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Abstract

A novel numerical method for two fluid flow computations is presented,
which combines the space-time discontinuous Galerkin finite element dis-
cretization with the level set method and cut-cell based interface tracking.
The space-time discontinuous Galerkin (STDG) finite element method of-
fers high accuracy, an inherent ability to handle discontinuities and a very
local stencil, making it relatively easy to combine with local hp-refinement.
The front tracking is incorporated via cut-cell mesh refinement to ensure a
sharp interface between the fluids. To compute the interface dynamics the
level set method (LSM) is used because of its ability to deal with merging
and breakup. Also, the LSM is easy to extend to higher dimensions. Small
cells arising from the cut-cell refinement are merged to improve the stability
and performance. The interface conditions are incorporated in the numerical
flux at the interface and the STDG discretization ensures that the scheme is
conservative as long as the numerical fluxes are conservative.
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1. Introduction

Fluid flows with interfaces involve combinations of gasses, liquids and
solids and have many applications in nature and industry. Examples include
flows with bubbles, droplets or solid particles, wave-structure interactions,
dam breaking, bed evolution, Rayleigh-Taylor and Kelvin-Helmholtz instabil-
ities and industrial processes such as bubble columns, fluidized beds, granular
flows and ink spraying. The flow patterns in these problems are complex and
diverse and can be approached at various levels of complexity. Often the
interface is not static but moves with the fluid flow velocity and in more
complex cases interface topological changes due to breakup and coalescence
processes may occur. Solutions often have a discontinuous character at the
interface between different fluids, due to surface tension and other effects.
In addition, the density and pressure differences across the interface can be
very high, like in the case of liquid-gas flows. Also, the existence of shock
or contact waves can introduce additional discontinuities into the problem.
Because of the continuous advances in computer technology the numerical
simulation of these problems is becoming increasingly affordable. However,
there are several issues related to solving flows with interfaces numerically.
These include issues regarding accuracy and conservation of the flow field
quantities near the interface, robustness and stability of the interface cou-
pling, complex geometries, unstructured mesh generation and motion, mesh
topological changes and computational efficiency. A numerical method which
has received much attention in recent years and which is especially suited for
dealing with flows with strong discontinuities and unstructured meshes is the
discontinuous Galerkin finite element method.

In this article a novel discontinuous Galerkin front tracking method for
two fluid flows is presented, which is accurate, versatile and can alleviate
some of the problems commonly encountered with existing methods. In order
to explain and motivate the choices made for the numerical method, first
the most important aspects of the space-time discontinuous Galerkin finite
element method are discussed. This is followed by a discussion of important
existing techniques for dealing with interfaces. Based on this discussion the
interface related choices in the method are explained. Finally, the research
objectives are stated.

For a complete survey of discontinuous Galerkin (DG) methods and their
applications, see [6]. The main feature of DG methods is that they allow solu-
tions to be discontinuous over element faces. The basis functions are defined
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locally on each element with only a weak coupling to neighboring elements.
The computational stencil is therefore very local; hence, DG methods are
relatively easy to combine with parallel computation and also hp-refinement,
where a combination of local mesh refinement (h-adaptation) and adjustment
of polynomial order (p-adaptation) is used. Another important property is
that DG discretizations are conservative. Near discontinuities higher order
DG solutions will exhibit spurious oscillations. These oscillations may be
removed by using slope limiting, shock fitting techniques or artificial dissi-
pation in combination with discontinuity detection. Recently, Luo et al. [33]
proposed the Hermite WENO limiter for DG methods, which uses Hermite
reconstruction polynomials to maintain a small stencil even for higher or-
der solutions. Krivodonova et al. [30] proposed a discontinuity detector for
DG methods for hyperbolic conservation laws based on a result of strong
superconvergence at the outflow boundary of each element. The disontinu-
ity detector is used to prevent activation of the slope limiter in a smooth
solution, which would otherwise reduce accuracy.

The space-time discontinuous Galerkin finite element method (STDG)
introduced by van der Vegt and van der Ven ([61]) is a space-time variant of
the DG method which is especially suited for handling dynamic mesh motions
in space-time (See also [4, 28, 51, 62]). It features a five-stage semi-implicit
Runge-Kutta scheme with coefficients optimized for stability in combination
with multigrid for accelerated convergence to solve the (non)linear algebraic
equations resulting from the DG discretization.

Many methods have been proposed for computing flows with interfaces
or, to be more general, fronts [47]. By looking at the front representation
in the mesh one can distinguish between front capturing and front track-
ing methods. Other methods exist, such as particle methods and boundary
integral methods, but these are not relevant for the current discussion.

In front capturing methods a regular stationary mesh is used and there
is no explicit front representation. Instead, the front is either described by
means of marker particles, like in the marker and cell method, or by use of
functions, such as in the volume of fluid and level set methods. The earliest
numerical method for time dependent free surface flow problems was the
marker and cell (MAC) method [9, 23]. Being a volume marker method it
uses tracers or marker particles defined in a fixed mesh to locate the phases.
However, the large number of markers required to obtain sufficient accuracy
makes the method expensive.

In the Volume of Fluid (VoF) method [24, 40, 46, 67] a fractional volume
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or color function is defined to indicate the fraction of a mesh element that
covers a particular type of fluid. Algorithms for volume tracking are designed
to solve the equation ∂c/∂t+∇̄·(cu) = 0, where c denotes the color function,
u the local velocity at the front, t the time and ∇̄ = (∂/∂x1, · · · , ∂/∂xd) the
spatial gradient operator in d-dimensional space. In the VoF method typi-
cally a reconstruction step is necessary to reproduce the interface geometry
from the color function. More accurate VoF techniques like the Piecewise
Linear Interface Construction (PLIC) method attempt to fit the interface
by means of piecewise linear segments. VoF methods are easy to extend to
higher dimensions and can be parallelized readily due to the local nature of
the scheme. Also, they can automatically handle reconnection and breakup.
Also, current VoF methods can conserve mass. However, VoF methods have
difficulty in maintaining sharp boundaries between different fluids, and inter-
faces tend to smear. In addition, these methods can give inaccurate results
when high interface curvatures occur. The computation of surface tension
is not straightforward and in addition spurious bubbles and drops may be
created. Recently, Greaves has combined the VoF method with Cartesian
cut-cells with adapting hierarchical quadtree grids [21, 22], which alleviates
some of these problems.

The Level Set Method (LSM) was introduced by Osher and Sethian in
[36] and further developed in [1, 48, 52]. For a survey, see [49]. In the LSM an
interface can be represented implicitly by means of the 0-level of a level set
function ψ(x, t). The evolution of the interface is found by solving the level
set equation ∂ψ/∂t + u · ∇̄ψ = 0, with u the interface velocity. To reduce
the computational costs a narrow band approach can be used, which limits
the computations of the level set to a thin region around the interface. To
enhance the level set accuracy it can be advected with the interface velocity,
which for this purpose is extended from the interface into the domain. In
case the level set becomes too distorted a reinitialization may be necessary.
Various reinitialization algorithms are available based on solving a Hamilton-
Jacobi partial differential equation [25, 37, 39]. Although the choice of the
level set function is somewhat arbitrary, the signed distance to the interface
tends to give the best accuracy in computing the curvature of the interface.
Also, the LSM is easy to extend to higher dimensions and can automatically
handle reconnection and breakup. The LSM, however, is not conservative
in itself. Recent developments include the combination of the VoF method
with the Level Set Method [53].

Front capturing methods have the advantage of a relatively simple for-
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mulation. The main drawback of these methods lies in the need for complex
interface shape restoration techniques, which often have problems in restoring
the smooth and continuous interface shape, particularly in higher dimensions.

In front tracking and Lagrangian methods the front is tracked explicitly
in the mesh. Front tracking was initially proposed in [43] and further devel-
oped in [16, 17, 18, 32, 35, 54, 59] and [60]. For a survey, see [26] and [44].
The evolution of the front is calculated by solving the equation ∂x/∂t = u at
the front, where x is a point at the front and u its velocity. Glimm et al. [19]
have combined front tracking with local grid based interface reconstruction
using interface crossings with element edges. More recently they have pro-
posed a fully conservative front tracking algorithm for systems of nonlinear
conservation laws in [20].

Front tracking methods are often combined with either surface markers
or cut-cells to define the location of the front. In the cut-cell method [3, 5,
7, 11, 27, 38, 41, 55, 56, 57, 58, 63, 64, 65] a Cartesian mesh is used for all
elements except those which are intersected by the front. These elements
are refined in such a way that the front coincides with the mesh. At a
distance from the front the mesh remains Cartesian and computations are
less expensive. A common problem with cut-cell methods is the creation
of very small elements which leads to problems with the stiffness of the
equations and causes numerical instability. One way to solve this problem is
by element merging as proposed in [66].

In Lagrangian or moving mesh methods [8, 10, 13, 14, 15, 34, 45] the
mesh is modified to follow the fluid. In these methods the mesh can become
considerably distorted, which gives problems with the mesh topology and
stretched elements. In the worst case, frequent remeshing may be necessary
([2, 31]). In cases of breakup and coalescence, where the interface topology
changes, these methods tend to fail.

Front tracking methods are good candidates for solving problems that
involve complex interface physics. They are robust and can reach high accu-
racy when the interface is represented using higher order polynomials, even
on coarse meshes. A drawback of front tracking methods is that they require
a significant effort to implement, especially in higher dimensions.

