
A graph-based aspect interference detection
approach for UML-based aspect-oriented models

Selim Ciraci, Wilke Havinga, Mehmet Aksit, Christoph Bockisch and Pim van
den Broek

University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
{s.ciraci, w.havinga, m.aksit, c.m.bockisch,

p.m.vandenbroek}@ewi.utwente.nl

Abstract. Aspect Oriented Modeling (AOM) techniques facilitate sep-
arate modeling of concerns and allow for a more flexible composition
of these than traditional modeling technique. While this improves the
understandability of each submodel, in order to reason about the behav-
ior of the composed system and to detect conflicts among submodels,
automated tool support is required.
Current techniques for conflict detection among aspects generally have
at least one of the following weaknesses. They require to manually model
the abstract semantics for each system; or they derive the system seman-
tics from code assuming one specific aspect-oriented language. Defining
an extra semantics model for verification bears the risk of inconsistencies
between the actual and the verified design; verifying only at implemen-
tation level hinders fixing errors in earlier phases.
We propose a technique for fully automatic detection of conflicts be-
tween aspects at the model level; more specifically, our approach works
on UML models with an extension for modeling pointcuts and advice.
As back-end we use a graph-based model checker, for which we have de-
fined an operational semantics of UML diagrams, pointcuts and advice.
In order to simulate the system, we automatically derive a graph model
from the diagrams. The result is another graph, which represents all pos-
sible program executions, and which can be verified against a declarative
specification of invariants.
To demonstrate our approach, we discuss a UML-based AOM model of
the “Crisis Management System” and a possible design and evolution
scenario. The complexity of the system makes conflicts among composed
aspects hard to detect: already in the case of two simulated aspects, the
state space contains 623 different states and 9 different execution paths.
Nevertheless, in case the right pruning methods are used, the state-space
only grows linearly with the number of aspects; therefore, the automatic
analysis scales.

1 Introduction

Aspect Oriented Modeling (AOM) techniques [37, 9] facilitate separate modeling
of a project’s concerns and allow flexible composition of these without being re-
stricted by hierarchical composition schemes. If used properly, AOM may reduce

complexity, and increase flexibility and reuse of models. Most AOM approaches
extend a modelling language established for the proramming paradigm on which
the targeted aspect-oriented systems are based. Thereby, the AOM approaches
differ in the way how the base modelling language is extended and in the cross-
cutting concerns they can successfully modularize. Nevertheless, they share the
goal to provide different partial views on the same system, which may overlap
after composition. This improves the global understandability of a model, as
smaller submodels – the partial views – can be inspected separately; further-
more, separate submodels can evolve in isolation.

One downside of the flexible composition mechanisms in AOM is that the
local understandability is reduced [13]. Detailed understanding of single facets
of the behavior in the composed system is difficult because the details of the
composition are, on purpose, hidden from the beholder. Therefore, it is difficult
to ensure the absence of conflicts in the composed system by manual inspection.
Conflicts in the behavior when crosscutting parts of the system interact are
especially hard to detect, such conflicts are called semantic interference among
aspects. Conflict detection is mission-critical in large software systems like a “Cri-
sis Management System” (CMS) which cannot afford to expose unanticipated
behavior.

Several techniques exist for automatically detecting conflicts between aspects.
Most of them either require an abstract semantic model of the overall system
that has to be defined specifically for each new system [33, 32]; or they work at
the implementation level and assume a particular aspect-oriented programming
language [4, 24]. Only a few aspect-interference detection approaches have been
proposed that work at the modeling level [33, 32]. But these only work on a
specific limited AOM approach and require a manual definition of the semantics
of the models.

Performing aspect-interference at the model level has the benefit that mod-
els are independent from the programming language used later to implement
the model. In contrast, programming-language-based interference detection gen-
erally requires reimplementation of the detection technique for each language.
Furthermore, early detection of conflicts at the model level has a number of
advantages:

– Models are more abstract then code. Therefore, fixing errors in the design
prospectively is cheaper then fixing errors in the code.

– When errors are recognized and fixed at the model level, one source of the
code’s deviation from the model is eliminated. Thus, model versioning and
consistency enforcement activities can be avoided.

– In the case of model-based code generation, aspect-interference detection at
the code level may even become unnecessary.

– As the AOM model is independent of the technique and language later used
to implement the system, model-based conflict detection is also independent
of these concerns.

For these reasons, we propose a technique for automatic detection of semantic
interference among aspects at the model level; more specifically, our approach

2

works on UML models with an extension for modeling pointcuts and advice. Our
aspect-oriented extension requires that pointcuts, advice and their bindings are
already resolved; this opens the opportunity to map different modeling styles to
our generic model. We discuss such a mapping for the Theme/UML [12] AOM
approach.

