Si,n
m

HI,k(w
i,−
h ,wi,+

h ,nK)φl dS

+
∑

Si,n
m ∈∂Ki,n

j ∩Γi
B

∫

Si,n
m

HB,k(w
i,−
h ,wi,+

b ,nK)φl dS

+
∑

Si,n
m ∈∂Ki,n

j ∩Γi
S

∫

Si,n
m

HS,k(w
i,−
h ,wi,+

s ,nK)φl dS. (30)

In equation (29) the dependency of Li,n
kl on Ŵn−1 stems from the integrals

over the internal faces connecting the current and previous time slabs. The
numerical fluxes are problem dependent and will be discussed later for each
specific test problem.

4.2. Level set discretization

The level set equation can be characterized as a hyperbolic partial dif-
ferential equation containing an intrinsic nonconservative product, meaning
that it cannot be transformed into divergence form. This causes problems
when the level set becomes discontinuous, because the weak solution in the
classical sense of distributions does not exist. Thus, no classical Rankine-
Hugoniot shock conditions can be defined. Although the level set is initially
smooth, it can become discontinuous over time due to discontinuities in the
global flow velocity advecting the level set. In order to find a discontinuous
Galerkin discretization for the level set equation, valid even when level set
solution and velocity become discontinuous, the theory presented in [45] is
applied.

27

The nonconservative level set discretization is defined as:

∑

Kn

b,j̃
∈T n

b

∫

Kn

b,j̃

−
∂φl

∂t
ψh + φl āh · ∇̄ψh dK

+
∑

Kn

b,j̃
∈T n

b

(
∫

Kn

b,j̃
(tn+1)

φl
l ψ

l
h dS −

∫

Kn

b,j̃
(tn)

φl
l ψ

r
h dS

)

+
∑

Sn
b,m̃

∈Γn
b

∫

Sn
b,m̃

(φl
l − φr

l) P̂
nc dS

−
∑

Sn
b,m̃

∈Γn
b

∫

Sn
b,m̃

{{φl}} [[ψh]] {{āh}} dS = 0, (31)

with

P̂ nc =











+1
2
[[ψh]] {{āh}} if SL > 0

+1
2
(SR(ψ

∗
h − ψR

h) + SL(ψ
∗
h − ψL

h)) if SL < 0 < SR

−1
2
[[ψh]] {{āh}} if SR < 0

(32)

where SL = min{āL
h · n̄L

K , ā
R
h · n̄L

K} and SR = max{āL
h · n̄L

K , ā
R
h · n̄L

K} the
minimum and maximum wavespeeds and where the star state level set value
is defined as:

ψ∗
h =

{

ψL if (SL + SR)/2 > 0

ψR if (SL + SR)/2 < 0.
(33)

At (solid wall) boundary faces the level set boundary conditions (10) are
enforced by specifying the right state as:

ψr(t, x̄) =ψl(t, x̄)

ār(t, x̄) = āl(t, x̄)− 2(āl(t, x̄) · nK)nK, for (t, x̄) ∈ Q. (34)

4.3. Pseudo-time integration

By augmenting the flow equations with a pseudo-time derivative, the
discretized equations (29) are extended into pseudo-time, resulting in:

M i,n
ml

∂Ŵ i,n
km

∂τ
+ Li,n

kl (Ŵ
n;Ŵn−1) = 0, (35)

28

Algorithm 2 Pseudo-time integration method for solving the non-linear algebraic
equations in the space-time discretization.

1. Initialize first Runge-Kutta stage: W̄
i,(0) = Ŵ

i,n.

2. Calculate W̄
i,(s), s = 1, · · · , 5:

(1 + αsλ)W̄
i,(s) =

W̄
i,(0) + αsλ

(

W̄
i,(s−1) −∆t (M i,n)−1 L(W̄i,(s−1),W̄i,n−1)

)

3. Update solution: Ŵ
i,n = W̄

i,(5).

using the summation convention on repeated indices, and with

M i,n
ml =

∫

Ki,n
j

φlφm dK (36)

the mass matrix. To solve (35) a five stage semi-implicit Runge-Kutta itera-
tive scheme is used [29, 66] as defined in Algorithm 2. Starting from a guess
for the initial solution, the solution is iterated in pseudo-time until a steady
state is reached, which is the real time solution of the space-time discretiza-
tion. Here λ = ∆τ/∆t denotes the ratio of pseudo time and physical time
step, and the coefficients αs are defined as: α1 = 0.0791451, α2 = 0.163551,
α3 = 0.283663, α4 = 0.5, α5 = 1.0. The physical time step ∆t is defined
globally by using a Courant-Friedrichs-Levy (CFL) condition:

∆t = CFL∆t h/|Smax|, (37)

with CFL∆t the physical CFL number, h the inradius of the space projection
of the element and |Smax| the maximum absolute value of the wave speed on
the faces. The five stage semi-implicit Runge-Kutta iterative scheme is also
used for solving the discretized level set equation.

5. Two-fluid algorithm

The two-fluid algorithm is defined in Algorithm 3. The operations at the
initialization, in the inner iteration and at the time slab update are illustrated
for two space-time dimensions in Figures 11, 12 and 13, respectively.

In the inner iteration and at the time slab update the flow approximation
w

i,n
h is reinitialized with the solution average from the previous time slab:

w
i,n
h (t, x̄) = w̄

i,n−1
h (tn, x̄). (38)

29

Algorithm 3 Computational steps in the two-fluid method. Lines 1-6 detail the initial-
ization, lines 13-22 the inner iteration and lines 8-12 time slab update. The initialization,
inner iteration and time slab update are illustrated for two space-time dimensions in Fig-
ures 11, 12 and 13.