The numerical algorithm for two fluid flows presented here combines a
space-time discontinuous Galerkin (STDG) discretization of the flow field
with a cut-cell mesh refinement based interface tracking technique and a
level set method (LSM) for computing the interface dynamics. The STDG
discretization can handle interface discontinuities naturally, is conservative
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and has a very compact computational stencil. The level set method has the
benefit of a simple formulation which makes it easier to extend the method to
higher dimensions and also provides the ability to handle topological changes
automatically. The interface tracking serves to maintain a sharp interface
between the two fluids. This allows for different equations to be used for each
fluid, which are coupled at the interface by a numerical interface flux, based
on the interface condition. In addition, front tracking methods typically have
high accuracy. Cut-cell refinement is used since it has the benefit of being
local in nature and also is relatively easy to extend to higher dimensions.

The outline of this article is as follows. In Section 2 the flow and level set
equations are introduced. In Section 3 the background and refined meshes
are discussed and the mesh refinement procedure is presented. In Section
4 the flow and level set discretizations, and the Runge-Kutta semi-implicit
time integration method for the solution of the algebraic equations resulting
from the numerical discretization are discussed. In Section 5 the two fluid
algorithm is presented. Section 6 contains the final discussion and conclu-
sions. In part II [50] the numerical algorithm will be applied to a number of
model problems in two and three space-time dimensions.

2. Equations

2.1. Two fluid flow equations

Considered are flow problems involving two fluids as illustrated in Figure
1. The two fluids are separated in space-time by an interface S. Let i = 1, 2
denote the fluid index. Furthermore, let x = (t, x̄) = (x0, · · · , xd) denote
the space-time coordinates, with d the spatial dimension, x̄ = (x1, · · · , xd)
the spatial coordinates and t ∈ [t0, T ] the time coordinate, with t0 the initial
time and T the final time. The space-time flow domain for fluid i is defined
as E i ⊂ R

d+1. The (space) flow domain for fluid i at time t is defined as
Ωi(t) = {x̄ ∈ R

d|(t, x̄) ∈ E i}. The space-time domain boundary for fluid i,
∂E i is composed of the initial and final flow domains Ωi(t0) and Ωi(T ), the
interface S and the space boundaries Qi = {x ∈ ∂E i|t0 < t < T}. The two
fluid space-time flow domain is defined as E = ∪iE

i, the two fluid (space)
flow domain at time t as Ω(t) = ∪iΩ

i(t) and the two fluid space-time domain
boundary as ∂E = ∪i∂E

i. Let wi denote a vector of Nw flow variables for
fluid i. The bulk fluid dynamics for fluid i are assumed to be given as a
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Figure 1: An example two fluid flow problem in space-time. Here E i and Ωi(t) denote the
space-time and space flow domains for fluids i = 1, 2; and, S denotes the interface between
the two fluids in space-time.

system of conservation laws:

∂wi

∂t
+ ∇̄ · F i(wi) = 0, (1)

where ∇̄ = (∂/∂x1, . . . , ∂/∂xd) denotes the spatial gradient operator and
F i(wi) = (F i

1, · · · , F
i
d) the spatial flux tensor for fluid i with F i

j the j-th flux
vector and j = 1, · · · d. Reformulated in space-time (1) becomes:

∇ · F i(wi) = 0, with

F i(wi) = (wi, F i(wi)), (2)

and ∇ = (∂/∂t, ∇̄) the space-time gradient operator and F i(wi) the space-
time flux tensor. The flow variables are subject to initial conditions:

wi(0, x̄) = wi
0(x̄), (3)

boundary conditions:

wi(t, x̄) =Bi
B(wi,wi

b) on Qi/S (4)

with wi
b the prescribed boundary data at Qi, and interface conditions:

wi(t, x̄) =Bi
S(w1,w2) on S. (5)

Since the actual flow variables, fluxes and initial, boundary and interface
conditions are problem specific they shall be provided in part II [50] where
the test cases are discussed.
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2.2. Level set equation

To distinguish between the two fluids a level set function ψ(x) is used:

ψ(t, x̄) =











< 0 in Fluid 1

> 0 in Fluid 2

= 0 at the interface.

(6)

Initially, the level set function is defined as the minimum signed distance to
the interface:

ψ(t, x̄) = α inf
∀x̄S∈S(t)

‖x̄ − x̄S‖, (7)

where α = −1 in Fluid 1 and α = +1 in Fluid 2, x̄S denotes a point on the
interface S(t) and ‖.‖ is the Euclidian distance. The evolution of the level
set is determined by an advection equation:

∂ψ

∂t
+ ā · ∇̄ψ = 0, (8)

where ā = (a1, · · · , ad) is a vector containing the level set velocity, which will
be taken equal to the flow velocity. The level set function is subject to initial
conditions:

ψ(0, x̄) =ψ0(x̄), for x̄ ∈ Ω(t0). (9)

At the domain boundary the level set is subject to solid wall boundary con-
ditions:

ā(t, x̄) · n̄ =0, for (t, x̄) ∈ Q, (10)

where n̄ denotes the space outward unit normal vector at the domain bound-
ary.

3. Meshes

3.1. Two fluid mesh

To simplify computations, the two fluid domain is subdivided into a num-
ber of space-time slabs on which the equations are solved consecutively. In-
terval (t0, T ) is subdivided into Nt intervals In = (tn, tn+1), with t0 < t1 <
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Figure 2: Two fluid mesh.

· · · < tNt
= T and based on these intervals domains E i are subdivided into

space-time slabs Ii
n = {x ∈ E i|t ∈ In}. For every space-time slab Ii

n a tes-
sellation T i,n

h of non-overlapping space-time elements Ki,n
j ⊂ R

d+1 is defined:

T i,n
h =

{

Ki,n
j ⊂R

d+1|

N i
h

⋃

j=1

K̄i,n
j = Īi

n

and Ki,n
j

⋂

Ki,n
j′ = ∅ if j 6= j′, 1 ≤ j, j′ ≤ N i,n

h

}

(11)

with N i,n
h the number of space-time elements in the space-time slab Ii

n for
fluid i and where K̄i,n

j = Ki,n
j ∪ ∂Ki,n

j denotes the closure of the space-time

element. The tessellations T i,n
h will be referred to as the two fluid or re-

fined mesh (see Figure 2), since they will be constructed from a background
mesh by performing local mesh refinement. The tessellations T i,n

h define the
numerical interface Si,n

h as a collection of finite element faces. The numer-
ical interface is assumed to be geometrically identical in both tessellations,
S1,n

h = S2,n
h . Let Γi,n = Γi,n

I ∪ Γi,n
B ∪ Γn

S denote the set of all fluid i faces
Si,n

m , with Γi,n
I the set of internal faces, Γi,n

B the set of boundary faces, and
Γn

S the set of interfaces. Every internal face connects to exactly two elements
in T i,n

h , denoted as the left element Kl and the right element Kr. Every
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boundary face connects to one element in T i,n
h , denoted as the element Kl.

Every interface connects to one element from T 1,n
h and also to one element

from T 2,n
h .

The finite element space Bk
h(T i,n

h ) associated with the tessellation T i,n
h is

defined as:

Bk
h(T i,n

h ) = {w ∈ L2(E i
h) : w|K ◦GK ∈ P k(K̂), ∀K ∈ T i,n

h } (12)

with E i
h the discrete flow domain, L2(E i

h) the space of square integrable func-
tions on E i

h, and P k(K̂) the space of polynomials of degree at most k in the
reference element K̂. The mapping GKi,n

j
relates every element Ki,n

j to a

reference element K̂ ⊂ R
d+1:

GKi,n
j

: K̂ → Ki,n
j : ξ 7→ x =

N
i,n
F,j

∑

k=1

xk(K
i,n
j )χk(ξ) (13)

with N i,n
F,j the number of vertices and xk(K

i,n
j ) the coordinates of the vertices

of space-time element Ki,n
j . The finite element shape functions χk(ξ) are

defined on the reference element K̂, with ξ = (ξ0, · · · , ξd) the coordinates
in the reference element. Given a set of basis functions φ̂m defined on the
reference element, the basis functions φm : Ki,n

j → R are defined on the

space-time elements Ki,n
j ∈ T i,n

h by means of the mapping GKi,n
j

:

φm = φ̂m ◦G−1

Ki,n
j

. (14)

On the two fluid mesh the approximated flow variables are defined as:

wi
h(t, x̄)|Ki,n

j
=

∑

m

Ŵi
m(Ki,n

j )φm(t, x̄) (15)

with Ŵi
m the expansion coefficients of fluid i. Each element in the two fluid

mesh contains a single fluid. Therefore, in every element one set of flow
variables is defined. Because the basis functions are defined locally in every
element the space-time flow solution is discontinuous at the element faces.

3.2. Background mesh

In the construction of the two fluid mesh T n
h it was assumed that every

element contains exactly one fluid or equivalently that the interface is rep-
resented by a set of finite element faces. In order to define a mesh which
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satisfies this requirement, a level set function ψh is defined on a space-time
background mesh T n

b .
For every space-time slab In a tessellation T n

b of space-time elements
Kn

b,j̃
⊂ R

d+1 is defined:

T n
b =

{

Kn
b,j̃

⊂R
d+1|

Nb
⋃

j̃=1

K̄n
b,j̃

= Īn

andKn
b,j̃

⋂

Kn
b,j̃′

= ∅ if j̃ 6= j̃′, 1 ≤ j̃, j̃′ ≤ Nb

}

(16)

with Nb the number of space-time elements. The tessellation T n
b will be

referred to as the background mesh. In two and three space-time dimen-
sions the background mesh is composed of square and cube shaped elements,
respectively. The finite element space, mappings and basis functions are
identical to those defined for the refined mesh in Section 3.1 except when
dealing with the background mesh these will be denoted using a subscript
b. On the background mesh a discontinuous Galerkin approximation of the
level set is defined as:

ψh(t, x̄)|Kn

b,j̃
=

∑

m

Ψ̂m(Kn
b,j̃

)φm(t, x̄), (17)

with Ψ̂m the level set expansion coefficients. A discontinuous Galerkin dis-
cretization is used because the level set is advected with the flow velocity
and will develop discontinuities in the vicinity of shock waves. In addition, a
discontinuous Galerkin approximation of the level set velocity is defined as:

āh(t, x̄)|Kn

b,j̃
=

∑

m

Âm(Kn
b,j̃

)φm(t, x̄), (18)

3.3. Mesh refinement

After solving the level set equation the interface shape and position are
approximately known from the 0-level set. In order to define a mesh for two
fluid flow computations, the background mesh is refined by means of cut-cell
mesh refinement. In the refined mesh the interface is represented by a set of
faces on which the level set value is approximately zero.

