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This paper studies a system-theoretic approach to the problem of reconstructing an analog signal from its

samples. The idea, borrowed from earlier treatments in the control literature, is to address the problem as a

hybrid model-matching problem in which performance is measured by system norms.

The paper is split into three parts. In Part I we present the paradigm and revise the lifting technique,

which is our main technical tool. In Part II optimal samplers and holds are designed for various analog signal

reconstruction problems. In some cases one component is fixed while the remaining are designed, in other

cases all three components are designed simultaneously. No causality requirements are imposed in Part II,

which allows to use frequency domain arguments, in particular the lifted frequency response as introduced in

Part I. In Part III the main emphasis is placed on a systematic incorporation of causality constraints into the

optimal design of reconstructors. We consider reconstruction problems, in which the sampling (acquisition)

device is given and the performance is measured by the L2-norm of the reconstruction error. The problem is
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state-space solution of the problem, which is based on the spectral factorization of a rational transfer function.
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Figure 1: Hybrid signal processor (HSP), FHSP

Part I: concepts and tools

1. Introduction

The problem of reconstructing a continuous-time signal from

its sampled measurements may be, perhaps simplistically, de-

scribed by the block-diagram in Fig. 1. Here y is a continuous-

time signal, which is sampled by an A/D converter (sampler)

S, the resulting discrete-time signal ȳ is processed by a digi-

tal filter F̄ , and the output of the latter, ū, is converted back to

continuous time by a D/A converter (hold) H. Throughout, we

refer to the (continuous-time) system from y to u as the hybrid

signal processor (HSP) and denote it FHSP.

Our goal typically is to generate u as close to y as possi-

ble. Sampling / reconstruction (SR) problems of this kind are

important in numerous signal and image processing and control

applications and have been extensively studied in both mathe-

matical and engineering literature, see [18, 45, 51, 1, 15] for

detailed overviews of the subject and a comprehensive bibliog-

raphy. Classical studies are mainly concerned with the condi-

tions under which perfect reconstruction of y is possible and

the choice of the corresponding hold (interpolator) H. This

leads to the celebrated Sampling Theorem and its generaliza-

tions [18, 51, 15]. Such approaches, however, rely upon as-

sumptions that are seldom realistic (e.g., require y to be ban-

dlimited or generated by a discrete sequence), and result in in-

terpolators that might be hard to implement or approximate.

These considerations prompted more recent studies to give up

on the perfect reconstruction requirement. An example of such

a setup is the reconstruction in shift-invariant spaces [45, 1],

where F̄ is designed, for fixed sampling and hold circuits, to

satisfy some weaker requirements. Examples of these require-

ments are the consistency [45], which is the perfect reconstruc-

tion of samples ȳ, or the (dual, in a sense) minimization of the

error restricted to the image of H [11]. An advantage here is the

full control over properties of S and H, which may be chosen to

simplify their implementation (like splines) and approximation

(like truncating to impose causality constraints). This choice,

however, might not be justifiable performance-wise. Moreover,

the design of F̄ accounts only for a part of the reconstruction

error rather than the analog error itself.

Direct optimization of analog error signals is the core of the

sampled-data control theory [8, 10], which studies digital con-

trol of analog systems. Motivated by this, [23] proposed to

cast SR problems as a hybrid H∞—causal minmax—model-

matching setup (the idea can be traced back to [38, 7]). This is

a special case of the standard sampled-data control problem and

can therefore be handled by available control methods, adopted

to the relaxation of the causality of F̄ . Advantages of this ap-

proach are that it explicitly addresses the analog error and does

not restrict the class of input signals. The method of [23], how-

ever, is based on several intermediate transformations, which

blur the structure of the solution. In fact, no closed-form for-

mulae for this approach exist. Moreover, the design methodol-

ogy adopted there is also limited to the case when both S and

H are fixed.

Excluding the acquisition and reconstruction devices from

the design cycle, which limits the achievable reconstruction per-

formance, is not always justifiable. Technological constraints,

which restrict the complexity of A/D and D/A circuits, become

less severe taking into account the progress in hardware tech-

nology. Other constraints might merely result from limitation of

existing design methods. For example, the decay rate of the in-

terpolating kernel is considered an important factor in the choice

of H [45]. Yet this appears to be brought about by the need to

truncate it afterwards in order to impose causality constraints on

the reconstructor. If these constraints were explicitly accounted

for in the design stage, the kernel decay would not be so impor-

tant.

This three-part paper aims at developing a systematic ap-

proach to the design of SRs, in which sampling and/or hold

devices can be incorporated into the design process. Towards

this end, we adopt the system-theoretic viewpoint, by which sig-

nals are modeled by systems and reconstruction performance is

measured by system norms. The system-theoretic approach en-

ables us to treat signals of different physical nature and proper-

ties (e.g., stochastic and deterministic) in a unified manner and

also to incorporate causality requirements as design constraints.

The goal of this part is to present the underlying technical

material required for the system-theoretic analysis of SR prob-

lems. Although many of the results presented here are not new,

we believe that their compact and unified exposition is of its

own tutorial value. Moreover, we do present new connections

and perspectives that will play a key role in the analysis in the

next parts. The part is organized as follows. In Section 2 we in-

troduce a general optimization setup, the study of which is the

leitmotif of this paper. Section 3 presents the lifting technique,

which is our main technical tool, and collects some time-domain

facts and definitions. In Section 4 some frequency-domain lift-

ing definitions and results are presented. Spaces of signals and

systems in the lifted domain and corresponding metrics are con-

sidered in Section 5. Finally, Section 6 presents the notions of

stability and causality and their frequency-domain characteriza-

tions.

1.1. Notation

Throughout, h denotes the sampling period and ωN := π/h is

the associated Nyquist frequency. The sinc function with “pe-

riod” h is defined as sinch(t) := sin(ωNt)/(ωNt). Signals are

represented by lowercase symbols such as y(t) : R → C and

overbars indicate discrete time signals, ȳ[k] : Z→ C. For any

set A the indicator function 1A(t) is 1 if t ∈ A and is zero else-

where. The unit step (which is actually 1R+(t)) is denoted 1(t)

(in continuous time) and 1̄[k] in discrete time. Similarly δ(t)

is the Dirac delta function (understood implicitly as the causal

δ(t − 0+)) and δ̄[k] is the discrete unit pulse. The number of
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Figure 2: Sampling / reconstruction (SR) setup

elements of a vector-valued signal v is denoted by nv .

Uppercase calligraphic symbols, like G, denote continuous-

time systems in time domains, the impulse response/kernel of

which is denoted with lowercase symbols, such as g, and the

corresponding transfer function/frequency response is presented

by uppercase symbols, like G(s) and G(iω). Discrete-time sys-

tems, kernels, etcetera are denoted by overbars, like Ḡ, ḡ, etc.

Other more specific notation for lifted signals and systems is

defined later.

By Z
+
l (Z−l ) we denote the set of all integers larger or equal

to (smaller than) l. The symbols T, D, and D̄ stand for the unit

circle (|z| = 1), the open unit disk (|z| < 1), and the closed unit

disk (|z| ≤ 1) in the complex plane, respectively.

L2
B
(A) is the set of functions f : A→ B that have finite norm

‖ f ‖2 := (
∫

t∈A‖ f (t)‖2
B

dt)1/2, where ‖·‖B denotes some given

norm on B (in case B = Cn f we assume the standard Euclidean

norm |·|). Sometimes we use the notation L := L2
C

[0, h).

The space ℓ2
B
(Z) is the set of f̄ : Z → B with finite norm

‖ f̄ ‖2 := (
∑

k∈Z‖ f̄ [k]‖2
B
)1/2. Some (or all) space arguments

in the notation for L2 and ℓ2 will be dropped when they are

irrelevant or clear from the context.

2. Setup

In this paper we study the SR setup shown in Fig. 2. Here

v is an (unknown) analog signal, which is to be reconstructed

from sampled measurements of a related analog signal y. Both

v and y are modeled as outputs of a continuous-time system

G (signal generator) driven by a common input w with known

characteristics. The signal u is the reconstruction of v on the

basis of y. This signal u is the output of the HSP, which is

highlighted by the dark shadowed box in Fig. 2. It includes a

sampler S, a digital filter F̄ , and a reconstructor, or hold, H (for

more details see §2.2 below). Our goal then is to design an HSP

(or only some of its components) to minimize a “size” (norm)

of the error system Ge (the light shadowed box in Fig. 2) which

is the mapping from w to the reconstruction error e := v − u.

Minimization of the mapping enforces that the output u of the

HSP is in a sense optimally close to the signal v that we intend

to reconstruct. This renders the optimal SR problem a systems

optimization problem.

2.1. Paradigms

Two central aspects of the system-theoretic formulation of SR

problems are the use of the signal generator G to model signals

and the use of system norms to measure the SR performance.

These aspects, which are rather common in the control litera-

ture, are somewhat latent in the SR literature, so we start with a

brief exposition of the underlying ideas.

2.1.1. Signal generator

Clearly, the reconstruction of a signal v on the basis of y makes

sense only if the two signals share certain qualities. To model

cross-correlations, dynamic relations, etcetera between v and

y, one may choose to consider both v and y as the outcome of

a (possibly fictitious) signal generator G driven by a common

signal w having known and normalized features (such as being

white or belonging to some bounded set). Below we indicate

how these goals can be attained. To this end, partition the signal

generator G compatible with the signal partition in Fig. 2 as

G =
[

Gv

Gy

]

.

The simplest choice of its components would be Gv = Gy = I ,

which reflects the assumptions that v = y and that v is the

only exogenous input. If the measured signal passes through

an antialiasing filter Fa, we should pick Gy = Fa instead. If

the measurement of v is corrupted by a measurement noise, n,

the latter has to be included into the exogenous signal, so that

w =
[
v
n

]

and we end up with Gv =
[

I 0
]

and Gy =
[

I I
]

(or Gy = Fa

[

I I
]

, if an antialiasing filter is present). If the

velocity of y should be reconstructed, we choose Gv = Fd,

where Fd is the differentiator, having the frequency response

Fd(iω) = iω. Thus, the problem of reconstructing the velocity

from filtered noisy position measurements is formalized via as-

signing Gv =
[

Fd 0
]

, Gy = Fa

[

I I
]

, and w =
[

x
n

]

, where

x is the position.

In the above examples the exogenous input w still consists

of a combination of “real” signals such as position and noise,

each with its own dynamical properties and physical domain/u-

nit. To simplify their joint treatment, they can be modeled in

terms of some normalized signal having favorable mathemati-

cal properties, passing through known systems. For example, if

the signal to be reconstructed, v, is slow, it can be modeled as

v = Fvwv , where Fv is a low-pass filter and wv is some fic-

titious normalized signal. Examples of such signals are white

noise in the stochastic case and the δ-impulse in the determin-

istic case, both of which have normalized flat spectra. A fast

measurement noise, n, can then be modeled via another nor-

malized signal, wn , as n = Fnwn for some high-pass filter Fn .

In this case, the problem of reconstructing a signal from filtered

noisy measurements can be formalized via Gv =
[

Fv 0
]

and

Gy = Fa

[

Fv Fn

]

. The exogenous signal, w =
[
wv
wn

]

, is then

a fictitious normalized signal all components of which are on an

equal footing and have similar properties; all structural proper-

ties are represented by G.

Remark 2.1. The use of modeling filters, like Fv and Fn

above, does not necessarily intend to constrain signals (e.g., v

and n) to belong to a (finite-dimensional) subspace of the space

of continuous-time signals, like those discussed in [51]. In

many cases these filters may be thought of as functions, reshap-

ing the metric used to measure the SR performance. Through
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the choice of these filters we thus just emphasize certain aspects

of signal properties, like their dominant frequency bands. ▽

2.1.2. Performance measures

The normalization of the exogenous input w makes it possible

to express the size of the reconstruction error signal e in terms

of the size of the error system Ge mapping w to e. We use two

measures of the size of Ge: its L2 and L∞ norms. Below we

briefly discuss these formalisms. To avoid the introduction of

involved technicalities at this stage, we assume for the moment

that Ge is time invariant. Although this is practically never the

case for the hybrid system in Fig. 2, extensions are conceptually

straightforward (they are discussed in Section 5).

The Hilbert space L2
p×m(iR), or simply L2(iR) when the

dimensions are irrelevant or clear from the context, is the set of

functions F(s) : iR→ Cp×m for which

‖F‖2 :=
(

1

2π

∫ ∞

−∞
‖F(iω)‖2F dω

)1/2

<∞, (1)

where ‖·‖F is the Frobenius matrix norm. The quantity ‖F‖2 is

called the L2-norm of F(s). If F(s) is the transfer function of an

LTI system F , we also refer to this quantity as the L2-norm of F

and denote it as ‖F‖2. This norm has clear interpretations, both

deterministic and stochastic, in terms of the input and output

signals of F . In the deterministic setting, it is readily seen from

the Parseval’s equality that ‖F‖22 is the sum of the energies of

the responses of F to δ-impulses applied at each of its m input

components. In the stochastic setting, ‖F‖22 is the power, that

is, the sum of the variances of the p output components of F

in the case when the input is a zero-mean unit intensity white

noise process [42, Sect. 3.8].

The space L∞p×m(iR), or simply L∞(iR), is the set of func-

tions F(s) : iR→ C
p×m , the L∞-norm of which,

‖F‖∞ := ess sup
ω∈R

σmax[F(iω)] <∞. (2)

Similarly to the L2 case, if F(s) is the transfer function of an

LTI system F , the quantity defined by (2) is referred to as the

L∞-norm of F and denoted by ‖F‖∞. This norm can also be

interpreted in terms of signals: ‖F‖2∞ is the maximal energy of

the output over all inputs of unit energy [9, Thm. A.6.26], i.e.,

the maximal energy gain of F .

Returning to the setup in Fig. 2, the minimization of ‖Ge‖2
in the stochastic case corresponds to (average) power or mean

square minimization of the continuous-time reconstruction error

e (energy minimization in the deterministic case). Thus, this

is merely a hybrid version of the classical Wiener (or Kalman)

filtering problem [20]. The minimization of ‖Ge‖∞ corresponds

to the minmax formulation, in which the mean-square error is

minimized for a worst-case input of unit energy. In fact, the L2

and L∞ approaches represent two extremes in our assumptions

about the exogeneous signals. The former assumes that these

signals are completely known, whereas the latter—that they are

completely unknown, other than having finite power or energy.

The “gray areas” in between may then be (implicitly) covered

by the use of weighting filters.

Remark 2.2. It is not hard to imagine a situation where some

of the exogenous inputs are known and some are not. This

might call for the use of mixed L2/L∞ strategies, such as min-

imizing the L2-norm of a subsystem of Ge while keeping the

L∞-norm of the other subsystem below some prescribed level

[41]. Such problems, however, result in complicated solutions

that lack the structure and transparency of their pure L2 and L∞

counterparts. We therefore do not pursue this line here. After

all, it is rarely possible to squeeze all requirements into a single

optimization problem, so that the optimization in engineering

should be considered as merely a tool to achieve meaningful

and transparent solutions rather than a goal per se. ▽

The expression of the performance requirements via system

norms simplifies the treatment of deterministic and stochastic

signals via a unified formalism and brings some other (con-

ceptual) advantages. For example, the L∞ formulation is well

suited for the sake of shaping the spectrum of the reconstruction

error. To see this, consider the noise-free scalar setting and let

v be modeled as v = Fvw. Then,

‖Ge‖∞ < 1 ⇒ |e(iω)| < 1

|Fv(iω)|
|v(iω)|, ∀ω ∈ R.

Thus, a desired shape of the error spectrum can be pursued via

an appropriate choice of Fv . The existence of a reconstructor

guaranteeing ‖Ge‖∞ < 1, which is the question that can be

conclusively answered, is then the success indicator. Another

advantage of the system-based treatment is a (relative) simplic-

ity with which causality constraints can be imposed upon the

reconstructor (see Part III of this paper).

2.2. Components

We now detail some of the components of the configuration in

Fig. 2. In particular, below we address the HSP, containing a

sampler, a discrete filter and a hold.

2.2.1. Sampler

By a sampling device S we understand any linear device trans-

forming a function y(t) : R→ Cny into a function ȳ[k] : Z→
Cn ȳ . Assuming that

S(y(· − h)) = (Sy)[· − 1],

which can be thought of as A/D shift invariance, a general model

for such a device is

ȳ = Sy : ȳ[k] =
∫ ∞

−∞
ψ(kh − s)y(s)ds, k ∈ Z, (3)

for some ψ(t), called the sampling function. The ideal sampler

SIdl, generating ȳ[k] = y(kh) and well-defined for continuous

inputs, has ψ(t) = δ(t). The continuity of y can be ensured by

an antialiasing filter Fa having the impulse response fa(t). Such

a filter can always be incorporated into S, resulting in a sampler

with ψ(t) = fa(t). In fact, a general sampler of the form (3)

can always be presented as the cascade of an LTI system with
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the impulse response ψ(t) and the ideal sampler. An impor-

tant example for the developments in this paper (especially, in

Part II) is the sinc-sampler, Ssinc, having the sampling function

ψsinc(t) := 1
h

sinch(t). It can be viewed as the ideal lowpass fil-

ter with the cutoff frequency ωN followed by the ideal sampler.

Another example is the causal averaging sampler SAv, which

corresponds to ψ(t) = 1
h
1[0,h)(t).

2.2.2. Hold

By a hold device H we understand a linear device transforming

a function ū[k] : Z → C
nū into a function u(t) : R → C

nu .

Assuming D/A shift invariance, understood as

H(ū[· − 1]) = (Hū)(· − h),

a general model of this device is

u = Hū : u(t) =
∑

i∈Z
φ(t − ih)ū[i ], t ∈ R, (4)

for some hold function1 φ(t). The hold function is the response

of H to the discrete unit pulse δ̄[i ]. The hold can also be thought

of as a modulator of the input sequence {ū[i ]}. The standard

zero-order hold HZOH, which keeps u(t) constant over the inter-

sample period, corresponds in this setting to φ(t) = 1[0,h)(t).

The predictive first-order hold HFOH, which is a linear interpo-

lator of two successive input values, has the “tent” hold function

φ(t) = (1 − |t|/h)1[−h,h)(t). It is readily seen that both these

hold devices can be presented as the cascade of the impulse-

train modulator HITM, having the hold function φ(t) = δ(t),

and continuous-time LTI systems with the transfer functions
1−e−sh

s
(for HZOH) and

(
1−e−sh

s

)2
esh (for HFOH). Another ex-

ample of a hold device is the sinc-hold, Hsinc, having the hold

function φsinc(t) := sinch(t). This is actually the interpolator

from the Sampling Theorem.

Remark 2.3. We do not restrict the input and output dimen-

sion of S and H. For example, the sampler may produce a

vector-valued discrete signal (n ȳ > 1) from a scalar analog sig-

nal (ny = 1). This renders the setup general enough to de-

scribe multirate or nonuniform sampling problems (using the

polyphase decomposition). ▽

2.2.3. Discrete part

A general form of the LTI discrete-time system F̄ is the convo-

lution model

ū = F̄ ȳ : ū[k] =
∑

i∈Z
f̄ [k − i ]ȳ[i ], k ∈ Z, (5)

where the sequence f̄ [k] is known as the impulse response of

F̄ . This system can always be absorbed into S or H via redefin-

ing the functions ψ and φ, respectively. When analyzing HSPs

we thus may assume without loss of generality that F̄ = I or,

equivalently, f̄ [k] = δ̄[k]. This assumption can also be made

during the design if either sampler or hold (or both) is a design

parameter. For implementation of HSPs it might however be

advantageous to use a separate discrete filter.

1Thus, psi stands for sampler and phi for hold.

3. Lifting in Time Domain

Let us return now to the HSP in Fig. 1 and consider it as a

continuous-time system from y to u. Assuming, without loss of

generality, that F̄ = I and combining (3) and (4), we get

u(t) =
∑

i∈Z
φ(t − ih)

∫ ∞

−∞
ψ(ih − s)y(s)ds

=
∫ ∞

−∞

∑

i∈Z
φ(t − ih)ψ(ih − s)y(s)ds.

Thus, FHSP is an integral operator of the form

u(t) =
∫ ∞

−∞
g(t, s)y(s)ds (6)

with kernel

g(t, s) = fHSP(t, s) :=
∑

i∈Z
φ(t − ih)ψ(ih − s). (7)

System (6) is time invariant iff g(t, s) = g(t + σ, s + σ) for all

σ ∈ R. This, in general, is not the case for the kernel fHSP(t, s)

above. Thus, operations of continuous time signals that include

A/D and D/A converters are not a time-invariant operation in

general. Many of the techniques that are available for LTI sys-

tems can therefore not be applied to FHSP so easily. The time

invariance can, however, be regained on noticing that

fHSP(t, s) = fHSP(t + kh, s + kh), ∀k ∈ Z. (8)

This property, known as h-periodicity (or h-shift invariance),

enables one to convert FHSP into an equivalent shift-invariant

system using the linear transformation called lifting, see books

[8, 10] for more details and bibliography.

The lifting transformation—or simply lifting—can be seen

as a way of separating the behavior into a fully time invariant

discrete-time behavior and a finite-horizon continuous-time (in-

tersample) behavior. Fig. 3 explains the idea and the formal

−2h −h 0 h 2h t

(a) f (t) in continuous time

0 000 h hh h

−2 −1 0 1 k

(b) { f̆ [k]} in the lifted domain

Figure 3: Lifting analog signal f (t) = sinch(t)

definition is given below:

Definition 3.1. For any signal f : R → Cn f , the lifting

f̆ : Z → {[0, h) → Cn f } is the sequence of functions { f̆ [k]}
defined as

f̆ [k](τ ) = f (kh + τ ), k ∈ Z, τ ∈ [0, h).

▽
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In other words, with lifting we consider a function on R as

a sequence of functions on [0, h). Clearly, this incurs no loss

of information, it is merely another representation of the signal.

The rationale behind this representation is to “forbid” any time

shift but multiples of h. This implies that if a continuous-time

system u = Gy is h-periodic, then in lifted representation, ŭ =
Ğ y̆, it is shift invariant.

More explicitly, let an h-periodic system u = Gy be defined

by the integral (6) then in the lifted domain the mapping reads

ŭ[k](τ ) = u(kh + τ ) =
∫ ∞

−∞
g(kh + τ, σ )y(σ )dσ

=
∑

i∈Z

∫ h

0

g(kh + τ, ih + σ)y(ih + σ)dσ

=
∑

i∈Z

∫ h

0

g((k − i)h + τ, σ )y̆[i ](σ )dσ, (9)

which can be written as

ŭ[k] =
∑

i∈Z
Ğ[k − i ]y̆[i ], (10)

where Ğ[k], k ∈ Z, is the (lifted) impulse response system that

maps functions on [0, h) to functions on [0, h) as

(Ğ[k]w̆)(τ ) =
∫ h

0

g(kh + τ, σ )w̆(σ )dσ

=
∫ h

0

g(τ, σ − kh)w̆(σ )dσ, τ ∈ [0, h). (11)

Mapping (10) is a standard discrete-time convolution, describ-

ing a shift-invariant system Ğ. The price to pay with lifting is

the double time index: discrete (k) and continuous (τ ) times.

Example 3.2. Consider the sample-and-hold circuit (Fig. 4),

which is the cascade of the ideal sampler and the zero-order

yū = ȳu HZOH SIdl

Figure 4: Sample-and-hold circuit in the time domain

hold. This system determines the relation u(t) = y(⌊t/h⌋),
which is clearly not time invariant. Lifting y and u transforms

the sample-and-hold circuit into a discrete system, ŭ[k](τ ) =
y̆[k](0), that is, the kth element of the lifted output is a func-

tion of the kth lifted input element only: the impulse response

system at i = 0 acts as (Ğ[0]y̆)(τ ) = y̆(0) and the others are

zero, Ğ[i ] = 0. In the lifted domain it is therefore a static LTI

system. ▽

Although it appears natural to begin with integral represen-

tations (6) (because it allows to make the lifting operators con-

crete), the precise integral form (11) only blurs the reasoning

once the advantages of lifting sinks in. One would therefore

prefer to think of lifted systems purely in discrete time (10) and

suppress the finite-horizon time dependence.

Example 3.3. In the same vein, the sample-and-hold circuit

from Example 3.2 in the lifted domain may be depicted as in

Fig. 5. Here ŚIdl is the lifted ideal sampler transforming a se-

y̆ū = ȳŭ
H̀ZOH ŚIdl

Figure 5: Sample-and-hold circuit in the lifted domain

quence of functions {y̆[k]} into a sequence of numbers {ȳ[k]}
as ȳ[k] = y̆[k](0) and H̀ZOH is the lifted zero-order hold trans-

forming a sequence of numbers {ū[k]} into a sequence of func-

tions {ŭ[k]} as ŭ[k](τ ) = ū[k] for all τ ∈ [0, h). Both these

blocks are static discrete-time LTI systems. ▽

The reasonings of Example 3.3 apply in the general case

where each time we leave the discrete signals to what they are

and we lift the continuous-time signals to discrete ones. Lifting

the input y of the A/D converter ȳ = Sy in (3) results in the

lifted sampler

ȳ = Ś y̆ : ȳ[k] =
∑

i∈Z

∫ h

0

ψ((k − i)h − σ)y̆[i ](σ )dσ

=:
∑

i∈Z
Ś[k − i ]y̆[i ] (12)

This describes a pure discrete-time shift-invariant system and

we think of the operator Ś[k] : {[0, h) → Cny } 7→ Cn ȳ as

its impulse response. Similarly, the action of the hold device

u = Hū in (4) after lifting its output becomes

ŭ = H̀ū : ŭ[k] =
∑

i∈Z
H̀ [k − i ]ū[i ], (13)

where the operator H̆ [k] : Cnū 7→ {[0, h) → Cnu } for each

k is a multiplication by the lifted hold function φ̆[k], i.e.,

(H̆ [k]η)(τ ) = φ̆[k](τ )η for every η ∈ Cnū . This is also a

pure discrete shift-invariant system.

Example 3.4. Consider the predictive first-order hold dis-

cussed in §2.2.2. It has the hold function

φFOH(t) =
−h 0 h

1

.

Then the lifted hold ŭ = H̀FOHū is a discrete FIR system with

support in {−1, 0}. It maps numbers ū[k] to functions on [0, h)

as follows:

ŭ[k] = φ̆FOH[0] ū[k]+ φ̆FOH[−1] ū[k + 1]

=
0 h

ū[k]

+
0 h

ū[k + 1] =
0 h

ū[k]
ū[k + 1] ,

so ŭ[k](τ ) is the straight line interpolating ū[k] and ū[k + 1] at

τ = 0 and τ = h, respectively. ▽
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Ğe

w̆ĕ

ȳū y̆

v̆

ŭ
H̀ Ś

Ğ

F̄
-

Figure 6: Sampling / reconstruction (SR) setup in the

lifted domain

Remark 3.5. The various lifted systems (operators) that we

have seen so far come with different accents to emphasize the

dimensionality of their domain and range. The breve accent,

such as in Ğ, indicates that input and output space at each dis-

crete time is infinite dimensional, {[0, h) → Cn}. Samplers

Ś map infinite-dimensional space {[0, h) → Cn} to finite-

dimensional space Cn , which is what the acute accent indi-

cates, and holds H̀ map finite-dimensional space to infinite-

dimensional space, indicated by the grave accent. The lifted

hybrid signal processor then is a mapping ĞHSP = H̀Ś that

goes from an infinite-dimensional space to a finite-dimensional

one and back to another infinite-dimensional space again. The

accents help in keeping track of the signal space dimensions.