1. n = 0
2. Create background mesh T n−1

b

3. Initialize level set ψn−1
h (x) on T n−1

b

4. Initialize level set velocity ā
n−1
h (x) on T n−1

b

5. Create refined mesh T i,n−1
h based on ψn−1

h = 0

6. Initialize flow field w
i,n−1
h (x) on T i,n−1

h

7. WHILE n < Nt DO
8. Create background mesh T n

b

9. Initialize level set ψn
h (x) on T n

b as ψn−1
h (tn, x̄) on T n−1

b (41)
10. Initialize level set velocity ā

n
h(x) on T n

b as ā
n−1
h (tn, x̄) on T n−1

b (42)

11. Create refined mesh T i,n
h,0 based on ψn

h = 0

12. Initialize flow field w
i,n
h,0(x) on T i,n

h,0 as w
i,n−1
h,0 (tn, x̄) on T i,n−1

h (38)

13. k = 0
14. WHILE two-fluid mesh has not converged: |ek − ek−1| > ǫIF DO
15. Solve ψn

h on T n
b

16. Calculate level set interface error ek = (
∑

Si,n

h
∈Γn

S

∫

Si,n

h

|ψn
h |

2dS)1/2

17. Create refined mesh T i,n
h,k based on ψn

h = 0

18. Initialize flow field w
i,n
h,k(x) on T i,n

h,k as w
i,n−1
h (tn, x̄) on T i,n−1

h (38)

19. Solve w
i,n
h,k(t, x̄) on T i,n

h,k

20. Initialize level set velocity ā
n
h(x) on T n

b as u
i,n
h,k(x) on T i,n

h (39)

21. k = k + 1
22. END DO
23. n = n+ 1
24. END DO

30

i−1x ix i+1xi−1x ix i+1x

t t

n−1
h

a n−1
h

a

ψn−1
h

n
h

a

ψn
h
n
h

a

i−1x ix i+1xi−1x ix i+1x

t t

ψn
h

ψn−1
h

ψn−1
h

ψn
h

w1,n

h w2,n

h w2,n

h

w1,n−1

h w2,n−1

h w2,n−1

h

n−1Τ h

Τ h
n−1

t

tn tn

tn−1

n+1 n+1

n−1

Τ b

Τ h
n

n−1

Τ b
n

(a)

t

tn tn

tn−1

n+1 n+1

n−1

Refined MeshBackground Mesh

Τ b

Τ h
n

n−1

Τ b
n

(d)

(1) (3)
(2)

= 0

= 0

(b)

(c)

Figure 11: At initialization, first the background mesh is created. Because the solution
from the previous time step is required in the evalution of the numerical flux at the time
slab face, the background mesh is conveniently composed of a current (n) and a previous
(n− 1) time slab (a). Next the level set is initialized on the background mesh (b). Based
on the 0-level set, the background mesh is refined to obtain the refined mesh (c). Finally,
in all elements of the refined mesh the flow variables are initialized (d). The initialization
is performed on the current as well as a previous time slab.

31

i−1x ix i+1xi−1x ix i+1x

t t

i−1x ix i+1xi−1x ix i+1x

t

n−1
h

a n−1
h

a

ψn−1
h

ψn−1
h

ψn
h

Τ h
nΤ b

n
ψn

h
n
h

a

ψn−1
h
n−1
h

a

ψn−1
h
n−1
h

a

twh,k+1

2,n

wh,k+1

2,nwh,k+1

1,n

wh,k+1

1,n

wh

2,n−1wh

1,n−1

wh

1,n−1 wh

2,n−1 wh

2,n−1

wh

2,n−1

wh,k

2,nwh,k

2,nwh,k

1,n

h
na
h
nψ

wh,k+1

1,n

wh,k+1

1,n

wh,k+1

2,n wh,k+1

2,n

Τ h
n−1

Τ h
n−1

ψn
h
n
h

a

n
h

a

(b)

t

tn n

tn−1

n+1 n+1

n−1

(2)

Τ b

t

tn tn

tn−1

n+1 n+1

n−1

Refined MeshBackground Mesh

Τ b

Τ

n−1

Τ b
n

(1)

n−1

t

h
n

(a1) (a2)

(c)

t

(3)

Figure 12: In the inner iteration, given level set and flow solutions on the background and
refined meshes (a1, a2), first the level set is solved on T n

b (b). Based on the 0-level set the
background mesh is refined to obtain a new two-fluid mesh T n

h , on which the flow field
is reinitialized and solved (c). Finally, the level set velocity is reinitialized with the flow
velocity.

32

i−1x ix i+1xi−1x ix i+1x

t t

ψn
h
n
h

a

ψn
h

ψn−1
h

ψn−1
h
n−1
h

an−1
h

a

Τ h
nΤ b

n

n
h

a w1,n

h w1,n

h w2,n

h

w1,n−1

h

w1,n−1

h

w2,n−1

h

w2,n−1

h w2,n−1

h

w2,n−1

hw1,n−1

hw1,n−1

h

Τ h
n−1

i−1x ix i+1xi−1x ix i+1x

t t

ψn−1
h

ψn−1
h
n−1
h

a

ψn−2
h
n−2
h

a

t

n−1
h

a

wh

2,n−1wh

1,n−1

wh

2,n−2wh

1,n−2

wh

1,n−1

wh

1,n

wh

2,n−1

Τ h
n−2

ψn−2
h
n−2
h

a wh

2,n−2

wh

2,n−1

wh

1,n−1
wh

2,n−1

Τ b
n−1 Τ h

n−1

Refined MeshBackground Mesh

t

tn tn

tn−1

n+1 n+1

n−1

Τ b

(1) (3)

n−1

(a1) (a2)

(b)

t

tn−1 n−1

tn−2

n

n−2

Τ b
n−2

t

(2)

(c)

n

Figure 13: When moving to the next time slab, given level set and flow solutions on the
background and refined meshes (a1, a2), first a new background mesh T n

b is created, on
which a level set is initialized and solved (b). Based on the 0-level set, the background
mesh is refined to obtain the two-fluid mesh T n

h , on which the flow field is initialized (c).

33

When, for a fluid type, no solution exists in the previous time slab, the
element is marked as such and is reinitialized at a later stage by using the
reinitialized solution from a neighboring element in the new timeslab. To
make the flow reinitialization compatible with the element merging it is pre-
ceded by a projection step, in which the solution in each merged element is
projected onto the refined elements of which it is composed. After solving
the flow equations the level set velocity an

h is reinitialized as:
∫

Kn

b,j̃

ān
h(x)φl(x) dK =

∫

Kn

b,j̃

un
h,k(x)φl(x) dK. (39)

In order to evaluate the flow velocity un
h,k on the background mesh, for every

element Ki,n
j in the refined mesh T n

h , a child to parent mapping HKi,n
j

is

defined:

HKi,n
j

= G−1

Ki,n
j

◦GKn

b,j̃
, (40)

where GKn

b,j̃
and GKi,n

j
are the mappings from the reference element to the

physical space of the background and the child element, respectively. The
mapping HKi,n

j
maps the element Ki,n

j to its parent element Kn
b,j̃

in the back-

ground mesh T n
b . The inverse mappings G−1

Kn

b,j̃

always exist, since the back-

ground elements are by construction never degenerate. The child to parent
mapping is illustrated in Figure 14. At the time slab update the level set
approximation ψn

h is reinitialized as:

ψn
h(t, x̄) = ψn−1

h (tn, x̄) (41)

and the level set velocity approximation an
h is reinitialized as:

ān
h(t, x̄) = ān−1

h (tn, x̄). (42)

6. Test cases

The method is applied to model problems in two and three space-time
dimensions. The interface is assumed to be without surface tension and
therefore continuity of the normal velocity and pressure are imposed [14, 51].
The simulations have been performed using three dimensional space-time
codes based on the hpGEM software framework for Discontinuous Galerkin
finite element methods [41]. More test cases are available in [54].