The discontinuous nature of the level set approximation is not desirable
for the mesh refinement, since it can result in hanging nodes. Hence the level
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Algorithm 1 Mesh refinement algorithm.

FOR every element Kn
b,j̃

in T n
b DO

Calculate intersection of 0-level set ψc = 0 with Kn
b,j̃

Select refinement rule
Create and store interface physical nodes xI

FOR all child elements ĵ defined by the refinement rule DO

Create Ki,n

h,ĵ
and store in T i,n

h

END DO
END DO

Generate faces for T i,n
h

FOR every element Ki,n
h,j in T i,n

h

Initialize data on Ki,n
h,j

END DO

set is smoothed before performing the mesh refinement. Assuming computa-
tions have reached time slab In the level set approximation ψh is smoothed
by first looping over all elements in In and storing the multiplicity and the
sum of the values of ψh in each vertex. For every vertex in In the continuous
level set value ψc

h is calculated by dividing the sum of the ψh values by the
vertex multiplicity. In every background element in In, ψh is then reinitial-
ized using the ψc

h values in the element vertices. To ensure continuity of the
mesh only the values of the level set in the background elements belonging
to the previous time slab In−1 are used at the faces between the previous
and the current time slab.

The mesh refinement algorithm is defined in Algorithm 1. The algorithm
consists of a global element refinement step, in which all the elements of the
background mesh are refined consecutively according to a set of refinement
rules. The refinement rules define how a single element will be refined given
an intersection with a 0-level set. The global refinement step is followed by a
face generation step to create the connectivity between the refined elements.
The face generation is straightforward and will not be discussed.

Given a smoothed level set, the element refinement is executed separately
for each background element. For a given background element, it is first
checked if the element contains more than one fluid by evaluating the level
set at each vertex of the element. If the level set has the same sign in every
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vertex, the element can contain only one fluid and it is copied directly to
the refined mesh T n

h . Alternatively, the type of cut is determined from the
level set signs. Depending on the cut type, the element is refined, based
on a predefined element refinement rule for that type and the actual cut
coordinates. The resulting elements are stored in T n

h . The element refinement
rules have been designed such that for two neighboring elements the shared
face is refined identically at both sides. Hence, no hanging nodes will occur
in the refined mesh. The interface cut coordinates xI for an edge cut by the
interface are calculated as:

xI =
xAψh(xB) − xBψh(xA)

ψh(xA) − ψh(xB)
, (19)

where xA and xB denote the coordinates of the edge vertices. For simplicity it
is assumed that the level set is non-zero and can only be positive or negative
in the vertices.

Because the refinement type is only based on the level set signs in the
background element vertices, in cases where more than one interface inter-
sects an element an ambiguity will occur where exactly the interface lies and
the refinement rule will give rise to elements for which the fluid type is am-
biguous. However, the fluid types of these elements can easily be found by
computing the level set signs in the element midpoints.

The mesh refinement algorithm allows for freedom in choosing the element
refinement rules. However, to avoid difficulties with face integration the
refined mesh should have full connectivity. Element refinement rules have
been developed for two and three dimensions, similar to [19], which will be
discussed now.

3.4. 2D Refinement

Considered is a 2D background mesh containing only square elements. In
order to define the 2D mesh refinement, first the symmetries of the square
are introduced, followed by a discussion of all the relevant types of cuts in 2D
and the introduction of a set of base types. Next, the square permutations
are applied to the base types to find for each cut type the base type and
the permutation which maps the base type to the cut type. Finally, the
actual refinement rules are defined for each of the base types. In the mesh
refinement algorithm, the refinement rule for a given cut type is obtained by
permuting the element refinement rule of the base type to the given cut type.
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Figure 3: Vertex and edge numbering and nodal coordinates for the reference square.

Table 1: Square symmetries.
index disjoint cycles relation notation Comment
0 (0)(1)(2)(3) {0, 1, 2, 3} Identity
1 (0132) {1, 3, 0, 2} 90◦ right rotation
2 (03)(12) {3, 2, 1, 0} 180◦ right rotation
3 (0231) {2, 0, 3, 1} 270◦ right rotation
4 (02)(13) {2, 3, 0, 1} Reflection x-axis
5 (01)(23) {1, 0, 3, 2} Reflection y-axis
6 (03)(1)(2) {3, 1, 2, 0} Reflection diagonal
7 (12)(0)(3) {0, 2, 1, 3} Reflection diagonal

3.4.1. Square symmetries

The vertices and edges of the reference square are numbered using Local
Node Indices (LNI) as shown in Figure 3. A square has a total of 8 symme-
tries usually referred to as the dihedral group D4. Of these 4 are rotational
symmetries and 4 are reflection symmetries. To describe the permutations
there are two main notations, firstly as a decomposition in a product of dis-
joint cycles and secondly in relation notation. For example, in performing
a counter clockwise rotation by 90 degrees, vertex 0 will move to vertex 1,
vertex 1 to vertex 3, vertex 3 to vertex 2 and vertex 2 to vertex 0. In a decom-
position in a product of disjoint cycles this is denoted as (0132). In relation
notation it is denoted as {1, 3, 0, 2}, where the index into the array gives the
’from’ vertex and the value gives the ’to’ vertex. The square symmetries are
defined in Table 1. Here, permutation 0 describes the identity, permutations
1 − 3 describe rotations and permutations 4 − 7 describe reflections.

In the refinement algorithm permutations are needed not only of the
vertices but also of nodes lying on edges. For this purpose the edge midpoints
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Algorithm 2 Algorithm to determine edge permutation.

Given an edge with index i on the reference square
Get the vertex indices of the two edge vertices
Determine the permutation of the vertex indices
Find the index of the permuted edge from the permuted vertex indices

Table 2: Binary codes of the 2D base types. Each code represents a combination of level
set signs for each of the 4 background element vertices, where a negative (positive) level
set sign is represented by a 0 (1).

index binary
code

number

0 0111 7
1 0011 3
2 0110 6

are numbered from 4 to 7, ordered in the same way as the edges. Given the
index of the edge, the index of the edge midpoint is found by adding 4, the
number of vertices of the square. Hence, the permutation of an edge midpoint
is found directly from the permutation of the edge. The permutation of an
edge is found by looking at the permutations of its vertices. The algorithm
is given in Algorithm 2. As an example, when applying permutation 1 to the
edge 0, first the edge vertices are retrieved, in this case 0 and 1. Permuting
these vertices gives permuted edge vertices 1 and 3; hence, the permuted
edge is 2.

3.4.2. 2D base types

The classification of the 2D cuts is based on the values of the level set
in the four vertices of the square. Each type is defined as a series of four
signs corresponding to the level set signs in the four vertices. For example
one type is defined by − − ++. Switching to a binary representation with
− and + corresponding to 0 and 1, respectively, we can assign the number
0011 = 3. Since a square has 4 vertices, there are 24 = 16 possibilities.
In two-dimensional space-time three refinement types have been defined as
given in Table 2. In Figure 4 the signs of the level set in each vertex for
every type are shown. In Figure 5 the corresponding cuts are shown, where
for simplicity the interface cuts at the edges midpoints only. For Type 2

15
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Figure 4: The vertex level set signs for the 2D base types.

two types of interface cuts are possible. The refinement rule will be able to
handle both possibilities.

3.4.3. 2D base type permutations

The symmetries of the square are applied to the base cut types to find for
each cut type the base type and the permutation from the base type to the
cut type. For simplification, the sign of the level set in vertex 0 is assumed
to be − (0), meaning that the cut types need to be explicitly defined only
for the indices 0 − 7. To calculate the cut type for an index in the range
8 − 15 the index value only has to be subtracted from the number 15. In
Table 3 the base type is given for each cut type, based on the index of the
cut type. The algorithm used to fill the table is given in Algorithm 3. Due to
symmetries in the base types, different permutations can give equal results;
hence, the permutation index is not necessarily uniquely defined.

3.4.4. 2D base type refinement

The element refinements for the 2D base types are shown in Figure 6 and
the element refinements are given in Table 4. The algorithm to determine
the element refinements given a level set configuration on a reference square
is defined in Algorithm 4.
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Figure 5: The interface cuts for the 2D base types. For type 2 two interface cuts are
possible, which are both supported by the type 2 element refinement rule.

Table 3: 2D base types corresponding to cut type indices 0 − 15.
index base

type
index base

type
0 No cut 8 Type 0
1 Type 0 9 Type 2
2 Type 0 10 Type 1
3 Type 1 11 Type 0
4 Type 0 12 Type 1
5 Type 1 13 Type 0
6 Type 2 14 Type 0
7 Type 0 15 No cut
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Algorithm 3 Algorithm for filling the permutation lookup table.