As our back-end is a graph-based model checker (namely GROOVE [23]),
first the UML-based AOM model is transformed to a graph-based representa-
tion; already this step is automated. Second, the runtime behavior of the model
is simulated at graph level; an operational semantics of the UML and our aspect-
oriented extension is modeled as graph transformations, and triggering the rele-
vant operations allows us to simulate the runtime behavior of the model. Finally,
the simulated model is verified against the invariants of the system and each com-
posed scenario, which are defined declaratively as computation tree logic (CTL)
expressions. Our model checker allows us not only to detect that conflicts are
possible, but it also shows under which conditions the conflicts take effect.

To demonstrate our approach, we first discuss how UML-based AOM tech-
niques can be applied in modeling the “Crisis Management System” (CMS). As
an example, the concerns that relate to the crisis-managing scenarios are pro-
posed to be modeled as aspects; this design exposes a reduced complexity and
eases the evolution of scenarios. Since defining and implementing all scenarios at
the same time is too rigid and not realistic, this design has a further benefit: it
allows incremental modeling and introduction of crisis-management strategies.
Whenever necessary, new scenarios should be defined by specialized experts and
be introduced into the system incrementally. Since detection of inconsistencies
requires joint analysis of the composed scenarios which may be developed by
independent experts at different times, manual detection is extremely difficult if
not impossible.

With our graph-based model checker, we have been able to detect seman-
tic interference among two independently developed scenarios. The size of the
simulated state space, namely 623 states, 652 transitions and 9 execution paths,
shows that tool support is crucial to verify the behavior of a system like the CMS.
The size of the state space of our simulation grows linearly with the number of
aspects. Therefore, the simulation also scales to reasonably large systems.

The contributions of this paper are threefold:

1. For a graph-based model checker, we have defined graph-transformation rules
that constitute an operational semantics for aspect-oriented models. The se-
mantics is an accurate representation of the runtime behavior of the models.

2. Applying this operational semantics with a model checker, we can automat-
ically detect semantic interferences among aspects at the modeling level. As
input, our tool only requires a declarative description of invariants and a
graph-based representation of the AOM model, which can be derived in an
automated way from UML models; different aspect-oriented extensions to
UML can be mapped to this graph-based representaion.

3. We show that our approach is applicable to large-scale software by the ex-
ample of the “Crisis Management System”. Therefore, we discuss a possible

3

design and evolution scenario of this system where aspects conflict in non-
obvious ways. With our approach, it is possible to detect these interferences
at the model level.

The structure of this paper is as follows. In Section 2 we discuss an AOM
model for the “Crisis Management System”, including an overview of AOM in
general and Themen/UML in particular, which we use to show AOM models
throughout this paper. Our approach is discussed in detail in Section 3; we
start by presenting the graph model used in the simulation and its relation to
UML diagrams in Section 3.1, in Section 3.2 we present the means by which
our model supports aspect-oriented models. In Sections 3.3 and 3.4 we discuss
the operational semantcs of our model and the verification of invariants in the
simulated state space. We discuss the application of our approach to the CMS
case study and present performance figures in Section 4. In Section 5 we present
related work before we reflect on our approach and conclude in Section 6.

2 Designing the Crisis Management System using AOM

2.1 A brief overview of AOM approaches

To date, a substantial number of AOM approaches have been proposed [37, 9].
Many of these modeling approaches define UML extensions that support the
modular expression of crosscutting elements [17, 12, 6]. Although each modeling
approach facilitates the expression of crosscutting behavior in different ways,
these approaches share many common characteristics. Typically, a user first
identifies crosscutting concerns in the system under design. This can be done
manually or supported by tools, such as EA-miner [36]. Then, the system is
designed using a mix of regular UML-based models (such as class diagrams,
sequence diagrams, etc.) and aspect-specific extensions that model crosscutting
(structural or behavioral) elements. In this paper, we focus on the use of such
UML-based approaches.

The goal of AOM approaches is to improve the modularity of software de-
signs, and this is commonly supported by allowing the specification of different
(partial) views on the same system, which may overlap after composition. This
improves the potential for separate views of the system to evolve in isolation, i.e.,
without affecting multiple models in several places. Unfortunately, the specifica-
tion of multiple separated views on the system as supported by AOM approaches
also has a disadvantage: given that each separate view of the model may evolve in
isolation, and each may be maintained by different engineers, it becomes harder
to ensure that the composed system works together as intended. If crosscutting
parts of the system interact in undesired ways, this is called semantic interference
among aspects.

The benefit of an improved modular structure facilitated by AOM becomes
less important, if the same approach makes it harder to establish that the com-
posed system will behave as intended, which is a common theme among com-
ments from industry, e.g., in [13]. For this reason, we believe that it is important

4

to support the AOM development process by means of tools that detect (se-
mantic) interference among design artifacts. As UML is used as the basis for
many AOM approaches, this paper focuses on the automated, tool-supported
detection of semantic interference among aspects at the UML design level. The
next subsection briefly introduces Theme/UML, the specific approach that we
use in this paper.