When an expression equally applies to either of these types of

operators (e.g., in some definitions), we use the tilde, G̃. ▽

Thus, by lifting all analog signals in the SR setup in Fig. 2

we end up with an equivalent discrete-time setup depicted in

Fig. 6. It has two key advantages over the original represen-

tation. First, lifting puts continuous- and discrete-time signals

on an equal footing. The only difference between “bar” and

“breve” discrete signals is that the former are vector (or scalar)

valued, whereas the latter are function valued. Conceptually,

however, this difference is not more intricate than the difference

between scalar and vector signals. Consequently, all systems in

Fig. 2, irrespective of whether they are continuous time, discrete

time, or hybrid, become pure discrete-time systems. Second, all

these discrete systems are now shift invariant, so that many of

the familiar LTI notions can be re-used almost verbatim.

The advantages come at a cost: the infinite dimensionality of

certain input and output signal spaces. Yet this difficulty turns

out not to be crucial and can be alleviated by exploiting the

structure of the resulting operator-valued mappings.

4. Lifting in Frequency Domain

With the regained time invariance, we can apply frequency do-

main methods to lifted h-periodic systems and signals.

4.1. z- and Fourier transforms

Naturally, the z- and Fourier transforms of a lifted signal f̆ are

defined with respect to the discrete time index.

Definition 4.1. The (lifted) z-transform Z{ f̆ } of a lifted signal

f̆ is defined as

Z{ f̆ } = f̆ (z) :=
∑

k∈Z
f̆ [k]z−k, (14)

for all z ∈ C for which the series converges. ▽

Definition 4.2. The (lifted) Fourier transform F{ f̆ } of a lifted

f̆ is defined as

F{ f̆ } = f̆ (eiθ ) :=
∑

k∈Z
f̆ [k]e−iθk,

where θ ∈ [−π, π] is the frequency. ▽

Note that for each z ∈ C and θ ∈ [−π, π] the z- and

Fourier transforms (if they exist) are still functions of intersam-

ple time τ ∈ [0, h). This is reflected by the notation f̆ (z; τ ) and

f̆ (eiθ ; τ ), which shall be used when these dependences are im-

portant. The lifted z-transform equals the modified or advanced

z-transform as introduced by [19], but the intent is entirely dif-

ferent.

The following result, which to the best of our knowledge has

not explicitly appeared in the literature yet, plays a key role in

the subsequent analysis. It is a version of the Poisson Summa-

tion Formula, but then one that looses no information about the

analog signal. Indeed the point of lifting is to maintain inter-

sample behavior, also in frequency domain.

Theorem 4.3 (Key lifting formula). Let f be an analog signal

such that f (t)e−s0t ∈ L2(R) for some s0 ∈ C. Then

f̆ (z; τ ) = 1

h

∑

k∈Z
F(sk)e

skτ (15)

for all τ ∈ [0, h), where z := es0h and sk := s0 + i2ωNk. ▽

Proof. The (regular bilateral) Laplace transform of f is

F(s) =
∫ ∞

−∞
f (t)e−st dt

=
∑

k∈Z

∫ h

0

f (τ + kh)e−s(τ+kh)dτ

=
∫ h

0

∑

k∈Z
f̆ [k](τ )e−skh e−sτdτ

=
∫ h

0

f̆ (esh ; τ )e−sτdτ.

Equality (15) now follows by noting that

1

h
F(sk) =

1

h

∫ h

0

[

f̆ (eskh ; τ )e−s0τ
]

e−i2ωNkτ dτ

is the kth Fourier series coefficient of f̆ (esi h ; τ )e−s0τ (mind

that eskh = es0h =: z). By Plancherel’s theorem, the assump-

tion that f (t)e−s0t ∈ L2(R) assures that (15) holds in L2-sense

and therefore holds pointwise almost everywhere.

A particular case of this formula for s0 = iθ/h says that there

is a bijection from the lifted Fourier transform f̆ (eiθ ) and the

classical Fourier transform F(iω):

F(iωk) =
∫ h

0

f̆ (eiθ ; τ )e−iωkτdτ, (16a)

f̆ (eiθ ; τ ) = 1

h

∑

k∈Z
F(iωk)e

iωkτ , (16b)
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for any square integrable f , where

ωk := θ + 2πk

h
= θ

h
+ 2ωNk (17)

are aliased frequencies.

Remark 4.4. A special case of Equality (16b) corresponding

to τ = 0 yields the classical formula connecting Fourier trans-

forms of an analog signal (provided it is continuous and satis-

fies some other mild conditions [5]) and its sampled version:

F{ f̄ } = 1
h

∑

i∈Z F(iωi ). We believe that the derivation via the

use of lifting and (16b) is somewhat cleaner and more intuitive

than the conventional impulse-train modulation [33] or “reverse

engineering” [2] arguments. ▽

Example 4.5. To illustrate a use of formula (16b), let f (t) =
1
h

sinch(t). Since F(iω) = 1[−ωN,ωN](ω), equality (16b) yields

the lifted Fourier transform f̆ (eiθ ; τ ) = 1
h

eiθτ/h for θ ∈
[−π, π] and τ ∈ [0, h). ▽

Example 4.6. The Fourier transform of f (t) = 1
h

sinc2
h(t)

is the “tent” F(iω) = (1 − |ω|/(2ωN))1[−2ωN,2ωN](ω). Then

f̆ (eiθ ; τ ) = 1
h

eiθτ/h
(

1− |θ |2π +
|θ |
2π e−i2ωNτ sign θ

)

for θ ∈
[−π, π] and τ ∈ [0, h). ▽

h

π

τ

θ

| f̆ (eiθ ; τ)|

(a) f (t) = sinch (t)

h

π

τ

θ

| f̆ (eiθ ; τ)|

(b) f (t) = sinc2
h (t)

Figure 7: Amplitude | f̆ (eiθ ; τ )| vs. θ and τ

Fig. 7 depicts the amplitude | f̆ (eiθ ; τ )| as a function of

θ ∈ [−π, π] and τ ∈ [0, h) for the functions considered in the

above two examples. Such amplitude plots demonstrate how the

amplitude spectrum of the sampled signal f (kh + τ ) changes

with time offset τ (for the sinch it does not change).

4.2. Transfer Function & Frequency Response

It is well-known that convolution (dynamic) systems become

algebraic (static) if considered in the transform domain. This is

also true for lifted systems as we shall see with the introduction

of the lifted transfer function formalism.

The transfer function Ğ(z) of the lifted system (10) is for-

mally defined as the z-transform of its impulse response

Ğ(z) :=
∑

i∈Z
Ğ[i ] z−i . (18)

A standard index change in (10) then shows [3] that the lifted

z-transforms of input and output satisfy the familiar

ŭ(z) = Ğ(z)y̆(z). (19)

It is worth recalling that the lifted impulse response Ğ[k] for

each k ∈ Z is an integral operator of the form (11). Hence,

so is the lifted transfer function Ğ(z). It can be shown that the

“multiplication” in (19) should be understood as

ŭ(z; τ ) =
∫ h

0

ğ(z; τ, σ )y̆(z; σ)dσ, τ ∈ [0, h), (20)

where ğ(z; τ, σ ) is the lifted z-transform of the impulse re-

sponse kernel g(t, s) of G with respect to its first variable2,

ğ(z; τ, σ ) :=
∑

k∈Z
g(τ + kh, σ )z−k . (21)

Again we want to make the point here that (19) is more in the

spirit of lifting than the gritty details of (20) and (21).

Example 4.7. In Example 3.3 we showed that the impulse re-

sponse Ğ[k] of the cascade of the ideal sampler and the zero-

order hold is such that (Ğ[0]y̆)(τ ) = y̆(0) and with all other

Ğ[k] zero. Therefore, the transfer function of this cascade in

the lifted domain acts as Ğ(z)y̆(z) = y̆(z; 0). ▽

“Semi-lifted” elements, such as lifted sampler and hold, can

be described in terms of their lifted transfer functions in the

same way. The only difference from the case considered above

is that either output or input space is now finite dimensional.

Thus, the transfer function Ś(z) of the lifted sampler Ś in (12)

is a linear functional from {[0, h)→ Cny } to Cn ȳ of the form3

ȳ(z) = Ś(z)y̆(z) : ȳ(z) =
∫ h

0

ψ̆(z; −σ)y̆(z; σ)dσ (22)

for each z ∈ C where it is defined. Here ψ̆(z) is the lifted z-

transform of the sampling functionψ(t). Similarly, the transfer

function H̀(z) of the lifted hold H̀ in (13) is an operator from

Cnū to {[0, h)→ Cnu } of the form

ŭ(z) = H̀(z)ū(z) : ŭ(z; τ ) = φ̆(z; τ )ū(z) (23)

for each z ∈ C where it is defined. Here, φ̆(z) is the lifted

z-transform of the hold function φ(t).

Example 4.8. Consider again the predictive first-order hold

HFOH studied in Example 3.4. Inspecting the formulae in this

example, it is readily seen that

φ̆FOH(z; ·) = φ̆FOH[−1] z + φ̆FOH[0] =
0 h

z +
0 h

.

The “static gain” of this transfer function is H̀FOH(1; τ ) ≡ 1,

which agrees with our understanding of this hold. ▽

Obviously, Ğ(eiθ ) will be referred to as the (lifted) frequency

response and the transfer kernel ğ(eiθ ) as its frequency response

kernel. It maintains the familiar interpretation in the sense that

for any fixed θ ∈ [−π, π] the response ŭ = Ğ y̆ to a (lifted)

2Alternatively, the “1/z-transform” with respect to its second variable.
3Strictly speaking, it should be z−1ψ̆(z; h − σ), rather than ψ̆(z; −σ) (these

two are equivalent), because the intersample time variable lies in [0, h]. We,

however, prefer to trade notational rigor for simplicity in this case.
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harmonic function y̆[k] = eiθkw̆ (with w̆ : [0, h)→ Cnw ) if it

exists, is again harmonic [53], ŭ[k] = eiθk G(eiθ )w̆. The abso-

lute value |y̆[k](τ )| of a harmonic input does not depend on k

and neither does the output. As shown in [53], if the magnitude

of harmonic y̆[k] (for whatever k) is measured in L2[0, h)-sense

then the maximal possible magnitude gain (power gain) at fre-

quency θ equals the largest singular value of G(eiθ ) as defined

later on in this part, (29). This is very similar to the interpre-

tation of the conventional frequency response of discrete-time

systems.

Example 4.9. Consider the sinc-sampler Ssinc (see §2.2.1)

having the sampling function ψsinc(t) = 1
h

sinch(t). Ex-

ample 4.5 then yields that the frequency response kernel of

Śsinc(e
iθ ) is ψ̆ sinc(e

iθ ; −σ) = 1
h

e−iθσ/h . ▽

Example 4.10. The hold function of the sinc-hold Hsinc (see

§2.2.2) is φsinc(t) = sinch(t). Therefore, the frequency re-

sponse kernel of H̀sinc(e
iθ ) is φ̆sinc(e

iθ ; τ ) = eiθτ/h . ▽

5. Spaces and Norms

This section reviews the notions of signal and system norms

in the lifted domain. Most results presented below are either

known or quite straightforward extensions of known results that

can be found in, e.g., [8], [10, Ch. 2], [9, Appendix A].

5.1. Signal Spaces and Norms

As the lifting transformation is merely a different viewpoint of

analog signals, we can take it to be norm preserving. Concretely,

the L2 signal norm translates to the lifted domain as follows:

‖ f ‖22 =
∫ ∞

−∞
| f (t)|2dt =

∑

k∈Z

∫ h

0

| f̆ [k](τ )|2dτ

=
∑

k∈Z
‖ f̆ [k]‖2

L
=: ‖ f̆ ‖22, (24)

where L := L2[0, h). By analogy with the standard ℓ2
C
(Z)

space, we call the quantity defined by (24) the ℓ2-norm of f̆

(this is a norm, just because so is the L2-norm in continuous

time) and denote the set of all lifted signals having a bounded

ℓ2-norm as ℓ2
L
(Z), which is a Hilbert space with the obvious

inner product. Thus lifting by construction is an isometric iso-

morphism between L2
C
(R) and ℓ2

L
(Z).

Remark 5.1. All signals in the lifted SR scheme in Fig. 6 are

now measured by various ℓ2-norms. The only difference be-

tween these norms is in their “subscript spaces”: C or L. This

difference, however, is peripheral, so we hereafter drop the sub-

script from the notation for ℓ2 and related spaces. ▽

With a slight abuse of notation we use ℓ2(Z+l ) and ℓ2(Z−l ) to

denote the subspaces of ℓ2(Z) consisting of signals that are zero

in Z
−
l and Z

+
l , respectively. Clearly, ℓ2(Z) = ℓ2(Z+l )⊕ ℓ2(Z−l )

for every integer l. We shall need these subspaces later on to

discuss causality.

We also need corresponding frequency-domain spaces. Let

K stand for either Cn or L, depending on whether our signal is

a plain discrete-time signal or a lifted one. The Hilbert space

L2(T) is the set of functions f̃ (z) : T→ K, for which4

‖ f̃ ‖2 :=
(

1

2π

∫ π

−π
‖ f̃ (eiθ )‖2

K
dθ

)1/2

<∞.

The Hardy space H 2 is the set of functions f̃ (z) : C \ D̄→ K

which are analytic and satisfy

‖ f̃ ‖H2 := sup
ρ>1

(
1

2π

∫ π

−π
‖ f̃ (ρeiθ )‖2

K
dθ

)1/2

<∞.

The domain of functions in H 2 can be extended to T and the

result is a closed subspace of L2(T) with ‖ f̃ ‖H2 = ‖ f̃ ‖2. The

orthogonal complement of H 2 in L2(T) is denoted by H 2
⊥ and

is comprised of analytic and bounded functions f̃ (z) : D→ K

such that ‖ f̃ ‖2 < ∞. Finally, by zl H 2 we denote the space of

functions f̃ (z) : C \ D̄→ K such that z−l f̆ (z) ∈ H 2.

The Parseval’s identity, which is instrumental in converting

energy-based optimization problems to the frequency domain,

also extends to general ℓ2 spaces. Namely, for any f̃ ∈ ℓ2(Z)

we have that F{ f̃ } ∈ L2(T) and

‖ f̃ ‖2 = ‖F{ f̃ }‖2.

The Fourier transform is thus an isometric isomorphism be-

tween ℓ2(Z) and L2(T). Similarly the z-transform is an iso-

metric isomorphism between ℓ2(Z+l ) and zl H 2 for any l.

Example 5.2. Consider f (t) = 1
h

sinch(t). By Exam-

ple 4.5, ‖ f ‖2 can also be computed via the L2(T)-norm of

its lifted Fourier transform: ‖ f̆ ‖22 =
1

2π

∫ π
−π
∥
∥ 1

h
eiθτ/h

∥
∥

2

L
dθ =

1
2π

∫ π
−π

1
h

dθ = 1
h
, which agrees with the direct computation of

‖ f ‖22. ▽

5.2. Adjoint Systems and Conjugate Transfer Functions

Since both lifting and Fourier transformation preserve inner

products, the adjoint of an operator is equivalent in all domains,

i.e., the lifting of the adjoint operator is the adjoint of the lifted

operator, and likewise for the Fourier transformed operator. It

is well known that the kernel of the adjoint of G, given in (6), is

g∼(t, s) := [g(s, t)]∗ (25)

with ∗ here denoting complex conjugate transpose. The con-

jugate operator ∼ defined by (25) not only takes the complex

conjugate transpose of the matrix but also interchanges the two

time parameters. It is more generally defined for frequency de-

pending functions as

ğ∼(z; τ, σ ) := [ğ(1/z; σ, τ )]∗

4We use the same norm symbol for several time- and frequency-domain

norms. Context determines which is intended.
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for then the z-transform of the conjugate is the conjugate of the

z-transform (with respect to the first variable):

Z{g∼(τ, σ )} =
∑

k∈Z
g∼(τ + kh, σ )z−k

=
∑

m=−k

[g(σ, τ − mh)zm]∗

=
∑

m∈Z
[g(σ + mh, τ )(1/z)−m ]∗ = ğ∼(z; τ, σ ).

According to (20), (21), and the above, ğ∼(z; τ, σ ) hence is the

kernel of the transfer function of the adjoint system G∗. We

denote this transfer function as Ğ∼(z),

y̆(z) = Ğ∼(z)ŭ(z) : y̆(z; τ ) =
∫ h

0

ğ∼(z; τ, σ )ŭ(z; σ)dσ.

It is readily seen that for z = eiθ the conjugate Ğ∼(eiθ ) is the

adjoint of Ğ(eiθ ) with respect to L:

〈ŭ(eiθ ), Ğ(eiθ )y̆(eiθ )〉L = 〈Ğ∼(eiθ )ŭ(eiθ ), y̆(eiθ )〉L.

That is, the lifted transfer function of the adjoint equals the ad-

joint of the lifted transfer function.

Now, the adjoint of the sampler in (3) can be derived via

〈Sy, ū〉ℓ2 =
∑

i∈Z
ū∗[i ]

∫ ∞

−∞
ψ(ih − s)y(s)ds

=
∫ ∞

−∞

(∑

i∈Z
[ψ(ih − s)]∗ū[i ]

)∗
y(s)ds

= 〈y,S∗ū〉L2 .

Thus, the adjoint of S with a sampling function ψ(t) is a H

with the hold function φ(t) = [ψ(−t)]∗ =: ψ∼(t) (the latter

is just an LTI version of (25)). This prompts a duality between

the A/D and D/A conversions and also implies that the adjoint

of H with φ(t) is S with ψ(t) = φ∼(t). The conjugate transfer

function of Ś(z), Ś∼(z), is the following lifted hold:

y̆(z) = Ś∼(z)ū(z) : y̆(z; τ ) = ψ̆∼(z; τ )ū(z),

with ψ̆∼(z; τ ) := [ψ̆(1/z; −τ )]∗. The conjugate transfer func-

tion of H̀ (z) is

ȳ(z) = H̀ ∼(z)ŭ(z) : ȳ(z) =
∫ h

0

φ̆∼(z; −σ)ŭ(z)σdσ,

which is a lifted sampler.

The following result will be used in the next parts:

Proposition 5.3. Let S be a sampler, the sampling function

ψ(t) of which is such that ψ(t)e−s0t ∈ L2(R) for some s0 ∈ C.

Then at z = es0h we have that

Ś(z)Ś∼(z) =
∫ h

0

ψ̆(z; τ )[ψ̆(1/z; τ )]∗dτ (26a)

= 1

h

∑

k∈Z
9(sk)9

∼(sk), (26b)

where sk = s0 + i2ωNk and 9(s) is the bilateral Laplace trans-

form of ψ . ▽

Proof. Equality (26a) follows by routine substitution. To de-

rive (26b), denote the integral in (26a) by M and use (16b):

M = 1

h2

∫ h

0

∑

k∈Z
9(sk)e

skτ

[
∑

i∈Z
9(si )e

si τ

]∼

dτ

= 1

h2

∑

k∈Z
9(sk)

∑

i∈Z
9∼(si )

∫ h

0

ei2ωN(k−i)τ dτ.

The result now follows by
∫ h

0 ei2ωN(k−i)τ dτ = h δ̄[k − i ].

It is an immediate corollary of this result that ifψ(t) is scalar,

then Ś(eiθ )Ś∼(eiθ ) = ‖ψ̆(eiθ )‖2
L
= 1

h

∑

k∈Z|9(iωk)|2, where

ωk are defined by (17). Also, by duality we have:

Proposition 5.4. Let H be a hold, the hold function φ(t) of

which is such that φ(t)e−s0t ∈ L2(R) for some s0 ∈ C. Then

at z = es0h we have that

H̀ ∼(z)H̀(z) =
∫ h

0

[φ̆(1/z; τ )]∗φ̆(z; τ )dτ (27a)

= 1

h

∑

k∈Z
8∼(sk)8(sk) (27b)

where sk = s0 + i2ωNk and 8(s) is the bilateral Laplace trans-

form of φ. ▽

5.3. L∞ System Norm

The L∞ norm (cf. (2)) of a lifted transfer function G̃(z) : Ki→
Ko is defined as

‖G̃‖∞ := ess sup
θ∈[−π,π]

σmax[G̃(eiθ )] <∞, (28)

where the (operator) maximal singular value σmax equals

σmax[G̃(eiθ )] = sup ỹ∈Ki,‖ỹ‖Ki
=1‖G̃(eiθ )ỹ‖Ko

, (29)

i.e., (29) is the induced norm of G̃(eiθ ). If G̃(z) is the transfer

function of an LTI system G̃, we also refer to (28) as the L∞-

norm of the system and denote it as ‖G̃‖∞. For given Ki and Ko

the vector space of all transfer functions with finite L∞-norm is

represented with the same symbol L∞, so

L∞ = {G̃ : T→ (Ki→ Ko) | ‖G̃‖∞ <∞}.

By the arguments of [3], it can be shown that ‖Ğ‖∞ equals

the L2(R)-induced norm of its original, G, i.e., ‖Ğ‖∞ =
sup‖y‖2=1‖Gy‖2. Its square, ‖Ğ‖2∞, is therefore the maximal

energy gain of the system and also equals the maximal power

gain. Likewise, ‖Ś‖∞ and ‖H̀‖∞ equal L2(R) → ℓ2(Z) and

ℓ2(Z)→ L2(R) induced norms of S and H, respectively.

Example 5.5. Consider the HSP HZOHSǫ , where Sǫ is the “al-

most ideal” sampler with ψǫ(t) = 1
ǫ
1[0,ǫ](t) for 0 < ǫ < h

(the smaller ǫ is, the more this sampler behaves like the ideal

sampler). Because ψǫ(t) is scalar, by Proposition 5.3 (this can

also be seen via the Riesz-Fréchet theorem) we have that

‖Śǫ‖∞ = sup
θ∈[−π,π]

‖ψ̆ǫ(eiθ )‖L = sup
θ∈[−π,π]

‖ 1
ǫ
1[0,ǫ]‖L =

1√
ǫ
.
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In fact, the maximizing input having the unity norm for this

system is ymax(t) = 1/
√
ǫ 1[h−ǫ,h)(t) and is unique (mod-

ulo sign and h-shifts). Regarding HZOH, it is readily seen that

‖u‖2 =
√

h‖ū‖2 for every ū ∈ ℓ2(Z). Thus, ‖H̀ZOH‖∞ =
√

h

and any input ū is maximizing. Hence, ymax actually maximizes

the energy gain of the overall HSP H̀ZOHŚǫ and we have:

‖H̀ZOHŚǫ‖∞ =
√

h ‖Śǫ‖∞ =
√

h/ǫ.

It becomes unbounded as ǫ ↓ 0, like in the L2 case. ▽

Another space we need is the Hardy space H∞. It is defined

as the set of transfer functions G̃(z), which are analytic for z ∈
C \ D̄ and satisfy

‖G̃‖H∞ := ess sup
z∈C\D̄

σmax[G̃(z)] <∞.

Like in the case with the H 2 signal space, H∞ operators can

be extended to z ∈ T, resulting in a closed subspace of L∞

with ‖G̃‖H∞ = ‖G̃‖∞. By zl H∞ we then denote the subspace

of L∞ consisting of operators G̃(z) such that z−l G̃(z) ∈ H∞.

Loosely speaking, H∞ is the space of transfer functions, which

are analytic and bounded in C \ D, whereas zl H∞ is the space

of analytic transfer functions with relaxed (if l > 0) or tightened

(if l < 0) boundedness in |z| → ∞.

5.4. L2 System Norm

The L2 norm (cf. (1)) of lifted (or semi-lifted) transfer functions

G̃(z) : Ki → Ko is defined as

‖G̃‖2 :=
(

1

2πh

∫ π

−π
‖G̃(eiθ )‖2HS dθ

)1/2

<∞ (30)

(the scaling factor will become clear soon, it is not present in

the standard discrete case). Here ‖·‖HS is the Hilbert-Schmidt

operator norm, which can in general be calculated as

‖G̃(eiθ )‖2HS = tr[G̃(eiθ )G̃∼(eiθ )] = tr[G̃∼(eiθ )G̃(eiθ )]

=
∑

i

σ 2
i [G̃(eiθ )],

with σi [·] the i th singular value. For integral operators L→ L

as in (20) we have that

‖Ğ(eiθ )‖2HS =
∫ h

0

∫ h

0

‖ğ(eiθ ; τ, σ )‖2F dτdσ.

For semi-lifted operators, like Ś(z) and H̀(z), the calculations

of the Hilbert-Schmidt norm reduce to the computation of the

matrix trace (cf. Propositions 5.3 and 5.4). If G̃(z) is the transfer

function a (semi-) lifted system G̃ we also refer to (30) as the L2-

norm of the system and denote it as ‖G̃‖2. The vector space of

systems with finite L2 system norm (30) is represented simply

as L2,

L2 = {G̃ : T→ (Ki→ Ko) | ‖G̃‖2 <∞}.

In contrast to the ordinary L2 norm for LTI-systems, the L2

system norm is not equivalent to a signal norm, even though we

use the same notation, ‖·‖2 and L2. Neither of the two system

spaces L∞ and L2 is a subset of the other. However, if the rank

of the transfer function is uniformly bounded then being in L∞

implies being in L2.

Proposition 5.6. Let G̃ ∈ L∞ be such that rank G̃(eiθ ) ≤ r

for almost all θ ∈ [−π, π] and some r ∈ N. Then G̃ ∈ L2.

Proof. Then (30) and (28) imply ‖G̃‖22 ≤ r‖G̃‖∞/h.

In particular every hold and sampler that is in L∞ is neces-

sarily in L2.

The L2 system norm defined by (30) retains familiar deter-

ministic and stochastic interpretations. For SISO h-periodic

analog systems, for instance, the norm satisfies [4]

‖Ğ‖22 =
1

h

∫ h

0

‖G δ(· − σ)‖2
L2(R)

dσ.

That is, ‖Ğ‖22 is the average energy of the output where the av-

erage is taken over all delta functions applied at σ ∈ [0, h). For

h ↓ 0 this reduces to the classic LTI result. Also, stochastic

interpretations are maintained: ‖Ğ‖22 equals the over time av-

eraged sum of variances (power) of the output elements if the

system is driven by standard white noise [4].

Example 5.7. Consider again the HSP HZOHSǫ studied in Ex-

ample 5.5. As the input y to this system ranges over the delta

functions applied at σ ∈ [0, h) the output of the sampler ranges

over ȳ ≡ 0 for σ ∈ [0, h − ǫ] and ȳ[i ] = 1
ǫ δ̄[i − 1] for

σ ∈ [h − ǫ, h). Hence for σ ∈ [0, h − ǫ] the output energy

of the hold is zero while for σ ∈ [h − ǫ, h) the output energy is

‖ 1
ǫ1[h,2h]‖22 = h

ǫ2 . The average energy therefore equals

‖H̀ZOHŚǫ‖22 =
1

h

∫ h

h−ǫ

h

ǫ2
dτ = 1

ǫ
.

The cascade of the ideal sampler and the zero-order hold con-

sequently has infinite L2 system norm.

When driven by zero mean unit intensity white noise y̆, the

samples ū = ȳ = Śǫ y̆ for this sampler are independent and

are stationary with variance 1
ǫ . The “Manhattan skyline” out-

put ŭ = H̀ZOHū shown in of Fig. 8 clearly is not stationary as

an analog signal because it is piecewise constant, but it is sta-

tionary as a lifted signal. Its over time averaged power is well

defined and equals ‖H̀ZOHŚǫ‖22 = 1
ǫ
. ▽

white

y̆ū = ȳŭ
H̀ZOH Śǫ

Figure 8: A periodic stationary output ŭ

Signal connotations are not that consistent in semi-lifted

cases, where deterministic and stochastic interpretations might

require different scaling. To be specific, to maintain the deter-

ministic interpretation for A/D systems (averaging the output
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energy over all δ-functions applied in [0, h)), we still need to

scale the Hilbert-Schmidt norm by a factor of 1/h. At the same

time, this factor is not required to maintain the stochastic inter-

pretation (the response to the analog white noise is a stationary

discrete process then). D/A systems, on the contrary, do not

need the scaling in the deterministic case, whereas do need it to

maintain the stochastic meaning. We nevertheless proceed with

the scaling in all cases of interest, just to keep the exposition

simple.