34

K
j

H i,n

GK
−1

b,j

n
~

I d

K
j

G i,n

Kb K
0

2 3

5

4 0 1

2

Background Physical Element

20 21 21

40 4140

68 68

67

41

2067

Child Physical Element

K
i,n
jK

1

b,j
n

~

Background Reference Element Child Reference Element

Figure 14: The child to parent mapping H
K

i,n
j

is composed of the mapping G
K

i,n
j

from

the child reference element to child physical element and the inverse mapping G−1
Kn

b,j̃

from

background physical element to the background reference element. The child physical
element is connected to the background physical element through the identity mapping
Id.

35

Let wi
h(tn+1,x) denote the approximate flow solution, wi(tn+1,x) the ex-

act flow solution and Ωi
h(tn+1) the spatial mesh for fluid i at time t = tn+1,.

The L2 flow error at time t = tn+1 is defined as:

‖wi
h(tn+1, ·)− wi(tn+1, ·)‖L2(Ωi

h
(tn+1)) =

(∫

Ωi
h
(tn+1)

|wi
h(tn+1,x)− wi(tn+1,x)|

2dx

)1/2

. (43)

The order of accuracy with respect to the norm ‖.‖ is defined as log(‖fh−
f‖/‖fh/2 − f‖)/log(2), where fh and fh/2 denote numerical solutions on
embedded meshes Ωn

h and Ωn
h/2, with h the mesh width. It should be noted

that the refined meshes are often only approximately embedded, hence a
small error is introduced in the orders of accuracy for the flow solutions.

Solutions will be plotted as discontinuous data without any postprocess-
ing to give a clear illustration of the behavior of the STDG numerical scheme
in each individual element.

6.1. Isothermal magma - ideal gas shock tube

Considered is an isothermal magma - ideal gas shock tube problem. This
test is motivated by the high speed geological event analyzed in [7, 8, 9, 70]
and [71] and it features very high density and pressure ratio’s which cause
strong oscillations around the interface between the gas and magma with
standard shock capturing schemes. The purpose of this test is to investigate
the performance of the method for a case where the interface moves with
the flow velocity. To account for this, two solve steps are used for the flow
and level set equations in each time step. The contact wave is considered an
interface and is captured using the two-fluid method.

For the ideal gas the one dimensional Euler equations for mass, momen-
tum and energy are used, which are defined as

∂ρ

∂t
+
∂(ρu)

∂x
= 0

∂(ρu)

∂t
+
∂(ρu2 + p)

∂x
= 0

∂(ρE)

∂t
+
∂(u(ρE + p))

∂x
=0, (44)

with ρ the density, u the fluid velocity, p the pressure and ρE = ρu2/2 + ρe
the total energy, with ρe the internal energy. In addition to these equations

36

an equation of state (EOS) is required to account for the thermodynamic
properties of the ideal gas:

e =
p

ρ(γ − 1)
, (45)

where γ = 1.4. The governing equations for an effectively compressible
magma are the Euler equations for mass and momentum. The magma con-
sists of a mixture of molten rock and 2 wt% (weight percentage) H2O. At
high pressure, the H2O only has a liquid form. When the pressure decreases
water vapor is formed within the mixture due to decompression effects. In
this situation the magma effectively is a pseudo one-phase mixture. In ex-
plosive eruptions starting with a high pressure difference viscosity effects are
negligible at leading order relative to the nonlinear inertial effects driven by
the high bubble content. The total mass fraction n0 of H2O in the magma
consists of a fraction n(p) which is exsolved in the magma as gas and a
fraction 1− n(p) which is dissolved in the magma as liquid.

The mixture of magma and liquid H2O has a density σ = 2500 kg/m3

and the water vapor has a density of ρg. The total void or bubble fraction
of the mixture is given by α = n(p)ρ/ρg. The density of the magma is
defined as ρ = αρg +(1−α)σ. Using the relation for α and the ideal gas law
ρg = p/(RT) gives:

ρ =

(

n(p)RmT

p
+

1− n(p)

σ

)−1

, (46)

where Rm = 462 J/kgK is the mixtures gas constant. This relation is only
valid when there are bubbles, i.e., n(p) > 0. The critical pressure pc is
reached when there are no longer any bubbles in the mixture. This is the
case when n(p = pc) = 0 which gives pc = (4/9) × 108 Pa. The magma
considered will be assumed to be compressible; hence, p < pc. For p ≥ pc the
following relation is used:

ρ = σ + c−2
m (p− pc), (47)

with cm = 2000m/s the speed of sound in bubble free magma. The mass
fraction n(p) is assumed to satisfy Henry’s law, which is valid when bubbles
and melt are in equilibrium:

n(p) = n0 − Shp
β. (48)

37

For basaltic high volatile magma, n0 = 0.02, β ≈ 0.5, T = 1200K and Sh =
3.0× 10−6 Pa−β. The magma is assumed to be isothermal at a temperature
of 1200K. For isothermal magma the density depends only on the pressure,
ρ = ρ(p). The speed of sound a is defined for isothermal magma as:

1/a2 ≡

(

∂ρ

∂p

)

T

= −ρ2
∂(1/ρ)

∂p

= −ρ2
[

d n(p)

dp

(

RmT

p
+

1

σ

)

−
n(p)RmT

p2

]

. (49)

The simulations are performed on a spatial domain [−5m, 5m] from time
t = 0 s to t = 0.0075 s. Initially the interface is located at x = 0m, with
the magma on the left and the ideal gas on the right, and both fluids are in
constant states:

(ρ, u, p)(0, x) = (50)
{

(ρL, uL, pL) = (535.195 kg/m3, 0 m/s, 5× 106 Pa) for x < 0 m

(ρR, uR, pR) = (1.18902 kg/m3, 0 m/s, 1.0× 105 Pa) for x > 0 m.