2.2 On the use of Theme/UML

For the purpose of designing the Crisis Management System we chose to use
Theme/UML [12], a representative member of the UML-based approaches men-
tioned above. The use of specific AOM approaches is however not the focus of
this paper, as the problem of semantic interference among aspects is inherent
to all AOM approaches. In section 3 we discuss the requirements under which
AOM-specific UML extensions can be mapped to our approach in general, and
the mapping for Theme/UML in specific. Since the mapping typically appears
to affect only a small part of the modeling approach (e.g. mapping the specific
ways in which pointcuts and advice are modeled), we expect this to be possible
with reasonable effort.

For a detailed description, please refer to publications about Theme/UML [12,
7, 11]. Here, we only discuss the main principles of using Theme/UML, as needed
to follow the discussion in this paper. Seen from a user perspective, Theme/UML
adds two important features to UML models: it allows (1) the separation of
structural concerns, and (2) the expression of crosscutting behavior.

Structural elements (such as – potentially partial – class definitions) can be
separated into “themes”, which can then be composed into a coherent system
by means of a composition specification. For example, a simple composition
specification might simply merge the partial classes (defined in several themes)
based on their names. This way, Theme/UML supports the modular expression
of crosscutting structure.

Crosscutting behavior can be expressed by allowing the use of “template
parameters”, such as class parameters or method parameters in various mod-
els – most importantly, in sequence diagrams. A “template parameter” may be
bound by a composition specification to zero or more actual classes or methods,
for example indicating that a particular sequence of events should be initiated
whenever one of the bound parameter methods is invoked. In this sense, such
composition (“parameter binding”) specifications can be considered a “point-
cut”, whereas a sequence of events that is specified (using a sequence diagram)
to follow the invocation of such a bound parameter can be considered an “ad-
vice”.

2.3 Concern identification

There are many alternative ways to define a modular structure for the Crisis
Management System described in the case study. Typically, the choice for partic-
ular design alternatives would be driven by evaluating relevant trade-offs against

5

the characteristics that are deemed most important by the various stakeholders.
For example, the convenience of a given design may be judged with respect to
optimized performance, ease of configuration or use, enforcement of security, etc.
In this subsection, we describe one possible design, which will be used as an ex-
ample throughout this paper. As the design as such is not our main focus, we
do not describe all the trade-offs made to reach this design in detail, however.
The two concerns that are relevant to the CMS are:

– Coordination. To facilitate dealing with crisis situations in an efficient man-
ner, an automated system should actively support the coordination of mission-
and resource assignment. By coordination, we mean the support for standard-
ized scenarios – which may vary based on the type and severity of a crisis –
for requesting resources, defining missions, dealing with reports and requests
for assistance from workers, etc.

– Allocation. To support the handling of crises with a limited amount of re-
sources, the system should support means to optimally allocate available
resources. Since optimal strategies may depend on (e.g. national) policies as
well as circumstances (number of concurrent crises, scarcity of certain re-
sources), the system should support multiple allocation strategies, as well as
pre-emption of resources in low-resource situations, if appropriate.

In this paper, we focus primarily on the concern of coordination support, as
“supporting coordination of crises resolution processes” is a primary requirement
for this system (as defined in the case study, section 2). For the CMS to properly
facilitate this, it should support standardized scenarios that deal with recurring
types of crises, such as the Car Crash Scenario described in the case study. This
way, a scenario prescribes the actions that should be taken to remedy a specific
crisis.

Since the definition of such reusable scenarios is likely to be the most un-
stable part of the CMS, it makes sense to explicitly modularize scenarios. For
example, scenarios will be subject to change based on national policies. In ad-
dition, new scenarios may be introduced at a later stage, and scenarios may
also be extended in an incremental way to incorporate knowledge acquired in its
previous applications.

Within the context of the CMS, a scenario can be seen as a reactive control-
ling process, because it gathers all kinds of information from its environment and
reacts to these “events”. As to how such a system should be designed, several
publications state that it is best to separate the coordination of behavior from
the behavior itself [20, 3].

In this sense, the coordination of a scenario can be seen as a crosscutting con-
cern: several scenarios may need to react to the same event, while conversely, one
scenario may depend on multiple information-gathering (and event-generating)
modules. In the context of reactive systems, the notion that coordination of be-
havior can be seen as a crosscutting concern has been identified before [5]. Since
this is the case, the coordination of a scenario can be modeled as an aspect
that intercepts events that are of importance to the scenario, and invokes the

6

intended actions prescribed by the scenario. This way, the coordination of be-
havior is properly separated from the behavior itself, as well as decoupled from
the different information-gathering and event-generating modules. In the next
subsection, we show how the Car Crash scenario can be modeled following this
principle.