Initialize permVec[8] of [type index, perm index] with [-1,-1]
FOR type index i from 0 to 3 DO

FOR permutation index j from 0 to 7 DO
Determine permutation j of cut type i
Calculate index k of the permuted type
Store [i,j] in permVec[k]

END DO
END DO

2 3

10

5

4 (0)

2 3

10

5 6

(1)
2 3

10

5 6

4

7

(2)

Figure 6: The element refinements for the 2D base types.
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Table 4: 2D base type element refinements.
Type
index

Child
index

Child LNI Fluid
type

0 0 {0, 4, 5} 0
1 {4, 1, 3} 1
2 {5, 3, 2} 1
3 {5, 4, 3} 1

1 0 {0, 1, 5, 6} 0
1 {5, 6, 2, 3} 1

2 0 {0, 4, 5} 0
1 {4, 1, 6} 1
2 {6, 3, 7} 1
3 {7, 2, 5} 0
4 {5, 4, 7, 6} 0 or 1

Algorithm 4 Algorithm for determining element refinements.

Calculate index i for level set configuration
get base type from permVec[i]
IF base type does not equal −1 (unhandled type)

FOR all child elements j DO
FOR all local node indices k of child element j DO

IF (k < 4) (square vertex)
Get permutation index l from permVec[i]
Determine permuted local node index k′ of node k

ELSE IF (4 < k < 8) (edge midpoint)
Calculate edge index e = k − 4
Find permuted edge index e′

Calculate permuted local node index k′ = e′ + 4
END IF
Store k′ as local node index of permuted child element j

END DO
END DO

END IF
Return permuted child elements local node indices
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Figure 7: Vertex and edge numbering and nodal coordinates for the reference cube.

3.5. 3D Refinement

Considered is a 3D background mesh containing only cubical elements.
In order to define the 3D refinement, first the symmetries of the cube are
introduced, followed by a discussion of all the relevant types of cuts in 3D
and the introduction of the 3D base types. Next, the cube permutations are
applied to the base types to find for each cut type the base type and the
permutation which maps the base type to the cut type. Finally, the actual
refinement rules are defined for each of the base types.

3.5.1. Cube symmetries

The vertices and edges of the reference cube are numbered as shown in
Figure 7. A cube has a total of 48 symmetries which are usually referred
to as octahedral symmetries, since the symmetries of the cube are the same
as those of its dual, the octahedron. Of these 24 are rotational symmetries
which are orientation preserving. The remaining 24 are combinations of
rotations and reflections. The cube symmetries are defined in Table 5. Here,
permutation 0 describes the identity permutation, permutations 1−6 describe
a 90 degree rotation around the axis from the face center to the opposite face
center, permutations 7−9 describe 180 degree rotation around the axis from
the face center to the opposite face center, permutations 10−15 describe 180
degree rotation around the axis from the edge center to the opposite edge
center and permutations 16−23 describe 120 degree rotation around a body
diagonal. Permutations 24 − 47 are defined by taking permutations 0 − 23
and applying inversion (07)(16)(25)(34). Similarly to what was done in the
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Table 5: Octahedral symmetries.
index disjoint cycles relation notation Comment
0 (0)(1)(2)(3)(4)(5)(6)(7) {0, 1, 2, 3, 4, 5, 6, 7} Identity
1 (0132)(4576) {1, 3, 0, 2, 5, 7, 4, 6} 90◦ rotation z-axis
2 (0231)(4675) {2, 0, 3, 1, 6, 4, 7, 5} 90◦ rotation z-axis
3 (0462)(1573) {4, 5, 0, 1, 6, 7, 2, 3} 90◦ rotation x-axis
4 (0264)(1375) {2, 3, 6, 7, 0, 1, 4, 5} 90◦ rotation x-axis
5 (0154)(2376) {1, 5, 3, 7, 0, 4, 2, 6} 90◦ rotation y-axis
6 (0451)(2673) {4, 0, 6, 2, 5, 1, 7, 3} 90◦ rotation y-axis
7 (03)(12)(47)(56) {3, 2, 1, 0, 7, 6, 5, 4} 180◦ rotation z-axis
8 (06)(24)(17)(35) {6, 7, 4, 5, 2, 3, 0, 1} 180◦ rotation x-axis
9 (05)(14)(27)(36) {5, 4, 7, 6, 1, 0, 3, 2} 180◦ rotation y-axis
10 (01)(25)(34)(67) {1, 0, 5, 4, 3, 2, 7, 6} 180◦ rotation {0, 1}, {6, 7} midpoints
11 (02)(16)(34)(57) {2, 6, 0, 4, 3, 7, 1, 5} 180◦ rotation {0, 2}, {5, 7} midpoints
12 (07)(13)(25)(46) {7, 3, 5, 1, 6, 2, 4, 0} 180◦ rotation {1, 3}, {4, 6} midpoints
13 (07)(16)(23)(45) {7, 6, 3, 2, 5, 4, 1, 0} 180◦ rotation {2, 3}, {4, 5} midpoints
14 (04)(16)(25)(37) {4, 6, 5, 7, 0, 2, 1, 3} 180◦ rotation {0, 4}, {3, 7} midpoints
15 (07)(15)(26)(34) {7, 5, 6, 4, 3, 1, 2, 0} 180◦ rotation {1, 5}, {2, 6} midpoints
16 (0)(7)(142)(356) {0, 4, 1, 5, 2, 6, 3, 7} 120◦ rotation body diagonal {0, 7}
17 (0)(7)(124)(365) {0, 2, 4, 6, 1, 3, 5, 7} 120◦ rotation body diagonal {0, 7}
18 (1)(6)(053)(247) {5, 1, 4, 0, 7, 3, 6, 2} 120◦ rotation body diagonal {1, 6}
19 (1)(6)(035)(274) {3, 1, 7, 5, 2, 0, 6, 4} 120◦ rotation body diagonal {1, 6}
20 (2)(5)(063)(147) {6, 4, 2, 0, 7, 5, 3, 1} 120◦ rotation body diagonal {2, 5}
21 (2)(5)(036)(174) {3, 7, 2, 6, 1, 5, 0, 4} 120◦ rotation body diagonal {2, 5}
22 (3)(4)(056)(172) {5, 7, 1, 3, 4, 6, 0, 2} 120◦ rotation body diagonal {3, 4}
23 (3)(4)(065)(127) {6, 2, 7, 3, 4, 0, 5, 1} 120◦ rotation body diagonal {3, 4}
24 (07)(16)(25)(34) {7, 6, 5, 4, 3, 2, 1, 0} Inversion ((07)(16)(25)(34))
25 (0635)(1427) {6, 4, 7, 5, 2, 0, 3, 1} 90◦ rotation + Inversion
26 (0536)(1724) {5, 7, 4, 6, 1, 3, 0, 2}
27 (0365)(1274) {3, 2, 7, 6, 1, 0, 5, 4}
28 (0563)(1472) {5, 4, 1, 0, 7, 6, 3, 2}
29 (0653)(1247) {6, 2, 4, 0, 7, 3, 5, 1}
30 (0356)(1742) {3, 7, 1, 5, 2, 6, 0, 4}
31 (04)(15)(26)(37) {4, 5, 6, 7, 0, 1, 2, 3} 180◦ rotation + Inversion
32 (01)(23)(45)(67) {1, 0, 3, 2, 5, 4, 7, 6}
33 (02)(13)(46)(57) {2, 3, 0, 1, 6, 7, 4, 5}
34 (06)(17)(2)(3)(4)(5) {6, 7, 2, 3, 4, 5, 0, 1} 180◦ rotation edge + Inversion
35 (05)(1)(27)(3)(4)(6) {5, 1, 7, 3, 4, 0, 6, 2}
36 (0)(14)(2)(36)(5)(7) {0, 4, 2, 6, 1, 5, 3, 7}
37 (0)(1)(24)(35)(6)(7) {0, 1, 4, 5, 2, 3, 6, 7}
38 (03)(1)(2)(47)(5)(6) {3, 1, 2, 0, 7, 5, 6, 4}
39 (0)(12)(3)(4)(56)(7) {0, 2, 1, 3, 4, 6, 5, 7}
40 (07)(132645) {7, 3, 6, 2, 5, 1, 4, 0} 120◦ rotation body diagonal
41 (07)(154623) {7, 5, 3, 1, 6, 4, 2, 0} + Inversion
42 (023754)(16) {2, 6, 3, 7, 0, 4, 1, 5}
43 (045732)(16) {4, 6, 0, 2, 5, 7, 1, 3}
44 (013764)(25) {1, 3, 5, 7, 0, 2, 4, 6}
45 (046731)(25) {4, 0, 5, 1, 6, 2, 7, 3}
46 (026751)(34) {2, 0, 6, 4, 3, 1, 7, 5}
47 (015762)(34) {1, 5, 0, 4, 3, 7, 2, 6}
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Table 6: Binary codes of the 3D base types. Each code represents a combination of level
set signs for each of the 8 background element vertices, where a negative (positive) level
set sign is represented by a 0 (1).

index binary
code

number index binary
code

number

0 00100000 32 7 00100100 36
1 00100010 34 8 01100100 100
2 10100010 162 9 10100101 165
3 10101010 170 10 00101101 45
4 10110010 178 11 00101001 41
5 10100011 163 12 01101001 105
6 00101000 40

2D refinement using Algorithm 2, the edge midpoints are numbered from 8
to 19 and the index of the edge midpoint is found by adding 8, the number
of vertices of the cube, to the index of the edge.