At the boundaries solid wall conditions are imposed:

u · n̄ = 0 m/s at x = ±5 m. (51)

At the magma - gas interface continuity of the velocity and pressure is as-
sumed. The exact solution is calculated by solving the magma and ideal
gas Riemann problem and consists of a left moving expansion wave with
head and tail speeds of SLH = −97.2861m/s, SLT = 186.409m/s respec-
tively, a contact wave which is identified with the magma-air interface and
moves with speed SC = 286.329m/s; and, a right moving shock wave with
speed SR = 555.540m/s. The left and right star states are defined as:
ρ∗L = 28.0517 kg/m3, ρ∗R = 2.45364 kg/m3, u∗ = 286.329m/s, p∗ = 2.89134×
105 Pa. The solution structure is shown in Figure 15.

Let w = (ρ, ρu, ρE) and F = (ρu, ρu2 + p, u(ρE + p)) denote the con-
servative variables and flux vectors. The HLLC flux provides an accurate
solution to the Riemann problem, which is an initial value problem for the
Euler equations, where the initial condition consists of two constant states:

w(x, 0) =

{

wL when x < 0

wR when x > 0.
(52)

38

t
x

p
u

R

R

R

ρ

p
u

*R

*R

*R
ρ

S =555.540
R

S =286.329
C

t=0.0
x=0.0

AirIsothermal Magma

t=0.0075ρ
*L

u
p

L

L

L

ρ

Contact Discontinuity

Shock Wave
S =186.329

LT
S =−97.2861

Rarefaction Wave

LH

u
*L

p
*L

Figure 15: The solution structure of the Euler magma - ideal gas shock tube.

The HLLC flux extended to space-time meshes [5, 66] is defined as:

HHLLC =
1

2

(

FL + FR

− (|SL − v| − |SM − v|)w∗
L + (|SR − v| − |SM − v|)w∗

R

+ |SL − v|wL − |SR − v|wR − v(wL +wR)

)

, (53)

with v the interface velocity. It is assumed that the speeds are the same at
both sides of the contact wave, so SM = u∗L = u∗R = u∗. From the Rankine-
Hugoniot relations F(wK)− F(w∗

K) = SK(wK −w∗
K) with K = L or R for

the left and the right waves, respectively, the following relations are found
for the star state variables:

ρ∗K = ρK
SK − uK
SK − u∗

ρ∗Ku
∗(u∗ − SK) = (pK − p∗) + ρKuK(uK − SK), (54)

and also an approximation for the speed SM = u∗ of the contact wave is
obtained:

SM =
ρRuR(SR − uR)− ρLuL(SL − uL) + pL − pR

ρR(SR − uR)− ρL(SL − uL)
. (55)

39

The wave speeds SL and SR are estimated as:

SL = min(uL − aL, uR − aR), SR = max(uL + aL, uR + aR). (56)

By using the Rankine-Hugoniot relations of the left wave and substituting
the left and right states and wave speeds, the values of w∗

L are calculated as:

w∗
L =

SL − uL
SL − SM

wL +
1

SL − SM





0
p∗ − pL

p∗SM − pLuL



 , (57)

and likewise for w∗
R by replacing L with R. By using the expression for ρ∗K

and u∗ in the Rankine-Hugoniot relation for the momentum of the left and
the right moving wave, the intermediate pressure is found:

p∗ = ρL(SL − uL)(SM − uL) + pL = ρR(SR − uR)(SM − uR) + pR. (58)

Assuming the interface coincides with the contact wave, SM = v and the
corresponding HLLC flux defines the contact HLLC flux HC

HLLC :

HC
HLLC = (0, p∗, p∗u∗)T (59)

which shows that there is no mass flux through the contact interface.
For the interface an alternative interface flux is proposed, which is defined

separately for the left and right sides of the interface:

HL
HLLC =w∗

L(SM − v) +HC
HLLC and HR

HLLC = w∗
R(SM − v) +HC

HLLC

(60)

When the interface representation in the mesh is exact, SM = v and the
interface flux is reduced to HC

HLLC . The interface numerical flux removes
the small numerical oscillations caused by errors in the interface shape and
position at the cost of mass conservation at the interface.

At the boundary faces the solid wall conditions are implemented in the
HLLC flux by defining the right state as:

ρR = ρL, uR = −uL, pR = pL. (61)

To account for the dependence of the level set on the flow velocity the flow and
level set are updated twice each time step. The simulations are performed at

40

Table 6: Error and order of accuracy in the L2 norm of the density for the isothermal
magma and ideal gas Euler shock tube test.

Nx ×Nt L2 error L2 order

40 × 30 28.5747 −
80 × 60 16.7343 0.772

160 × 120 10.6157 0.657
320 × 240 5.95713 0.834

CFL∆t ≈ 0.56, using interface flux (60) and primitive variable discretizations
for both fluids.

The test results for the solution at time t = 0.0075 s are presented in
Table 6 and convergence in the L2 norm is observed. In Figure 16 the in-
terface evolution and the level set profile at the final time are shown. It is
observed that the level set becomes distorted over time. The reason for this
behavior lies in the use of the global flow velocity for advecting the level set
and the problem can be fixed by reinitializing the level set every few time
steps. In Figure 17 the density, density zoom, velocity and pressure at the
final time are shown. It is observed that the solution shows significant over-
and undershoots near the expansion and shock waves. To remove these spu-
rious oscillations the HWENO slope limiter is used in combination with the
Krivodonova discontinuity detector ([30, 34]) and the results are shown in
Figure 18. The slope limiter significantly reduces the over- and undershoots,
but also causes a small offset error in the star region and a decrease in the
accuracy of the shock position. In Figure 19 the mass evolution of the magma
and the ideal gas is shown for the results without slope limiter. The mass
loss is less than 1%.