The L2 system norm (30) corresponds to the system inner

product

〈G̃, P̃〉2 =
1

2πh

∫ π

−π
〈G̃(eiθ ), P̃(eiθ )〉HS dθ (31)

with the Hilbert-Schmidt inner product defined as

tr(AB∗) = tr(B∗A) := 〈A, B〉HS :=
∑

i

〈Aei , Bei 〉Ko

where {ei } is any complete orthonormal sequence of Ki. By

Parseval’s theorem the inner product (31) equals

〈G̃, P̃〉2 =
1

h

∑

k∈Z
〈G̃[k], P̃[k]〉HS

where G̃[k] is the impulse response kernel (cf. (10), (12), (13)).

It implies that two L2 systems are orthogonal if their impulse

response kernels have disjoint supports and that

‖G̃‖22 =
1

h

∑

k∈Z
‖G̃[k]‖2HS. (32)

This expression is quite useful in various applications.

Finally a note on adjoints. We take adjoints of systems (oper-

ators) always with respect to the standard L2 and ℓ2 signal inner

product (24). The reason is that these are also adjoints for the

other inner products such as (31). A further useful fact is that

the system inner product (31) inherits from the Hilbert-Schmidt

inner product the trace-like property that

〈Ã, B̃ X̃ 〉2 = 〈Ã X̃∗, B̃〉2 (33)

if X̃ ∈ L∞ and Ã, B̃ ∈ L2.

6. Stability and Causality

This section reviews the notions of stability and causality and

their expression in the lifted frequency domain.

6.1. System Stability

As HSPs, like that in Fig. 1, typically operate in open loop and

their components are implemented separately, we require that

each component, i.e., S, F̄ , and H, is stable. We say that S is

stable if it is a bounded operator L2(R) 7→ ℓ2(Z), F̄ is stable

if it is a bounded operator ℓ2(Z) 7→ ℓ2(Z), and H is stable if it

is a bounded operator ℓ2(Z) 7→ L2(R). Obviously, in the lifted

domain, for the lifted HSP in Fig. 6, all these definitions read as

the boundedness as an operator ℓ2(Z) 7→ ℓ2(Z).

The fact that all components of the lifted HSP are LTI makes

it possible to verify their stability to the (lifted) frequency do-

main. Indeed, because the Fourier transform is an isomor-

phism from ℓ2(Z) to L2(T), each of the systems S, F̄ , and

H is stable iff its lifted transfer function is a bounded operator

L2(T) 7→ L2(T). The following result, which is essentially the

first part of [9, Thm. A.6.26], plays then a key role:

Theorem 6.1. The set of all bounded multiplication operators

from L2(T) to L2(T) is L∞. Moreover, the induced norm of an

operator Õ : L2(T) 7→ L2(T) is ‖Õ‖∞. ▽

It follows from Theorem 6.1 that a sampler S is stable iff its

lifted transfer function Ś(z) ∈ L∞ and a hold H is stable iff its

lifted transfer function H̀(z) ∈ L∞. Propositions 5.3 and 5.4

reduce the verification of these conditions to matrix (or even

scalar) operations. For example, S is stable iff each row of the

lifted Fourier transform of its sampling function ψ(t) belongs

to L for (almost) all θ or, alternatively, iff the magnitude of the

Fourier transform of each entry ofψ(t) is square summable over

all aliased frequencies for (almost) all baseband frequencies.

The latter condition is guaranteed if the Fourier transform of

the sampling function decays faster than 1/
√
ω as ω → ∞,

which agrees with known results about stability of the sampling

operation [22].

6.2. Systems Causality

The notion of causality is well understood for both analog and

discrete systems. Intuitively, a system is causal if its output at

any time instance depends only upon its past and present inputs

and does not depend on the future inputs. For a continuous-time

system G this can be formally expressed as

5TG (I −5T ) = 0, ∀T ∈ R, (34)

where the truncation operator 5T is defined via the relation

(

5T u
)

(t) =
{

u(t) t < T

0 t ≥ T
.

The discrete-time case is the same modulo the use of the discrete

truncation operator 5̄k , defined similarly. If the system is time

invariant, the condition need only be checked for one fixed T ,

e.g., for T = 0.

The extension of these notions to hybrid systems depends

on the way in which continuous and discrete times are syn-

chronized. Henceforth, motivated mainly by the time associ-

ation in the lifting transformation, we presume that the kth dis-

crete instance corresponds to the whole continuous-time inter-

val [kh, (k + 1)h). In this case, we say that a (shift-invariant)

sampler S is causal if

5̄kS (I −5kh) = 0, for some k ∈ Z, (35)

and a (shift-invariant) hold H is causal if

5khH(I − 5̄k) = 0, for some k ∈ Z. (36)
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It can be verified that, according to these definitions, sampler (3)

is causal iff ψ(t) = 0 for all t ≤ −h and hold (4) is causal iff

φ(t) = 0 for all t < 0. While the latter is in agreement with the

criterion for continuous-time systems, the former might appear

peculiar. For example, a sampler with the sampling function

ψ(t + h/2), which acts as ȳ[k] = y(kh + h/2), is causal by

this definition. This, however, is a matter of convention. If

the implementation permits ȳ[k] to depend only upon y(t) for

t < kh, we may require from S to be strictly causal, i.e., that

5̄k+1S (I −5kh) = 0.

Definitions (35) and (36) can be lifted straightforwardly. To

this end, note that 5kh corresponds to

(

5̆k ŭ
)

[i ] =
{

ŭ[i ] i < k

0 i ≥ k

in the lifted domain. Thus, both (35) and (36) became particular

cases of the general definition: an LTI (discrete / semi-lifted /

lifted) system G̃ is causal if

5̃k G̃(I − 5̃k) = 0, for some k ∈ Z. (37)

Remark 6.2. When applied to the lifting Ğ of a continuous-

time system G, definition (37) reads5khG (I −5kh) = 0. This

is not equivalent to (34), unless G is time invariant. Much care

must therefore be taken in analyzing causality in the lifted do-

main with this definition. Throughout, we use the lifted version

of (37) only in relation to lifted HSP blocks, in which case it

does reflect causality (with the convention about the sampler

discussed above). ▽

We also need a more general definition. We say that an LTI

system G̃ is l-causal (l ∈ Z) if

5̃k−l G̃(I − 5̃k) = 0, for some k ∈ Z. (38)

This definition allows the output of G̃ at the moment k to depend

on its input at all moments ≤ k + l. If l > 0, this effectively

says that G̃ may have l steps preview. If l < 0, (38) defines a

system with the delay of −l. The case of l = −1 corresponds

to strictly causal systems.

6.3. Stability with Causality Constraints

Our message in this subsection is that (l) causality can be neatly

incorporated into the stability analysis, in both time and fre-

quency domains.

Let G̃ be a stable, i.e., bounded mapping ℓ2(Z) → ℓ2(Z),

(discrete / semi-lifted / lifted) system and consider Defini-

tion (38) for k = 0. It is readily seen that 5̃−l and I − 5̃0 are

the orthogonal projections from ℓ2(Z) to ℓ2(Z−−l ) and ℓ2(Z+0 ),

respectively. Thus, (38) reads 5̃−l G̃ ℓ
2(Z+0 ) = 0 or, equiva-

lently,

G̃ ℓ2(Z+0 ) ⊂ ℓ
2(Z) ⊖ ℓ2(Z−−l ) = ℓ

2(Z+−l).

Thus, we just showed that an LTI system G̃ is stable and l-causal

iff it is a bounded operator ℓ2(Z+0 )→ ℓ2(Z+−l ).

Because the z-transform is an isometric isomorphism be-

tween ℓ2(Z+l ) and zl H 2, the stability condition above can be

reformulated as follows: G̃ is stable and causal iff its transfer

function G̃(z) is a bounded operator H 2→ zl H 2. This, in turn,

translates to (relatively) easily verifiable properties of G̃(z)with

the help of the following result:

Theorem 6.3. The set of all bounded multiplication operators

from H 2 to zl H 2 is zl H∞. Moreover, the induced norm of an

operator Õ : H 2 7→ zl H 2 is ‖Õ‖∞. ▽

Proof. The result for l = 0 (i.e., for the causal case) is known,

see [9, Thm. A.6.26]. To extend it to general l, note that ac-

cording to the definition of zl H 2,

Õ H 2 ⊂ zl H 2 ⇔ z−l(Õ H 2) ⊂ H 2 ⇔ (z−l Õ)H 2 ⊂ H 2.

According to the result for l = 0, the latter reads z−l Õ ∈ H∞,

leading to the first part. The second part follows by the fact that

the multiplication by z−l does not alter the L∞-norm.

It follows from Theorem 6.3 that S and H are stable and l-

causal iff their lifted transfer functions, Ś(z) and H̀(z), respec-

tively, belong to zl H∞. Thus, if causality constraints are incor-

porated into an optimization procedure, it is no longer sufficient

to look at frequency responses (transfer functions at z ∈ T). The

behavior of transfer functions at the whole region of z ∈ C \ D

should be accounted for. This complicates the analysis and de-

sign considerably.

7. Concluding Remarks

In this part we collected the basic concepts and technical ma-

terial of lifting and lifted signals and systems, in both time and

frequency domains. The key point is that lifting may losslessly

recover time-invariance (in discrete time) of systems that are not

time-invariant (in continuous time). From that point on most

of the results are intuitively clear, but possibly technically ad-

vanced. It is this material that forms the basis for the solutions to

the optimal signal reconstruction problems considered in Parts

II and III of this paper.

Part II: Noncausal Solutions

8. Introduction and Problem Formulation

In Part I we introduced and expanded the lifting technique and

in this part we use the machinery of Part I to solve a series

of noncausal sampling / reconstruction (SR) problems. Fig. 9

shows the setup that is common to all the problems considered

in this part. Here

G =
[

Gv

Gy

]

is a given signal generator. Its upper output v is the analog signal

that we want to reconstruct and the other output y is the signal

that is available for sampling. The purpose of the hybrid signal

processor HS is to produce an signal u that, in some sense, is
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Figure 9: Sampling / reconstruction (SR) setup

optimally close the signal v. Specifically we minimize over all

stable samplers S and/or stable holds H the L2 and L∞ norm

of the error system

Ge = Gv −HSGy . (39)

Given the norm, the design problems thus split into three types

fixed sampler free sampler

fixed hold Type-II

free hold Type-III Type-IV

These three types we consider in various settings. There is also

a Type-I problem, which is when both sampler and hold are

fixed and only a discrete filter (in between sampler and hold,

not shown in the diagram) needs to be designed. Unlike the

other three cases, Type-I problems can be reduced to equivalent

discrete estimation problems, which, in turn, are solvable by

standard methods. Reduction procedures, applicable to non-

causal and relaxed-causal setups, are available in [8] for the L2

norm and in [30] for the L∞ norm. We therefore do not deal

with Type-I problems in this paper.

We do not impose any causality constraints in this part. This

together with the assumed stability of the components makes

frequency domain solutions amenable, and the design can be

done frequency-wise. The design of causal and relaxed-causal

components for Type-III problems is the subject of this paper.

The so determined optimal holds recover and extend the

cardinal polynomial and exponential spline hold functions of

[48, 47, 49], and we identify the signal spaces for which these

splines are optimal. For Type-IV problems we develop a rank

characterization of hybrid signal processors and we show that

the well known frequency folding [37, §6.1] also plays a role

in the lifted approach, however without superimposing the

foldings as is commonly done. This subsequently provides

a system-theoretic interpretation of the ubiquitous Whittaker-

Kotel’nikov-Shannon (WKS) Sampling Theorem, by showing

that both the L2 and the L∞ performance criteria produce the

sinc-interpolator as the optimal D/A converter and the ideal low-

pass filter followed by the ideal sampler as the optimal A/D

converter. This result corresponds to the case where the sig-

nal to be reconstructed has dominating low-frequency compo-

nents (up to the Nyquist frequency) and is measured without

noise, see also [43, 44]. Remarkably, if these conditions hold

true, the optimal reconstructor is independent of properties of

the analog signal [44]. Multi-channel HSPs can be designed

in the same way. This recovers a series of generalized sam-

pling results [18, 54, 34]. The machinery can also handle op-

timal downsampling, which is illustrated on an example. The

final application in this part is optimal reconstruction in the face

of noisy measurements. It is worth emphasizing that whereas

the noise-free solutions recovers known signal reconstructors

(e.g. the Sampling Theorem [45]), complete solutions in the

noisy case are not presently available to the best of our knowl-

edge. Preliminary versions of some of the results presented here

can be found in [26, 27].

The part is organized as follows. We begin with Type II (Sec-

tion 9) and Type III (Section 10) problems. The rest of this part

addresses Type IV problems. Section 11 is about a rank charac-

terization of hybrid signal processors and in the following two

sections we summarize fixed frequence singular value decom-

positions in lifted domain and the folding procedure. From Sec-

tion 14 onwards a series of applications is discussed, beginning

with a single-channel SR and the ensuing limititations on error

free reconstruction. Then, in Sections 15 and 16 multi-channel

SR and optimal downsampling are discussed. Finally, in Sec-

tion 17 we consider SR from noisy measurements.

Notation

In this part it is convenient to refer to systems that are linear and

time invariant with respect to any continuous-time shift as LCTI

systems, and to systems that are linear and time invariant under

discrete times shifts, equal to a multiple of the sampling period

h, as LDTI systems. For the rest the notion is the same as that

of Part I.

9. Type II: Fixed Hold, Optimal Sampler

Type-II (fixed hold) and Type-III (fixed sampler) problems are

unconstrained projection problems which makes them easy to

solve.

Lemma 9.1. Let Gv ,Gy,H ∈ L∞ and suppose ‖Gv‖2 < ∞
and that H is a hold. Then every solution Sopt ∈ L∞ (if any) of

the normal equations

H∗GvG∗y = (H∗H)Sopt(GyG
∗
y ) (40)

is a sampler minimizing ‖Ge‖2 over all S ∈ L∞. The optimal

performance level is then ‖Ge‖22 = ‖Gv‖22 − ‖HSoptGy‖22. If in

addition

(H∗H)−1 and (GyG
∗
y )
−1 exist and are stable, (41)

then

Sopt = (H∗H)−1H∗GvG∗y (GyG
∗
y )
−1 (42)

is the unique stable optimal sampler.

Proof. Standard projection combined with the trace-like prop-

erty (33).

The optimal sampler (42) can be viewed as the cascade of the

LCTI system GvGy(GyG
∗
y )
−1, the sampler H∗ and the discrete

system (H∗H)−1. The first system, GvGy(GyG
∗
y )
−1, is actually

the optimal analog filter, i.e., the filter F minimizing ‖Gv −
FGy‖2 over all stable F .

The above lemma is formulated representation free. To make

matters concrete one can employ a specific representation. The
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lifted frequency response representation is interesting because

it shows that the optimal sampler

Śopt(e
iθ ) = [(H̀ ∗H̀)−1 H̀ ∗Ğv Ğ∗y(Ğ yĞ∗y)

−1](eiθ )

for each frequency θ satisfies the normal equations associated

with the norm ‖Ğe(e
iθ )‖HS. That is, the optimal sampler also

frequency-wise minimizes the norm of the frequency response,

Eqn. (30). This is a well known feature in noncausal filter de-

sign. If all signals are scalar then the Fourier transform of the

optimal sampling function is probably the simplest representa-

tion. Indeed in that case G∗y cancels in (40) and the optimal sam-

pling function φopt then can be shown to have Fourier transform

9opt(iω) =
h

∑

k∈Z|8(i(ω + 2kωN))|2
8(−iω)

Gv (iω)

G y(iω)
, (43)

where8(iω) is the Fourier transform of the hold function φ(t).

This follows for instance from Proposition 5.4.

The L∞ optimal sampler is more involved but it applies to a

larger class of signal generators in that ‖Gv‖2 need not be finite.

The following result is proved in Appendix A.

Lemma 9.2. Let Gv ,Gy,H ∈ L∞ and suppose H is a hold and

that (41) is satisfied. Then

‖Ge‖∞ ≥ max(‖(I −H(H∗H)−1H∗)Gv‖∞,
‖Gv (I − G∗y (GyG

∗
y )
−1Gy)‖∞ ) (44)

for any stable sampler, and there exist stable samplers that

achieve equality. If G−1
y exists and is stable then the L2-

optimal (42) is also L∞-optimal. ▽

Each term in (44) has a clear interpretation. The first term

‖(I − H(H∗H)−1H∗)Gv‖∞ is the minimal L∞-norm for the

case that y = v i.e., for the case that all information about the

signal v that we want to reconstruct is available for sampling.

The second term, ‖Gv (I−Gy(GyG
∗
y )
−1G∗y )‖∞, is the L2-induced

norm of the mapping e = Gew for w restricted to w = (I −
G∗y (GyG

∗
y )
−1Gy)ŵ. These are the signals w for which there is

nothing to sample, y = 0. Evidently that is a lower bound for

‖Ge‖∞.

9.1. When Gv = Gy

Now suppose that Gv = Gy, i.e., that the signal v to be recon-

structed equals the signal y available for sampling. For this case

the design of L2 optimal samplers for fixed holds is well doc-

umented [44, Section IV] and the optimal sampler is then es-

sentially independent of the signal generator. Including the L∞

norm we obtain:

Corollary 9.3. Let Gv = Gy,H ∈ L∞ and suppose that

(H∗H)−1 exists and is stable. Then

Sopt := (H∗H)−1H∗ (45)

minimizes the L∞ norm of Ge with

‖Ge‖∞ = ‖(I −H(H∗H)−1H∗)Gv‖∞. (46)

If in addition ‖Gv‖2 < ∞, then it minimizes the L2 norm as

well with ‖Ge‖22 = ‖Gv‖22 − ‖H(H∗H)−1H∗Gv‖22. ▽

Indeed Sopt = (H∗H)−1H∗ solves the normal equation (40)

and does not depend on Gv . Another way to think about it is

that now there is a single sampler that minimizes the signal

error norm ‖(I −HS)Gvw‖2 for every given exogenous input

w ∈ L2. It implies that this sampler is also L∞-optimal. The

Fourier transform (43) of the optimal sampler reduces to

9opt(iω) =
h8(−iω)

∑

k∈Z|8(i(ω + 2kωN))|2
.

Example 9.4. The adjoint H∗ is a sampler and according

to §5.2, its sampling function is ψ(t) = φ(−t) with φ(t) the

hold function of H. Thus if the hold is causal then the ad-

joint hold (a sampler) is anti-causal, and vice-versa. The dis-

crete filter K̄ := (H∗H)−1 because of its symmetry is never

causal, unless it is static. For the zero order hold, with hold

function φ(t) = 1[0,h)(t), the discrete filter H∗H is the static

gain, h. This follows from (27a). The optimal sampler (45)

therefore is 1
h
H∗. It is the sampler with sampling function

ψ(t) = 1
h
φ(−t) = 1

h
1(−h,0](t). It is an averaging noncausal

sampler, see §2.2. ▽

The optimal sampler (45) makes HSopt the classic orthogo-

nal projection (hence self adjoint) onto the image of H, and we

have the trivial identity that SH = I. This implies consistency,

a term coined by [46]. In the present context consistency means

that SHS = S. In other words, in a consistent HSP any re-

constructed signal u := HSy when reinjected into the sampler

recovers the discrete signal Sy that was injected into the hold.

The bulk of this part handles cases in which both sampler

and hold are designed simultaneously (Type-IV). Obviously,

this generalizes Type-II and hence also in Type-IV problems

the hybrid signal processor HS may be taken (self-adjoint) pro-

jections if Gv = Gy , and they are consistent. If causality require-

ments are imposed on sampler and/or hold then these properties

might be lost, see Part III.

10. Type III: Fixed Sampler, Optimal Hold

Type-III problems are essentially dual to the Type-II problems

that we considered in the previous section. This is why in this

section we only summarize the results.

Lemma 10.1. Let Gv ∈ L∞∩ L2 and that a sampler S is given

such that SGy ∈ L∞. Then every Hopt ∈ L∞ (if any) that

solves the normal equation

Gv (SGy)
∗ = HoptSGy(SGy)

∗ (47)

minimizes ‖Ge‖2 over all H ∈ L∞ attaining ‖Ge‖22 = ‖Gv‖22 −
‖HoptSGy‖22. In particular if (SGy(SGy)

∗)−1 exists and is sta-

ble then

Hopt = Gv (SGy)
∗(SGy(SGy)

∗)−1. (48)

is the unique stable optimal hold. ▽

The optimal hold (48) can be viewed as the cascade of a dis-

crete system (SGy(SGy)
∗)−1, a hold (SGy)

∗ and an analog sys-

tem Gv .
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Without loss of generality we can take the sampler to be ideal

because its sampling function may always be absorbed into Gy .

The required stability of SIdlGy in the above lemma is then en-

sured if Gy is LCTI and whose transfer function G(s) is strictly

proper rational and without poles on the imaginary axis, §6.1.

The abstract solution (48) for scalar signals and LCTI signal

generators Gv and Gy is compactly described via the Fourier

transform of its hold function

8opt(iω) =
hGv (iω)G y(−iω)

∑

k∈Z|G y(i(ω + 2kωN))|2
, (49)

still under the assumption that S = SIdl. This follows from the

iω-axis version of Prop. 5.3.

10.1. When Gv = Gy

Let us return to the situation that Gv = Gy . Then once again the

hybrid signal processor becomes consistent because SHopt = I

for the hold of (48). The normal equation (47) does not sim-

plify much in this case. A crucial difference with Type-II is that

now there is no single hold that minimizes the signal error norm

‖(Gv−HSGy)w‖2 for allw. Typically, in fact, for almost every

givenw ∈ L2 there exists a hold Hw that makes the reconstruc-

tion error (Gv − HwSGy)w equal to zero5, while no single H

exists that does this for all w.

Let us further assume that the sampler is ideal, S = SIdl.

For this case we will establish connections with the cardinal

exponential and polynomial spline hold functions of [48, 47,

49].

Example 10.2 (Second order signal generator). Let Gv be

the LCTI system with transfer function

Gv (s) =
1

(s + α)2 , α > 0.

Clearly G∗vGv has impulse response g∗g∼ with g(t) the impulse

response of G and g∼(t) = g(−t). In our case

(g ∗ g∼)(t) = 1
4α3 (1− αt)eαt

1(−t)+ 1
4α3 (1+ αt)e−αt

1(t)

=
1/(4α3)

0 1 αt →

Hence the discrete system F̄ := SIdlGv (SIdlGv )
∗ has impulse

response f [n] := (g ∗ g∼)(nh) = 1
4α3 (1 + α|n|h)e−α|n|h . For

the optimal hold (48) we need the inverse of this filter. For

that we first determine its discrete transfer function (with r :=
e−αh)

F̄(z) = 1

4α3

(
1− r2

(1− r z)(1− r/z)
+ αhr/z

(1− r/z)2
+ αhrz

(1− r z)2

)

.

Its inverse, with β := r(r2(1+ αh)+ (ah − 1)), then reads

K̄ (z) := F̄−1(z) = 4α3 (1− r/z)2(1− r z)2

βz−1 + (1− r2(r2 + 4αh))+ βz
.

5 H̀w(e
iθ ) := v̆(eiθ )/ȳ(eiθ ) is often well defined.

The hold function of the optimal hold (48) finally can be ob-

tained by filtering g ∗ g∼ with this K̄. For the three values

αh ∈ {1, 5, 10} this results in

φopt(t) =
1

0 t/h →

αh = 1

For 0 < αh < 1 the plot is very similar to that for αh = 1.

Since g ∗ g∼ is twice continuously differentiable, also φopt(t)

has this degree of smoothness. Moreover, since g ∗ g∼ is piece-

wise exponential, the optimal hold is a spline that on each sam-

pling interval is a sum of exponential functions. This is an ex-

ample of the exponential splines of [49]. ▽

Note that the equality SIdlHopt = I for the ideal sampler

means that the hold function φopt(t) at the sampling instances,

kh, equals the Kronecker delta δ̄[k]. Indeed it does in the above

example.

[45, p. 575] remarks that in many cases, sequences of hold

functions φn(t) converge towards sinch(t) as n approaches in-

finity. For our hold functions that would mean that often se-

quences of Fourier transforms

8opt,n(iω) =
h|Gv,n(iω)|2

∑

k∈Z|Gv,n(i(ω + 2kωN))|2
(50)

converge to h1[−ωN,ωN] as n → ∞. This convergence occurs

iff the corresponding signal generator Gv,n becomes more and

more “baseband dominant” as n → ∞. To be more precise,

introduce the following definitions:

Definition 10.3 (Baseband dominance). A SISO LCTI sys-

tem W is said to be baseband dominant if a c ∈ [0, 1] exists

such that

|W (iωk)| ≤ c|W (iω0)| ∀k 6= 0

and all ω0 ∈ (−ωN, ωN). If the inequality holds for a c < 1,

then W is said to be strict baseband dominant. ▽

It is easy to see that every real system whose frequency re-

sponse is monotonically decreasing over positive frequency is

strict baseband dominant.

Lemma 10.4. Let W be an LCTI strict baseband dominant

system with W (iω) 6= 0 for almost every ω ∈ [−ωN, ωN] and

assume that the sampler is ideal. Then for Gv,n := Wn the

optimal hold (48) converges to Hsinc as n→∞.

Proof. For this Gv,n the right-hand side of (50) converges to

h if ω ∈ (−ωN, ωN) and converges to 0 if |ω| > ωN. It con-

verges to the Fourier transform of sinch(t). Stability and strict

baseband dominance imply that ‖Gv,n‖2 < ∞ and that the de-

nominator in (50) is < ∞ for every ω. Moreover, the conver-

gence is in L2 signal norm, which guarantees that the limit is

well defined (in both time and frequency domain).

The signal interpretation of this result is intuitive: in the limit

n → ∞ the signals v = Gn,vw are effectively bandlimited to

[−ωN, ωN] and indeed, as Shannon dictates, holding with the

sinch is then the best one can do (irrespective of w).
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10.2. Optimal Hold for Unstable Signal Generators

A popular class of hold functions are the cardinal polynomial

spline hold functions [48]. These are polynomial splines of odd

degree 2n − 1 (n = 1, 2, . . .) and which are 2n − 2 times con-

tinuously differentiable. Further they are in L2(R) and are re-

quired to satisfy the consistency property that φ(kh) = δ̄[k].

This makes them unique. Fig. 10 shows these hold functions

for n = 1 and n = 2.

0 1 2 t/h →0 1 t/h →

Figure 10: Cardinal polynomial spline hold functions of

degree 1 and 3

A natural question now is: with respect to what class of sig-

nals are these hold functions optimal? If in Example 10.2 we let

α approach zero then its hold function approaches a cubic spline

(this requires some work) and the signal generator approaches

the double integrator 1/s2. It suggests that cubic cardinal poly-

nomial splines are optimal with respect to doubly integrated

white noise (integrated Brownian motion) or doubly integrated

L2 signals, so slowly varying signals. More generally, we claim

the following.

Theorem 10.5. If Gv = Gy are LCTI integrators of order n,

Gv(s) = G y(s) = 1/sn then the hold function of (50) is the

unique (2n − 2)-smooth (2n − 1)-degree polynomial spline in

L2(R) for which φopt(kh) = δ̄[k]. ▽

A proper proof is in Appendix A. A dubious derivation, but

an insightful one nonetheless, goes as follows. Consider the

normal equations (1 − HSIdl)GvG
∗
vS
∗
Idl = 0. Now the adjoint

S∗Idl of the ideal sampler is the delta-hold operator and hence

GvG
∗
vS
∗
Idlū for any signal ū is a delta-train integrated 2n times,

i.e., some (2n − 2)-smooth (2n − 1)-degree polynomial spline.