2.4 Modeling the Car Crash scenario as an aspect

Fig. 1. Class diagram of the Crisis Management System

Figure 1 shows the important structural elements of our design. The struc-
ture at the top of the diagram shows a collection of classes modeling a hierarchy
of states. Potentially reusable actions are modeled as states, each of which im-
plements a specific part of desired system behavior. For example, an instance

7

of class ResourceAllocate defines behavior that checks whether a requested
resource is available, and if so, allocates it to a scenario. ResourceDispatch
implements instructing a specific resource (i.e., assigning it a mission to carry
out). Note that this part of the structure does not implement a complete state
machine; the coordination of these states, i.e. defining transitions between them
as the result of particular events, is implemented by aspects that model specific
scenarios.

The bottom half of figure 1 shows the structure of other relevant system
components. The class Server has an interface to receive external as well as
internal events. External events originate from the environment and are gener-
ated by a client (not modeled here) through a user interface. Internal events are
signaled by the system itself, for example, if it runs low on resources of a specific
kind. Furthermore, the server keeps track of resource allocations through a class
ResourceManager, as well as a list of common data for each crisis scenario,
as found in the domain model specified in the case study.

The implementation of the Car Crash scenario, as exemplified in the case
study, can then be realized as shown in figure 2. This figure, which defines the
Car Crash “theme”, consists of two parts. The first part (Figure 2-(a)) is the
definition of the pattern class CarCrashScenario, which keeps track of the
current state the system is in and which may also define behavior that is specific
to the low-level implementation of this scenario. The second part is a sequence
diagram, that defines how to react to selected events.

Some Theme/UML-specific extensions are visible in this sequence diagram:
the sequence diagram is parameterized : it refers to a template parameter and
the template class CarCrashScenario, both of which should be bound with
other “themes” by means of a composition specification. The meaning of the
template parameter in the sequence diagram is that the actions specified by the
sequence diagram will be executed whenever a method bound to that parameter
is invoked. Figure 2-(c) shows the binding specification for the theme Car Crash
Scenario, where the pattern class CarCrashScenario is bound to the class Sce-
narioOutSideEvent and the template pattern fireStart() is bound to the actual
operation fireStart().

The meaning of the sequence diagram is that it responds (only) to events that
indicate a scenario should be started, specified by the invocation of fireStart.
The remainder of the sequence diagram forms the advice, which is executed at
each fireStart join point (invocation): if the scenario-type specified by the
event is indeed a CarCrash scenario (indicated by the guard condition “scenar-
ioType=1”, in the diagram), it changes the state of the scenario to “scenario
accepted”, and invokes the actions defined by that state. Of course, each event
has exactly one scenario-type, and in that sense the guard condition based on
the scenario-type can be considered to be mutually exclusive with such guard
conditions that may be defined by other scenarios.

8

+adviceFireStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

+allocationStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

#_fireStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

#_fireRequest(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

«templateParameter» +fireStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

«templateParameter» +fireRequest(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

+beforeInvoke()

«pattern class»CarCrashScenario

(a)

«pattern class»

ccs : Top Package::CarCrashScenario

«templateParameter» _fireStart:=

fireStart(scenarioType, scenarioData)

adviceFireStart:=adviceFireStart(scenarioType, scenarioData)

scenarioStart:=scenarioStart()

scenarioData : Scenario::ScenarioData

state : States::ScenarioAccepted

ScenarioAccepted(scenarioData)

scenarioType=1

beforeInvoke()

_fireStart:=_fireStart(scenarioType, scenarioData)

(b)

Main

<<theme>>

CarCrashScenario

-[ScenarioOutSideEvent,fireStart]

(c)

Fig. 2. Car Crash Scenario expressed using Theme/UML a) the pattern class Car-
CrashScenario. b) the sequence diagram of for the template parameter fireStart(). c)
the binding specification for the theme Car Crash Scenario.

9

2.5 Incremental evolution: adding scenarios

It is to be expected that, over time, new scenarios will be added to the CMS, and
existing ones might evolve as well. Here, we briefly discuss an additional scenario:
suppose that there is an accident that involves the president of the nation. In
such a case, since the number of resources is limited and may already be assigned
to other crises, it may be required to pre-empt resources assigned to low-priority
crises. Diagram 3 defines such a scenario. In principle, the crisis is handled in
a similar way as discussed in section 2.4. However, if insufficient resources are
available, an internal system event is generated, asking all running crises to pre-
empt necessary resources, if appropriate. The higher-priority scenario should
then be able to allocate those resources.