3.5.2. 3D base types

Like in the 2D refinement, the 3D types are classified based on the values
of the level set in the vertices. Thirteen configurations were identified, and
these are given in Table 6. In Figure 8 the signs of the level set in each vertex
for every base type are shown. In Figure 9 the corresponding cuts are shown,
where for simplicity the interface cuts at the edges midpoints only. It should
be noted that level set configurations 6−12 allow for multiple interface cuts.
This ambiguity is solved by making sure that for each level set configuration
the element refinement rule is such that also multiple element cuts can be
handled.

3.5.3. 3D base type permutations

The cube permutations are applied to the thirteen types of cuts to find the
cut types permutations. In Figure 10 an example is shown of a permutation
of the type 0 cut. To calculate the cut type for an index in the range 128−255
the index value only has to be subtracted from the number 255. In the Table
7 the cut types for indices 0− 127 are given. The number of permuted cases
for every type are given in Table 8. In the implementation a lookup table
is used of size 256 which stores the type index (0 − 12) of the cut and a
permutation index (0 − 47) from that base type. The algorithm used to fill
the table is Algorithm 3, adapted to 3D.
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Figure 8: The vertex level set signs for the 3D base types.
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Figure 9: The interface cuts for the 3D base types. For types 6 − 12 the level set config-
uration allows for alternative cuts not shown here, which are supported by the element
refinement rule for that type.
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Table 7: 3D base types corresponding to cut type indices 0 − 127.
index base

type
index base

type
index base

type
0 No cut 43 Type 4 86 Type 10
1 Type 0 44 Type 8 87 Type 2
2 Type 0 45 Type 10 88 Type 8
3 Type 1 46 Type 5 89 Type 10
4 Type 0 47 Type 2 90 Type 9
5 Type 1 48 Type 1 91 Type 8
6 Type 6 49 Type 2 92 Type 5
7 Type 2 50 Type 2 93 Type 2
8 Type 0 51 Type 3 94 Type 8
9 Type 6 52 Type 8 95 Type 1
10 Type 1 53 Type 5 96 Type 6
11 Type 2 54 Type 10 97 Type 11
12 Type 1 55 Type 2 98 Type 8
13 Type 2 56 Type 8 99 Type 10
14 Type 2 57 Type 10 100 Type 8
15 Type 3 58 Type 5 101 Type 10
16 Type 0 59 Type 2 102 Type 9
17 Type 1 60 Type 9 103 Type 8
18 Type 6 61 Type 8 104 Type 11
19 Type 2 62 Type 8 105 Type 12
20 Type 6 63 Type 1 106 Type 10
21 Type 2 64 Type 0 107 Type 11
22 Type 11 65 Type 6 108 Type 10
23 Type 4 66 Type 7 109 Type 11
24 Type 7 67 Type 8 110 Type 8
25 Type 8 68 Type 1 111 Type 6
26 Type 8 69 Type 2 112 Type 2
27 Type 5 70 Type 8 113 Type 4
28 Type 8 71 Type 5 114 Type 5
29 Type 5 72 Type 6 115 Type 2
30 Type 10 73 Type 11 116 Type 5
31 Type 2 74 Type 8 117 Type 2
32 Type 0 75 Type 10 118 Type 8
33 Type 6 76 Type 2 119 Type 1
34 Type 1 77 Type 4 120 Type 10
35 Type 2 78 Type 5 121 Type 11
36 Type 7 79 Type 2 122 Type 8
37 Type 8 80 Type 1 123 Type 6
38 Type 8 81 Type 2 124 Type 8
39 Type 5 82 Type 8 125 Type 6
40 Type 6 83 Type 5 126 Type 7
41 Type 11 84 Type 2 127 Type 0
42 Type 2 85 Type 3
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Figure 10: An example of a 3D permutation.

Table 8: Number of permutations for the 3D base types.
type number of cases type number of cases
0 8 7 4
1 12 8 24
2 24 9 3
3 3 10 12
4 4 11 8
5 12 12 1
6 12
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3.5.4. 3D base type refinement

In order to define the element refinement of the 13 base types, first a sur-
face refinement is defined, which is based on the 2D refinements illustrated
in Figure 6. The surface refinements are shown in Figure 11. Element re-
finements have been manually devised based on the surface refinements. The
element refinements for the 13 base types are given in Tables 9 and 10. In
some of the refinements an additional node is used, which is located at the
interface center and has LNI 20. To determine the element refinements given
a level set configuration on a reference cube Algorithm 4 is used, adapted to
3D.

3.6. Merging

The occurrence of small elements in the refined mesh tends to cause nu-
merical stability and performance problems. To solve these problems an
element merging procedure was developed.

Let Ki,n
k , k = 0, · · · , Nĵ denote a collection of elements which need be

merged, determined by means of a merging strategy to be discussed later.
The merged element Ki,n

m,ĵ
is defined as:

Ki,n

m,ĵ
=

N
ĵ

⋃

k=0

Ki,n
k . (20)

For each merged element Ki,n

m,ĵ
the minimum and maximum bounding points

xmin

ĵ
and xmax

ĵ
are defined componentwise as:

xmin

ĵ,l
= min

∀x∈Ki,n

m,ĵ

xl, l = 0, . . . , d

xmax

ĵ,l
= max

∀x∈Ki,n

m,ĵ

xl, l = 0, . . . , d, (21)

with d the space dimension. Let xmin
j̃

and xmax
j̃

denote the minimum and

maximum bounding points of background element Kn
b,j̃

. It is assumed that all

background mesh elements are of equal size and shape; hence, xmax
j̃

−xmin
j̃

=

hb,j̃ = hb = constant. For each merged element the minimum and maximum
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Figure 11: The surface refinements for the 3D base types.
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Table 9: Element refinements for 3D base types.
Type

in-

dex

Child

in-

dex

Child LNI Fluid

type

Type

in-

dex

Child

in-

dex

Child LNI Fluid

type

0 0 {11, 1, 3, 5, 7} 0 10 {7, 15, 18, 20} 1

1 {9, 0, 1, 4, 5} 0 11 {3, 1, 15, 20} 0

2 {1, 5, 9, 11} 0 12 {5, 18, 1, 20} 0

3 {2, 9, 11, 14} 1 13 {18, 15, 1, 20} 0

4 {14, 4, 5, 6, 7} 0 14 {2, 11, 6, 20} 1

5 {4, 5, 9, 14} 0 15 {3, 15, 11, 20} 0

6 {5, 7, 11, 14} 0 16 {7, 6, 15, 20} 1

7 {5, 9, 11, 14} 0 17 {11, 15, 6, 20} 1

1 0 {0, 1, 9, 4, 5, 17} 0 18 {20, 7, 18, 6, 17} 1

1 {1, 3, 11, 5, 7, 19} 0 19 {20, 18, 5, 17, 4} 0

2 {1, 11, 9, 5, 19, 17} 0 6 0 {1, 11, 9, 20} 0

3 {2, 9, 11, 6, 17, 19} 1 1 {1, 3, 11, 20} 0

2 0 {20, 8, 1, 11, 3} 0 2 {20, 9, 14, 12, 17} 0 or 1

1 {20, 0, 8, 2, 11} 1 3 {5, 1, 16, 20} 0

2 {4, 12, 17, 20} 0 4 {12, 16, 1, 20} 0

3 {12, 0, 2, 20} 1 5 {20, 5, 7, 1, 3} 0

4 {6, 17, 2, 20} 1 6 {3, 7, 11, 20} 0

5 {12, 2, 17, 20} 1 7 {14, 11, 7, 20} 0

6 {12, 8, 0, 20} 1 8 {5, 16, 7, 20} 0

7 {8, 5, 1, 20} 0 9 {16, 17, 7, 20} 0

8 {12, 5, 8, 20} 0 10 {9, 14, 11, 2} 1

9 {4, 5, 12, 20} 0 11 {9, 11, 14, 20} 0 or 1

10 {20, 1, 5, 3, 7} 0 12 {12, 16, 17, 4} 1

11 {20, 2, 11, 6, 19} 1 13 {12, 17, 16, 20} 0 or 1

12 {20, 11, 3, 19, 7} 0 14 {7, 14, 17, 6} 0

13 {17, 5, 4, 20} 0 15 {7, 17, 14, 20} 0

14 {19, 7, 5, 20} 0 16 {1, 12, 9, 0} 0

15 {6, 19, 17, 20} 1 17 {1, 9, 12, 20} 0

16 {17, 19, 5, 20} 0 7 0 {0, 1, 9, 20} 0

3 0 {0, 8, 2, 11, 4, 16, 6, 19} 1 1 {1, 11, 9, 20} 0

1 {8, 1, 11, 3, 16, 5, 19, 7} 0 2 {1, 3, 11, 20} 0

4 0 {0, 8, 2, 12} 1 3 {0, 9, 4, 20} 0

1 {1, 8, 5, 10} 0 4 {9, 14, 4, 20} 0

2 {2, 10, 3, 15} 1 5 {14, 6, 4, 20} 0

3 {2, 6, 17, 19} 1 6 {0, 1, 13, 20} 0

4 {2, 19, 15, 8, 10} 1 7 {13, 16, 0, 20} 0

5 {2, 17, 19, 12, 8} 1 8 {4, 0, 16, 20} 0

6 {4, 5, 12, 17} 0 9 {1, 13, 3, 20} 0

7 {5, 7, 15, 19} 0 10 {18, 3, 13, 20} 0

8 {5, 8, 10, 19, 15} 0 11 {7, 3, 18, 20} 0

9 {5, 12, 8, 17, 19} 0 12 {3, 11, 7, 20} 0

5 0 {20, 0, 8, 2, 11} 1 13 {6, 7, 14, 20} 0

1 {20, 8, 1, 11} 0 14 {14, 7, 11, 20} 0

2 {0, 2, 12, 20} 1 15 {4, 6, 16, 20} 0

3 {6, 17, 2, 20} 1 16 {16, 6, 18, 20} 0

4 {4, 12, 17, 20} 0 17 {18, 6, 7, 20} 0

5 {12, 2, 17, 20} 1 18 {9, 11, 14, 20} 0

6 {0, 12, 8, 20} 1 19 {9, 14, 11, 2} 0 or 1

7 {1, 8, 5, 20} 0 20 {13, 16, 18, 20} 1

8 {4, 5, 12, 20} 0 21 {13, 18, 16, 5} 0 or 1

9 {8, 12, 5, 20} 0
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Table 10: Element refinements for 3D base types (continued).
Type