So the equality (1−HSIdl)GvG
∗
vS
∗
Idlū = 0 means that the polyno-

mial spline equals H applied to the sampled polynomial spline.

By linearity and discrete-time invariance, it is sufficient to con-

sider the case that SIdlGvG
∗
vS
∗
Idlū is the unit pulse. There is a

unique polynomial spline φ ∈ L2(R) of the given smoothness

and degree that interpolates the unit pulse, see [48].

In Part III, Remark 20.7 we show, as a by product, that the

hold (48) is actually the stable hold that makes the error system

(I−HS)Gv stable and minimizes its L2-norm. This formulation

circumvents stability of the signal generators and also applies

to integrators Gv (s) = 1/sn . Incidentally, since 1/s is strict

baseband dominant, these cardinal polynomial spline functions

converge towards sinch(t) as n → ∞ (Lemma 10.4 and [48,

§ III.D]).

10.3. Singular Normal Equations

It may happen that the normal equation (47) admits a solution

while the inverse needed for its explicit solution (48) is not sta-

ble or not well defined. We illustrate this by an example from

[51].

Example 10.6. Even though we assumed that Gv is an analog

system, Lemma 10.1 is actually valid for hybrid, D/A, Gv as

well. Let Gv = Gy = Hv be the hold with hold function

φv (t) =
0 t/h →

and take the ideal sampler SIdl. In fact, the precise shape of

φv(t) on [−2h, h] and [h, 2h] is not important, but their sym-

metry that they add up to 1 for all intersample time,

φv (−2h + τ )+ φv (h + τ ) = 1, ∀τ ∈ [0, h], (51)

is. The cascade SIdlGv is then the discrete FIR system with the

transfer function z+ 1+ z−1. In [51, p. 1095] it is claimed that

then no hold H exists that reconstructs the input to the sampler

error free, because some inverse needed in the process is not

defined. That implication is not correct. The normal equation

is singular but not unsolvable. To see this, note that (47) in

lifted frequency domain reads

H̀v(z)(z + 1+ z−1) = H̀opt(z)(z + 1+ z−1)2 (52)

and indeed z = ei2π/3 is a zero of the right-most term and so

that term has no stable inverse. These zeros, however, cancel

against zeros of H̀v(z), which can be seen via its kernel

φ̆v(z; τ ) = z2 + (z + 1) + z−1

= (z + 1+ z−1) + (z2 − z−1) (53)

Therefore, the hold with the kernel

φopt(z; τ ) =
φ̆v (z; τ )(1+ z + z−1)

(1+ z + z−1)2

= + z2 − z−1

1+ z + z−1

= + (z − 1) = z +

solves (52). This defines an FIR system, reminiscent of the

predictive first-order hold (Example 3.4). In hindsight it is easy

to see that this hold is optimal, and in fact it is error free (i.e.,

Ge = 0).

Crucial in the derivation is the symmetry (51). If this sym-

metry is absent then the unit circle zeros of z+1+z−1 reappear

in the (unique) solution of (52) as poles, rendering it unstable.

Yet even in this case one can approach the perfect reconstruc-

tion arbitrarily close by a stable H. ▽

For LCTI signal generators Gv = Gy and the ideal sampler,

the conclusions are very similar and this, once again, is best

seen from its classic Fourier transform: while the explicit for-

mula (48) requires SIdlGv(SIdlGv )
∗ to be stably invertible, for the

normal equations to hold for some stable hold we merely need

that its Fourier transform

8opt(iω) =
h|Gv(iω)|2

∑

k∈Z|Gv(i(ω + 2kωN))|2
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determines a stable system. Evidently, we have |8opt(iω)| ≤ h

for every ω and so stability of the hold is, for instance, en-

sured if |ω|γGv (iω) is bounded for some γ > 1/2, see §6.1.

Note that SIdlGv (SIdlGv)
∗ is stable and stably invertible iff 1

ǫ
>

∑

k∈Z|Gv(i(ω + 2kωN))|2 > ǫ for some ǫ ∈ (0, 1) and all

ω ∈ R.

11. Rank Theorem

Samplers, by their very nature, reduce continuous-time signals

to discrete-time signals. Clearly then sampling normally brings

about a loss of information. Dually, the output of a hold is

continuous time, but as the hold is shift-invariant and driven

by a discrete signal, the richness of the set of its continuous-

time outputs is limited. Typically this set is nevertheless infinite

dimensional and it is difficult to get a handle on the richness of

the set in time domain. In lifted frequency domain matters are

transparent and in fact one can fully characterize what it means

for an LDTI system to be a series interconnection of a sampler

and a hold.

First, recall that the series interconnection u = HSy in lifted

frequency domain is an integral operator

ŭ(eiθ ; τ ) =
∫ h

0

f̆HSP(e
iθ , τ, σ )y̆(eiθ , σ )dσ (54)

whose kernel can be expressed in terms of its sampling and hold

functions as

f̆HSP(e
iθ ; τ, σ ) = φ̆(eiθ ; τ ) ψ̆(eiθ ; −σ), (55)

see Appendix A for a derivation. At each θ the range of the

integral operator (54) is contained in the subspace spanned by

φ̆(eiθ ; τ ). If the input of the hold is a channel with nū elements

then the dimension of this subspace is nū (at most). The ramifi-

cation of this observation is:

Theorem 11.1 (Rank Theorem). Let F ∈ L∞ and suppose

that its frequency response kernel f̆ (eiθ ; τ, σ ) is piecewise

continuous. Then F is an HSP iff there is r ∈ N such that

rank F̆(eiθ ) ≤ r ∀θ ∈ [−π, π]. In this case r ≤ min(n ȳ, nū)

for any HSP implementation of F , and HSP-implementations

of F exist for which r = n ȳ = nū .

Proof. See Appendix A.

The assumption on piecewise continuity of the kernel avoids

issues with Lebesgue measure but other than that it is not essen-

tial to the result. It is because of this Rank Theorem that of all

representations of systems, the lifted frequency response is the

most useful one, at least for the design problems considered in

the remainder of this part.

12. Singular Values and Optimal HSP

Having characterized HSPs as having a uniform finite rank fre-

quency response at each θ , the design of HSPs amounts to

frequency-wise approximation of given operators by finite rank

operators. This begs for a Schmidt decomposition of the op-

erator to be approximated. A Schmidt decompositions is an

operator version of the singular value decomposition, SVD.

Theorem 12.1. Let G ∈ L∞ and suppose that Ğ(eiθ ) at almost

every θ ∈ [−π, π] has SVD

Ğ(eiθ ) =
∑

k∈N
σk〈·, ek〉Lvk

with {e1, e2, . . .} and {v1, v2, . . .} orthonormal in L and σ1 ≥
σ2 ≥ · · · ≥ 0 (depending on θ ). If the HSP

ĞHSP(e
iθ ) =

r
∑

k=1

σk〈·, ek〉Lvk (56)

is well defined, it minimizes ‖G−FHSP‖∞ over all HSPs of rank

≤ r , attaining ‖G − FHSP‖∞ = ess sup θ∈(−π,π) σr+1(θ). If G

has finite L2-norm, then the HSP (56) minimizes ‖G − FHSP‖2
as well, attaining ‖G − FHSP‖22 = 1

2πh

∫ π
−π
∑∞

k=r+1 σ
2
k (θ)dθ .

Proof. The L2-norm and L∞-norm involve nonnegative inte-

grals over frequency θ , see (30) and (29). So if ĞHSP(e
iθ ) min-

imizes the norms for every fixed frequency then it is optimal.

The rest is standard.

This theorem does not settle the potentially complicated mat-

ter of existence of such SVDs and whether or not the frequency-

wise defined HSP (56) can be implemented. For the applications

that we have in mind, however, the SVD of Ğ(eiθ ) exists and is

explicit and the pointwise HSP can be implemented as convo-

lutions.

Typically HSPs are not LCTI and it is not hard to formalize

that the subset of HSPs that are LCTI form a set of measure

zero. However if G is LCTI then often the optimal finite-rank

approximation FHSP of G is LCTI as well. This follows from

explicit representations in the next section but it can also be

understood from the fact that the L2 and L∞ system norms are

invariant under continuous time shift:

Lemma 12.2. Given LCTI system G, the minimizer FHSP of

‖G − FHSP‖2 or ‖G − FHSP‖∞ over noncausal LDTI HSPs of

given rank is LCTI if it is unique.

Proof. The L2- and L∞ norms do not depend on shifts of input

and output: ‖1τ (G − FHSP)1
−τ‖ = ‖G − FHSP‖ where 1τ is

delay operator (τ ∈ R). By continuous time-invariance of G

the FHSP hence is optimal iff 1−τFHSP1
τ is optimal for all

τ ∈ R.

Subsequently, we shall also need the following result:

Corollary 12.3. Let G be as in Theorem 12.2. Then the rank-

r FHSP with frequency response F̆HSP(e
iθ ) =

∑r
k=1〈·, vk〉Lvk

minimizes both ‖(I−FHSP)G‖∞ and ‖(I−FHSP)G‖2 (provided

‖G‖2 < ∞) with respect to stable rank-r HSPs, attaining the

same norms as in Theorem 12.1.

Proof. Then ĞHSP := F̆HSPĞ equals (56).
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13. SVD of LCTI Systems—Frequency Folding

LCTI systems have an explicit fixed frequency SVD. This is

very similar to what [43, p. 1770] derived in discrete time and

for spectral densities. We need it for signal generators:

Lemma 13.1. Let G ∈ L∞∩L2. Then Ğ(eiθ ) exists for almost

every θ ∈ [−π, π] and has SVD

Ğ(eiθ ) =
∑

k∈Z
|G(iωk)| 〈·, ek〉L vk , (57)

in which

ek(τ ) := 1√
h

eiωkτ , k ∈ Z, (58)

is the standard orthonormal basis of L and vk := ek ei arg G(iωk ).

The singular values in this case are well defined at almost every

θ and equal σk(θ) = |G(iωk)|, k ∈ Z, modulo ordering.

Proof. By (16b) we have that the kernel of Ğ(eiθ ) equals

ğ(eiθ ; τ, σ ) = 1

h

∑

k∈Z
G(iωk)e

iωk (τ−σ) (59)

so its frequency response, mapping w̆(eiθ ) to v̆(eiθ ), reads

v̆(eiθ ; τ ) = 1

h

∑

k∈Z

∫ h

0

G(iωk)e
iωk(τ−σ)w̆(eiθ ; σ) dσ

=
∑

k∈Z
G(iωk) 〈w̆(eiθ ), ek〉L ek(τ ).

Since the functions ek are orthonormal in L, the absolute values

|G(iωk)| are the singular values (modulo order). The fact that

G ∈ L2 ∩ L∞ implies the existence of singular values and, by

Plancherel, that Ğ(eiθ ) has finite Hilbert-Schmidt norm almost

everywhere.

This establishes that the singular values of Ğ(eiθ ) are actu-

ally the magnitudes of the continuous-time frequency response

G(iω) at all its aliased frequencies ωk . This can be visu-

alized by folding the magnitude plot of G(iω), see Fig. 11.

Folding reduces the infinite frequency bands to the finite base-

band [0, ωN] and we end up with a zig-zag plot that at each

θ/h = ω0 ∈ [0, ωN] captures its countably many singular val-

ues σ1, σ2, . . .. Frequency folding is well known in the liter-

ature as a way to explain aliasing or to visualize the sampled

spectrum [37, §6.1]. In the lifting approach we do not add up

the G(iωk)—which would result in the sampled spectrum and

thus loose intersample information—but keep them as separate

entities.

Example 13.2 (WKS-block). Consider the HSP of Fig. 12. It

comprises the sinc sampler

ȳ = Ssinc(y) : ȳ[k] =
∫ ∞

−∞
1
h

sinch(kh − s)y(s)ds (60)

(presented in the figure as the cascade of the ideal lowpass filter

Filp and SIdl) and the sinc-hold

u = Hsinc(ū) : u(t) =
∑

i∈Z
sinch(t − ih)ū[i ]. (61)

0ω−2

σ4

ω−1

σ2

ω0

σ1

ω1

σ3

|G(jω)|

ω→

0 ωn 2ωn 3ωn
ω→

0 ωn

.

.

.

σ2

σ1

σ3

θ
h

Figure 11: Frequency folding for LCTI systems: at each

θ/h ∈ [0, ωN] the Ğ(eiθ ) has countably many singular

values σk = |Ğ(eiωk )|, modulo ordering

Here ξ := Filpy is the projection of y into the space of ωN-

bandlimited signals. It follows from the Sampling Theorem

that u = ξ and, moreover, if y itself is ωN-bandlimited, that

we have perfect reconstruction, u = y. We call this system

the Whittaker-Kotel’nikov-Shannon (WKS) block, and denote

it as FWKS. According to (55) and (examples 4.9 and 4.10, the

frequency response kernel of F̆WKS(e
iθ ) is f̆WKS(e

iθ ; τ, σ ) =
φ̆sinc(e

iθ ; τ )ψ̆sinc(e
iθ ; −σ) = 1

h
eiθ(τ−σ)/h . Note that this ker-

nel has a Toeplitz structure. Together with the discrete-time

invariance of FWKS, this implies that FWKS is actually LCTI.

This may appear remarkable, taking into account that generi-

cally HSPs are LDTI and typically not LCTI.

Alternatively, since the WKS-block is LCTI with the real fre-

quency response F(iω) = 1[−ωN,ωN](ω) we have, according to

Lemma 13.1, that F̆(eiθ ) = 〈·, e0〉Le0 and that its frequency

yξȳu

Hsinc Ssinc

SIdl Filp

Figure 12: WKS hybrid signal processor
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response kernel is f̆ (eiθ ; τ, σ ) = e0(τ )e
∗
0(σ ) = 1

h
eiθ(τ−σ)/h .

Indeed. ▽

14. Single-Channel Optimal SR

We are now in a position to formulate and solve a number of

Type-IV signal reconstruction problems, i.e., problems where

both sampler and hold are available for design.

In this section we return to the case that G := Gv = Gy . The

error system we write as Ge = (I − FHSP)G = G − FHSPG

where FHSP := HS. In this section we further restrict attention

to single channel HSPs. Single-channel refers to the case that

the sampled signal ȳ is scalar, i.e., that we have only one sen-

sor. The rank theorem thus states that rank F̆HSP(e
iθ ) ≤ 1,∀θ ∈

[−π, π] for any such HSP. This clearly implies that the best

we can do with our HSP is to match the directions and norm

(Schmidt pair) corresponding to the largest singular value of

Ğ(eiθ ) at each frequency θ and have a unit gain there. To sim-

plify the outline, we assume that

A1: G is baseband dominant

(see Definition 10.3). A1 says that at each θ ∈ [−π, π] the

largest singular value of Ğ(eiθ ) is attained in the baseband. By

Corollary 12.3 and Lemma 13.1, the optimal rank-one F̆(eiθ )

has the kernel

f̆HSP(e
iθ ; τ, σ ) = v0(τ )v

∗
0 (σ ) = 1

h
eiθ(τ−σ)/h,

meaning that the optimal HSP is actually FWKS. Thus, we just

proved the following result:

Theorem 14.1. Suppose G ∈ L∞ ∩ L2 is LCTI and that it

satisfies A1. Then the WKS block FWKS considered in Exam-

ple 13.2 is the HSP that minimizes both L2 and L∞ norms of

Ge, and the optimal performance indices are

‖(I − FWKS)G‖22 =
1

π

∫ ∞

ωN

|G(iω)|2 dω (62)

in the L2 case, and

‖(I − FWKS)G‖∞ = supω>ωN
|G(iω)| (63)

in the L∞ case.

This result is not new for the L2-norm. It was derived earlier

in [43] using similar methods, but then for the discrete time

case. An elegant and entirely different derivation can be found

in [44, p. 3593], again for the L2 norm. Computation of the L2

norm (62) can be done without gridding [28].

If G is strict baseband dominant then the optimal HSP is

unique. Theorem 14.1 establishes that sinc-sampler (60) and

sinc-hold (61) are optimal from both L2 and L∞ points of view.

Interestingly, neither the optimal sampler nor the optimal hold

depends on G as long as G is baseband dominant. Clearly under

the baseband dominance assumption the norm of the reconstruc-

tion error is zero iff G(iω) = 0 almost everywhere outside the

baseband [−ωN, ωN]. This is the classic Sampling Theorem.

If G is not baseband-dominant then the optimal FHSP should

account for frequency band(s) in which the frequency response

gain of G is dominant. In this case, the optimal sampler com-

prises the ideal sampler and an ideal passband filter. The fre-

quency pattern of the latter might be rather complicated. Also,

the perfect reconstruction conditions will be different in this

case. The sampled signal need no longer have zero frequency

content outside the baseband. Rather, we should require that

G(iωk) 6= 0 for at most one k (which is not necessarily k = 0).

The optimal FHSP is nonetheless selfadjoint, consistent and

LCTI and its classic Fourier transform is piecewise constant

having value 0 or 1, a so called brickwall filter [43].

Remark 14.2. It is straightforward to extend these ideas to

multi-input-multi-output (MIMO) systems G. In such cases,

Ğ(iωk) is a matrix and, for every k, has a finite number of sin-

gular values σk,n(θ), n ∈ N, with respect to the standard Eu-

clidean norm. Thus, at each θ ∈ [0, π] we end up with doubly

indexed singular values, but the task of the HSP remains the

same: to delete the largest singular value. The optimal HSP is

again a (modulated) WKS-block, but then pre- and post pro-

cessed by MIMO LCTI systems that select, so the say, the di-

rection of the largest singular value of G. ▽

14.1. Fundamental Limit for Error-Free Reconstruction

The optimal mapping FHSP selects frequency bands where

|G(iω)| is maximal and with that in mind one can obtain the

upper bound

‖FHSPG‖22 ≤ ‖G‖2∞/h

and that the upper bound is tight (in a ratio sense) if h → ∞
[28]. By orthogonality we also have the upper bound

‖FHSPG‖22 ≤ ‖G‖22.

The two upper bounds meet at

hG := ‖G‖2∞/‖G‖22,

which has an interesting property:

Lemma 14.3. Whatever G is, error free reconstruction is im-

possible for h > hG . ▽

This follows from the lower bound on the error reconstruc-

tion, ‖Ge‖22 = ‖G‖22 − ‖FHSPG‖22 ≥ ‖G‖22 − ‖G‖2∞/h =
‖G‖22(1 − hG/h). Stated differently, the “signal-to-error ratio”

(SER) is bounded from above by

SER :=
‖G‖22
‖Ge‖22

≤ 1

1− hG/h
, ∀h > hG .

Also the L∞ norm gives rise to limitations on perfect recon-

struction. In fact, for certain values of h the L∞ norm may not

be reducible at all if |G(iω)| is not monotonically decaying. In-

deed, suppose that the peak value of |G(iω)| is attained at some

frequency, called resonance frequency,

ωres := arg max
ω>0
|G(iω)|.

Suppose further that we sample at an integer fraction of the

resonance frequency, i.e., at ωN = ωres/k, for some k ∈ N Then

folding of |G(iω)| shows that there are two (or more) singular

values σk equal to ‖G‖∞ at either ω = 0 or ω = ωN:
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0 ωN =
ωres

k

ωres

|G(jω)| folding−→

0 ωn

←

Since a single channel hybrid signal processor can cancel only

one singular value, the largest singular value can not be reduced

at all in this case and therefore we have:

Lemma 14.4. If |G(iω)| is continuous and ωres > 0 then sam-

pling with ωN = ωres/k is futile: ‖Ge‖∞ = ‖G‖∞ is the best

we can do and FHSP = 0 is an L∞-optimal solution. ▽

Example 14.5 (Resonance peaks). Consider the second or-

der LCTI system G with resonance peak near ω = 1,

G(iω) = 1

(iω + .2)2 + 1
|G(iω)|

0 1 2 3

Because of the peak, the reconstruction errors norms ‖Ge‖2 and

‖Ge‖∞ need not be monotonous in the sampling period h, and

indeed they are not: Fig. 13 shows the numerically computed

‖Ge‖22 and ‖G‖∞ as a function of h. The reconstruction error

norms converges to zero as h → 0 and converge to ‖G‖2 and

‖G‖∞ respectively as h →∞. In this example the fundamental

time limit is hG = ‖G‖2∞/‖G‖22 = 2.52

125/104
= 5.2 exactly. As

predicted, the L∞ norm can not be reduced if ωN = ωres/k ≈
1/k, that is, if h = kπ/ωres ≈ kπ . As Fig. 13 suggests also the

‖G‖22

h →hG

‖Ge‖22
‖G‖22 − ‖G‖2∞/h

0 h →hG

‖Ge‖∞

‖G‖∞

0

Figure 13: Optimal ‖Ge‖22 (left) and ‖Ge‖∞ (right) as a

function of h

L2 norm is close to a local maximum at these values. This can

be interpreted as being close to pathological sampling (see next

subsection). ▽

14.2. Unstable Signal Generators and Pathological Sam-

pling

To avoid technicalities it was assumed so far that the signal gen-

erator G is stable. But it is tempting to consider unstable sig-

nal generators as well. Bypassing the mathematical difficulties

(this will be fixed later), suppose that G(s) has several imagi-

nary poles. Clearly after folding we end up with a two or more

infinite singular values (poles) at some θ iff

ωa − ωb = 2kωN for some poles iωa 6= iωb of G(s)

and certain k ∈ Z. This situation is known as pathological sam-

pling and it is the case when controllability and/or observabil-

ity may be lost after standard discretization of a system in state

space [21]. Since an HSP can delete only one singular value,

one expects that no HSP can achieve a finite norm if we have

pathological sampling. If, on the other hand, no such ωa , ωb ,

and k exist then no two poles overlap after folding, and then an

HSP can be found that deletes all infinite singular values (poles),

rendering the error system stable. This is indeed the case. For

technical reasons we formulate the result for rational G(s) only:

Lemma 14.6. Suppose G(s) is rational and strictly proper, but

possibly with imaginary poles. Then a single channel HSP ex-

ists that renders (I−FHSP)G stable iff h is not pathological with

respect to G(s). In that case any brick-wall filter F̆HSP(e
iθ ) that

at each θ cancels the largest singular value σmax(θ) of Ğ(eiθ )

(and leaves the other singular values unaffected) is an L2 opti-

mal rank-1 HSP.

Proof. See Appendix A.

In particular, for the integrators G(s) = 1/sn the WKS-block

once again is optimal under all h > 0 (no pathological sampling

in this case).

15. Multichannel SR, Shannon Extension

we

y

v

u
H S

G
-

Figure 14: Two-channel SR setup (Section 15)

Next we consider the setup depicted in Fig. 14. It is the case

where we have two channels, i.e., two samplers and two holds.

The HSP in this case has the form FHSP = FHSP1 + FHSP2 for

some scalar HSPs FHSP1 and FHSP2. This leads to the following

rank constraint: rank F̆HSP(e
iθ ) ≤ 2 ∀θ ∈ [−π, π].Assuming

2ωN-baseband dominance of G and following the arguments of

the previous section, we obtain the optimal HSP in terms of its

lifted frequency response kernel as

f̆HSP(e
iθ ; τ, σ ) = 1

h

(

eiω0(τ−σ) + eiω−1(τ−σ)), (64)

for θ ≥ 0 (the negative part follows by symmetry using the as-

sumption that the system is real) and that the optimal L2 and L∞

performance indices are as in (62) and (63) with ωN replaced by

2ωN. The optimal HSP is again LCTI and its frequency response

is FHSP(iω) = 1[−2ωN,2ωN](ω).

Expression (64) does not determine optimal FHSP1 and FHSP2

unambiguously. In fact, there is an infinite number of possible

combinations in this case. Yet it is clear that we have perfect re-

construction iff we sample at half the Nyquist rate or faster, i.e.,

iff G(iω) is zero outside [−2ωN, 2ωN] (given the assumed 2ωN-

baseband dominance). In other words there are two scalar HSPs

that, combined, can perfectly reconstruct any ωb-bandlimited

signal if and only if ωb < 2ωN.
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The optimal kernel (64) naturally splits into two channels by

decomposing it as

f̆HSP(e
iθ ; τ, σ ) = 1

h

(

eiω0(τ−σ) + eiω−1(τ−σ))

=
[

eiω0τ eiω−1τ
]
[

1
h

e−iω0σ

1
h

e−iω−1σ

]

=
[

φ1(e
iθ ) φ2(e

iθ )
]
[

ψ1(e
iθ )

ψ2(e
iθ )

]

(65)

with hold and sampling functions defined as
[

φ1(e
iθ ) φ2(e

iθ )
]

=
[

eiω0τ eiω−1τ
]

[

ψ1(e
iθ )

ψ2(e
iθ )

]

= 1

h

[

e−iω0σ

e−iω−1σ

]

.

This corresponds to one channelH1S1 being the standard WKS-

block and the other channel H2S2—its modulated version.

Many other splittings exist. In fact (65) holds true for
[

φ1(e
iθ ) φ2(e

iθ )
]

=
[

eiω0τ eiω−1τ
]

Ā−1(θ) (66)
[

ψ1(e
iθ )

ψ2(e
iθ )

]

= Ā(θ)
1

h

[

e−iω0σ

e−iω−1σ

]

(67)

for any 2 × 2 discrete system Ā(θ) that is bistable (stable and

having stable inverse). This way the two channels could by time

varying (as continuous time systems) while we know that their

sum is LCTI. An interesting and still rather general splitting

is depicted in Fig. 15. Here the signal y is first given to the

yξu

H1

H2

SIdl

SIdl

A1

A2

Filp

Figure 15: Alternative implementation of a two-channel

HSP

ideal lowpass filter Filp with the cut-off frequency 2ωN. With

this choice, we do not need to prefilter measurements if they

are already 2ωN-bandlimited. The outcome is then fed to two

different LCTI filters A1 and A2 followed by ideal samplers and

then two holds. This corresponds to the case that

Ā(θ) =
[

A1(iω0) A1(iω−1)

A2(iω0) A2(iω−1)

]

(68)

if θ > 0 (see Appendix A for a derivation).

Example 15.1 (Samples with derivatives). If A1 is the iden-

tity and A2 the differentiator we get a mixing matrix

Ā(θ) =
[

1 1

iω0 iω−1

]

.

This matrix has constant nonzero determinant −i2π/h. The

hold functions (66) now become (for θ ∈ [0, π])
[

φ1(e
iθ ) φ2(e

iθ )
]

=
[

eiω0τ eiω−1τ
]

A−1(θ)

=
[

eiω0τ iω−1 − eiω−1τ iω0

−i2π/h

−eiω0τ + eiω−1τ

−i2π/h

]

.

The inverse Fourier transformation subsequently yields (see

Example 4.6] for φ1) the two hold functions

φ1(t) = sinc2
h(t), φ2(t) = t sinc2

h(t)

and we get the well known reconstruction formula

f (t) =
∑

k∈Z
φ1(t − kh) f (kh)+ φ2(t − kh) f ′(kh)

provided f (t) is 2ωN-bandlimited. ▽

For two channels the mixing matrix Ā(θ) is 2 × 2. It is

straightforward to extend the ideas to more than two chan-

nels. For instance when M derivative samples, y(i)(kh) for

i = 0, . . . ,M − 1, are available etcetera. The formulae are

unwieldy though.