2.6 Aspect Interference in the crisis management system

In the sections above, we have defined a system that allows the modular specifi-
cation and evolution of multiple scenarios and separates the coordination spec-
ification from modules that implement low-level behavior. However, since these
scenarios may be developed independently of each other, by different actors,
and since scenarios may also evolve over time, it could easily occur that multiple
scenarios interfere with each other.

In the example above, the Presidential Crisis scenario sends an event that asks
other scenarios to pre-empt non-critical (to them) resources. However, the Car
Crash scenario as defined earlier does not take this into account, and thus does
not specify how to respond to such an event. While the small size of our example
case makes this conflict relatively easy to discover, interactions among scenarios
are more complex and less obvious when more realistically sized projects are con-
sidered. Furthermore, the potential for inconsistencies or unintended interactions
increases as the system evolves.

Since multiple scenarios may need to react to one event, and each scenario is
interested in multiple kinds of events, it becomes very hard to keep track of all
potential interactions manually. For this reason, the help of automated tools that
can detect (potential) interference is necessary. In the next section, we discuss
an approach that facilitates this.

3 A graph-based approach to detecting semantic
interference at the design level

UML sequence diagrams include means for modeling the runtime relation be-
tween objects and aspects. However, complex software systems usually have
many sequence diagrams, making it very hard to manually trace and reason
about the runtime behavior. For example, one may need to trace all the possible
receivers of a call to reason about the runtime behavior due to polymorphism,
or all applicable advice. With model-checking the semantics of the call can be
simulated and all the possible receivers and applicable advice are automatically
generated.

10

+adviceFireStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

+allocationStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

#_fireStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

#_fireRequest(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

«templateParameter» +fireStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

«templateParameter» +fireRequest(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

+beforeInvoke()

«pattern class»PresidentialEmergencyScenario

(a)
«pattern class»

ccs : PresidentialEmergencyScenario

«templateParameter» _fireStart

:=fireRequest(scenarioType,

scenarioData)

beforeInvoke()

adviceFireStart:=adviceFireStart(scenarioType, scenarioData)

ScenarioData(scenarioType)

scenarioData : Scenario::ScenarioData

_fireStart:=_fireStart(scenarioType, scenarioData)

 : Server

ScenarioBroadCastEvent:=ScenarioBroadCastEvent(recourceEventType, eventData)

scenarioBCast : Scenario::ScenarioBroadcastEve

nt

firePreEmpt:=firePreEmpt(scenarioType, scenarioData)

[guard]

scenarioType=PresidentialEmergency

(b)

Main

<<theme>>

PresidentEmergency

Scenario

-[ScenarioOutSideEvent,fireRequest]

(c)

Fig. 3. Presidential Emergency scenario expressed using Theme/UML a) the pattern
class PresidentialEmergencyScenario. b) the sequence diagram for the template pa-
rameter fireStart(). c) the binding specification for the theme Presidential Emergency
Scenario.

11

To detect semantic interference at the level of UML models, we use graph-
based model-checking, in terms of the GROOVE graph production system. In
graph-based model-checking, the behavior of the system is modeled as graph-
transformation rules and runtime states of a system are modeled as a graphs.
Here, applying a transformation rule results in one or more graphs that repre-
sent different states of the system [23]. The graph-production tool automatically
applies the transformation rules, which simulates the behavior of the modeled
system. The simulation generates a state-space (with transitions) showing the
possible states the system can reach. The requirements of the system are ex-
pressed as temporal logic formulas which are verified over the generated state-
space.

Although UML sequence diagrams include much of the information related
to the simulation, they lack elements like operation frames that are crucial to
achieve a simulation close to actual object-oriented (OO) execution. Therefore,
we defined a graph-based model that is an OO-like runtime representation of
UML sequence diagrams. We modeled graph-transformation rules that add OO
execution semantics, like polymorphism, to the UML sequence diagrams so that
the runtime relation can be simulated with graph-based model checking. Simi-
larly, we also modeled the effects of aspect weaving as performed by an aspect-
oriented runtime system.

This section details the application of graph-based model-checking to se-
mantic interference detection. In the next subsection, the graph-based model for
representing UML sequence diagrams is explained. Subsection 3.2 details how
aspects are modeled with this graph-based model. In subsection 3.3 examples of
graph-transformation rules modeling object- and aspect-oriented execution se-
mantics are presented. Finally, subsection 3.4 explains how execution sequences
can be expressed with temporal logic formulas and how these are verified.

3.1 Design Configuration Modeling Language

UML sequence diagrams depict execution sequences in order to provide an
overview of the interactions between objects in software systems. Due to mech-
anisms such as conditional executions and polymorphism, a software system
may support executions other than the ones depicted by the sequence diagrams.
These hidden interactions may introduce bugs to the software when the sequence
diagrams are implemented. In order to prevent the introduction of these bugs
to the software system, there should be a way to reason about the executions
supported by the diagrams. This reasoning requires the sequence diagrams to
be simulated as close as possible to the actual execution of object-oriented soft-
ware – as we will show in next subsection, this carries over to aspect-orientation.
However, sequence diagrams do not include model elements like execution frames
that allow an OO-like execution simulation.