6.2. Helium cylinder - ideal gas shock interaction

To test the algorithm in a more complex setting computations are per-
formed on the interaction between a cylindrical helium volume in a tube
filled with an ideal gas and a Mach 1.22 shock wave [15, 23, 43, 69] as il-
lustrated in Figure 20. For the Euler equations this problem has no unique
solution, because the shock induces a Rayleigh-Taylor instability at the in-
terface, but it presents a challenging test case for the numerical algorithm.
The adiabatic indices and the gas constants for an ideal gas and helium are
given as γI = 1.4, RI = 287.0 J/kgK and γH = 1.67, RH = 2080.0 J/kgK.
Initially the helium volume is a cylinder with a radius 0.025m and is located
at (x, y) = (0m, 0m) while the shock is located at x = 0.055625m. The do-
main has dimensions [−0.11125m, 0.11125m]× [−0.0445m, 0.0445m]. Both

41

x

t

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

x

ψ

-4 -2 0 2 4
-6

-4

-2

0

2

4

6

Figure 16: The time evolution of the interface position and level set at time t = 0.0075 s
for the Euler magma - ideal gas shock tube using 320 background elements.

fluids are modelled using the two dimensional Euler equations. The initial
state of the helium, and the ideal gas in front and behind of the shock are
given as:

(ρB, uB, vB, pB) = (0.164062 kg/m3, 0 m/s, 0 m/s, 1.0× 105 Pa)

(ρL, uL, vL, pL) = (1.18902 kg/m3, 0 m/s, 0 m/s, 1.0× 105 Pa) (62)

(ρR, uR, vR, pR) = (1.63652 kg/m3,−114.473 m/s, 0 m/s, 1.5698× 105 Pa),

where the density of the helium is related to the density of the air in front
of the shock as ρB = ρLRI/RH . The shock velocity is VS = MaL =
418.628m/s, with aL =

√

γIpL/ρL = 343.138m/s. The states on both
sides of the shock wave are related through the Rankine-Hugoniot relations:

(ρR − ρL)VS = (ρRuR − ρLuL)

(ρRuR − ρLuL)VS = (ρRu
2
R − ρLu

2
L) + (pR − pL)

(ρRER − ρLEL)VS = uR(ρRER + pR)− uL(ρLEL + pL). (63)

Using the definition of the total energy, ρE = ρ(u2 + v2)/2 + ρe, and the
EOS for an ideal gas, ρe = p/(γI − 1), the Rankine-Hugoniot conditions can
be solved for ρR, uR and pR.

The cylindrical helium volume in this test acts as a divergent lens for
the shock wave. When the initial shock wave incidents the upstream bound-
ary of the helium volume, the shock is transmitted into the helium volume

42

x

ρ

-4 -2 0 2 4

0

100

200

300

400

500

600

x

ρ

0 1 2 3 4 5

0

10

20

30

40

x

u

-4 -2 0 2 4
-100

0

100

200

300

x

p

-4 -2 0 2 4

0

1E+06

2E+06

3E+06

4E+06

5E+06

Figure 17: The exact (black) and numerical (colored) density, density zoom, velocity
and pressure at time t = 0.0075 s for the Euler magma - ideal gas shock tube using 320
background elements.

43

x

ρ

-4 -2 0 2 4

0

100

200

300

400

500

600

x

ρ

0 1 2 3 4 5

0

10

20

30

40

x

u

-4 -2 0 2 4
-100

-50

0

50

100

150

200

250

300

350

x

p

-4 -2 0 2 4

0

1E+06

2E+06

3E+06

4E+06

5E+06

Figure 18: The exact (black) and numerical (colored) density, density zoom, velocity
and pressure at time t = 0.0075 s for the Euler magma - ideal gas shock tube using 320
background elements and with HWENO slope limiter.

44

t

R
el

at
iv

e
m

as
s

m
ag

m
a

0 0.002 0.004 0.006
0

0.0002

0.0004

0.0006

0.0008

t
R

el
at

iv
e

m
as

s
id

ea
lg

as
0 0.002 0.004 0.006

0

0.002

0.004

0.006

0.008

Figure 19: Relative mass error over time of magma (left) and ideal gas (right) for the
Euler magma - ideal gas shock tube using 320 background elements. The relative mass is
defined as |Me −Mh|/Me, with Me the exact and Mh the numerical amount of mass.

u
R

p
R

ρ
L

u
L

v
L

p
L

ρ
R

v
R

y
x

0.055625
0.11125

0.025

Helium Air

M=1.22

0.11125

0.025
0.0445

0.0445

p
B

v
B

u
B

ρ
B

Figure 20: Helium cylinder - shock interaction test

45

and accelerates due to the decrease in density, while the upstream bound-
ary of the helium volume is set into downstream motion and an expansion
wave is generated moving in the upstream direction. When the transmitted
shock incidents the downstream boundary of the helium volume, the shock is
transmitted and decelerates, while the downstream boundary of the helium
volume is set into downstream motion and another expansion wave is gener-
ated moving in the upstream direction. Over time the helium volume flattens
and is subsequently transformed into a vortex like structure. In addition, the
top wall adds to the complexity of the solution through a number of wave
reflections.

At the top, bottom and left boundaries solid wall boundary conditions
are imposed. At the right boundary the ideal gas state behind the shock is
imposed weakly by using it as the external state of the numerical flux. At
the helium - ideal gas interface continuity of the normal velocity and the
pressure is imposed and the numerical flux (60) is used. To account for the
dependence of the level set on the flow velocity the flow and level set are
updated twice during each time step. Because the solution is symmetric
with respect to the x-axis, computations are performed on the half domain
[−0.11125m, 0.11125m]×[0m, 0.0445m]. The simulations are run using 40×
8, 80×16, 160×32 and 320×64 elements from time t = 0 s to 3.125×10−4 s
at CFL ≈ 1.0 using linear basis functions for the flow field and the level set,
where the level set smoothing reconstructs a bilinear level set.

The density contours for subsequent times are shown in Figure 21. The
density at time t = 3.4375× 10−4 s for different mesh resolutions are shown
in Figure 22. The evolution of helium mass over time for different mesh
resolutions is shown in Figure 23 and is relatively small, ranging from 0.5−
2%. The evolution of the interface mesh is illustrated for 80 × 16 elements
in Figure 24. After the shock wave reflects off the left boundary it interacts
for a second time with the helium volume, this time causing breakup, as
illustrated in Figure 25. At this point level set deformations become too large
causing spurious bubbles to be generated. It is expected that this problem
can be solved by a post-processing of the level set in which spurious and very
small bubbles are detected and removed. The post-processing is a very crude
subgrid scale model that would solely aim to keep the algorithm robust and
stable. However, this concerns future work. Note that the Rayleigh-Taylor
instability will move into finer and finer scales which ultimately cannot be
resolved on a finite mesh.