For recurring non-uniform sampling the method recovers

Yen’s original work [54]. In this case the formulae are man-

ageable for any M:

Example 15.2 (Recurring non-uniform sampling). If A1 is

the identity and A2 the T -delay operator A2(iω) = e−iTω then

the mixing matrix (68) becomes the Vandermonde matrix

Ā(θ) =
[

1 1

e−iTω0 e−iTω−1

]

for θ ∈ [0, π].

It is invertible iff the delay T is not a multiple of the sampling

period h, in which case

Ā−1(θ) = 1

e−iTω−1 − e−iTω0

[

e−iTω−1 −1

−e−iTω0 1

]

.

Direct inverse Fourier transformation of (66) now yields the op-

timal hold functions

φ1(t) = sinch(t)
sin(ωN(t + T ))

sin(ωNT )
, φ2(t) = φ1(−t − T )

see Fig. 16. This φ1(t) is the unique6 2ωN-bandlimited signal

that is 1 at t = 0 and is 0 at both all other sampling instances,

kh, k 6= 0, and delayed sampling instances kh − T , k ∈ Z. By

symmetry φ2(t) = φ1(−t − T ) has comparable interpolation

properties, see Fig. 16.

φ2(t)

h

−T 0

φ1(t)

t →

h

1

Figure 16: Optimal hold functions for M = 2 (Exam-

ple 15.2)

If instead of 2 we have M samples every [hk, hk + h) at

t = hk + T1, t = hk + T2, . . . , t = hk + TM then the M

optimal sampling functions φ1, . . . , φM are [54]

φn(t) = sinch(t + Tn)
∏

k 6=n

sin(ωN(t + Tk))

sin(ωN(−Tn + Tk))
.

6Since Ge,opt = 0 for any Gv that is 2ωN-bandlimited, we have that HS = I

when restricted to 2ωN-bandlimited signals. Suppose η and ζ are two 2ωN-

bandlimited signals with the same samples, then ζ = HSζ = HSη = η

i.e., then they are the same.
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Indeed, they satisfy the interpolation conditions and are MωN-

bandlimited by the fact that they are M products of ωN-

bandlimited signals, and thus they are the solutions we seek

(provided G is MωN-band dominant). ▽

Besides [54] the results in this section bears close resem-

blance with the generalized sampling theorems of [34], with

the difference that [34] assumes from the outset that the signal is

sufficiently bandlimited. Paper [50] treats the same problem but

then aims at consistent rather than norm-optimal HSPs. This,

however, is closely related to norm-optimality because consis-

tency is an interpolation condition and in Footnote 6 we saw

that norm-optimality under certain assumptions is equivalent to

an interpolation condition.

16. Downsampling

Consider again the case G := Gv = Gy , but now assume that it

is itself an HSP,

G = Hh′Sh′ (69)

with a sampling period h′ different from h. To maintain h-

periodicity we assume that this sampling period is an integer

fraction of h,

h′ = h/m, for some m ∈ N.

The problem is to find a single channel FHSP with sampling

period h that minimizes the L2 or L∞ norm of the error sys-

tem Ge. In the present context this is an example of down-

sampling by a factor m. System (69) has kernel g(t, s) =
∑

k∈Z φh′(t − kh′)ψh′(kh′ − s) and it can be seen as the super-

position of m advanced-delayed h-periodic systems, g(t, s) =
∑m−1

n=0

∑

k∈Z φh′(t−nh′−kh)ψh′(nh′+kh−s). It has frequency

response kernel

ğ(eiθ ; τ, σ ) =
m−1
∑

n=0

φ̆h′(e
iθ ; τ − nh′)ψ̆h′(e

iθ ; −(σ − nh′)).

Using the Key Lifting Formula for the sampling function ψ

shows that

ğ(eiθ ; τ, σ ) =
∑

k∈Z

(m−1
∑

n=0

φh′(e
iθ ; τ − nh′)e−niωk h′

)

×9(iωk)
1

h
e−iωkσ .

Since G is not LCTI it is not immediate what the fixed-

frequency SVD (Lemma 13.1) is, but for certain examples of

G it can be done:

Example 16.1 (Downsampling by factor 2). Let m = 2 and

G = HZOHSIdlGilp, where the ideal sampler SIdl and the zero-

order hold HZOH have the sampling period h/2 and Gilp is the

ideal lowpass filter with bandwidth 2ωN. By the bandlimitness

of the prefilter we have, for θ ∈ [0, ωN],

ğ(eiθ ; τ, σ ) =
∑

k=1,2

(
∑

n=0,1

φh′(e
iθ ; τ − nh′)e−niωk h′

)

×9(iωk)
1

h
e−iωkσ

=
[

1
[0,

h
2 ]
(τ ) 1

[
h
2 ,h]

(τ )
]
[

1 1

eiθ/2 −eiθ/2

]

︸ ︷︷ ︸

V (θ)

×
[

9(iω0) 0

0 9(iω1)

] [
1
h

e−iω0σ

1
h

e−iω1σ

]

. (70)

The two shifted hold functions 1[0,h/2](τ ) and 1[h/2,h](τ )

have non-overlapping support and therefore are orthogonal (and

with the same L-norm of
√

h/2), making the V (θ) defined

above orthogonal at each θ and V ′(θ)V (θ) = h I2. Equa-

tion (70) at each θ is therefore an SVD with singular values

{h|9(iω0)|, h|9(iω1)|}. By Corollary 12.3, the optimal HSP

should cancel the largest singular value. If 9 is baseband dom-

inant then according to this corollary F̆HSP(e
iθ ) = 〈·, v1〉Lv1

with v1 the θ dependent first column of V (θ) normalized to

have L-norm 1. That is, its kernel is fHSP(t, s) = φ(t)φ(s) with

optimal hold and sampler equal to the inverse Fourier transform

of the first column of V (scaled by
√

h for orthonormality),

φ(t) = ψ(t) = 1√
h

F−1{V1}

= 1√
h

F−1
{

1[0,h/2](τ )+ 1[h/2,h](τ )e
iθ/2

}

= 1√
h

(

1[0,h/2](t)+
∑

k∈Z
sinc1(k + 1

2 )1[h/2,h](t − kh)

)

=
0 h

The optimal HSP is S∗S = HH∗. In the somewhat special

case that 9 is passband dominant in the sense that the second

band is dominant, that is, |9(iω1)| ≥ |9(iωk 6=1)|, ∀θ ∈ [0, π),

then we should select the second column of V , rendering the

optimal hold/sampler equal to

φ(t) = ψ(t) = 1√
h

F−1{V2}

= 1√
h

F−1
{

1[0,h/2](τ )− 1[h/2,h](τ )e
iθ/2

}

= 0 h

The hold function is unique (modulo frequency dependent scal-

ing that could be absorbed into the sampler or discrete filter) but

the sampler is not unique in this case because the signal gener-

ator is singular. Neither G nor the optimal HSP is LCTI. ▽

17. SR with Noisy Measurements

24



In the final section of this part we consider the case that the

signal y available for sampling is corrupted by colored noise.

This very common situation can be modeled as in Fig. 17 where

n is the colored noise which is seen as the output of a system

W driven by white noise wn , assumed to be independent of wv
which drives the system G that generates the signal v that we aim

to reconstruct. This problem is reminiscent of Wiener filtering

with the sole difference that we restrict the filters to HSPs. The

error system is

Ge =
[

G 0
]

− FHSP

[

G W
]

(71)

which is the mapping from (wv , wn) to the reconstruction error

e = v − u. The L∞ norm of Ge corresponds to the worst-case

energy of e under all v and n satisfying |v(iω)|
2

|G(iω)|2 +
|n(iω)|2
|W (iω)|2 ≤ 1

(this, in turn, requires that the spectral densities of v and n are

bounded by |G|2 and |W |2, respectively). The signal generators

G and W are real LCTI systems, and we assume that their sum

of spectra is positive everywhere:

A2: |G(iω)|2 + |W (iω)|2 > 0 for all ω.

This assumption guarantees that the optimization problems are

non-singular.

The requirement that FHSP is an HSP can be viewed as a

structural constraint imposed on the reconstructor (estimator).

This suggests that the problem can be addressed via the solu-

tion of the unconstrained problems, where the L2 or L∞ norms

of the error system (71) are minimized by an analog filter G

(not necessarily an HSP). We thus start with the latter problem,

following the ideas of [14].

First, recall that the L2-norm of Ge, ‖Ge‖2, is the square root

of the (operator) trace of GeG
∗
e and the L∞-norm of the error

system ‖Ge‖∞ ≤ γ iff GeG
∗
e ≤ γ 2 I [14]. This is to say that the

system GeG
∗
e plays a central role in both optimization problems.

Now,

GeG
∗
e = (I − F)GG∗(I − F)∗ + FWW∗F∗

= GG∗ − FGG∗ − GG∗F∗ + F(GG∗ +WW∗)F∗

= Q+ (GG∗R−1 − F)R(GG∗R−1 − F)∗, (72)

where R := GG∗ + WW∗ is invertible by A2 and, in fact,

GG∗R−1 is then well defined and stable. Also,

Q := G(I − G∗R−1G)G∗ = GG∗R−1WW∗.

As no causality constraints are imposed, it is readily seen [14]

that the optimal solution in both L2 and L∞ cases is F =
Fwiener := GG∗R−1 = GG∗(GG∗ +WW∗)−1 (in the L∞ case

it might be non-unique). This is the classic LCTI Wiener filter.

wv

wn

e

nȳ y

v

u
H S

G

W
-

Fhsp

Figure 17: Setup for SR with noisy measurements (Sec-

tion 17)

It is not necessarily an HSP and in fact it generally is not an

HSP, and as such Fwiener is not the solution we seek.

Important is that (72) can be used to reduce the original sig-

nal reconstruction problem to a simpler problem, similar to the

noise-free problem studied in Section 14. This reduction, how-

ever, is different in the L2 and L∞ cases.

17.1. L2 Optimization

Because of the linearity of the operator trace, (72) gives that

‖Ge‖22 = ‖Q1/2‖22 + ‖(Fwiener − F)R1/2‖22. (73)

Hence, the L2 signal reconstruction problem is equivalent to the

problem of

min
FHSP

‖FwienerR
1/2

︸ ︷︷ ︸

G2

−FHSPR
1/2

︸ ︷︷ ︸

F2

‖2, (74)

which is a one-block problem. In the noise-free setting, the

systems R1/2 and Fwiener should be replaced with G and I , re-

spectively. The presence of R1/2 and Fwiener does not lead to

any conceptual difference though. By the invertibility of R1/2

the series interconnection F2 is a rank-1 HSP iff FHSP is. Now

the optimal rank-1 approximation F2 of an LCTI system G2 is

itself LCTI and therefore the optimal rank-1 FHSP = F2R
−1/2

is LCTI as well. To circumvent exotic HSPs we again assume

baseband dominance:

A3: G2 = GG∗(GG∗ +WW∗)−1/2 is baseband dominant.

The singular values of Ğ2(e
iθ ) at each θ can be expressed as

σk =
|G(iωk)|2

√

|G(iωk)|2 + |W (iωk )|2
= |G(iωk)|

√

ρ(ωk)

1+ ρ(ωk)
,

where

ρ(ω) := |G(iω)|
2

|W (iω)|2 (75)

can be interpreted as the signal-to-noise ratio spectrum.

Given A3, the F2(iω) that minimizes (74) equals G2(iω) in

the baseband ω ∈ [−ωN, ωN] and is zero elsewhere. The opti-

mal FHSP = F2R
−1/2 therefore is the LCTI system that is zero

outside the baseband, and in the baseband equals FHSP(iω) =
G2(iω)R(iω)

−1/2 = Fwiener(iω). In the baseband the opti-

mal FHSP acts as the classic Wiener filter making the error

Ge(iω)Ge(iω)
∗ equal to Q(eiθ ), and outside the baseband it

does nothing. Therefore:

Theorem 17.1. Let G and W be real stable LCTI systems and

suppose assumptions A2-3 hold. Then the HSP depicted in

Fig. 18(a) minimizes the L2 norm of Ge and attains the opti-

mal performance

‖Ge‖22 =
1

π

∫ ωN

0

|G(iω)|2
1+ ρ(ω)dω + 1

π

∫ ∞

ωN

|G(iω)|2dω,

where Fwiener(iω) = ρ(ω)
1+ρ(ω) and ρ(ω) is defined by (75). All

components are stable and the overall HSP is LCTI. ▽

25



yu
Fwiener

Hsinc Ssinc

SIdl Filp

(a) Configuration with analog Wiener filter Fwiener

yu K̄

Hsinc Ssinc

SIdl Filp

(b) Configuration with discrete filter, K̄ (eiθ ) = Fwiener(θ/h)

Figure 18: The optimal HSP for SR with noisy measure-

ments

The optimal reconstructor is very similar to the WKS-block

with the sole difference that the analog Wiener filter prepro-

cesses the measurement. The frequency response of Fwiener is

real valued for all frequencies, so it is noncausal (unless it is

static, which happens if W is scalar multiple of G). An alterna-

tive form of the optimal HSP is presented in Fig. 18(b), in which

the Wiener filter is, in a sense, converted to the discrete filter K̄

with the frequency response K̄ (eiθ ) = Fwiener(θ/h). This filter

is also generically noncausal. Moreover, it is normally not a ra-

tional function of eiθ even if the analog Wiener filter is rational.

Hence, unless K̄ is static, it is infinite dimensional.

17.2. L∞ Optimization

The situation here is more complicated than in the L2 case.

Clearly from (72) we have that GeG
∗
e ≤ γ 2 I iff

(Fwiener − F)R(Fwiener − F)∗ ≤ γ 2 I −Q. (76)

This requires that γ ≥ γwiener, where

γwiener :=
√

‖Q‖∞

is the optimal L∞ performance achievable with F = Fwiener.

If γ > γwiener, the system I − γ−2Q is stably invertible and

then there is an HSP guaranteeing that ‖Ge‖∞ ≤ γ iff

‖(I − γ−2Q)−1/2(Fwiener − FHSP)R
1/2‖∞ ≤ γ (77)

for some FHSP. The system in (77) is of the one-block type

(I − γ−2Q)−1/2FwienerR
1/2

︸ ︷︷ ︸

G∞

− (I − γ−2Q)−1/2FHSPR
1/2

︸ ︷︷ ︸

F∞

and, similarly to the L2 case, F∞ is a rank-1 HSP iff FHSP is

and by the fact that optimal rank-1 F∞ can be taken LCTI also

FHSP = (I − γ 2Q)1/2F∞R−1/2 can be taken LCTI. Now if

we were to cancel the singular value |G∞(eiω0)| in the base-

band then this would result in FHSP(iω) = Fwiener(iω), ∀ω ∈
[−ωN, ωN] and zero elsewhere. This is exactly the same HSP

as in the L2 case. This choice of FHSP achieves ‖Ge‖∞ ≤ γ if

and only if supω>ω|G∞(iω)| ≤ γ . This condition, at first sight,

appears to hard to check. However there holds:

Lemma 17.2. Let γ > γwiener. Then at each ω we have

|G∞(iω)| ≤ γ ⇐⇒ |G(iω)| ≤ γ.

Proof. |G∞(iω)| ≤ γ iff (76) holds for F(iω) = 0 at the given

frequency, which in turn is equivalent to |Ge(iω)| ≤ γ , but

Ge(iω) = G(iω) for F(iω) = 0.

This property allows to bypass baseband dominance of G∞
(which is rather involved as G∞ depends on γ ). Sufficient is to

assume baseband dominance of G. Thus, we have:

Theorem 17.3. Suppose assumptions A1,2 are satisfied. Then

the optimal HSP is the same as that of Theorem 17.1 and

‖Ge‖∞ = max

{

sup
ω∈[0,ωN]

|G(iω)|√
1+ ρ(ω)

, sup
ω∈(ωN,∞)

|G(iω)|
}

is the optimal L∞ performance level.

Proof. Let γ∞ be the minimal achievable norm of ‖Ge‖∞
by rank-1 FHSP. Assume first that γ∞ > γwiener. Then

|G∞(iωk)| > γ∞ for at most one of the aliased frequencies

ωk , which by Lemma 17.2 is equivalent to |G(iωk)| > γ∞
(for the same one k). By the baseband dominance of G, this

must be k = 0. I.e., the baseband has to be removed, leaving

|Ge(iω)| = Q1/2(iω) in the baseband and Ge(iω) = G(iω)

elsewhere. The formula for γ∞ follows on noting that Q(iω) =
|G(iω)|2/(1+ ρ(ω)).

If γ∞ = γwiener then for any γ > γwiener = γ∞ by the

above argument the given FHSP achieves ‖Ge‖∞ ≤ γ . I.e., then

for any γ > γwiener inequality (76) is satisfied for F = FHSP.

Since FHSP is independent of γ , the inequality (76) then holds

for γ = γ∞ as well.

Both L2 and L∞ equivalent one-block problems (74) and

(77), respectively, can be interpreted as (weighted) approxima-

tions of the analog optimal reconstructor Fwiener by FHSP. In

other words, the choice of “good” HSPs can be viewed as an

attempt to imitate their analog counterparts. This interpretation

merely repeats the main point of [29, Sec. 6] made in the context

of the sampled-data feedback control with causal controllers.

Remark 17.4. The optimal performance indices in Theo-

rems 17.1 and 17.3 have two components representing two

extreme situations. The first of these components reflects the

contribution of the baseband, [0, ωN], and is a size of Q in

this frequency range. The frequency response of Q is actually

the spectrum of the estimation error under the optimal analog

reconstruction. Thus, the baseband contributes, in a sense, by

the optimal analog performance. The second component of the

optimal indices reflects the contribution of the high-frequency

range, (ωN,∞), and is a size of G. Thus, high frequency com-

ponents contribute by the estimator-free performance. Thus,

in [0, ωN] the sampled-data reconstructor recovers the analog

performance, whereas in (ωN,∞) it does nothing. ▽

Remark 17.5. In the L2 case, Theorem 17.1 requires that the

function |G(iω)|2 ρ(ω)
1+ρ(ω) is baseband-dominant. If |G(iω)| is

baseband-dominant, this requirement is clearly guaranteed if

the signal-to-noise ratio ρ(ω) is a non-increasing function of ω,

which is a reasonable assumption in many applications. The
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dominance requirement might fail if ρ(ω)
1+ρ(ω) increases faster

than |G(iω)|2 decreases. This, in turn, is possible if the signal-

to-noise ratio increases considerably faster then the spectrum

of v decays. At the same time, spectral properties of W do not

affect the baseband-dominance in the L∞ case. ▽

18. Concluding Remarks

The main message of this part is that the system-theoretic

approach—the use of systems as signal generators to account

for available information and system norms as performance

measures—facilitates a unified treatment of a wide spectrum

of sampling and reconstruction problems. We have considered

the design of L2 and L∞ optimal acquisition and / or interpola-

tion devices when no causality constraints are imposed on them.

Remarkably, this single approach recovers many known HSPs

derived hitherto by different methods. For example, when sam-

pling circuits are fixed (Type III problems), certain choices of

signal generators produce conventional cardinal polynomial or

exponential splines as the optimal reconstructors. Another ex-

ample is the recovery of the classical Sampling Theorem and its

modifications (samples with derivatives, recurring non-uniform

sampling) when both sampling and reconstruction devices are

design parameters (Type IV problems) under different assump-

tions about the sampling process. We believe that the capa-

bility to reproduce known results as special cases of a general

framework is an important property, offering an additional in-

sight into both existing and the proposed approaches. The pre-

sented proofs of the continuous-time invariance of certain op-

timal HSPs and the necessity of a bandllimited assumption in

multi-channel sampling attest to it. At the same time, we have

shown that the approach can produce new solutions and inter-

pretations, like the interplay between L2 and L∞ norms, leading

to limitations on error free reconstruction, and optimal down-

sampling and a version of the Sampling Theorem for recon-

structing signals from noisy measurements. Many more exten-

sions can be added to this list. One of them—imposing causality

constraints on the design of L2-optimal reconstructors—-will be

addressed in Part III this paper.

Part III: L2-Optimization of Reconstruc-
tors with Causality Constraints

19. Introduction and Problem Formulation

The first two parts of this paper discussed underlying techni-

cal material for the system-theoretic analysis of sampling and

reconstruction (SR) problems and the design of hybrid signal

processors (HSPs) when no causality constraints are imposed.

The primary purpose of this part is to show, how causality con-

straints can be systematically incorporated into SR problems in

the system-theoretic framework.

To this end, we address the (technically) simplest problem

setup, depicted in Fig. 19, where v is an analog signal to be

we

ȳ y

v

u
H S

G
-

Figure 19: The problem setup

reconstructed and ȳ is the discrete measured signal, which is

the sampling of an analog signal y. Both v and y are modeled

as outputs of a given continuous-time LTI system

G =
[

Gv

Gy

]

(78)

driven by a common input w. To simplify the exposition, we

assume that G is finite dimensional (i.e., its transfer function is

rational) and S is the ideal sampler (i.e., ȳ[k] = y(kh), where

h is the sampling period), which is sufficiently general to de-

scribe the method. Nonetheless, the results can be extended to

some classes of infinite-dimensional models and to more gen-

eral acquisition devices. The design parameter here is the D/A

reconstructor (hold) H, which generates an estimate u of v, and

the reconstruction performance is measured by the L2-norm of

the error system

Ge := Gv −HSGy

from w to e = v − u. As discussed in Part I, this goal corre-

sponds to the mean-square minimization of the (analog) error

signal e assuming that w is the standard white noise. Without

loss of generality we assume that G is causal (but not necessarily

stable).

Formally, we consider the following optimization problem:

RPl : Given a finite-dimensional G, the ideal sampler S, and

l ∈ Z
+
0 , find a stable and l-causal (i.e., such that its hold

function φ(t) = 0 whenever t < −lh) reconstructor H,

which stabilizes the error system Ge and minimizes the

performance index Jl = ‖Ge‖22.

The nonnegative integer l defines here the length (in sampling

periods) of the preview, allowed for H. RP0 corresponds to

the causal reconstruction problem, which can be thought of as

a hybrid version of the Wiener / Kalman filtering. This prob-

lem is currently quite well understood [6, 17]. Another limit-

ing case, RP∞, is the noncausal problem addressed in Part II. It

corresponds to the so-called fixed interval smoothing. The other

cases, for positive finite l, are then hybrid versions of the fixed

lag smoothing problem, in which context l is referred to as the

smoothing lag.

To the best of our knowledge, the majority of currently avail-

able solutions to problems, similar to RPl , in the literature ad-

dress causality constraints indirectly. It appears that the most

widely used approach is to design a noncausal H and then just

truncate the anti-causal part of some particular representation of

its hold function φ(t) to make it l-causal (or FIR), see [36] and

the references therein. This may be justifiable only if the trun-

cated part is insignificant, which, in turn, requires sufficiently
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Figure 20: The problem setup in the lifted domain

fast decay7 of φ(t). This is why the decay rate becomes an

important factor in the choice of hold functions, see [45]. Yet

the fast decay requirement might compromise the reconstruc-

tion performance. An alternative might be the use of parametric

optimization methods, like those discussed in [16, Ch. 4] for

preview-free (l = 0) problems. This approach, however, re-

sults in non-transparent solutions and thus cannot address im-

portant questions of the rationale, structure, and interpretations

of causal reconstructors.

Having the preview length l as a part of the optimization

process has a clear advantage over truncating noncausal so-

lutions. We no longer hinge on the decay rate of φ(t) and

can therefore afford to use a wider class of signal generators

and, consequently, a richer set of reconstructors. Moreover, the

optimization-based design makes it easy to link preview with

the achievable performance, which may be used as the justifi-

cation for the choice of the preview length.

This part is organized as follows. We start with the formula-

tion and solution of RPl in the lifted domain in Section 20. In

Section 21 we use this solution to address the consistency of the

optimal reconstruction and stabilizability conditions for some

special cases. To render the lifted solution implementable and

transparent in a general case, it should be converted back to the

time domain—the peeling-off procedure. A coherent peeling-

off procedure via a state-space realization of G (introduced in

Section 22) is presented in Section 23. This section is quite

technical, so a reader might probably opt for skipping it and

proceed directly to Section 24, which contains the main results

of this part—a complete solution of RPl and a discussion of

some its properties—presented in a self-contained manner. To

illustrate these results, several simple examples are presented in

Section 25.

Notation

We follow the notation conventions of the previous parts, so be-

low we outline the most frequently used nonstandard definitions

only. For any set A, the indicator function 1A(t) is 1 if t ∈ A

and is zero elsewhere. The unit step (which is actually 1R+(t))

is denoted 1(t). By Z
+
l we denote the set of all integers larger

or equal to l. The set of natural numbers is denoted by N = Z
+
1 .

The symbols T and D stand for the unit circle (|z| = 1) and the

open unit disk (|z| < 1) in the complex plane, respectively. We

also use the convention L := L2[0, h).

20. Lifted Formulation and Solution

7For example, this approach works poorly for the sinc-resonstructor from the

Sampling Theorem as sinch(t) has slow decay (it is not absolutely inte-

grable).

Our first step is to reformulate the reconstruction problem in the

lifted domain. By applying the lifting transformation, the setup

in Fig. 19 transforms into an equivalent LTI setup depicted in

Fig. 20, where H̀ is the lifted hold (design parameter) and

Ğ =
[

Ğv

ŚĞy

]

=:

[

Ğv

Ǵy

]

is the lifted signal generator (given). RPl can then be rewritten

in terms of lifted transfer functions as follows:

R̆Pl : Given Ğ and l ∈ Z
+
0 , find H̀ ∈ zl H∞, which guarantees

that Ğe ∈ zl H∞ ∩ L2 and minimizes Jl = ‖Ğe‖22.

The time invariance of all systems in R̆Pl makes it possible to

use frequency-domain methods. In particular, we may adapt the

approach of [31]. This adaptation is not straightforward as the

extension of many standard methods, well known for transfer

functions over finite-dimensional input and output spaces, to

lifted transfer function is quite nontrivial. Moreover, some of

these methods are not well exposed in the signal processing

literature. For these reasons, we start with a simple particular

case of RPl , which motivates the main steps of the theory to be

developed later on.

20.1. Motivating Example

Consider the reconstruction problem with the signal generator

G having the transfer functions

Gv(s) = G y(s) =
1

s
.

The instability of these systems may be viewed as the reflec-

tion of incorporating non-decaying signals into the L2 analysis.

Indeed, the impulse response of Gv is gv(t) = 1(t), so we ef-

fectively minimize the energy of the reconstruction error under

a step v. The requirement to stabilize the reconstruction er-

ror, which necessitates the reconstruction error e to decay, may

then be considered as merely the requirement to guarantee zero

steady-state error.

According to §4.2, in the lifted domain the relation v̆(z) =
Ğv(z)w̆(z) reads

v̆(z; τ ) =
∫ h

0

ğv(z; τ, σ )w̆(z; σ)dσ,

where, for every τ, σ ∈ [0, h),

ğv(z; τ, σ ) =
∑

k∈Z
1(kh + τ − σ)z−k = 1(τ − σ)+

∑

k∈N
z−k

= 1(τ − σ)+ 1

z − 1
.

Thus, Ğv (z) defines the relation

(Ğvw̆)(z; τ ) =
∫ τ

0

w̆(z; σ)dσ +
∫ h

0

1

z − 1
w̆(z; σ)dσ. (79)

Because Gy = Gv , we have that ȳ(z) = v̆(z; 0) and, hence,

ȳ(z) = (Ǵ yw̆)(z) =
∫ h

0

1

z − 1
w̆(z; σ)dσ.