The graph-based Design Configuration Modeling Language (DCML) includes
these elements and allows one to model an OO software runtime for UML se-
quence diagrams. In our approach, the DCML models (DCMs) are generated
from one UML class diagram and at least one sequence diagram. We added the

12

capability of exporting UML class and sequence diagrams as DCML models to
the open-source UML editor ArgoUML [1].

Figure 4 shows the meta-model of DCML. In this figure Var stands for vari-
able, Decl stands for declaration, Impl stands for implementation and Oper
stands for operation (DCML uses the term “operation”; one could also read
“method”). The DCML meta-model has two parts, the structure part and the
dynamic part. Both parts and their elements are quickly presented in the fol-
lowing. For a more detailed discussion with additional examples, we refer to the
appendix, which describes the DCML elements in detail.

-name : string

Type

-final : bool

-abstract : bool

-interface : bool

ObjectType
PrimitiveType

-final : bool

-static : bool

OperDecl

-operations

OperImpl

ListLookup

Action

CallAction
return

-body

-name : string

VarDecl
-Type

-attributes

ListType

-e
le
m
e
n
tL
o
o
k
u
p

-next
-statement

-name : string

Signature -signature

-parameter

-returnVal

CreateAction

-superType

Super This
-referenceVar

Event

RegisterEvent OperFrame

Object

-s
e
lf

-previousExecution

-e
x
e
c
u
tin
g
T
y
p
e

instanceValue

-encapsulates

Value

-i
n
s
ta
n
c
e

-paramValue, assignedValue

-e
x
e
c
u
te
s

-c
a
lle
d
S
ig
n
a
tu
re

-instance

InstanceCall

StaticCall

ThisCall

SuperCall

-referenceType-r
e
fe
re
n
c
e
V
a
r

-referenceVar

Fig. 4. The DCML meta-model

Structure part of DCML. The structure part covers the elements of the meta-
model for modeling the classes, the interfaces and the relations between these.
This part is generated from the class diagram. Because classes and interfaces are
types at runtime, they are represented with nodes labeled ObjectType (object-
type nodes). If the object-type node is representing an interface, then the at-
tribute interface is set to true. The equivalent of the generalization relation is
the edge labeled super-type. Figure 5-(a) shows a portion of the class diagram
from the CMS with three classes, namely State, ResourceAllocation and Sce-
narioData. Figure 5-(b) shows the DCML representation of this class diagram;
here, the three object-type nodes represent the classes in the class diagram. For
example, the object-type node with the attribute name ResourceAllocation (i.e.
the name of object-type node) is the class with the same name represented in
DCML. The class ResourceAllocate generalizes the class State in the class dia-
gram. This is shown in DCML with the edge labeled SuperType connecting the
object-type nodes representing these classes.

Further kinds of nodes, edges, and specializations in the structure part are:

13

«abstract» +executeSateAction(in executingScenarioData : ScenarioData) : void

State

+ResourceAllocate(in res : ResourceAllocate)

+executeStateAction(in executingScenarioData : ScenarioData) : void

ResourceAllocate

+addAllocatedResource(in res : Resource) : void

-currentState : State

ScenarioData

(a) (b)

Fig. 5. a) An example UML class diagram. b) The DCML model of the class diagram
shown in (a)

Node VarDecl – a variable declaration.
Edge Type – connects a variable declration node with a type node to model

the variable’s type.
Edge attributes – connects an object-type node with variable-declaration nodes

which represent the type’s attributes.
Node OperDecl – an operation declaration.
Specialization OperImpl – added to OperDecl nodes for operation with imple-

mentation.
Edge operations – connects an object-type node with operation-declaration nodes

which represent the type’s operations.
Node Signature – a unique operation signature.
Edge parameter – connects a signature with the variable declarations that rep-

resent the signature’s parameters.
Edge returnType – connects a signature with a type node that represent the

signature’s return type, if it has one.

Dynamic Part of DCML. The dynamic part, which is generated from the se-
quence diagrams, covers the elements for modeling the objects, the values and
the life-lines operations. A life-line in a sequence diagram shows the actions the
object executes when it receives a call. In the DCML meta-model (Figure 4), the
specializations of the abstract element Action represent the actions of sequence
diagrams. For example, the nodes labeled CallAction represent call actions and
the nodes labeled ReturnAction represent return actions. An action node can be
connected to another action node by an edge labeled next; in this way, the order
between the actions of a life-line is represented in DCML. The first action of a
life-line is connected to an operation implementation node by an edge labeled
body in DCML to show that these actions are executed when this operation
received a call.