in-

dex

Child

in-

dex

Child LNI Fluid

type

Type

in-

dex

Child

in-

dex

Child LNI Fluid

type

8 0 {1, 10, 8, 5, 18, 16} 1 6 {0, 12, 1, 20} 0

1 {14, 16, 18, 8, 10} 0 or 1 7 {12, 16, 1, 20} 0

2 {16, 18, 14, 6} 0 8 {16, 5, 1, 20} 0

3 {14, 8, 10, 9, 11} 0 or 1 9 {5, 18, 1, 20} 0

4 {4, 16, 14, 6} 0 10 {18, 15, 1, 20} 0

5 {4, 14, 16, 9} 0 11 {15, 3, 1, 20} 0

6 {14, 8, 16, 9} 0 or 1 12 {3, 15, 11, 20} 0

7 {9, 4, 16, 0, 8} 0 13 {6, 14, 19, 20} 0

8 {18, 7, 14, 6} 0 14 {20, 11, 15, 14, 19} 0 or 1

9 {18, 14, 7, 11} 0 15 {5, 16, 18, 20} 0

10 {14, 10, 11, 18} 0 or 1 16 {6, 19, 17, 20} 0

11 {11, 18, 7, 10, 3} 0 17 {20, 17, 19, 16, 18} 0 or 1

12 {2, 9, 11, 14} 1 18 {9, 11, 14, 20} 0 or 1

9 0 {2, 11, 14, 0, 8, 12} 1 19 {12, 17, 16, 20} 0 or 1

1 {3, 15, 11, 1, 13, 8} 0 20 {18, 19, 15, 20} 0 or 1

2 {7, 19, 15, 5, 16, 13} 1 21 {9, 14, 11, 2} 1

3 {6, 14, 19, 4, 12, 16} 0 22 {12, 16, 17, 4} 1

4 {11, 15, 14, 19, 8, 13, 12, 16} 0 or 1 23 {18, 15, 19, 7} 1

10 0 {0, 1, 9, 20} 0 12 0 {0, 8, 9, 20} 0

1 {9, 1, 11, 20} 0 1 {3, 11, 10, 20} 0

2 {3, 11, 1, 20} 0 2 {20, 8, 10, 9, 11} 0 or 1

3 {0, 9, 12, 20} 0 3 {0, 9, 12, 20} 0

4 {6, 17, 14, 20} 0 4 {6, 17, 14, 20} 0

5 {20, 12, 9, 17, 14} 0 or 1 5 {20, 12, 9, 17, 14} 0 or 1

6 {20, 12, 13, 0} 0 6 {0, 12, 8, 20} 0

7 {20, 13, 15, 1, 3} 0 7 {5, 13, 16, 20} 0

8 {3, 15, 11, 20} 0 8 {20, 16, 13, 12, 8} 0 or 1

9 {6, 14, 19, 20} 0 9 {3, 10, 15, 20} 0

10 {20, 11, 15, 14, 19} 0 or 1 10 {5, 18, 13, 20} 0

11 {6, 17, 19, 20} 0 11 {20, 18, 15, 13, 10} 0 or 1

12 {9, 11, 14, 20} 0 or 1 12 {3, 15, 11, 20} 0

13 {9, 14, 11, 2} 1 13 {6, 14, 19, 20} 0

14 {12, 17, 13, 20} 0 or 1 14 {20, 11, 15, 14, 19} 0 or 1

15 {17, 19, 13, 20} 0 or 1 15 {6, 19, 17, 20} 0

16 {19, 15, 13, 20} 0 or 1 16 {5, 16, 18, 20} 0

17 {19, 17, 13, 5} 1 17 {20, 17, 19, 16, 18} 0 or 1

18 {17, 4, 5, 12, 13} 1 18 {9, 11, 14, 20} 0 or 1

19 {19, 5, 7, 13, 15} 1 19 {12, 17, 16, 20} 0 or 1

11 0 {0, 1, 9, 20} 0 20 {8, 13, 10, 20} 0 or 1

1 {9, 1, 11, 20} 0 21 {18, 19, 15, 20} 0 or 1

2 {3, 11, 1, 20} 0 22 {9, 14, 11, 2} 1

3 {0, 9, 12, 20} 0 23 {12, 16, 17, 4} 1

4 {6, 17, 14, 20} 0 24 {8, 10, 13, 1} 1

5 {20, 12, 9, 17, 14} 0 or 1 25 {18, 15, 19, 7} 1
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Figure 12: Illustration of the first step in the merging strategy. The dotted lines represent
the background element and the solid lines represent the collection of child elements of one
of the fluid types. The collection on the left has an ǫmin > ǫMIN and hence is considered
a valid merged element in itself. The collections in the middle and on the right are have
a small ǫmin and require merging with a neigboring element.

lengths relative to the background element are defined as:

ǫmin

ĵ
= min

l=0,··· ,d

xmax

ĵ,l
− xmin

ĵ,l

hb,l

ǫmax

ĵ
= min

l=0,··· ,d

xmax

ĵ,l
− xmin

ĵ,l

hb,l

. (22)

In addition two predefined parameters, ǫMIN = 0.9 and ǫMAX = 1.9, are
introduced. The merging strategy is defined for each fluid i individually as
follows:

• Step 1: For each background element Kn
b,j̃

retrieve the collection of all

child elements that contain fluid i. For this collection of elements com-
pute ǫmin and ǫmax and store these values on the background element. If
the background element does not contain fluid i elements it is unavail-
able for merging and ǫmin = ǫmax = 0.0. If ǫmin < ǫMIN the collection
defines a small or thin merged element and requires merging involving
one or more neighboring background elements. If ǫmin > ǫMIN the col-
lection itself defines a valid merged element. Step 1 is illustrated in
Figure 12.

• Step 2: Using a loop over the faces in the background mesh, it is
determined for each background element Kn

b,j̃
which neighboring ele-

ments Kn
b,k, k = 0, . . . , Nj̃ are usable for merging, which is the case if
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minε     = 1.0 minε     = 0.0

minε     < ε MIN

minε     < ε MIN

minε     > ε MIN

1 20

4 5

876

3

Fluid 0
Fluid 1

Figure 13: Illustration of the second step in the merging strategy for fluid type 0 and
background element 4. The background elements are shown in dotted lines and the 0-level
set is shown as a dashed line. Background element 4 has an ǫmin < ǫMIN and hence
requires merging with one or more of the neighboring elements 1, 3, 5 and 7. Elements
1 and 3 both contain enough fluid 0 (ǫmin > ǫMIN ) and hence are valid candidates for
merging, while element 5 and element 7 do not contain enough fluid 0 (ǫmin < ǫMIN ) and
hence are invalid candidates for merging.

the neighboring element contains a collection of fluid i elements with
ǫmin > ǫMIN . Step 2 is illustrated in Figure 13.

• Step 3: The merged elements are determined in three steps. Each step
corresponds to a different type of merging, and these are illustrated in
Figure 14. After a background element has been used in merging it is
marked as UNAVAILABLE.

– Type 1: For each available individual background element Kn
b,j̃

check if ǫmin > ǫMIN and if it has at least two available neighboring
elements for which ǫmin < ǫMIN . If so, merge all refined elements
Ki,n

j with the correct fluid type i contained in these background
elements.
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Type 1 Type 2 Type 3

Figure 14: The three types of merged elements. The solid lines represent the refined
elements that will be combined into a single merged element. The dotted lines represent
the background mesh and the dashed lines represent the interface at positions not occupied
by the merged element.

– Type 2: For each available individual background element Kn
b,j̃

check if ǫmin < ǫMIN . If so loop over all available neighbor-
ing elements Kn

b,k, k = 0, · · · , Nj̃ with Nj̃ the number of avail-
able neighboring elements. For each combination of the back-
ground element Kn

b,j̃
and a neighboring element Kn

b,k determine

ǫmin
k . Find the k̃ for the combination which has the largest size,
ǫmin

k̃
> ǫmin

k , k = 0, · · · , Nj̃. Merge all refined elements Ki,n
j with

the correct fluid type i contained in the background elements Kn
b,j̃

and Kn

b,k̃
.

– Type 3: For each available individual background element Kn
b,j̃

check if ǫmin > ǫMIN . If so check if it contains more than one
element Ki,n

j with the correct fluid type i and if so merge these
elements.

The merged elements tend to have complex shapes which makes it difficult
to find suitable reference elements and basis functions. To alleviate this
problem a bounding box element is introduced ([12]), which is simple shaped
and contains the merged element. This merging procedure is illustrated for
two dimensions in Figure 15 and an example of a mesh with merged elements
in two dimensions is shown in Figure 16.

Let Ki,n

M,ĵ
denote the bounding box of the merging element Ki,n

m,ĵ
. The fi-

nite element space, mappings and basis functions used for the bounding box
elements are identical to those defined for the refined mesh but will be de-
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Bounding box elementMerged elementCollection of elements

Figure 15: A collection of elements, their merged element and its bounding box element,
in physical space.

x

y

-0.02 0 0.02
0

0.01

0.02

0.03

Figure 16: Refined mesh showing the merged elements as colored collections of child
elements.