28



These relations actually imply that Ğv can be presented as

Ğv(z) = N̆v (z)+ H̀ZOH(z)Ǵ y(z), (80)

where N̆v is defined by the first term in the right-hand side of

(79) and H̀ZOH is the (lifted) transfer function of the zero-order

hold. As both N̆v and H̀ZOH are static lifted systems (their trans-

fer functions are constant in z), they are stable and instabilities

in the estimation channel Ğv are actually of the same form as

in the measurement channel Ǵ y . This, in particular, implies

that the error system is stabilizable. Indeed, the trivial pick

H̀ = H̀ZOH produces the stable Ğe = N̆v . This has an intu-

itive explanation: if v is asymptotically constant, a piecewise-

constant reconstruction of its sampled noise-free measurements

yields asymptotically perfect reconstruction.

Although the zero-order hold stabilizes the error system, it

is not necessarily optimal. This particular stabilizing solution,

however, can be used to generate all other stabilizing solutions.

To see this, consider the error transfer function Ğe(z), which

defines the relation

ĕ(z; τ ) =
∫ τ

0

w̆(z; σ)dσ +
∫ h

0

(

1

z − 1
− H̀(z)

z − 1

)

w̆(z; σ)dσ.

Whilst the first term of Ğe is stable (it equals N̆v ), the second

term contains a singularity on T (at z = 1). Every stabilizing

H̀ must therefore cancel this singularity and this is the only re-

quirement on stabilizing reconstructors (apart from introducing

no new instabilities, of course). Thus, the requirement that H̀ is

stabilizing can be cast as the following interpolation constraint

on its transfer function:

H̀(1) ≡ 1 (∀τ ∈ [0, h)). (81)

Clearly, H̀ZOH satisfies this constraint as H̀ZOH(z) = 1 for all z.

Standard interpolation arguments [39, Thrm. 10.18] yield then

that all reconstructors satisfying (81) are parametrized as

H̀(z) = H̀ZOH(z)+ Q̀(z)M̄y(z), (82)

where

M̄y(z) =
z − 1

a1z + a0

for any fixed |a0| < |a1| and Q̀ ∈ zl H∞ but otherwise arbitrary.

In other words, all interpolants are the parallel interconnection

of a particular solution (H̀ZOH) and the cascade of a stable and

proper transfer function having its zero at the interpolation point

(M̄y) and an arbitrary stable transfer function (Q̀). The freedom

in a1 and a0, which does not affect H̀ (as the term a1z + a0 can

always be canceled by Q̀), will be exploited later on. With this

parametrization, all possible stable error systems are character-

ized as

Ğe(z) = N̆v (z)− Q̀(z)Ńy(z), (83)

with Ńy := M̄y Ǵ y , which verifies

(Ńyw̆)(z) =
∫ h

0

1

a1z + a0
w̆(z; σ)dσ (84)

and is causal and stable (i.e., Ńy ∈ H∞).

Once the stability issue is resolved, the solution of R̆Pl

amounts to finding a Q̀ ∈ zl H∞ minimizing the L2-norm of Ğe

in (83). Note that for every such Q̀ the resulting Ğe ∈ L2. In-

deed, the first term is in L2 because it is a static Hilbert-Schmidt

operator [55, Thrm. 8.8] and the second term is in L2 because

G̃L2 ⊂ L2 for all G̃ ∈ L∞. We thus should only be concerned

with the norm. By the Projection Theorem (orthogonality prin-

ciple [37]) we know that the optimal Q̀ for each l, let us call it

Q̀l , must satisfy

〈Q̀ Ńy , N̆v − Q̀l Ńy〉2 = 0, ∀Q̀ ∈ zl H∞.

Because Q̀(z) is a rank-one operator for almost all z ∈ C, Q̀ ∈
zl H∞ ⇒ Q̀ ∈ L2 (Prop. 5.6) and we may rewrite the equation

above as

〈Q̀, (N̆v − Q̀l Ńy)Ń
∼
y 〉2 = 0, ∀Q̀ ∈ zl H∞ ∩ L2.

In other words, Q̀l must render

V́ ∼− Q̀l Ńy Ń∼
y ⊥ zl H∞ ∩ L2, (85)

where V́ := Ńy N̆∼
v . The orthogonality here is equivalent to

the condition that the impulse response of V́ ∼ − Q̀l Ńy Ń∼
y is

zero at all k < −l. This condition might not be easy to enforce

for an arbitrary Ńy of the form (84), because Ńy Ń∼
y is in gen-

eral noncausal, so that the l-causality of Q̀l is not preserved in

Q̀l Ńy Ń∼
y . Indeed, by the results of §5.2,

Ń∼
y (z) =

1

a1z−1 + a0

(the zero-order hold preceeded by a discrete filter), so that

Ńy(z)Ń
∼
y (z) =

h

(a1z + a0)(a1z−1 + a0)

is noncausal for all a0 > 0. Yet if a0 = 0, which is admissi-

ble, Ńy Ń∼
y ≡ h/a2

1 is static and therefore causal (and causally

invertible). It is convenient to normalize this static system by

choosing a1 =
√

h, in which case condition (85) reads

V́ ∼− Q̀l ⊥ zl H∞ ∩ L2,

which is easy to comply by the orthogonal projection,

Q̀l = projzl H∞∩L2 V́ ∼.

This projection is merely the truncation of the impulse response

of V́ ∼ to Z
+
l . Because for our choice of a1 and a0

V́ ∼(z) = N̆v (z)Ń
∼
y (z) =

∫ τ

0

z√
h

dσ = τ√
h

z,

we have:

Q̀l (z) =
{

0 if l = 0

V́ ∼(z) = τ√
h

z if l ≥ 1
. (86)

The optimal reconstructor is then obtained by substituting this

transfer function into (82). If l = 0 (no preview), the optimal
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reconstructor is actually the zero-order hold. If l ≥ 1 (finite

preview), the optimal reconstructor is the first-order hold:

H̀l(z) = H̀ZOH(z)+
τ z√

h

z − 1√
hz
= τ

h
z + h − τ

h
= H̀FOH(z)

(see Example 4.8 for the last equality).

Remark 20.1. It is worth emphasizing that the optimal causal

reconstructor, HZOH, is not a truncated version of the optimal

noncausal reconstructor, HFOH. The truncation is involved in

the optimal solution, yet in an intermediate stage only. ▽

Remark 20.2. Quite interesting is that the optimal reconstruc-

tor in this case exploits only one preview step. Even if we

allow a wider preview window (l > 1), the optimal solu-

tion is 1-causal. This property, however, is not generic in the

L2-optimization, see the discussion in [31, §IV-C]. In general,

the optimal reconstructor exploits all preview available and the

larger the preview length is, the better reconstruction perfor-

mance is achieved, see the examples in Section 25. ▽

To complete the solution, we need to calculate the achieved

optimal reconstruction performance. By orthogonality,

‖Ğe‖22 = ‖N̆v − Q̀l Ńy‖22 = ‖N̆v‖22 − ‖Q̀l Ńy‖22
= ‖N̆v‖22 − ‖Q̀l‖22.

where the fact that Ńy Ń∼
y = I was used. Elementary calculus

yields then that

‖N̆v‖22 =
1

2πh

∫ π

−π

∫ h

0

∫ h

0

[1(τ − σ)]2dτdσdθ = h

2
.

Finally, if l = 0, we clearly have ‖Q̀l‖22 = 0, while if l ≥ 1,

Q̀∼
l Q̀l ≡ h2/3, so that ‖Q̀l‖22 = h/3. Thus, the optimal

‖Ğe‖22 =
{

h/2 if l = 0

h/6 if l ≥ 1
,

which shows that the availability of preview improves the re-

construction performance by a factor of 3 in this case. Also, for

all preview lengths, limh→0‖Ğe‖2 = 0, which agrees with our

intuition that this signal can be perfectly reconstructed from its

analog noise-free measurements. ▽

We are now in the position to describe the general solution

procedure, which we split into several stages.

20.2. Stabilization of Ğe

Stability is naturally the very first issue to be addressed in solv-

ing R̆Pl . As we saw in the previous subsection, the stabilization

in our context amounts to canceling all instabilities of Ğ by H̀.

As G is assumed to be finite dimensional, Ğ(z) has a finite num-

ber of poles in C \D (in fact, mainly in T) and the stabilization

means canceling these poles. Because H̀ must be stable and

l-causal, it cannot have poles in C \ D, so that the stabilizabil-

ity of Ğv − H̀ Ǵ y should require that all unstable poles of Ğv

are contained in Ǵ y , including their multiplicities and, in the

MIMO case, directions (unstable poles of Ǵ y that are not poles

of Ğv can be easily canceled out by zeros of H̀ ).

For the simple system considered in the previous subsection

these steps (verifying the containment condition and canceling

unstable poles) are quite straightforward. This might not be

true in general. The coprime factorization approach (see Ap-

pendix B) offers an elegant formalism for working this out. We

start with the following result, which states that the stabiliz-

ability is equivalent to a special upper triangular form of the

denominator in a left coprime factorization of Ğ:

Proposition 20.3. There exists a stabilizing H̀ ∈ H∞ iff Ğ

admits a left coprime factorization over H∞ of the form

Ğ =
[

I M̀v

0 M̄y

]−1 [
N̆v

Ńy

]

(87)

for some left coprime M̄y , Ńy ∈ H∞ and some M̀v , N̆v ∈ H∞.

Proof. A lifted version of [31, Prop. 1].

Remark 20.4. Note that Proposition 20.3 considers H̀ ∈ H∞,

which might appear to be more restrictive than what we need

(H̀ ∈ zl H∞). It can be shown, however, that if Ğ y(z) is proper

(i.e., bounded in |z| > ρ for sufficiently large ρ), the preview

has no effect on the stabilization. This is because the relaxation

of the causality constraints does not relax the requirement that

H̀(z) is analytic in C \ D. ▽

Factorization (87) facilitates the parametrization of the set of

all stabilizing reconstructors and corresponding error systems.

The following result is essentially a systematic generalization

of (82) and (83):

Proposition 20.5. Let Ğ admit a left coprime factorization as

in (87). Then H̀ ∈ zl H∞ stabilizes Ğe iff

H̀ = −M̀v + Q̀ M̄y (88a)

for some Q̀ ∈ zl H∞. In this case,

Ğe = N̆v − Q̀ Ńy (88b)

parametrizes the set of all stable error transfer functions.

Proof. A lifted version of [31, Lemma 1].

20.3. Normalization and Orthogonalization

The choice of coprime factors in (87) is non-unique. Indeed,

given any particular M̄y , M̀v , Ńy , and N̆v constituting (87),

[

I M̀v − R̀ P̄ M̄y

0 P̄ M̄y

]

and

[

N̆v − R̀ P̄ Ńy

P̄ Ńy

]

are also admissible coprime factors for every appropriately di-

mensioned R̀ ∈ H∞ and P̄ ∈ H∞ such that P̄−1 ∈ H∞ too.

We exploit this freedom to supplement the factors in (87) with

desirable properties facilitating the L2 performance analysis.
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First, motivated by the analysis in §20.1, let us choose P̄ so

that the new numerator P̄ Ńy of Ǵ y be co-inner, i.e., such that

P̄ Ńy(P̄ Ńy)
∼ = P̄ Ńy Ń∼

y P̄∼ = I (89)

(normalization). Since on the unit disk the conjugate transfer

function is the adjoint, the (rational and matrix-valued) transfer

function

8̄y(z) := Ńy(z)Ń
∼
y (z) (90)

is self-adjoint on z ∈ T. Equation (89) can then be rewritten as

8̄y = P̄−1(P̄∼)−1. (91)

This shows that the required P̄ , if exists, is merely the inverse

of the spectral factor [40] of 8̄y . The existence if this spectral

factor is equivalent to the non-singularity of 8̄y(z) on the unit

disk. This condition is also the standard non-singularity condi-

tion [14] for the estimation problem associated with (88b): if it

does not hold, the optimal Q̀ might not belong to H∞, albeit

can be arbitrarily closely approximated by a stable Q̀. To rule

out such situations we assume hereafter that

A4: 8̄y(e
iθ ) > 0 for all θ ∈ [−π, π].

It is worth emphasizing that this condition does not depend on

the particular choice of Ńy in (87). Indeed, Ńy is unique (see

Appendix B) modulo the left multiplication by a bi-stable T̄ (z)

(i.e., T̄ , T̄−1 ∈ H∞), which is well-defined and nonsingular on

z ∈ T.

Having chosen P̄ to guarantee (89), consider now the transfer

function

(N̆v − R̀ P̄ Ńy)(P̄ Ńy)
∼ = N̆v Ń∼

y P̄∼− R̀.

Since N̆v , Ńy , P̄ ∈ H∞, the first term in the right-hand side

above is an L∞ transfer function. This transfer function can

always be decomposed into causal and strictly anti-causal parts.

Denote the former by (N̆v Ń∼
y P̄∼)+. It belongs to H∞ and thus

we may choose

R̀ = (N̆v Ń∼
y P̄∼)+, (92)

which guarantees that (N̆v − R̀ P̄ Ńy)(P̄ Ńy)
∼ is the transfer

function of a strictly anti-causal system (that is, its conjugate

belongs to z−1 H∞). We thus just proved the following result:

Proposition 20.6. Let A4 hold and Ğ admit a left coprime fac-

torization as in (87). Then these factors can always be chosen

so that [

N̆v

Ńy

]

Ń∼
y =

[

V́ ∼

I

]

(93)

for some V́ ∈ z−1 H∞.

20.4. L2 Optimization

Having reduced R̆Pl to a model matching over stable data, the

minimization of the L2-norm of Ğe follows the standard Hilbert

space optimization arguments presented in §20.1. To apply

these arguments, we first need to assume that

A5: N̆v ∈ L2.

Like A4 before, this assumption does not depend on the specific

choice of the factor N̆v in (87), as any N̆v = Ğv + M̀v Ǵ y at

each z ∈ T is a perturbation of Ğv by a finite-rank operator.

A5 guarantees that the error transfer function in (88b) is in L2

for every admissible Q̀, because Ğe(e
iθ ) is merely a finite-rank

perturbation of N̆v (e
iθ ) at each θ , see Prop. 5.6.

By the Projection Theorem, the optimal Q̀, denoted hereafter

as Q̀l , should render the error system orthogonal to all possible

“estimations” Q̀ Ńy , i.e.,

N̆v − Q̀l Ńy ⊥ Q̀ Ńy , ∀Q̀ ∈ zl H∞.

As we saw through the motivating example in §20.1, this con-

dition, combined with (93), yields that

V́ ∼− Q̀l ⊥ zl H∞ ∩ L2. (94)

This, in turn, leads to

Q̀l = projzl H∞∩L2(V́ ∼). (95)

The required projection amounts to truncating the impulse re-

sponse of V́ ∼ (which has support in Z \ Z
+
0 ) to Z

+
−l \ Z

+
0 , thus

resulting in an FIR Q̀l . The optimal FIR Q̀l should then be

substituted instead of Q̀ in (88a) to obtain the optimal recon-

structor, we denote it H̀l , which is typically IIR. The optimal

performance level in this case is

J 2
l = ‖N̆v‖22 − ‖Q̀l‖22. (96)

Remark 20.7. It is readily seen that if there is no preview,

Q̀0 = 0 and H̀0 = −M̀v . The quantity ‖N̆v‖2 is then the

optimal performance level of the optimal filtering (no preview)

reconstruction. In the other extreme case, l = ∞, the optimal

Q̀∞ = V́ ∼ results in

H̀∞ = −M̀v + V́ ∼M̄y = −M̀v + N̆v Ń∼
y M̄y

= −M̀v + (Ğv + M̀v M̄−1
y Ńy)Ń

∼
y M̄y

= Ğv Ń∼
y M̄y = Ğv Ǵ∼

y M̄∼
y M̄y = Ğv Ǵ∼

y (Ǵ yǴ∼
y )
−1

which is exactly what we had in Lemma 10.1]. The quanti-

ties ‖Q̀l‖22 and ‖V́ ‖22 − ‖Q̀l‖22 indicate the improvement with

respect to the preview-free solution and the deterioration with

respect to the noncausal solution, respectively, due to the finite

preview of the length l. ▽

The optimal solution (95)–(96) may not yet be regarded as

explicit, since it is formulated in terms of operator-valued lifted

transfer functions. Every step of this solution, however, can

be spelt out in the original time domain and lead to an imple-

mentable form of the optimal reconstructor and a calculable ex-

pression for the optimal performance. Following [29], we refer

to this as the peeling-off procedure and dedicate to it Section 23

using the state-space machinery reviewed in Section 22.

Still, some insight into the problem can be gained directly

from the abstract solution in the lifted domain. We demonstrate

this in the next section by addressing the consistency of the op-

timal reconstruction and the stabilizability of the error system.
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21. Intermezzi

21.1. Consistency

Following [45], we say that a reconstruction of an analog sig-

nal is consistent if it would yield exactly the same measure-

ments if it was reinjected into the measurement system. Con-

sistency is viewed as a desirable property, some design meth-

ods even effectively use it as the only requirement, see [45]. In

Part II §10.1 we showed that noncausal reconstructors designed

by the system-theoretic approach are always consistent, which

is a pleasant byproduct of our approach (we do not impose con-

sistency at any stage). The purpose of this subsection is to show,

that this property might still be valid in the causal case, although

this time some additional assumptions are required to prove the

result.

Like we did in Part II, assume that Gy = FGv for some LTI

causal filter F . This assumption means that the measurement ȳ

is produced by prefiltering v by F and then sampling the result

by the ideal sampler S. The consistency of the reconstructor

should then read SFHlSF = SF or, in the lifted domain,

F́ H̀l F́ = F́ , where F́ := Ś F̆, (97)

implying that processing ŭ with F́ results in ȳ again for all ȳ

that can be produced by our measurement system. Throughout

this subsection we also assume that

A6: F́(z) is static.

This assumption holds if the analog F(s) is either static or FIR

with the impulse response support in [0, h]. An example of the

latter is the case when ȳ is v sampled with the averaging sampler

SAv, §2.2.1, for which F(s) = 1
sh
(1− e−sh).

Consider now the optimality condition (94). Because in our

case Ǵ y = F́ Ğv , (87) yields that

N̆v = (I + M̀v F́)Ğv and Ńy = M̄y F́ Ğv .

Hence, V́ ∼ = (I + M̀v F́)Ğv Ğ∼
v F́∼M̄∼

y and (94) reads

(I + M̀v F́)Ğv Ğ∼
v F́∼M̄∼

y − Q̀l ⊥ zl H∞ ∩ L2. (98)

Because F́ is static, the latter equality yields that

T̀ := F́
(

(I + M̀v F́)Ğv Ğ∼
v F́∼M̄∼

y − Q̀l

)

⊥ zl H∞∩ L2 (99)

too. In other words, the impulse response of T̀ must have sup-

port in Z \ Z
+
−l . At the same time, it can be verified (cf. the

second row of (93)) that

T̀ = (I + F́ M̀v )M̄
−1
y − F́ Q̀l ,

which is an l-causal system (the first term in its right-hand side

is 0-causal and the second one is the cascade of the 0-causal

F́ and the l-causal Q̀l and thus is l-causal) and thus its impulse

response must have support in Z
+
−l . This contradicts (99), unless

T̀ = 0. From the latter condition,

I + F́ M̀v = F́ Q̀l M̄y ,

which reads F́ H̀l = I and thus verifies (97). We therefore just

proved the following result:

Proposition 21.1. Let Gy = FGv for some F verifying A6.

Then the optimal reconstructor satisfies SFHl = I and is thus

consistent.

Remark 21.2. An important bit in proving Proposition 21.1 is

the fact that (98) implies (99), for which we need assumption

A6. If this assumption does not hold, (99) is no longer true. In

fact, we can no longer rule out the possibility that the impulse

response of T̀ has no components in Z \ Z
+
−l . This implies that

there might be situations for which a valid T̀ 6= 0 exists and,

therefore, F́ H̀l 6= I . Indeed, numerical simulations show that

this happens whenever F(s) is nonminimum-phase (has zeros

in Re s ≥ 0). This, however, does not necessarily imply that

(97) does not hold. The question of characterizing the set of

filters for which the causal optimal reconstruction is consistent

is still open and is the subject of current research. ▽

21.2. Preliminary Insight into Stabilization

In this subsection we consider a relatively simple particular case

of the problem, in which

Gv(s) =
n
∑

i=1

κv,i

s − αi

and G y(s) =
n
∑

i=1

κy,i

s − αi

(100)

for some αi , κv,i , κy,i ∈ C, n ∈ N. In other words, we con-

sider SISO (single-input / single-output) Gv(s) and G y(s) with

simple poles only. These assumptions simplify the exposition,

so we can concentrate on the underlying ideas (although the re-

sults can be extended to MIMO systems and/or systems having

multiple poles). We do not rule out the possibility that at some

i either κv,i = 0 or κy,i = 0, yet not simultaneously (this would

make no sense).

The impulse response kernels of these systems are

gv(t) =
n
∑

i=1

κv,i eαi t1(t) and gy(y) =
n
∑

i=1

κy,i eαi t
1(t).

Then, the impulse response kernel of Ğv(z) is ğv =
∑n

i=1 ğv,i ,

where

ğv,i(z; τ, σ ) =
∑

k∈Z
κv,i eαi (kh+τ−σ)

1(kh + τ − σ)z−k

= κv,i eαi (τ−σ)1(τ − σ)+
∑

k∈N
κv,i eαi (kh+τ−σ)z−k

= κv,i eαi (τ−σ)1(τ − σ)+ κv,i eαi (h+τ−σ)

z − eαi h
.

Thus, the relation v̆(z) = Ğv (z)w̆(z) reads

v̆(z; τ ) =
∫ τ

0

gv(τ − σ)w̆(z; σ)dσ

+
n
∑

i=1

κv,i eαi τ

z − eαi h

∫ h

0

eαi (h−σ)w̆(z; σ)dσ. (101)

Similar arguments yield that ȳ(z) = Ǵ y(z)w̆(z) reads

ȳ(z) =
n
∑

i=1

κy,i

z − eαi h

∫ h

0

eαi (h−σ)w̆(z; σ)dσ. (102)
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The analysis is facilitated by the fact that we can split Ğv

compatibly with the partition in (101):

Ğv(z) = D̆v + Ğv,sp(z).

The feedthrough term, D̆v = Ğv (∞), is bounded and static

(hence, stable) and is an infinite-rank operator. The strictly

proper dynamical transfer function Ğv,sp(z) is a finite-rank op-

erator at almost every z ∈ C (cf.§11).

The error system can then be presented as

Ğe(z) = D̆v + Ğv,sp(z)− H̀(z)Ǵ y(z).

As D̆v ∈ H∞, we only need to stabilize Ğv,sp by H̀ . In other

words, we may ignore the feedthrough term in the stability anal-

ysis and be only concerned with the stability of

Ğe,sp(z) := Ğv,sp(z)− H̀(z)Ǵ y(z),

which is a finite-rank part of the error system that includes only

strictly proper components of Ğ(z). Using the definitions of

Ğv,sp and Ǵ y , the relation ĕsp(z) = Ğe,sp(z)w̆(z) reads

ĕsp(z; τ ) =
n
∑

i=1

κv,i eαiτ − H̀(z)κy,i

z − eαi h

∫ h

0

eαi (h−σ)w̆(z; σ)dσ.

The stability of this transfer function requires canceling all poles

z = eαi h in C \ D, i.e., all poles with Reαi ≥ 0. Standard

interpolation arguments yield then that this is equivalent to the

existence of a rational H̀ ∈ H∞ such that

κv,i eαi τ = H̀(eαi h)κy,i , ∀i such that Reαi ≥ 0. (103)

The solvability of these equations at each i is clearly equivalent

to the conditions that κy,i 6= 0 whenever κv,i 6= 0. These con-

ditions actually say that every unstable pole of Gv(s) is also an

unstable pole of G y(s).

The solvability at each i , however, is not sufficient for the

existence of an H̀ (z) satisfying (103). That is because these

interpolation constraints are not necessarily independent, even

though all αi are different. Indeed, eαi h = e(αi+i2ωNk)h for all

k ∈ Z. Hence, two different continuous-time poles αi and α j

satisfying the condition αi − α j = i2ωNk for some integer k

turn the same lifted pole, say zi j . Therefore, if there are such

poles, we have at least two interpolation constraints,

κv,i eαiτ = H̀(zi j )κy,i and κv, j eα j τ = H̀(zi j )κy, j ,

to be resolved simultaneously at the same point z = zi j and

∀τ ∈ [0, h). This is possible only if κv,i = κv, j = 0.

We thus just proved the following result:

Theorem 21.3. Let the signal generators be as in (100). Then

the error system Ge is stabilizable iff the following two condi-

tions hold for all i such that Reαi ≥ 0 and κv,i 6= 0:

1. κy,i 6= 0,

2. 6 ∃ j such that αi − α j = i2ωNk for some k ∈ Z \ {0}.

Remark 21.4. Theorem 21.3 effectively says that the recon-

struction error is stabilizable under sampled measurements if

and only if it is stabilizable under analog measurements (the

first condition) and the sampling is non-pathological [8] with

respect to all unstable modes of Gv (the second condition). Cu-

riously, there is no problem in having pathological sampling

with respect to unstable modes of Gy that are not unstable

modes of Gv . ▽

A stabilizing H̀ , which is any stable reconstructor satisfying

the interpolation constraints (103), can now be constructed by

standard polynomial interpolation methods, e.g., via solving the

Vandermonde system [13]. We, however, shall not flesh out

this line hereafter. Rather, we pursue state-space techniques,

which are rigorous, suit equally well for both SISO and MIMO

systems, and results in efficient computational algorithms.

22. State-Space Setup and Preliminaries

Bring in a minimal state-space realizations

G(s) =
[

Gv (s)

G y(s)

]

=
[

Cv
Cy

]

(s I − A)−1 B. (104)

Minimality implies that the pair (A, B) is controllable and the

pair (
[ Cv

Cy

]

, A) is observable. The induced realizations of Gv

and G y are not necessarily minimal as (Cv , A) and (Cy, A) need

not be observable.

We implicitly assumed in (104) that G(s) is strictly proper,

i.e., that G(∞) = 0. The reason is twofold: we must have

G y(∞) = 0 to guarantee the stability of the ideal sampler (see

§6.1) and the condition Gv (∞) = 0 is effectively equivalent to

A5 (see Remark 23.2 below). We also assume that

A7: the pair (Cy, eAh ) is detectable in discrete time,

A8: the matrix Cy has full row rank.

Assumption A7 implies that all modes of eAh in C \ D are ob-

servable through Cy . It will be shown in §23.1 that this assump-

tion guarantees the stabilizability of the error system Ge. A8,

which merely rules out redundant measurements, is essentially

a counterpart of A4.

Before we proceed to peeling-off steps, we need to review

some aspects of the state-space theory for lifted systems. This

is the subject matter of the rest of this section (for more details

the reader is referred to [8]).

22.1. Preliminaries: State Space in the Lifted Domain

We start with the state-space realization of G y(s) in (104). As

G is assumed to be causal, the impulse response of Gv in terms

of its state-space realization is

gv(t) = Cv eAt B 1(t).

Consider now the lifting Ğv of Gv . It is an LTI discrete system

with a transfer function Ğv (z), which is an operator L 7→ L for
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almost every z ∈ C. By §4.2, the impulse response kernel of

Ğv(z) is

ğv(z; τ, σ ) =
∑

k∈Z
gv(kh + τ − σ)z−k

= Cv eA(τ−σ)B 1(τ − σ)+
∑

k∈N
Cv eA(kh+τ−σ)Bz−k

= Cv eA(τ−σ)B 1(τ − σ)
+ Cv eAτ (z I − eAh)−1e−Aσ B,

where τ, σ ∈ [0, h). Thus, we can write

Ğv(z) = D̆v + C̀v (z I − Ā)−1 B́, (105)

where (with n denoting the state dimension of G)

Ā : R
n → R

n ξ̄ 7→ eAh ξ̄ , (106a)

B́ : L→ R
n ῠ 7→

∫ h

0

eA(h−σ)Bῠ(σ )dσ, (106b)

C̀v : R
n → L ξ̄ 7→ Cv eAτ ξ̄ , (106c)

D̆v : L→ L ῠ 7→ Cv

∫ τ

0

eA(τ−σ)Bῠ(σ )dσ. (106d)

As we can see, (105) has the form of a discrete state-space re-

alization. The only difference from the “conventional” form

is that the “B ,” “C ,” and “D” parameters of (105) are operators

from or / and to infinite-dimensional space (L), rather than plain

matrices. This difference, however, is not crucial.