46

x

y

-0.1 -0.05 0 0.05 0.10

0.01

0.02

0.03

0.04

ρ: 0.16 0.33 0.5 0.67 0.84 1.01 1.18 1.35 1.52 1.69 1.86 2.03 2.2

x

y

-0.1 -0.05 0 0.05 0.10

0.01

0.02

0.03

0.04

x

y

-0.1 -0.05 0 0.05 0.10

0.01

0.02

0.03

0.04

x

y

-0.1 -0.05 0 0.05 0.10

0.01

0.02

0.03

0.04

x

y

-0.1 -0.05 0 0.05 0.10

0.01

0.02

0.03

0.04

Figure 21: Density contours at times t = 0.625×10−4 s, 1.25×10−4 s, 1.875×10−4 s, 2.5×
10−4 s and 3.125× 10−4 s for the helium cylinder - ideal gas shock interaction test using
320× 64 elements.

47

x

y

-0.1 -0.05 0 0.05 0.10

0.01

0.02

0.03

0.04

x

y

-0.1 -0.05 0 0.05 0.10

0.01

0.02

0.03

0.04

x

y

-0.1 -0.05 0 0.05 0.10

0.01

0.02

0.03

0.04

x

y

-0.1 -0.05 0 0.05 0.10

0.01

0.02

0.03

0.04

Figure 22: Density contours at time t = 3.4375× 10−4 s for the helium cylinder - ideal gas
shock interaction test using 40× 8, 80× 16, 160× 32 and 320× 64 elements.

48

t

R
el

at
iv

e
h

el
iu

m
m

as
s

0 0.0001 0.0002 0.0003
-0.01

-0.005

0

0.005

0.01

0.015

0.02

Figure 23: Relative helium mass error over time for the helium cylinder - ideal gas shock
interaction test using 40× 8 (black), 80× 16 (blue), 160× 32 (green) and 320× 64 (red)
elements. The relative mass is defined as (Me −Mh)/Me, with Me the exact and Mh the
numerical amount of mass.

7. Discussion

A space-time discontinuous Galerkin finite element method for two-fluid
flows has been presented which combines aspects of front tracking and front
capturing methods with cut-cell mesh refinement and a STDG discretiza-
tion. It is anticipated that this scheme can accurately solve smaller scale
problems where the interface shape is of importance and where complex in-
terface physics are involved. Special attention has been paid to making the
scheme as generic as possible to allow for future implementations in higher di-
mensions. The STDG discretization ensures that the scheme is conservative
as long as the numerical fluxes are conservative. A merging procedure is used
to deal with small cells created by the cut-cell mesh refinement. Topologi-
cal changes such as merging and coalescence can be handled in the method
because of the level set.

The STDGFEM for two-fluid flows was applied to solve a magma - ideal
gas shock tube problem and the interaction between a helium cylinder and a
shock wave. An interface flux (60) was developed, which reduced oscillations
at the interface at the cost of a small mass loss.

Candidates for futher research are:

• Automation of the refinement procedure to allow 4D space-time appli-

49

Figure 24: Interface evolution for the helium cylinder - ideal gas shock interaction test
using 80× 16 elements.

50

x

y

-0.1 -0.08 -0.06 -0.04 -0.02

-0.04

-0.02

0

0.02

0.04
ρ: 0.25 0.6 0.95 1.3 1.65 2 2.35

x

y

-0.1 -0.08 -0.06 -0.04 -0.02

-0.04

-0.02

0

0.02

0.04

x

y

-0.1 -0.08 -0.06 -0.04 -0.02

-0.04

-0.02

0

0.02

0.04

x

y

-0.1 -0.08 -0.06 -0.04 -0.02

-0.04

-0.02

0

0.02

0.04

Figure 25: Density contours at times t = 5.0 × 10−4 s, 5.25 × 10−4 s, 5.5 × 10−4 s and
5.75 × 10−4 s for the helium cylinder - ideal gas shock interaction test using 80 × 32
elements.

51

cations. It is expected that such an automation will be valuable also
outside of the current context.

• Incorporation of surface tension and curvature by means of level set
methodology, including level set reinitialization.

• Incorporation of viscosity (Navier-Stokes equations).

• Improvement of performance using h-refinement and multigrid algo-
rithms.

• Applications involving the shallow water equations to simulate flooding
and drying [5, 10, 44, 58], two-phase flows [46] and other applications
[3, 59, 68]. Because of the methods’ flexibility in defining flow domains
with interfaces it is expected that valuable contributions are possible
in these fields.

Acknowledgments

The authors are kindly indebted to V.R. Ambati, A. Bell, L. Pesch and
S. Rhebergen for the valuable discussions, suggestions and support.

References

[1] D. Adalsteinsson, J.A. Sethian, A fast level set method for propagating
interfaces, J. Comp. Phys. 118 (1995) 269–277.

[2] H.T. Ahn, M. Shashkov, Adaptive moment-of-fluid method, J. Comp.
Phys. 228 (2009) 2792–2821.

[3] B. Akers, O. Bokhove, Hydraulic flow through a channel contraction:
Multiple steady states, Phys. Fluids 20 (2008) 056601.

[4] A.S. Almgren, J.B. Bell, P. Colella, T. Marthaler, A Cartesian grid
projection method for the incompressible Euler equations in complex
geometries, SIAM J. Sci. Comp. 18 (1997) 1289–1309.

[5] V.R. Ambati, O. Bokhove, Space-time discontinuous Galerkin discretiza-
tion of rotating shallow water equations, J. Comp. Phys. 225 (2007) 1233-
1261.

52

[6] V.R. Ambati, O. Bokhove, Space-time discontinuous Galerkin finite
element method for shallow water flows, J. Comp. Appl. Math. 204 (2007)
452-462.

[7] O. Bokhove, Numerical modeling of magma-repository interactions, Uni-
versity of Twente, 97 pp, (2001), http://eprints.eemcs.utwente.nl/.

[8] O. Bokhove, Decompressie van magma in opslagtunnels. Nederlands
Tijdschrift voor Natuurkunde 68 (2002) 232–235, English version:
http://eprints.eemcs.utwente.nl/.