34



noted using a subscript M . On the bounding box element the approximated
flow variables are defined as:

wi
h(t, x̄)|Ki,n

M,ĵ

=
∑

m

Ŵi
m(Ki,n

M,ĵ
)φm(t, x̄) (23)

with Ŵi

M,ĵ
the flow coefficients of fluid i. Each merged element contains

exactly one fluid. For all elements Ki,n
k ⊂ Ki,n

m,ĵ
the flow evaluation is redefined

as an evaluation in the bounding box element:

wi
h(x)|Ki,n

k
= wi

h(x)|Ki,n

M,ĵ

. (24)

Integration of a function f(wi

h
) over a merged element Ki,n

m,ĵ
is performed by

integrating over all the individual elements and summing the contributions:

∫

Ki,n

m,ĵ

f(wi
h)dK =

N
ĵ

∑

k=0

∫

Ki,n
k

f(wi
h)dK. (25)

4. Space-time discontinuous Galerkin discretization

4.1. Flow discretization

The discontinuous Galerkin finite element approximation for two fluid
flows on the refined mesh T i,n

h is found by multiplying (2) with an arbitrary
test function v ∈ Bk

h(T i,n
h ) and integrating over all elements in the domains

E1 and E2:

∑

Ki,n
j ∈T i,n

h

∫

Ki,n
j

v∇ · F i(wi) dK = 0. (26)
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Applying Gauss’ theorem results in:

−
∑

Ki,n
j ∈T i,n

h

∫

Ki,n
j

∇v · F i(wi) dK

+
∑

Si,n
m ∈Γi,n

I

∫

Si,n
m

F i,l(wi,l) · nl
K vl + F i,r(wi,r) · nr

K vr dS

+
∑

Si,n
m ∈Γi,n

B

∫

Si,n
m

F i,l(wi,l) · nl
K vl dS

+
∑

Si,n
m ∈Γi,n

S

∫

Si,n
m

F i,l(wi,l) · nl
K vl dS = 0, (27)

where F i,K and wi,K are the limiting trace values at the face S of element
Ki,K , K = l, r.

Let the trace vK
h of a function vh on a face S with respect to the element

KK , K = l, r be defined as vK
h = limǫ↓0 vh(x− ǫnK

K ), where nK
K = (n0, . . . , nd)

is the space-time outward unit normal vector at the face S with respect to
element KK . Left and right normal vectors of a face are related as nl

K =
−nr

K. The element local trace v±h of a function vh on a face S is defined as
v±h = limǫ↓0 vh(x ± ǫnK). The average {{F}} of a scalar or vector function
F on the face Sm ∈ ΓI is defined as {{F}} := 1

2
(F l + F r), where l and r

denote the traces at elements Kl and Kr, respectively. The jump [[F ]] of a
scalar function F on the face Sm ∈ ΓI is defined as [[F ]] := F lnl + F rnr

and the jump [[G]] of a vector function G on the face Sm ∈ ΓI is defined as
[[G]] := Gl ·nl +Gr ·nr. The jump operator satisfies on ΓI the product rule
[[FG]] = {{F}}[[G]] + [[F ]]{{G}}.

By using a conservative flux, F l(wl)·nl
K = −F r(wr)·nr

K; hence, [[F(w)]] =
0, the integration over the internal faces is rewritten as:

∑

Si,n
m ∈Γi,n

I

∫

Si,n
m

F i,l(wi,l) · nl
K vl + F i,r(wi,r) · nr

K vr dS

=
∑

Si,n
m ∈Γi,n

I

∫

Si,n
m

{{F i(wi)}} · [[v]] dS. (28)

So far the formulation has been strictly local, in the sense that neighboring
elements and also the initial, boundary and interface conditions are not in-
corporated. In order to do this, numerical fluxes are introduced. At internal
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faces the flux is replaced by a numerical flux Hi
I(w

l,wr,nK), which is consis-
tent: H(w,w,nK) = F(w) ·nl

K, and conservative. Likewise at the boundary
faces the flux is replaced by a numerical flux Hi

B(wl,wr,nK), which is also
consistent. At the interface the flux is replaced by a numerical interface flux
Hi

S(wi,l,wi
s,nK), with wi

s the ghost state at the interface for fluid i. Using
the fact that for a conservative flux {{H(wl,wr,nK)}} = H(wl,wr,nK) and
replacing the trial and test functions by their approximations in the finite
element space Bk

h(T i,n
h ), the weak formulation is defined as:

Find wi
h ∈ Bk

h(T i,n
h ) such that for all vh ∈ Bk

h(T i,n
h ):

−
∑

Ki,n
j ∈T i,n

h

∫

Ki,n
j

∇vh · F
i(wi

h) dK

+
∑

Si,n
m ∈Γi,n

I

∫

Si,n
m

Hi
I(w

i,l
h ,w

i,r
h ,nK) (vl

h − vr
h) dS

+
∑

Si,n
m ∈Γi,n

B

∫

Si,n
m

Hi
B(wi,l

h ,w
i
b,nK)vl

h dS

+
∑

Si,n
m ∈Γi,n

S

∫

Si,n
m

Hi
S(wi

h,w
i
s,nK)vl

h dS = 0,

i = 1, 2, n = 0, · · · , Nt − 1. (29)

Introduction of the polynomial expansion (15) in (29) and using the basis
functions φl for the test functions gives the following discretization in each
space-time element Ki,n

j :

Li,n
kl (Ŵn,Ŵn−1) = 0, i = 1, 2, n = 0, · · · , Nt − 1,

k = 0, · · · , Nw − 1, l = 0, . . . , N i,n
B,j − 1 (30)

with Nt the number of time slabs, Nw the number of flow variables, N i,n
B,j the
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number of basis functions. The nonlinear operator Li,n
kl is defined as:

Li,n
kl = −

∫

Ki,n
j

(∇φl)j · F
i
kj(w

i
h)dK

+
∑

Si,n
m ∈∂Ki,n

j ∩Γi
I

∫

Si,n
m

HI,k(w
i,−
h ,wi,+

h ,nK)φl dS

+
∑

Si,n
m ∈∂Ki,n

j ∩Γi
B

∫

Si,n
m

HB,k(w
i,−
h ,wi,+

b ,nK)φl dS

+
∑

Si,n
m ∈∂Ki,n

j ∩Γi
S

∫

Si,n
m

HS,k(w
i,−
h ,wi,+

s ,nK)φl dS. (31)

In equation (30) the dependency of Li,n
kl on Ŵn−1 stems from the integrals

over the internal faces connecting the current and previous time slabs. The
numerical fluxes are problem dependent and will be discussed in part II [50]
for specific test problems.

4.2. Level set discretization

The level set equation can be characterized as a hyperbolic partial dif-
ferential equation containing an intrinsic nonconservative product, meaning
that it cannot be transformed into divergence form. This causes problems
when the level set becomes discontinuous, because the weak solution in the
classical sense of distributions does not exist. Thus, no classical Rankine-
Hugoniot shock conditions can be defined. Although the level set is initially
smooth, it can become discontinuous over time due to discontinuities in the
global flow velocity advecting the level set. In order to find a disontinuous
Galerkin discretization for the level set equation, valid even when level set
solution and velocity become discontinuous, the theory presented in [42] is
applied. For simplicity the same notation will be used as in [42].

In general, a hyperbolic system of m partial differential equations in non-
conservative form in q space dimensions can be defined as:

Ui,0 + Fik,k +GikrUr,k = 0, i, r = 1, · · · , m (32)

with U the vector of variables, F the conservative spatial flux tensor, G the
nonconservative spatial flux tensor and where (.),0 and (.),k, k = 1, · · · , q
denote partial differentation with respect to time and spatial coordinates,
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respectively. The space-time DGFEM weak nonconservative formulation of
this system is defined as:

0 =
∑

K∈T n
h

∫

K

(−Vi,0Ui − Vi,kFik + ViGikrUr,k)dK

+
∑

K∈T n
h

(

∫

K(t−n+1)

V L
i U

L
i dK −

∫

K(t+n )

V L
i U

R
i dK)

+
∑

S∈Sn

∫

S

(V L
i − V R

i )P̂ nc
i dS

+
∑

S∈Sn

∫

S

{{Vi}} (

∫ 1

0

Gikr(χ(τ ;UL, UR))
dχr

dτ
(τ ;UL, UR)dτn̄L

k )dS, (33)

where V denotes the vector of trial functions and χ denotes the path function.
The nonconservative flux is defined as:

P̂ nc(UL, UR, v, n̄
L) = (34)



















FL
ik −

1
2

∫ 1

0
Gikr(χ(τ ;UL, UR))dχr

dτ
(τ ;UL, UR)dτn̄L

k , if SL > v

{{Fik}}n̄
L
k + 1

2
((SR − v)Ū∗

i + (SL − v)Ū∗
i − SLU

L
i − SRU

R
i ),

if SL < v < SR

FL
ik + 1

2

∫ 1

0
Gikr(χ(τ ;UL, UR))dχr

dτ
(τ ;UL, UR)dτn̄L

k , if SR < v,

where SL and SR denote the minimum and maximum wavespeeds, v denotes
the grid velocity and Ū∗

i denotes the average star state solution. When using
a linear path χ = UL + τ(UR − UL), dχr

dτ
(τ ;UL, UR) = (UR − UL).