Eventually, we shall see that all lifted systems we face in the

development of the solution of RPl either have transfer func-

tions of the form

G̃(z) = D̃ + C̃(z I − Ā)−1 B̃ (107)

or are conjugate of such transfer functions. Here, we use the

tilde accent to indicate that the corresponding operator, say Õ,

might be either Ō or Ó or Ò or Ŏ, see Remark 3.5 for our

notational convention. In all cases we consider, the parameters

of G̃(z) are bounded operators. For example, the lifted transfer

function of Gy is

Ǵ y(z) = C̄y(z I − Ā)−1 B́, (108)

where Ā and B́ are as in (106a) and (106b), respectively, and

C̄y = Cy (just take τ = 0 in (106) and replace Cv with Cy).

Using the definition of the conjugate transfer function from

§5.2, it can be shown that

G̃∼(z) = D̃∗ + B̃∗(z−1 I − Ā′)−1C̃∗. (109)

This implies that we shall need to calculate the adjoints of the

parameters of lifted state-space realizations. This usually can

be done by the use of the very definition of the adjoint operator.

For example, to calculate the adjoint of B́ in (106b), write the

definition 〈B́w̆, ξ̄ 〉Rn = 〈w̆, B́∗ξ̄ 〉L as

ξ̄ ′
∫ h

0

eA(h−σ)w̆(σ )dσ =
∫ h

0

(

eA′(h−σ)ξ̄
)′
w̆(σ )dσ.

This yields

B́∗ : R
n → L ξ̄ 7→ eA′(h−τ )ξ̄ . (110b)

Analogously, it is straightforward to show that

C̀∗v : L→ R
n ῠ 7→

∫ h

0

eAσC ′v ῠ(σ )dσ. (110c)

We shall use these formulae in §§23.2 and 23.3.

Remark 22.1. If Ā is nonsingular, (109) can be rewritten in the

form (107). This can be seen through the equality

(z−1 I − M)−1 = −M−1 − M−1(z I − M−1)−1 M−1.

Yet if Ā is singular, the transfer function in (109) is not proper

and therefore has no presentation in form (107). As we cannot

rule out singular Ā, we prefer to use (109) for conjugates. ▽

Note that the “A” part in (107) is always finite dimensional.

This is a fundamental property of lifted state-space realizations

associated with finite-dimensional analog systems. It plays an

important role in our developments. The first consequence of

this fact is that the stability of (operator-valued) transfer func-

tion (107) can be verified in terms of eigenvalues of a matrix,

exactly like in the case of matrix-valued transfer functions. We

have:

Proposition 22.2. Let G̃(z) be as in (107). Then G̃ ∈ H∞ if

Ā is Schur (i.e., with all eigenvalues in D).

Proof. If Ā is Schur, z I − Ā is invertible for all z ∈ C \ D.

Hence, G̃(z) is analytic and bounded in C \D.

Remark 22.3. The result of Proposition 22.2 can be strength-

ened to the “iff” statement if certain minimality assumption is

made about the realization of (107). We, however need only the

“if” part for our developments. ▽

Like in the matrix-valued case, the impulse response of a

stable causal system having the transfer function (107) is

G̃[k] =








0 if k < 0

D̃ if k = 0

C̃ Āk−1 B̃ otherwise

Using this formula, the following results can be proved:

Proposition 22.4. Let G̃(z) given by (107) be the transfer

function of a causal system and let Ā ∈ Rn×n be Schur. Then

G̃ ∈ L2 iff D̃ is a Hilbert-Schmidt operator and in this case

‖G̃‖22 = 1
h
‖D̃‖2HS + 1

h
tr(C̃∗C̃Wc) (111a)

= 1
h
‖D̃‖2HS + 1

h
tr(Wo B̃ B̃∗), (111b)

where Wc,Wo ∈ R
n×n , verifying the Lyapunov equations

Wc = ĀWc Ā′ + B̃ B̃∗ and Wo = Ā′Wo Ā + C̃∗C̃,

are the controllability and observability Gramians of (107), re-

spectively.
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Proof. Because (eiθ I − Ā)−1 ∈ Cn×n is bounded at each

θ ∈ [−π, π], G̃(eiθ ) is a bounded finite-rank perturbation of

D̃ for all possible i/o spaces. This proves the first statement. To

calculate the norm, we use (32):

h‖G̃‖22 = ‖D̃‖2HS +
∑

i∈N
‖C̃ Ā i−1 B̃‖2HS

= ‖D̃‖2HS +
∑

i∈N
tr(C̃ Ā i−1 B̃ B́∗( Ā′)i−1C̃∗)

= ‖D̆‖2HS + tr
(

C̃∗C̃
∑

i∈N
Ã i−1 B̃ B̃∗( Ã′)i−1

)

= ‖D̆‖2HS + tr
(∑

i∈N
( Ã′)i−1C̃∗C̃ Ã i−1 · B̃ B̃∗

)

.

The result follows by the fact that the last two sums equal Wc

and Wo, respectively.

It is readily seen that both B̃ B̃∗ and C̃∗C̃ are n× n matrices,

so that the second terms in the right-hand sides of (111) are the

plain matrix traces. As we shall see in §23.3 (Lemma 23.1),

the evaluation of the Hilbert-Smith norm of D̃ also reduces to a

matrix trace calculation.

23. Peeling-Off

We are now in the position to start the peeling-off procedure for

the lifted solution of Section 20. Although this procedure is an

important step of our development, it is quite technical and te-

dious. As the final results are rather transparent, we separate the

development steps from the final results and a reader, only in-

terested in the final formulae, may skip this section and proceed

directly to Section 24, which is self contained.

23.1. Constructing Coprime Factors

Define Ā1 := eAh + LCy for some L such that Ā1 is Schur

(exists by A7) and consider the transfer function

M̄y(z) = 4(I + Cy(z I − Ā1)
−1 L) ∈ H∞, (112a)

where 4 is any square nonsingular matrix. It can be verified

that in this case M̄y(z)Cy(z I − eAh)−1 = 4Cy(z I − Ā1)
−1, so

Ńy(z) := M̄y(z)Ǵ y(z) = 4Cy(z I − Ā1)
−1 B́ ∈ H∞, (112b)

where B́ is defined by (106b). By construction, Ǵ y = M̄−1
y Ńy .

Moreover, as shown in Lemma C.1, these factors are coprime

in H∞. Thus, for any stabilizing L and nonsingular 4, (112)

define coprime factors of Ǵ y .

As a candidate for M̀v consider then the transfer function

M̀v (z) = z C̀v e−Ah(z I − Ā1)
−1L ∈ H∞, (113)

where C̀v is as in (106c). In this case

C̀v(z I − eAh)−1 + M̀v (z)Cy(z I − eAh)−1

= C̀v e−Ah Ā1(z I − Ā1)
−1,

so that N̆v := Ğv + M̀v Ǵ y verifies

N̆v (z) = D̆v + C̀v e−Ah Ā1(z I − Ā1)
−1 B́ (114)

and is indeed stable (belongs to H∞).

Thus, the construction of a coprime factorization of Ğ as

in (87) amounts to the choice of L such that eAh + LCy is

Schur. The factors are then explicitly given by (112)–(114).

This proves, by construction, that A7 guarantees the stabiliz-

ability of Ge. The freedom we have in the choice of L and 4

will be used to supplement the factors by property (93).

23.2. Normalization

For Ńy defined by (112b),

Ń∼
y (z) = B́∗(z−1 I − Ā′1)

−1C ′y4
′, (115)

where B́∗ is given in (110b). It is readily seen that

B́ B́∗ =
∫ h

0

eAτ B B ′eA′τdτ =: Ŵw(h) > 0

(the positive definiteness of Ŵw for all h > 0 follows from the

controllability of (A, B)). Hence, 8̄y from (90) reads

8̄y(z) = 4Cy(z I − Ā1)
−1Ŵw(h)(z

−1 I − Ā′1)
−1C ′y4

′.

The non-singularity of Ŵw , eiθ I − Ā1 ( Ā1 is Schur), and 4

yields then that A8 imposes A4.

Now, as Ā1 is Schur and Ŵw > 0, the Lyapunov equation

Y = Ā1Y Ā′1 + Ŵw(h) (116)

is solvable by Y > 0 for every stabilizing L. Substituting

Ŵw(h) = Y − Ā1Y Ā′1 = z−1(z I − Ā1)Y + Ā1Y (z−1 I − Ā′1)

into the expression for 8̄y above, we have:

8̄y(z) = 4Cy

(

Y (I − z Ā′1)
−1 + (z I − Ā1)

−1 Ā1Y
)

C ′y4
′

= 4CyY C ′y4
′ + 8̄c(z)+ 8̄∼

c (z),

where 8̄c(z) := 4Cy(z I − Ā1)
−1 Ā1Y C ′y4

′ ∈ z−1 H∞.

We first aim at rendering 8̄y static. This can be guaranteed

if the equation

0 = Ā1Y C ′y = (eAh + LCy)Y C ′y (117)

is solvable in stabilizing L. As any such L yields Y > 0 and

by A8, the matrix CyY C ′y is nonsingular and (117) is always

solvable by

L = −eAhY C ′y(CyY C ′y)
−1 (118)

Substituting this gain into (116), we end up with the following

equation for Y :

Y = eAhY eA′h − eAh Y Cy(CyY C ′y)
−1C ′yY eA′h + Ŵw(h).

(119)
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This is a standard discrete algebraic Riccati equation (DARE)

[24, 14]. A7 and the non-singularity of Ŵw (which, together

with A8, implies that

[

eAh − eiθ I Ŵ
1/2
w (h)

Cy 0

]

is right invertible for all θ ∈ [−π, π]) guarantee that this DARE

admits a stabilizing solution Y ≥ 0 such that Ā1 is Schur and

CyY C ′y is nonsingular (in fact, Y > 0).

Thus, by solving the DARE (119) we obtain a static 8̄y(z).

To render Ńy co-inner, we can choose 4 as any square matrix

satisfying

4′4 = (CyY C ′y)
−1 (120)

(e.g., 4′ may be the Cholesky factor of (CyY C ′y)
−1), in which

case 8̄y(z) = I , as required.

It is time to check the other condition in (93), which involves

the product N̆v Ń∼
y . To this end, use (114) and (115) to obtain:

N̆v Ń∼
y = D̆v B́∗(z−1 I − Ā′1)

−1C ′y4
′

+ C̀v e−Ah Ā1(z I − Ā1)
−1Ŵw(h)(z

−1 I − Ā′1)
−1C ′y4

′.

Using the relation (it follows from (116))

Ŵw(h) = (z I − Ā1)Y Ā′1 + zY (z−1 I − Ā′1),

and then (117), we have:

Ā1(z I − Ā1)
−1Ŵw(h)(z

−1 I − Ā′1)
−1C ′y

= Ā1Y Ā′1(z
−1 I − Ā′1)

−1C ′y + z(z I − Ā1)
−1 Ā1Y C ′y

= Ā1Y Ā′1(z
−1 I − Ā′1)

−1C ′y .

Thus, denoting

C̀V := D̆v B́∗ + C̀v e−Ah Ā1Y Ā′1,

we end up with

V́ ∼(z) = C̀V (z
−1 I − A′1)

−1C ′y4
′, (121)

which is indeed the conjugate of a z−1 H∞ system. Thus, the

(unique) choices of L and 4 according to (118) and (120), re-

spectively, where Y is the stabilizing solution of (119), renders

the factors in (112)–(114) satisfying (93) and thus suitable for

the application of the procedure of §20.4.

We conclude this section with spelling out C̀V and its adjoint.

Using (106d), (110b), (106c), and then (116), we obtain:

C̀V ξ̄ = Cv

(∫ τ

0

eA(τ−σ)B B ′eA′(h−σ)dσ + eA(τ−h) Ā1Y Ā′1

)

ξ̄

= Cv eA(τ−h)(Y − Ŵw(h − τ ))ξ̄ . (122)

The adjoint of this operator, C̀∗V : L→ Rnv , transforms

ῠ 7→
∫ h

0

(Y − Ŵw(h − τ ))eA′(τ−h)C ′v ῠ(τ )dτ, (123)

which can be verified by the direct use of the definition.

23.3. Projection

First, we establish that A5 does hold in our case and quantify

the norm of N̆v . To this end, define

Ŵv :=
∫ h

0

e−A′τC ′vCv e−Aτ dτ, (124a)

Ŵvw :=
∫ h

0

∫ τ

0

B ′eA′σC ′vCv eAσ Bdσdτ. (124b)

Then the following result can be formulated:

Lemma 23.1. N̆v ∈ L2 and ‖N̆v‖22 =
1
h

tr(Ŵvw)+ 1
h

tr(Ŵv (Y −
Ŵw(h))).

Proof. It is known [55, Thrm. 8.8] that D̆v defined by (106d)

is a Hilbert-Schmidt operator. Then the first statement follows

by Proposition 22.4.

To compute the norm, we use (111a). First, it is a known fact

[8, Example 12.2.2] that ‖D̆v‖2HS = tr(Ŵvw). Now, it follows

from (116) and the fact that B́ B́∗ = Ŵw(h) that Y is actually

the controllability Gramian of the realization (114) of N̆v . Thus,

the second term in the right-hand side of (111a) is

tr( Ā′1e−A′h C̀∗v C̀v e−Ah Ā1Y ) = tr(e−A′hC̀∗v C̀v e−Ah Ā1Y Ā′1).

The result then follows by the facts that e−A′hC̀∗v C̀v e−Ah = Ŵv
(just combine (110c) and (106c)) and Ā1Y Ā′1 = Y − Ŵw(h)
(see (116)).

Remark 23.2. The strict properness of Gv (s) in (104) is nec-

essary for establishing that N̆v ∈ L2. Indeed, if Gv (s) =
Dv +Cv(s I − A)−1 B for some Dv 6= 0, the only change in N̆v
is its feedthrough D̆v term, which in this case would transform

ῠ 7→ Dvυ(τ)+ Cv
∫ τ

0 eA(τ−σ)Bῠ(σ )dσ . This D̆v is not com-

pact and thus not a Hilbert-Schmidt operator [55, Thrm. 8.7].

▽

Now, consider V́ ∼(z) from (121). Because Ā1 is Schur, the

power series expansion V́ ∼(z) =
∑

i∈N C̀V Ā′i−1C ′y4
′ zi is well

defined, where, with some abuse of notation, Āi := Āi
1. The

coefficients of zi are the impulse response of V́ ∼ at the time

instance−i . By (95), the optimal Q̀, denoted by Q̀l , is then the

(FIR) truncation of this series to its first l terms:

Q̀l(z) = C̀V

l
∑

i=1

Ā′i−1C ′y4
′ zi . (125)

Denote

Q̀l,tail(z) := z−l
(

V́ ∼(z)− Q̀l(z)
)

= C̀V

∑

i∈N
Ā′i+l−1C ′y4

′ zi

= C̀V Ā′l (z
−1 I − Ā′1)

−1C ′y4
′, (126)

which is clearly orthogonal to Q̀l in L2. We thus may also write

Q̀l = V́ ∼ − Q̀l,tail, which is a useful form to carry out state-

space calculations involving Q̀l .

Our next step is to calculate the L2-norm of Q̀l . To this end,

let X be the solution of the following Lyapunov equation:

X = Ā′1 X Ā1 + C ′y(CyY C ′y)
−1Cy . (127)
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Define also the matrix

ŴV :=
∫ h

0

(Y−Ŵw(τ ))e−A′τC ′vCv e−Aτ (Y−Ŵw(τ ))dτ. (128)

Then we formulate the following result:

Lemma 23.3. ‖Q̀l‖22 =
1
h

tr((X − Ā′l X Āl)ŴV ).

Proof. Because Q̀l and Q̀l,tail are orthogonal, the conjugate op-

eration does not change the L2 norm, and z−l is inner,

‖Q̀l‖22 = ‖V́ ‖22 − ‖z−l Q̀∼
l,tail‖22 = ‖V́ ‖22 − ‖Q̀∼

l,tail‖22.

The first term in the right-hand side above is the norm of the

lifted state-space realization V́ = 4Cy(z I − Ā1)
−1C̀∗V and we

may use (111b) to calculate it. It is readily seen that the observ-

ability Gramian of V́ is X (remember (120)) and that C̀∗V C̀V =
ŴV . Thus, ‖V́ ‖22 = 1

h
tr(XŴV ). The second term is the norm

of Q̀∼
l,tail = 4Cy(z I − Ā1)

−1 ĀlC̀
∗
V , so we again use (111b)

to obtain that ‖Q̀∼
l,tail‖22 = 1

h
tr(X ĀlŴV Ā′l) = 1

h
tr( Ā′l X ĀlŴV ).

This completes the proof.

23.4. Optimal Reconstructors

The last step in peeling-off the lifted solution of Section 20 is

the expression for the optimal reconstructor, which amounts to

combining (88a) with (125).

23.4.1. Fixed-interval (l = ∞) reconstructor

We start with the noncausal reconstructor, i.e., with the solution

of RP∞. In this case, Q̀∞ = V́ ∼ and then

Q̀∞M̄y = C̀V (z
−1 I − Ā′1)

−1C ′y(CyY C ′y)
−1

+ C̀V (z
−1 I − Ā′1)

−1C ′y(CyY C ′y)
−1Cy(z I − Ā1)

−1 L .

Using the relation (follows from (127))

C ′y(CyY C ′y)
−1Cy = Ā′1 X (z I − Ā1)+ z(z−1 I − Ā′1)X,

we can split Q̀∞M̄y into the sum of causal and anti-causal com-

ponents:

Q̀∞M̄y = zC̀V X (z I− Ā1)
−1L+C̀V (z

−1 I− Ā′1)
−1 BH , (129)

where BH := (I − Ā′1 X eAhY )C ′y(CyY C ′y)
−1. By adding the

causal solution,−M̀v , to this expression, we end up with

H̀∞(z) = H̀c(z)+ H̀c̄(z), (130)

where the causal part is

H̀c(z) = z(C̀V X − C̀v e−Ah )(z I − Ā1)
−1 L

and the anti-causal part is

H̀c̄(z) = C̀V (z
−1 I − Ā′1)

−1 BH .

It is convenient to implement both parts of the optimal solu-

tion as the cascade of the discrete filters

F̄c(z) = −z(z I − Ā1)
−1 L, F̄c̄(z) = (z−1 I − Ā′1)

−1 BH ,

and generalized holds with the hold functions Hc and Hc̄

φc(t) = Cv eA(t−h)(I − Y X + Ŵw(h − t)X)1[0,h](t),

φc̄(t) = Cv eA(t−h)(Y − Ŵw(h − t))1[0,h](t),

respectively, where we used (106c) and (122) to obtain two latter

formulae. It is worth emphasizing that the generalized hold

functions above are (non-square) nv × n matrices at each t .

23.4.2. Fixed-lag (finite l) reconstructor

Taking into account the equality Q̀l = Q̀∞ − zl Q̀l,tail, we can

calculate the optimal reconstructor as

H̀l(z) = H̀∞(z)− zl Q̀l,tail(z)M̄y(z).

By splitting Q̀l,tail M̄y into causal and anti-causal parts (which

can be done by the very same arguments as those we used in

splitting Q̀∞M̄y in §23.4.1) and a straightforward algebra we

can then end up with the following optimal reconstructor:

H̀l(z) = H̀c(z)+ H̀c̄,l(z)+ H̀corr(z), (131)

where H̀c is exactly as in (130), FIR

H̀c̄,l(z) := C̀V

l
∑

i=1

Ā′i−1 BH zi = zlC̀V

l−1
∑

i=0

Ā′l−1−i BH z−i

is the truncation of the impulse response of H̀c̄ to [−l,−1] and

H̀corr(z) := −zl+1C̀V Ā′l X (z I − Ā1)
−1 L = zl C̀V Ā′l X F̄c(z).

Clearly, both H̀c̄,l and H̀corr are zl H∞ transfer functions, so the

whole H̀l ∈ zl H∞ too.

24. Main Results

We are now in the position to formulate the main result of this

part. To make this section self contained, we refresh some of

the notation introduced in the course of the peeling-off steps of

Section 23.

Aiming at triming the nomenclature, introduce the following

matrix function of a real argument t:

6(t) =
[

611(t) 612(t)

0 622(t)

]

:= exp

([

A B B ′

0 −A′

]

t

)

. (132)

We skip the argument when t = h, so that we write 6i j instead

of 6i j (h). Since 611(t) = eAt and 612(t) = Ŵw(t)e
−A′ t [8,

Lemma 10.5.1], the components of 6(t) include several matrix

exponentials, which we faced in previous sections. We shall

also need the matrix 1 defined via

[

6 1

0 6

]

:= exp













A B B ′ 0 0

0 −A′ C ′vCv 0

0 0 A B B ′

0 0 0 −A′







h






, (133)
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with the natural partitioning to four sub-blocks1i j .

Now, define the discrete algebraic Riccati equation (DARE)

Y = 611

(

Y − Y C ′y(CyY C ′y)
−1CyY

)

6′11 +6126
′
11, (134)

which actually equals (119). A solution Y to this equation is

said to be stabilizing if CyY C ′y is nonsingular and

Ā1 := 611(I − Y C ′y(CyY C ′y)
−1Cy) (135)

is Schur (i.e., having all its eigenvalues in D), see [24] for de-

tails. The stabilizing solution, if exists, is unique and verifies

Y = Y ′ ≥ 0. In this case, the discrete Lyapunov equation

X = Ā′1 X Ā1 + C ′y(CyY C ′y)
−1Cy (136)

is always solvable by an X = X ′ ≥ 0 (because Ā1 is Schur).

The main result of this part can now be formulated:

Theorem 24.1. Let the signal generatorG be given by the min-

imal realization (104) and assumptions A7,8 hold. Then the er-

ror system Ge is stabilizable, A4,5 hold, and DARE (134) ad-

mits a stabilizing solution Y > 0. The unique solution of RPl

is then as shown in Fig. 21, where the discrete filters are

F̄c(z) = z(z I − Ā1)
−1611Y C ′y(CyY C ′y)

−1,

F̄c̄,l(z) =
l−1
∑

i=0

Ā′l−1−i (I − Ā′1 X611Y )C ′y(CyY C ′y)
−1 zl−i

(here Āk stands for Āk
1), and Hc and Hc̄ are hold devices with

the (nv × n)-valued hold functions

φc(τ ) =
[

Cv 0
]

6(τ − h)
[

I−Y X
−X

]

1[0,h],

φc̄(τ ) =
[

Cv 0
]

6(τ − h)
[

Y
I

]

1[0,h],

respectively. The optimal performance is then calculated as

Jl := ‖Ge‖22 = 1
h

tr
([

X l I − X lY
]

16−1
[

Y
I

])

,

where X l := X − Ā′l X Āl =
∑l−1

i=0 Ā′i C
′
y(CyY C ′y)

−1Cy Āi .

Proof. We only need to proof the equivalence of the formu-

lae above and the corresponding expressions obtained in Sec-

tion 23. This is a matter of standard manipulations over matrix

exponentials, see Appendix C for details.

Some remarks are in order:

u

ūc

ū c̄

ȳ

u c̄

uc
Hc

Hc̄

zl Ā′l X

F̄c(z)

F̄c̄,l(z)

Figure 21: The optimal l-causal reconstructor Hl

Remark 24.2 (Structure of Hl ). The optimal reconstructor in

Fig. 21 can be viewed as the parallel interconnection:

Hl = Hl,c +Hl,c̄ +Hl,corr.

The IIR causal part, Hl,c, corresponds to the signal-flow chan-

nel ȳ → ūc → uc and has the impulse response

φl,c(kh + τ ) = φc(τ ) Āk611Y C ′y(CyY C ′y)
−1

for all k ∈ Z
+
0 and τ ∈ [0, h). The FIR anti-causal part, Hl,c̄,

corresponds to the signal-flow channel ȳ → ū c̄ → u c̄ and has

the impulse response

φl,c̄(kh + τ ) = φc̄(τ ) Ā
′
−k−1(I − Ā′1 X611Y )C ′y(CyY C ′y)

−1

for all k ∈ Z
+
−l \ Z

+
0 and τ ∈ [0, h). The IIR correction term,

Hl,corr, corresponds to the signal-flow channel ȳ → ūc → u c̄

and has the impulse response

φl,corr(kh + τ ) = φc̄(τ ) Ā
′
l X Āl+k611Y C ′y(CyY C ′y)

−1

for all k ∈ Z
+
−l and τ ∈ [0, h).

One can see that the causal term does not depend on l at all

and the anti-causal term depends on l only in the length of its

support window. In fact, these two terms together are the trun-

cation of the impulse response of the noncausal reconstructor

H∞ to Z
+
−l . The correction term is what discriminates our so-

lution from those available in the literature, e.g., in [45, 36]. As

l →∞, this term vanishes and we recover the noncausal solu-

tion of Part II. If l = 0, the second term vanishes and the first

and the last terms add up into the hybrid Kalman filter with the

impulse response

φ0(kh + τ ) = Cv611(τ )6
−1
11 Āk611Y C ′y(CyY C ′y)

−1,

defined in k ∈ Z
+
0 . ▽

Remark 24.3 (Implementation). The discrete IIR part of the

causal and correction terms, F̄c, can be efficiently implemented

using the state propagation. Indeed, it is readily seen that

ūc[k] = Ā1ūc[k − 1]+611Y C ′y(CyY C ′y)
−1 ȳ[k], (137)

which is actually the Kalman filter for the sampled state of G.

The output at each discrete instance kh is then multiplied by

the fixed functions—φc(τ ) and φc̄(τ ) Ā
′
l X—to produce the in-

tersample response. Equation (137) can be further simplified

by noticing that Ā1 is always singular, which can be seen from

(117). Moreover, it follows from (135) and the nonsingularity

of 611 that exactly ny eigenvalues of Ā1 are at the origin (here

ny stands for the dimension of y). Hence, an (n − ny)-order

realization of F̄c can be constructed. ▽

Remark 24.4 (Optimal performance). The optimal achievable

performance level, Jl , can be rewritten in two equivalent forms:

Jl = J0 − Jl,impr = J∞ + Jl,deter,

where J0 and J∞ are the optimal performance levels of RP0

and RP∞, respectively,

Jl,impr := 1
h

tr
(

(X − Ā′l X Āl)
[

I −Y
]

16−1
[

Y
I

])
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is the improvement with respect to the preview-free case due to

the preview of length l, and

Jl,deter := 1
h

tr
(

Ā′l X Āl

[

I −Y
]

16−1
[

Y
I

])

is the deterioration with respect to the noncausal case due to

imposing l-causality constraints. The quantities Jl,impr and

Jl,deter may be useful in choosing the smoothing lag l. ▽

24.1. When Gv = G y

In terms of the state-space data (104), this corresponds to the

case when Cv = Cy . We are concerned with the behavior of

the optimal hold function, φl(t), especially at the sampling in-

stances. The following result can be formulated:

Proposition 24.5. Let Cv = Cy and l ∈ N. Then the impulse

response of the optimal reconstructor φl(t) is continuous and

such that φl(kh) = δ̄[k] (Kronecker delta).