The sequence diagram presented in Figure 6 shows the life-line of the op-
eration addAllocatedResource(). The first action executed in this life-line is a
call action. This action is followed by a return action where the operation ad-
dAllocatedResouce() returns. Figure 7 shows the DCML model generated from

14

this sequence diagram (and the class diagram in Figure 5). In this figure, the
emphasized node represents the call action belonging to the life-line of the oper-
ation addAllocatedResource. Because in the sequence diagram this call action is
the first action executed in the life-line of the operation addAllocatedResource(),
the emphasized node is connected to the operation implementation node repre-
senting the operation addAllocatedResource() by an edge labeled body. This call
action node is connected to the signature node named executeStateAction by an
edge labeled calledSignature to show that the call action is to the signature ex-
ecuteStateAction. Following the outgoing edge labeled next from the call action
node, it can be seen that the call action is succeeded by a return action.

s : Scenario::ScenarioData currentState : States::ResourceAllocate

addAllocatedResource:=addAllocatedResource(res)

executeSateAction:=executeSateAction(executingScenarioData)

Fig. 6. A sequence diagram showing the actions executed by the operation Scenario-
Data.addAllocatedResource()

Fig. 7. A snapshot from the simulation of the sequence diagram shown in Figure 6

The frame of an executing operation is represented by nodes labeled Op-
erFrame in DCML. These nodes are used to identify, during simulation, the
object that is currently executing, the scope of the executing object, the type
that contains the called method and the statement that is being executed. When

15

UML diagrams are converted to DCML models, the conversion algorithm au-
tomatically adds the operation frame node which marks the first action of the
sequence diagram as the action that is being executed. Thus, the simulation
starts executing from that action.

Further kinds of nodes, edges, and specializations in the dynamic part are:

Specialization InstanceCall, CreateOper, SuperCall, ThisCall, StaticCall – added
to CallAction nodes to distinguish between calls to instances, object creation,
calls to the super implementatoin, self calls and calls to static operations.

Edge referenceVar – connects a call-action node with a variable declaration
node to show that the operation is invoked on this value.

Node Value – represents a value.
Specialization Object added to Value nodes to specify that the value is an

object.
Edge instanceValue – connects a variable-declaration node with a value node

which represents the variable’s value.
Edge self – connects an operation-frame node with object node representing

the active object during the execution of the frame.

A DCML model can be generated from more than one sequence diagram and,
thus, a variable can have more then one instance value. During simulation, the
values of the variables at the executing frame are resolved with the encapsulated
edges.

3.2 Aspects in the Design Configuration Modeling Language

ObjectType

-precedence : int

AspectType
-toMethod : string

-toObjectType : string

Pointcut
-pointcuts

* 1

AfterBefore

-advice

11

Action

1
-next

1

Fig. 8. The meta-model containing elements for representing aspects in DCML models

DCML treats aspects as a specialization of the object-types called aspect-
types which are shown as nodes labeled AspectType (aspect-type nodes). Because
of this specialization, it is possible to specify attributes and operations for aspect-
types. Figure 8 shows elements used for representing aspects in DCML models.
It is possible to give precedence to aspect-types in DCML; if a precedence value
is given to an aspect, then the integer attribute precedence is set to the given

16

precedence value. Two kinds of pointcuts can be modeled in DCML: before
pointcuts (nodes labeled Before) and after pointcuts (nodes labeled After). A
pointcut node connected by an edge labeled pointcuts to an aspect-type node
shows that the pointcut is declared in the scope of that aspect-type. The pointcut
specification consists of the name of the class and the name of the operation
which is to be intercepted; the two string attributes of the pointcut nodes hold
these names. The action node that is connected to a pointcut node by an edge
labeled advice represents the beginning of the advice actions.

UML-based AOM approaches extend the UML meta-model, thus, in order to
use our approach for conflict detection in an AOM model, a mapping from these
extensions to the DCML elements must be provided. Thereby, it is necessary that
the aspect-oriented extensions can be captured by the DCML elements shown in
Figure 8. These aspect-oriented elements are simple primitives and potentially
require the AOM front-end to resolve parts of the model. For Theme/UML,
which we choose to model the design of the CMS, the mapping to DCML is
realized as shown in the itemization below. Theme/UML could be mapped to
DCML without the need of resolving parts of its models.

– The pattern classes are represented as aspect-types. Currently, the execution
semantics we modeled do not support aspect instances; thus, the operations
and the attributes declared in template classes are converted to static oper-
ations and attributes of the aspect-types.

– The operation beforeInvoke() of the template operations is represented as
before pointcut. Similarly, the operation afterInvoke() is represented as af-
ter pointcut. These pointcuts are added to the aspect-type node representing
the template class; that is, they are connected to the aspect-type node rep-
resenting the template class by the edge labeled pointcuts.