[9] O. Bokhove, A.W. Woods, A. de Boer, Magma flow through elastic-walled
dikes, Theor. Comp. Fluid Dyn. 19 (2005) 261–286.

[10] O. Bokhove, Flooding and drying in finite-element Galerkin
discretizations of shallow-water equations. Part 1: One dimension, J. Sci.
Comp. 22 (2005) 47-82.

[11] B. Cockburn, G.E. Karniadakis, C.W. Shu, Discontinuous Galerkin
methods theory, computation and applications, Lecture Notes in
Computational Science and Engineering. Vol.11, Springer, Berlin, 2000.

[12] B.J. Daly, Numerical study of the effect of surface tension on interface
instablility, Phys. Fluids 12 (1969) 1340–1354.

[13] D. de Zeeuw, K.G. Powell, An adaptively refined Cartesian mesh solver
for the Euler equations, J. Comp. Phys. 104 (1993) 56–68.

[14] D.A. Edwards, H. Brenner, D.T. Wasan, Interfacial processes and
rheology. Butterworth-Heineman, Stoneham, 1991.

[15] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory
Eulerian apporach to interface in multimaterial flows (The ghost fluid
method), J. Comp. Phys. 152 (1999) 457–492.

[16] K.J. Fidkowski, D.L. Darmofal, A triangular cut-cell adaptive method
for high-order discretizations of the compressible Navier-Stokes equations,
J. Comp. Phys. 225 (2007) 1653–1672.

[17] M.J. Fritts, W. Cowley, H.E. Trease (eds.), The free Lagrange method,
Lect. Notes Phys. 238, Springer-Verlag, New York, 1985.

53

[18] D.E. Fyfe, E.S. Oran, M.J. Fritts, Surface tension and viscosity with
Lagrangian hydrodynamics on a triangular mesh, J. Comp. Phys. 76 (1988)
349–384.

[19] J. Glimm, J.W. Grove, X.-L. Li, K.-M. Shyue, Q. Zhang, Y. Zeng, Three-
dimensional front tracking, SIAM J. Sci. Comp. 19 (1998) 703–727.

[20] J. Glimm, J.W. Grove, X.-L. Li, N. Zhao, Simple front tracking,
Contemp. Math. 238 (1999) 133–149.

[21] J. Glimm, X.-L. Li, Y.-J. Liu, Z.-L. Xu, N, Zhao, Conservative front
tracking with improved accuracy, SIAM J. Num. Anal. 41-5 (2003) 1926–
1947.

[22] D.M. Greaves, Simulation of viscous water column collapse using
adapting hierarchial grids, Int. J. Num. Meth. Fluids 50 (2005) 693–711.

[23] J.-F. Haas, B. Sturtevant, Interaction of weak shock waves with
cylindrical and spherical gas inhomogeneities, J. Fluid Mech. 181 (1987)
41–76.

[24] F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surface, Phys. Fluids 8 (1965)
2182–2189.

[25] C.V. Hirt, B.D. Nichols, Volume of fluid (VOF) methods for the
dynamics of free boundaries, J. Comp. Phys. 39 (1981) 201–255.

[26] C. Hu, C.W.- Shu, A discontinuous Galerkin finite element method for
Hamilton-Jacobi equations, SIAM J. Sci. Comput. 21 (1999) 666–690.

[27] J.M. Hyman, Numerical methods for tracking interfaces, Physica D. 12
(1984) 396–407.

[28] C.M. Klaij, J.J.W. van der Vegt, H. van der Ven, Space-time
discontinuous Galerkin method for the compressible Navier-Stokes
equations, J. Comp. Phys. 217 (2006) 589–611.

[29] C.M. Klaij, J.J.W. van der Vegt, H. van der Ven, Pseudo-time stepping
methods for space-time discontinuous Galerkin discretizations of the
compressible Navier-Stokes equations, J. Comp. Phys. 219 (2006) 622–643.

54

[30] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, J.E. Flaherty,
Shock detection and limiting with discontinuous Galerkin methods for
hyperbolic conservation laws, Appl. Num. Math. 48 (2004) 323–338.

[31] D. Kröner, Numerical schemes for conservation laws, Wiley und
Teubner, Stuttgart, 1997.

[32] M. Kucharik, J. Limpouch, R. Liska, Laser plasma simulations by
Arbitrary Lagrangian Eulerian method, J. de Phys. 133 (2006) 167–169.

[33] R.J. LeVeque, K.-M. Shyue, Two-dimensional front tracking based on
high resolution wave propagation methods, J. Comp. Phys. 123 (1996)
354–368.

[34] H. Luo, J.D. Baum, R. Lohner, A Hermite WENO-based limiter for
discontinuous Galerkin method on unstructured grids, J. Comp. Phys. 225
(2007) 686–713.

[35] J. Magnaudet, M. Rivero, J. Fabre, Accelerated flows around a rigid
sphere or a spherical bubble. Part 1: Steady straining flow, J. Fluid Mech.
284 (1995) 97–135.

[36] S.J. Osher, J.A. Sethian, Fronts propagating with curvature dependent
speed: algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys.
79 (1988) 12–49.

[37] S.J. Osher, C.W. Shu, High-order essentially nonoscillatory schemes for
Hamilton-Jacobi equations, SIAM J. Num. Anal. 28 (1991) 907–922.

[38] J. Palaniappan, S.T. Miller, R.B. Haber, Sub-cell shock capturing and
spacetime discontinuity tracking for nonlinear conservation laws, Int. J.
Num. Meth. Fluids 57 (2008) 1115–1135.

[39] R.B. Pember, J.B. Bell, P. Colella, W.Y. Curtchfield, M.L. Welcome,
An adaptive Cartesian mesh method for unsteady compressible flow in
irregular regions, J. Comp. Phys. 120 (1995) 278-304.

[40] D. Peng, B. Merriman, S. Osher, H.K. Zhao, M. Kang, A PDE-Based
Fast Local Level Set Method, J. Comp. Phys. 155 (1999) 410–438.

55

[41] L. Pesch, A. Bell, W.E.H. Sollie, V.R. Ambati, O. Bokhove, J.J.W.
van der Vegt, hpGEM- A software framework for discontinuous Galerkin
finite element methods, ACM Transactions on Mathematical Software, 33
(2007).