Proof. Because φc and φc̄ are continuous, we only need to

consider the continuity of φl(t) at t = kh, i.e., show that

φl(kh−) = φl(kh). We shall show this for each one of the

three components of φl described in Remark 24.2. To this end,

note that

6−1 =
[

6−1
11 −6−1

11 6126
′
11

0 6′11

]

(remember, 6−1
22 = 6′11). Using this formula and also (134),

(135) and (117), we have:

φc(0) = Cy6
−1
11 (I − (Y − 6126

′
11)X)

= Cy6
−1
11 (I −611Y Ā′1 X) = Cy6

−1
11 .

Thus, φc(0) Ā1 = Cy(I − Y C ′y(CyY C ′y)
−1Cy) = 0, so that

φl,c(kh) =
{

I if k = 0

0 otherwise
.

Now, using (136) and then (117),

φc(h) = Cy(I − Y X)

= Cy(I − Y ( Ā′1 X Ā1 + C ′y(CyY C ′y)
−1Cy))

= CyY Ā′1 X Ā1 = 0,

so that φl,c(kh−) = 0 for all k ∈ N. Next,

φc̄(0) = Cy6
−1
11 (Y −6126

′
11) = CyY Ā′1 = 0,

from which φl,c̄(kh) = φl,corr(kh) = 0. Finally,

φc̄(h) Ā
′
1 = CyY Ā′1 = 0

and we have

φl,c̄(kh−) =
{

I if k = −1

0 otherwise

and φl,corr(kh−) = 0 for all k ∈ Z
+
1−l .

As a matter of fact, the proof of continuity fails if l = 0.

In this case φl,corr(kh−) 6= 0 as there is no Ā′l between φc̄(h)

and X . Note also that the second statement of Proposition 24.5

reproves the consistency of the optimal reconstruction, the fact

we already proved in §21.1 by different arguments.

25. Examples

To illustrate the proposed solution, we consider two simple aca-

demic, albeit quite informative, examples. In both cases the

simplicity of the problems enables us to solve them analytically.

25.1. Gv(s) = G y(s) = 1
s2 (causal cubic splines)

This choice of the signal generator might be suitable for a low-

pass dominant signal. The presence of unstable poles at the

origin might be thought of as the reflection of the zero steady-

state error for step and ramp components of v. This problem

can also be viewed as reconstructing the position of a rigid body

from its sampled measurement assuming that the acceleration is

white process.

Bring in a possible state-space realization:

G(s) =
[

1 0

1 0

](

s I −
[

0 1/h

0 0

])−1 [
0

h

]

.

Obviously, A8 holds. As eAh =
[

1 1
0 1

]

, the observability matrix

of (Cy, eAh) is
[

1 0
1 1

]

, which is nonsingular. Hence, A7 holds

too and the problem is solvable.

Denoting

α :=
√

3− 2 ≈ −0.2679, (138)

the formulae of Theorem 24.1 yield the discrete filters

F̄c(z) =
[

4−
√

3

3−
√

3

]

+
[

1

1

]
6α

z − α ,

F̄c̄(z) =
6 z

h3

([

3
√

3− 3

−
√

3

] l−1
∑

i=1

(αz)l−i +
[

4− 3
√

3

1−
√

3

])

,

the “correction” gain (if l ≥ 1)

Ā′l X = αl

h3

[

6
√

3 3− 3
√

3

−3− 3
√

3
√

3

]

,

and the hold functions

φc(τ̃ ) =
1− τ̃√
3+ 1

[

−2τ̃ 2 + τ̃ +
√

3+ 1

τ̃ 2 +
√

3−1
2 τ̃ −

√
3− 1

]′

1[0,h],

φc̄(τ̃ ) =
h3τ̃

6

[

−τ̃ 2 + 3τ̃ +
√

3 3τ̃ +
√

3
]

1[0,h],

where τ̃ := τ/h is the normalized intersample time. Note that

F̄c(z) is a first-order transfer function, which agrees with the

discussion at the end of Remark 24.3.

Now, combining discrete filters with corresponding holds, we

end up with the impulse response of the optimal reconstructor

of the form φl(t) = φ∞(t)+φl,corr(t), where φ∞ is the impulse

response of the optimal noncausal reconstructor:

φ∞((k + τ̃ )h) =











φ1(1− τ̃ ) α−k−1 if −l ≤ k ≤ −2

φ0(1− τ̃ ) if k = −1

φ0(τ̃ ) if k = 0

φ1(τ̃ ) α
k if k ≥ 1
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and φl,corr is the impulse response of the correction term:

φl,corr((k + τ̃ )h) =
{

−φ1(1− τ̃ ) 3−
√

3
3

αl−1 if k = −l

−φ1(1− τ̃ ) α2l+k−1 if k ≥ 1− l

where

φ0(τ̃ ) := (1− τ̃ )(1+ τ̃ − (3
√

3− 4)τ̃ 2),

φ1(τ̃ ) := 3τ̃ (1− τ̃ )(1− (
√

3− 1)τ̃ ).

The resulting impulse responses φl(t) of the optimal reconstruc-

tor Hl for l = 1 and l = 2 are shown in Fig. 22. As l in-

−h h

1 φl (t)

(a) l = 1

−h h

1 φl (t)

(b) l = 2

Figure 22: Causal cardinal cubic splines with preview l

creases, the correction term vanishes, so φ3(t) is then barely

distinguishable from the truncated noncausal solution φ∞(t),
which is shown in gray dashed lines in Fig. 22. For small l,

however, φl,corr is important.

Remark 25.1. We already saw in Part II Thm. 10.5 that φ∞
is the standard cardinal cubic spline [45]. We may therefore

regard φl , which minimizes the very same criterion, as a causal

cardinal cubic spline. This extention is not unique though. For

example, φ∞ is optimal for the L∞ criterion as well. Yet when

causality constraints are imposed, the L2 and L∞ solutions no

longer coincide. Hence, we may expect that the L∞ criterion

will produce different causal splines. ▽

Remark 25.2. Unlike earlier efforts in producing causal ver-

sion of cardinal cubic splines, see [36] and the references

therein, the rationale behind our solution is not the truncation

of a anti-causal part of the noncausal spline, but rather the min-

imization of the same (analog) performance index under the

causality constraint. This can be regarded as an implicit ap-

proach to the design of causal splines. As a result, however,

our solution does not maintain the smoothness properties of the

noncausal solution φ∞, which is a C2 function. Our solution

φl is only a C0 function, it is not differentiable at the knots

t = kh due to the correction term φl,corr. This is clearly seen in

Fig. 22(a). ▽

The optimal performance

Jl =
10
√

3− 3− 11(3+ 2
√

3) α2l

2520
h3

is proportional to h3. As l increases, Jl decreases exponentially

to J∞. The following table gives some indications about the

decay rate:

l 0 1 2 3

Jl/J∞ 5.9653 1.3565 1.0256 1.0018

As we can see, one step preview makes a big difference with

respect to the causal reconstruction: it reduces the achievable

performance level from ≈ 500% of J∞ to ≈ 36% of it. With

three steps preview we are already within 2 per mill of J∞.

Comparisons

Following [36], consider the problem of reconstructing the ban-

dlimited triangle wave (see Fig. 23(a))

v(t) =
4
∑

i=1

8(−1)i−1

(2i − 1)2π2
sin

(
2π(2i − 1)

16h
t

)

(139)

from its samples ȳ[k] = v(kh). Our aim here is to compare the

reconstruction of his signal by the causal splines φl with that

by the noncausal cubic splines φ∞ and by the causal splines

proposed by in [36]. The last three plots in Fig. 23 present

v(t)

t4h

12h

1

−0.788

−1

(a) Signal to be reconstructed, (139)

e
(t
)
×

1
0

2

t4h

12h

−0.788

−3.33

(b) Reconstruction error for l = 1 (Pu∞−u1 = 5.5428 × 10−5)

e
(t
)
×

1
0

2

t4h

12h

−0.788

−1.56

(c) Reconstruction error for l = 2 (Pu∞−u2 = 3.9795 × 10−6)

e
(t
)
×

1
0

2

t4h

12h

−0.788
−0.95

(d) Reconstruction error for l = 3 (Pu∞−u3 = 2.8572 × 10−7)

Figure 23: Reconstructing a bandlimited triangle wave

steady-state (stationary) reconstruction errors e(t) over one pe-

riod of 16h for three different smoothing lags l (1, 2, 3) together
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with the noncausal case (dashed gray lines)8. Consistency in all

cases shows up through the zero error at the sampling instances

t = kh. One can see that the error in noncausal reconstruc-

tion is symmetric around the points 4h and 12h, which are the

points where v(t) abruptly changes its direction (in between, v

is close to the ramp, for which the reconstructions are optimal).

The symmetry is not maintained in causal solutions. This is

especially visible in the case of l = 1, where the preview avail-

able to the reconstructor is too short to anticipate this direction

change.

To quantify the deviation from the reconstruction with the

noncausal splines, we use the power Pu∞−ul of the difference

between u∞(t) and ul(t), which are the signals reconstructed

by the noncausal and l-causal splines, respectively (by the sig-

nal power we understand Pξ := limT→∞ 1
T

∫ T/2
−T/2 ξ

2(t)dt). Re-

markably, each additional preview step reduces this quantity by

the very same factor: 1/α2 = 7+ 4
√

3 ≈ 13.93.

The case of l = 3 (Fig. 23(d)) corresponds to the setup

studied by Petrinović, so we may compare our reconstructor

(causal spline) with those proposed in [36]. We consider the

C-cascade splines proposed there, which produced the best re-

construction for this v(t) over all other causal splines consid-

ered in [36]. It is readily seen from Fig. 23(d) that our recon-

struction virtually coincides with that obtained by the noncausal

spline in every interval but in (h, 2h) and (9h, 10h). Recon-

struction errors with the causal splines proposed by Petrinović

are visibly different from the noncausal case in every interval,

see [36, Fig. 6]. This impression is confirmed quantitatively:

Pu∞−uC-cas = 2.1322× 10−6 is larger than Pu∞−u3 almost by a

factor of 7.5. The peak value of the analog error in our case,

0.0095, is also some 5% smaller than that attainable by the

causal C-cascade splines.

Another option for comparing causal cubic splines is via the

power of the deviation from the noncausal reconstruction of a

single harmonic v(t) = sin(ω(t+θ)), averaged over θ ∈ [0, h].

Fig. 24 presents the ratio between such powers for our recon-

P
u
∞
−

u
3

P
u
∞
−

u
C

-
c
a
s

,
d
B

ω

ωn/4 3ωn/4ωn/2 ωn

−12.19

−20.94

Figure 24: Comparison with C-cascade cubic splines of

[36] for l = 3

structor and for the causal C-cascade cubic spline of [36] as a

function of the frequency ω. This plot shows that φl is, in a

sense, a better approximation of φ∞ up to about three quarters

of the Nyquist frequency ωN, after which the causal C-cascade

8The plots in Figs. 23(b) and 23(c) are clipped above 0.01. The clipped

parts can be easily recovered because the second halves of these curves

are merely the glide reflections of their first halves.

splines become a more accurate imitation of φ∞. In the fre-

quency range (3ωN/4, ωN), however, the reconstruction is rather

inaccurate. The peak value of the reconstruction error there is

at least 25% of the input magnitude. This might question the

suitability of the cubic splines for reconstructing such rapid sig-

nals.

It is also possible to analyze directly the reconstruction er-

rors, v − ul and v − uC-cas, to compare causal splines. In our

case this would produce a wider high-frequency area, where the

the causal C-cascade splines yield more accurate reconstruc-

tion. Such a comparison, however, might be confusing as there

is quite wide frequency band, where causal splines produce bet-

ter reconstruction than φ∞.

25.2. Gv(s) = 1
s

and G y(s) = 1
s2

This problem can be viewed as reconstructing the velocity of a

rigid body from sampled measurement of the position assum-

ing, like in the previous example, that the acceleration is white

process. In this case we may choose

G(s) =
[

0 1/h

1 0

](

s I −
[

0 1/h

0 0

])−1 [
0

h

]

so that the only difference from the first example is the Cv pa-

rameter. This, in turn, implies that only φc and φc̄ change com-

paring with the previous example (the other components do not

depend on Cv ). We have:

φc(τ̃ ) =
1

(
√

3+ 1)h

[

6τ̃ 2 − 6τ̃ −
√

3

−3τ̃ 2 + (3−
√

3)τ̃ + 3
√

3+1
2

]′

1[0,h],

φc̄(τ̃ ) =
h2

6

[

−3τ̃ 2 + 6τ̃ +
√

3 6τ̃ +
√

3
]

1[0,h],

with τ̃ := τ/h, as in §25.1.

The impulse response of the optimal reconstructor is again of

the form φl(t) = φ∞(t)+φl,corr(t), for the same φ∞ and φl,corr

as in the previous example, modulo the substitutions

φ0(τ̃ )→ d
dτ φ0(τ̃ ) = 3

h
τ̃ (2− 2

√
3+ (3

√
3− 4)τ̃ ),

φ1(τ̃ )→ d
dτ
φ1(τ̃ ) = 3

h
(1− 2

√
3τ̃ + 3(

√
3− 1)τ̃ 2)

(and then φi (1 − τ̃ ) → − d
dτ
φi (1 − τ̃ ), i = 0, 1), so that this

φl is the derivative of the impulse response of the causal cubic

splines in the previous example. This, actually, implies that the

optimal reconstruction in this case is consistent. Indeed, inte-

grating and then sampling this impulse response (this is exactly

our measurement system) will produce the Kroneker delta. The

impulse response plots for the cases of l = 1 and l = 2 are

presented in Fig. 25. These impulse responses are no longer

continuous functions of t , athough the noncausal solution (gray

dashed lines) is. This was expectable, taking into account the

non-differentiability of the causal cubic splines in Fig. 22 at the

sampling points.

The optimal performance

Jl =
(3+ 2

√
3)(1+ 3 α2l)

60
h
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−h h

φl (t)

(a) l = 1

−h h

φl (t)

(b) l = 2

Figure 25: Impulse responses of velocity reconstructors

with preview l

is now proportional to h. The decay rate of Jl as l increases can

be seen from the following table:

l 0 1 2 3

Jl/J∞ 4 1.2154 1.0155 1.0011

and is reminiscent of what we saw in the previous example.

26. Concluding Remarks

In this part we have addressed the L2 optimal design of D/A

converters (reconstructors) with causality constraints imposed

on them. Closed-form optimal solutions have been derived in

terms of state-space realizations of the given signal generators.

The solutions are in form of exponential / polynomial splines,

which have clear structural properties (such as continuity and

consistency) and recover some known structures when preview

length l → ∞. State space machinery facilitates both compu-

tational and implementational efficiency of the resulted recon-

structors.

Although we have discussed only noise-free measurements,

discrete-time white measurement noise can be incorporated into

our procedure seamlessly, see [25] (effectively, the only change

is the replacement (CyY C ′y)
−1 → (8n+CyY C ′y)

−1, where8n

is the noise spectral density). The results can also be extended

to more general sampling devices (see [56]).

Some related problems are still open. It would be interesting

to have a possibility to impose FIR constraints on optimal re-

constructors. This, however, might require quite different tech-

niques to be used as the approach presented in this part cannot

handle this situation. Perhaps the ideas of [32] can be exploited

in this case. Another open problem is an extension of the ap-

proach to the L∞ performance measure, which can probably be

done using the method of [31]. Unlike noncausal cases, L∞ so-

lutions do not coincide with L2 ones when causality constraints

are imposed and even possess some qualitatively different prop-

erties, see [31].

Appendices

A. Proofs for Part II

Proof of Lemma 9.2. This is a known result, often called the

Parrott lower bound, see [35, 12]. The idea is to transform the

operator whose L∞ norm we want to minimize into one of the

form [

R11 − S R12

R21 R22

]

with Ri j fixed operators and S our free parameter (sampler).

[35] showed that then its L∞ norm is bounded from below by

max

(∥
∥
∥
∥

[

R12

R22

]∥
∥
∥
∥
∞
,
∥
∥
[

R21 R22

]∥
∥
∞

)

and that equality can be achieved [12]. To simplify the ex-

position, we assume that H∗H = I and GyG
∗
y = I . Then

[

G∗y I − G∗yGy

]

is co-inner, meaning that

[

G∗y I − G∗yGy

] [

G∗y I − G∗yGy

]∗ = I.

Therefore Gv −HSGy and

(Gv −HSGy)
[

G∗y I − G∗yGy

]

=
[

GvG
∗
y −HS Gv (I − G∗yGy)

]

(140)

have the same L∞ norm. Notice that the second block here does

not depend on S. Similarly
[

H∗
I−HH∗

]

is inner and therefore

(140) in turn has the same L∞ norm as
[

H∗

I −HH∗

]
[

GvG
∗
y −HS Gv (I − G∗yGy)

]

=
[

H∗GvG∗y − S H∗Gv (I − G∗yGy)

(I −HH∗)GvG∗y (I −HH∗)Gv(I − G∗yGy)

]

=:

[

R11 − S R12

R21 R22

]

.

Now, only the upper left block depends on S and it can be as-

signed any operator that we like and therefore Parrott’s theorem

applies. It is readily seen that
∥
∥
∥
∥

[

R12

R22

]∥
∥
∥
∥
∞
= ‖Gv (I − G∗yGy)‖∞

and
∥
∥
[

R21 R22

]∥
∥
∞ = ‖(I −HH∗)Gv‖∞.

The formula for the optimal S is very involved [12]. Yet if Gy

is stably invertible, then (42) achieves the lower bound (44).

Proof of Theorem 10.5. For Gv(s) = 1/sn the Fourier trans-

form (50) becomes

8opt(iω) =
1/ω2n

1
h

∑

k∈Z 1/(ω + 2kωN)2n
.

Since ei2kωNh = 1 this Fourier transform equals

8opt(iω) =
W (iω)2n

1
h

∑

k∈Z(W (i(ω + 2kωN))2n
(141)

for W (iω) := (1 − e−iωh)/(iω). Now, W is the Fourier trans-

form of the zero degree B-spline (not centered around zero)

and so W 2n corresponds to the degree 2n − 1 B-spline. The

numerator in (141) is the result of passing W 2n through a stable

discrete filter that makes φ(kh) = δ̄[k], see [46, §V.B]. So φ(t)

is the cardinal polynomial spline of degree 2n − 1.
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Proof of Equation (55). According to (7), the kernel g(t, s)

of the continuous-time mapping u = HSy is g(t, s) =
∑

i∈Z φ(t − ih)ψ(ih − s). Therefore the kernel ğ(z; τ, σ ) of

the transfer function is

ğ(z; τ, σ ) =
∑

k∈Z

∑

i∈Z
φ(τ + kh − ih)ψ(ih − σ)z−k

=
∑

k∈Z

∑

i∈Z
φ(τ + (k − i)h)z−(k−i)ψ(ih − σ)z−i

= φ̆(z; τ )ψ̆(z; −σ).

This completes the proof.

Proof of Theorem 11.1 (Rank Theorem). The if part is trivial.

Now the only-if part. If g ∈ L2(R), then by Parseval we have

that
∫ π
−π‖Ğ(eiθ )‖2HSdθ < ∞. Hence ‖Ğ(eiθ )‖HS < ∞ for al-

most all θ (for all θ except possibly on a set of zero measure).

By the definition of the Hilbert-Schmidt norm then,

∫ h

0

∫ h

0

|ğ(eiθ ; τ, σ )|2dτdσ <∞ (142)

for almost all θ ∈ [−π, π]. For any of those θ the mapping
∫ h

0

∫ h

0 ğ(eiθ ; τ, σ )ŭ(σ )dτdσ is readily seen to be a bounded

mapping from L2[0, h] to L2[0, h] and therefore is a compact

operator and so has an SVD with countably many singular val-

ues (at most r in fact) [9, A.3.24 and A.4.23], that is, has a

representation of the form
∑r

k=1 αk(τ )〈ŭ, βk〉 where the inner

product is that of L2[0, h] (all αks and βks still depend on θ ).

The kernel of this mapping hence is

ğ(eiθ ; τ, σ ) = φ̆(eiθ ; τ )ψ̆(eiθ ; σ)

:=
[

α1(τ ) · · · αr (τ )
]






β ′1(σ )
...

β ′r (σ )




 .

Having finite norm (142) both parts ψ̆(eiθ ) and φ̆(eiθ ) have

finite L2[0, h] norm—which by scaling may be taken to be the

same—almost everywhere and then have well defined inverse

Fourier transforms in L2(R). The assumption of continuity on

some finite partition is sufficient to guarantee that the factors

are Lebesgue integrable.

Proof of Lemma 14.6 (Pathological sampling). Define Gǫ(iω)

as the magnitude of G(iω) upto at most 1/ǫ, Gǫ(iω) =
min(1/ǫ, |G(iω)|). This Gǫ is stable and for every frequency

s = iω that is not a pole of G(s) it converges pointwise to

G(iω) as ǫ → 0. Therefore in the case of pathological sam-

pling two or more singular values σk(θ) of Gǫ(e
iθ ) converge to

∞ for some θ . So then (given the rationality of G) the error

norm for the stabilized generator Ge,ǫ := (I −Fǫ)Gǫ converges

to∞ as ǫ → 0. Now, since

‖(I − F)G‖ ≥ ‖(I − F)Gǫ‖ ≥ ‖(I − Fǫ)Gǫ‖,

we necessarily have that ‖(I −F)G‖ = ∞ for any F (LCTI or

LDTI), which is what we had to prove.

If we have no pathological sampling then F0 := limǫ→0 Fǫ
is well defined (frequency-wise, and by rationality). We claim

that then ‖(I−F)G‖2 ≥ ‖(I−F0)G‖2 so that F0 is optimal for

G. Indeed, if ‖(I −F)G‖2 < ‖(I −F0)G‖2 then by continuity

in ǫ also ‖(I−F)Gǫ‖2 < ‖(I−Fǫ)Gǫ‖2 for some small enough

ǫ. This contradicts optimality of Fǫ .

Mixing matrices (Eqn. (68)). We prove that (68) is the mix-

ing matrix for the scheme of Fig. 15. The mapping from

y to ū1 is a sampler SIdlA1Fidl where the ideal low pass

filter has cut off frequency 2ωN. The sampling function

of this sampler is the impulse response of A1Fidl. Its fre-

quency response according to the Key Lifting Formula (16b) is
1
h

∑

k∈Z A1(iωk)Fidl(iωk)e
iωkτ , which for θ ∈ [0, π) and by

the bandlimitness of the ideal low-pass filter becomes

1

h
[A1(iω0)e

iω0τ + A1(iω−1)e
iω−1τ ]

=
[

A1(iω0) A1(iω−1)
]
[

eiω0τ/h

eiω−1τ/h

]

.

For the lower loop, the A1 has to be replaced with A2.

B. Coprime Factorization over H∞

In this appendix we review some basic facts about coprime fac-

torization of rational transfer functions over H∞ as needed in

Part III. For an in-depth treatment a reader is referred to [52].

We say that H∞ functions M̃(z) and Ñ(z) are left coprime

over H∞ it there exist compatibly dimensioned H∞ functions

X̃(z) and Ỹ (z) such that

M̃ X̃ + Ñ Ỹ =
[

M̃ Ñ
]
[

X̃

Ỹ

]

= I.

This equation is called the Bézout equation and corresponding

X̃ and Ỹ —Bézout factors of M̃ and Ñ . Left coprimeness ef-

fectively says that M̃ and Ñ have no common unstable (i.e.,

in C \ D) zeros, including their multiplicity and output direc-

tions. Yet another way to say this is that
[

M̃ Ñ
]

is right in-

vertible in H∞. Consequently, if M̃ and Ñ are left coprime,

then T̃
[

M̃ Ñ
]

∈ H∞ necessarily implies that T̃ ∈ H∞ too

(this fact is instrumental in proving Proposition 20.5).

Now, let G̃(z) be a rational and proper (i.e., bounded in |z| >
ρ for a sufficiently large ρ) transfer function. In this case it can

always be presented (this can be shown by construction) as

G̃ = M̃−1 Ñ

for some left coprime H∞ transfer functions M̃ and Ñ such

that M̃ is square and properly invertible. This presentation is

called a left coprime factorization (lcf) of G̃ over H∞. The

factors M̃ and Ñ can then be thought of as a denominator and

a numerator of G̃, respectively. These factors are not unique.

For example, P̃ M̃ and P̃ Ñ are also lcf of G̃ for every P̃ such

that P̃, P̃−1 ∈ H∞ (the left coprimeness of these factors follow

from the fact that X̃ P̃−1 and Ỹ P̃−1 are their Bézout factors). In

fact, a stronger result can be proved: if M̃ and Ñ are lcf of G̃,

then so are M̃1 and Ñ1 iff M̃1 = P̃ M̃ and Ñ1 = P̃ Ñ for some

P̃, P̃−1 ∈ H∞.
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C. Technical Results

Lemma C.1. The factors M̄y and Ńy defined by (112) are co-

prime in H∞.

Proof. Let F be any matrix such that AF := A+B F is Hutwitz

(this is always possible because the pair (A, B) is controllable).

Consider then the following candidates Bézout factors:

X̄ y(z) = (I − Cy(z I − eAF h)−1 L)4−1,

Ỳy(z) = C̀F (z I − eAF h)−1L4−1,

where C̀F verifies C̀F ξ̄ = F eAF τ ξ̄ . Then,

M̄y X̄ y = 4(I + Cy(z I − Ā1)
−1 L)

× (I − Cy(z I − eAF h)−1 L)4−1

= I +4Cy(z I − Ā1)
−1(z I − eAF h

− z I + Ā1 − LCy)(z I − eAF h)−1 L4−1

= I +4Cy(z I − Ā1)
−1

× (eAh − eAF h)(z I − eAF h)−1 L4−1.

Also,

Ńy Ỳy = 4Cy(z I − Ā1)
−1

×
∫ h

0

eA(h−σ)B F eAFσdσ(z I − eAF h)−1 L4−1.

The integral in the last expression can be interpreted as the re-

sponse, at the time instance t = h, of the continuous-time sys-

tem G1 := (s I − A)−1 B to the input F eAF t , which, in turn,

is the impulse response of the system G2 := F(s I − AF )
−1.

Thus, the integral can be interpreted as the impulse response of

the system G1G2 taken at the time instance t = h. The cascade

G1G2 can be also represented as a parallel interconnection:

G1G2 = (s I − A)−1 B F(s I − AF )
−1

= (s I − AF )
−1 − (s I − A)−1.

Hence, the impulse response of G1G2 is the difference of the

impulse responses of (s I − AF )
−1 and (s I − A)−1:

∫ h

0

eA(h−σ)B FeAF σdσ = eAF h − eAh ,

so that

Ńy Ỳy = 4Cy(z I − Ā1)
−1(eAF h − eAh)(z I − eAF h)−1 L4−1

= I − M̄y X̄ y .

Thus, X̄ y and Ỳy are Bézout factors of M̄y and Ńy , which

proves the statement.

We conclude this Appendix with some technical steps re-

quired to proof our main result.

Proof of Theorem 24.1. We effectively only need to show that

the optimal cost in the Theorem verifies

Jl = ‖N̆v‖22 − ‖Q̀l‖22
for the norms in Lemmas 23.1 and 23.3. To this end, note that a

direct application of [8, Lemma 10.5.1] yields Ŵv = 1216
−1
11 .

We also know [29, Lemma 5.5] that tr(Ŵvw) = tr(1226
′
11).

Finally,

(Y − Ŵw(τ ))e−A′τ = Y622(τ )−612(τ )

=
[

−I Y
]

exp

([

A B B ′

0 −A′

]

τ

)[

0

I

]

,

so we can use [8, Lemma 10.5.1] again, this time applying to

extended matrices, and some row / column permutations to ob-

tain ŴV =
[

−I Y
]

16−1
[

Y
I

]

. The rest is now a direct alge-

bra.
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