The level set equation can be considered a special case of (32), where
the state and fluxes are defined as U = ψh, F = 0, G = āh. The following
simplification can be made:

∫ 1

0

Gikr(χ(τ ;UL, UR))
dχr

dτ
(τ ;UL, UR)dτn̄L

k

=

∫ 1

0

ā(χ(τ ;ψL
h , ψ

R
h ))(ψR

h − ψL
h )dτn̄L

k

= − {{āh}}[[ψh]]. (35)

39



Hence, the nonconservative level set discretization becomes:

∑

Kn

b,j̃
∈T n

b

∫

Kn

b,j̃

−
∂φl

∂t
ψh + φl āh · ∇̄ψh dK

+
∑

Kn

b,j̃
∈T n

b

(
∫

Kn

b,j̃
(tn+1)

φl
l ψ

l
h dS −

∫

Kn

b,j̃
(tn)

φl
l ψ

r
h dS

)

+
∑

Sn
b,m̃

∈Γn
b

∫

Sn
b,m̃

(φl
l − φr

l ) P̂
nc dS

−
∑

Sn
b,m̃

∈Γn
b

∫

Sn
b,m̃

{{φl}} [[ψh]] {{āh}} dS = 0, (36)

with

P̂ nc =











+1
2
[[ψh]] {{āh}} if SL > 0

+1
2
(SR(ψ∗

h − ψR
h ) + SL(ψ∗

h − ψL
h )) if SL < 0 < SR

−1
2
[[ψh]] {{āh}} if SR < 0

(37)

where SL = min{āL
h · n̄L

K , ā
R
h · n̄L

K} and SR = max{āL
h · n̄L

K , ā
R
h · n̄L

K} the
minimum and maximum wavespeeds and where the star state level set value
is defined as:

ψ∗
h =

{

ψL if (SL + SR)/2 > 0

ψR if (SL + SR)/2 < 0.
(38)

At boundary faces the level set boundary conditions (10) are enforced by
specifying the right state as:

ψr(t, x̄) =ψl(t, x̄)

ār(t, x̄) = āl(t, x̄) − 2(āl(t, x̄) · nK)nK, for (t, x̄) ∈ Q. (39)

4.3. Pseudo-time integration

By augmenting the flow equations with a pseudo-time derivative, the
discretized equations (30) are extended into pseudo-time, resulting in:

M i,n
ml

∂Ŵ i,n
km

∂τ
+ Li,n

kl (Ŵn,Ŵn−1) = 0, (40)

40



Algorithm 5 Pseudo-time integration method for solving the non-linear algebraic equa-
tions in the space-time discretization.

1. Initialize first Runge-Kutta stage: W̄i,(0) = Ŵi,n.
2. Calculate W̄i,(s), s = 1, · · · , 5:

(1 + αsλ)W̄i,(s) =

W̄i,(0) + αsλ

(

W̄i,(s−1) − ∆t (M i,n)−1 L(W̄i,(s−1),W̄i,n−1)

)

3. Update solution: Ŵi,n = W̄i,(5).

using the summation convention on repeated indices, and with

M i,n
ml =

∫

Ki,n
j

φlφm dK (41)

the mass matrix. To solve (40) a five stage semi-implicit Runge-Kutta itera-
tive scheme is used [29, 61] as defined in Algorithm 5. Starting from a guess
for the initial solution, the solution is iterated in pseudo-time until a steady
state is reached, which is the real time solution of the space-time discretiza-
tion. Here λ = ∆τ/∆t denotes the ratio of pseudo time and physical time
step, and the coefficients αs are defined as: α1 = 0.0791451, α2 = 0.163551,
α3 = 0.283663, α4 = 0.5, α5 = 1.0. The physical time step ∆t is defined
globally by using a Courant-Friedrichs-Levy (CFL) condition:

∆t =
CFL∆t h

Smax

, (42)

with CFL∆t the physical CFL number, h the inradius of the space projection
of the element and Smax the maximum value of the wave speed on the faces.
The five stage semi-implicit Runge-Kutta iterative scheme is also used for
solving the discretized level set equation.

5. Two fluid algorithm

The two fluid algorithm is defined in Algorithm 6. The operations at the
initialization, in the inner iteration and at the time slab update are illustrated
for two space-time dimensions in Figures 17, 18 and 19, respectively. In
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Algorithm 6 Computational steps in the two fluid method. Lines 1-6 detail the initial-
ization, lines 13-22 the inner iteration and lines 8-12 time slab update. The initialization,
inner iteration and time slab update are illustrated for two space-time dimensions in Fig-
ures 17, 18 and 19.

1. n = 0

2. Create background mesh T n−1
b

3. Initialize level set ψn−1
h (x) on T n−1

b

4. Initialize level set velocity ā
n−1
h (x) on T n−1

b

5. Create refined mesh T i,n−1
h based on ψn−1

h = 0

6. Initialize flow field w
i,n−1
h (x) on T i,n−1

h

7. WHILE n < Nt DO
8. Create background mesh T n

b

9. Initialize level set ψn
h(x) on T n

b as ψn−1
h (tn, x̄) on T n−1

b (46)

10. Initialize level set velocity ā
n
h(x) on T n

b as ā
n−1
h (tn, x̄) on T n−1

b (47)

11. Create refined mesh T i,n
h,0 based on ψn

h = 0

12. Initialize flow field w
i,n
h,0(x) on T i,n

h,0 as w
i,n−1
h,0 (tn, x̄) on T i,n−1

h (43)

13. k = 0
14. WHILE two fluid mesh has not converged: |ek − ek−1| > ǫIF DO
15. Solve ψn

h on T n
b

16. Calculate level set interface error ek = ‖ψn
h‖

IF
2

17. Create refined mesh T i,n
h,k based on ψn

h = 0

18. Initialize flow field w
i,n
h,k(x) on T i,n

h,k as w
i,n−1
h (tn, x̄) on T i,n−1

h (43)

19. Solve w
i,n
h,k(t, x̄) on T i,n

h,k

20. Initialize level set velocity ā
n
h(x) on T n

b as u
i,n
h,k(x) on T i,n

h (44)

21. k = k + 1
22. END DO
23. n = n+ 1
24.END DO
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Figure 17: At initialization, first the background mesh is created. Because the solution
from the previous time step is required in the evalution of the numerical flux at the time
slab face, the background mesh is conveniently composed of a current (n) and a previous
(n− 1) time slab (a). Next the level set is initialized on the background mesh (b). Based
on the 0-level set, the background mesh is refined to obtain the refined mesh (c). Finally,
in all elements of the refined mesh the flow variables are initialized (d). The initialization
is performed on the current as well as a previous time slab.
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Figure 18: In the inner iteration, given level set and flow solutions on the background and
refined meshes (a1, a2), first the level set is solved on T n

b
(b). Based on the 0-level set the

background mesh is refined to obtain a new two fluid mesh T n

h
, on which the flow field

is reinitialized and solved (c). Finally, the level set velocity is reinitialized with the flow
velocity.
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Figure 19: When moving to the next time slab, given level set and flow solutions on the
background and refined meshes (a1, a2), first a new background mesh T n

b
is created, on

which a level set is initialized and solved (b). Based on the 0-level set, the background
mesh is refined to obtain the two fluid mesh T n

h
, on which the flow field is initialized (c).
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the inner iteration and at the time slab update the flow approximation w
i,n
h

is reinitialized with the solution average from the previous time slab:

w
i,n
h (t, x̄) = w̄

i,n−1
h (tn, x̄). (43)

When, for a fluid type, no solution exists in the previous time slab, the el-
ement is marked as such and is reinitialized at a later stage by using the
reinitialized solution from a neighboring element in the new timeslab. To
make the flow reinitialization compatible with the element merging it is pre-
ceded by a projection step, in which the solution in each merged element is
projected onto the refined elements of which it is composed. After solving
the flow equations the level set velocity an

h is reinitialized as:
∫

Kn

b,j̃

ān
h(x)φl(x) dK =

∫

Kn

b,j̃

un
h,k(x)φl(x) dK. (44)

In order to evaluate the flow velocity un
h,k on the background mesh, for every

element Ki,n
j in the refined mesh T n

h , a child to parent mapping HKi,n
j

is

defined:

HKi,n
j

= G−1

Ki,n
j

◦GKn

b,j̃
, (45)

where GKn

b,j̃
and GKi,n

j
are the mappings from the reference element to the

physical space of the background and the child element, respectively. The
mapping HKi,n

j
maps the element Ki,n

j to its parent element Kn
b,j̃

in the back-

ground mesh T n
b . The inverse mappings G−1

Kn

b,j̃

always exists, since the back-

ground elements are by construction never degenerate. The child to parent
mapping is illustrated in Figure 20. At the time slab update the level set
approximation ψn

h is reinitialized as:

ψn
h(t, x̄) = ψn−1

h (tn, x̄) (46)

and the level set velocity approximation an
h is reinitialized as:

ān
h(t, x̄) = ān−1

h (tn, x̄). (47)

6. Discussion

A space-time discontinuous Galerkin finite element method for two fluid
flows has been presented which combines aspects of front tracking and front
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Kn

b,j̃

from
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capturing methods with cut-cell mesh refinement and a STDG discretiza-
tion. It is anticipated that this scheme can accurately solve smaller scale
problems where the interface shape is of importance and where complex in-
terface physics are involved. Special attention has been paid to making the
scheme as generic as possible to allow for future implementations in higher di-
mensions. The STDG discretization ensures that the scheme is conservative
as long as the numerical fluxes are conservative. The problem with cut-cell
mesh refinement with small cells is solved by using element merging. Topo-
logical changes such as merging and coalescence are handled in the method
due to the level set method. Care must, however, be taken since topologi-
cal changes may conflict with the conservativity of the scheme especially on
coarse meshes and may cause non-convergence of the flow solution. In part
II [50] the method will be tested on a number of test problems.
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