[42] E.G. Puckett, J.S. Saltzman, A 3D adaptive mesh refinement algorithm
for interfacial gas dynamics, Physica D. 60 (1992) 84-93.

[43] J.X. Qiu, T.G. Liu, B.C. Khoo, Simulations of compressible two-medium
flow by runge-kutta discontinuous Galerkin methods with the ghost fluid
method, Commun. Comp. Phys. 3 (2008) 479–504.

[44] J.-F. Remacle, S.S. Frazao, X. Li, M.S. Shephard, An adaptive dis-
cretization of shallow-water equations based on discontinuous Galerkin
methods, Int. J. Num. Meth. Fluids 52 (2006) 903–923.

[45] S. Rhebergen, O. Bokhove, J.J.W. van der Vegt, Discontinuous Galerkin
finite element methods for hyperbolic nonconservative partial differential
equations, J. Comp. Phys. 227 (2008) 1887–1922.

[46] S. Rhebergen, O. Bokhove, J.J.W. van der Vegt, Discontinuous Galerkin
finite element method for shallow two-phase flows, Comp. Meth. Appl.
Mech. Engrg. 198 (2009) 819-830.

[47] R.D. Richtmyer, K.W. Morton, Difference methods for initial-value
problems, Inter-science, New york, 1967.

[48] J.M. Rudman, Volume-tracking methods for interfacial flow calculations,
Int. J. Num. Meth. Fluids 24 (1997) 671–691.

[49] G. Ryskin, L.G. Leal, Numerical solution of free-boundary problems in
fluid mechanics, Part 2: Buoyancy-driven motion of a gas bubble through
a quiescent liquid, J. Fluid Mech. 148 (1984) 19–35.

[50] R. Saurell, R. Abgrall, A simple method for compressible multifluid
flows, SIAM J. Sci. Comp. 21 (1999) 1115-1145.

[51] L.E. Scriven, Dynamics of a fluid interface, Chem. Eng. Sci. 12 (1960)
98–108.

[52] J.A. Sethian, Level set methods, Cambridge Univ. Press, 1996.

56

[53] J.A. Sethian, P. Smereka, Level set methods for fluid interfaces, Annu.
Rev. Fluid Mech. 35 (2003) 341–372.

[54] W.E.H. Sollie, Space-time discontinuous Galerkin finite element
method for two-fluid flows, PhD Thesis University of Twente (2010),
http://eprints.eemcs.utwente.nl/.

[55] J.J. Sudirham, J.J.W. van der Vegt, R.M.J. van Damme, Space-time
discontinuous Galerkin method for advection-diffusion problems on time-
dependent domains, Appl. Num. Math. 56 (2006) 1491–1518.

[56] M. Sussman, P. Smereka, S. Osher, A level set approach for computing
solutions to incompressible two-phase flow, J. Comp. Phys. 114 (1994)
146–159.

[57] M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid
method for computing 3D and axisymmetric incompressible two-phase
flows, J. Comp. Phys. 162 (2000) 301–337.

[58] P.A. Tassi, O. Bokhove, C.A. Vionnet, Space discontinuous Galerkin
method for shallow water flows-kinetic and HLLC flux, and potential
vorticity generation, Advances in Water Resources 30 (2007) 998–1015.

[59] P.A. Tassi, S. Rhebergen, C.A. Vionnet, O. Bokhove, A discontinuous
Galerkin finite element model for bed evolution under shallow flows, Comp.
Meth. Appl. Mech. Eng. 197 (2008) 2930-2947.

[60] G. Tryggvason, S.O. Unverdi, Computations of three-dimensional
Rayleigh-Taylor instability, Phys. Fluids 5 (1990) 656–659.

[61] P.G. Tucker, Z. Pan, A Cartesian cut element method for incompressible
viscous flow, Appl. Math. Modell. 24 (2000) 591–606.

[62] H.S. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp
interface Cartesian mesh method for simulating flows with complex moving
boundaries, J. Comp. Phys. 174 (2001) 345–380.

[63] A. Ungor, A. Sheffer, Pitching tents in space-time: mesh generation
for discontinuous Galerkin method, Int. J. Found. Comp. Sci. 13 (2002),
201–221.

57

[64] S.O. Unverdi, G. Tryggvason, Computations of multi-fluid flows, Physica
D. 60 (1992) 70–83.

[65] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous,
incompressible multi-fluid flows, J. Comp. Phys. 100 (1992) 25–37.

[66] J.J.W. van der Vegt, H. van der Ven, Space-time discontinuous
Galerkin finite element method with dynamic mesh motion for Inviscid
Compressible Flows, J. Comp. Phys. 182 (2002) 546–585.

[67] J.J.W. van der Vegt, Y. Xu, Space-time discontinuous Galerkin method
for nonlinear water waves, J. Comp. Phys. 224 (2007) 17–39.

[68] A.W. Vreman, M. Al-Tarazi, J.A.M. Kuipers, M. van Sint Annaland,
O. Bokhove, Supercritical shallow granular flow through a contraction:
experiment, theory and simulation, J. Fluid Mech. 578 (2007) 233-269.

[69] J. Wackers, B. Koren, A fully conservative model for compressible two-
fluid flow, Int. J. Num. Meth. Fluids 47 (2005) 1337–1343.

[70] A.W. Woods, S. Sparks, O. Bokhove, A.-M. Lejeune, C.B. Connor,
B.E. Hill, Modeling magma-drift interaction at the proposed high-level
radioactive waste repository at Yucca Mountain, Nevada, USA, Geophys.
Res. Lett. 29 (2002) 1641.

[71] A.W. Woods, O. Bokhove, A. de Boer, B.E. Hill, Compressible magma
flow in a two-dimensional elastic-walled dike, Earth Planet. Sci. Lett. 246
(2006) 241-250.

[72] G. Yang, D.M. Causon, D.M. Ingram, Calculation of compressible flows
about complex moving geometries using a three-dimensional Cartesian cut
element method, Int. J. Num. Meth. Fluids 33 (2000) 1121–1151.

[73] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy, An accurate Cartesian
grid method for viscous incompressible flows with complex immersed
boundaries, J. Comp. Phys. 156 (1999) 209–240.

[74] S.S. Young, J.L. White, E.S. Clark, Y. Oyanagi, A basic experimental
study of sandwich injection moulding with sequential injection, Pol. Eng.
Sci. 20 (1980) 798–804.

58