– The life-line of the operations beforeInvoke() and afterInvoke() is represented
as the advice of a before or after pointcut. That is, the node representing
the first action executed in the life-line of these operations is connected to
the pointcut node with an edge labeled advice.

– The names in the binding specification are converted to the values of the
attributes toMethod and toClass of a pointcut node. We also support to
match names against patterns rather than just comparing them for equality.

Figure 9 shows the DCML model of the “theme” CarCrashScenario,
fireAdviceStart; the Theme/UML diagrams of this “theme” is shown in Figure 2.
Here, the pattern class CarCrashScenario is represented by the aspect-type node
that has the same name. Looking at the sequence diagram of this theme, it can
be seen that the operation beforeInvoke() is called after the invocation of the
template method fireAdviceStart(); so, a before pointcut is added to the aspect-
type CarCrashScenario. In the life-line of the operation beforeInvoke() first a
call action is executed, then the operation returns. In the DCML model of this
theme, the call action node and the return action node (labeled return) represent
these actions. Because the call action is executed first in the life-line, the before
pointcut node is connected to the call action node by the edge labeled advice.

17

The specification presented in Figure 2-(c) states that the “theme” CarCrash-
Scenario should be bound to the class ScenarioOutSideEvent and to the method
fireStart(). Following this, the attribute toObjectType of the before pointcut node
is set to ScenarioOutSideEvent and the attribute toMethod of the same node is
set to fireStart.

Fig. 9. The DCML model of the “theme” CarCrashScenario

3.3 Execution Semantics via Graph Transformations

A DCM is simulated by automatically triggering the appropriate graph-transformation
rules that represent the OO and aspect-oriented execution semantics of the UML
models. We formed a graph-production system (a collection of graph transfor-
mation rules [23]), consisting of 57 graph transformation rules that model the
following execution semantics for UML models: operation dispatch, parameter
passing, returning a value, object creation, before and after pointcuts. Due to
space limitations, we only detail the transformation rules modeling the semantics
for operation dispatch and before pointcuts in this section (interested readers
can download the graph production system [2]). In the following, we present an
overview on graph transformations and how they are modeled in GROOVE.

Graph Transformations in GROOVE A graph transformation rule has a
left-hand side, L, a right-hand side, R and a set of negative application conditions
N . The rule transforms a source graph G to a target graph H by searching for
an occurrence of L in G where N does not occur. In order to say L occurs
in G all the nodes and edges in L should also be found in G [14]. When L of a
transformation rule occurs in G where N does not occur then the transformation
rule is said to match; a rule can have multiple matches. For each match, L is
replaced with R which results in the transformed graph H.

In GROOVE, both the left-hand and the right-hand side of a graph trans-
formation rule are represented in the same graph. The modifications the rule
applies to the host graph are specified using keywords:

18

– The keyword new (or the color green and solid bold lines) is used for the
edges/nodes that are added. These nodes are not in the left-hand side of the
rule but are in the right-hand side of the rule.

– The keyword del (or the color blue and dashed thin lines) is used for the
edges/nodes that are deleted. These nodes are in the left-hand side of the
transformation rule but are not in the right-hand side.

– The keyword not (or the color red and dashed bold lines) is used for negative
application conditions [18]; these edges/nodes should not exist in the part
of the host graph where the left-hand side of the transformation rule exists.

– All other edges/nodes are both in the left-hand side and right-hand side of
the transformation rule.

(a) (c)

(b) (d)

Fig. 10. Graph transformation rules for finding the newest implementation of the called
operation: (a) calculates the target reference type and marks it (b) finds the latest dec-
laration of the operation (c) moves the mark up one level in the inheritance hierarchy,
(d) checks whether the latest declaration implements the operation.

Execution Semantics for Operation Dispatch A call action requires certain
type-checks to be enforced at compile-time. UML editors also employ similar

19

checks so that the call is made to a compatible type. We assume that these
static checks are enforced and the call action is valid.

The execution semantics for operation dispatch consists of finding the latest
implementation of the operation in the inheritance hierarchy and passing the
arguments that are executed in the following manner: 1) calculating the type
of the object the reference variable is holding; that is, the reference type of
the call 2) starting from the reference type traversing the inheritance hierarchy
upwards until an object-type that declares the operation is found 3) passing
the arguments 4) checking that the latest declaration implements the operation.
Figure 10 presents the 4 transformation rules that realize steps 1, 2 and 4 of the
operation dispatch. For brevity, step 3 is not detailed further. Below we describe
how these steps are realized by the four transformation rules of the figure:

1. The rule in Figure 10-(a) is used for finding the reference type of the call. In
sequence diagrams, the reference variables of the call actions are only variable
declarations. So, it is sufficient to find the object-type whose instance this
reference variable is holding to identify the reference type. In this figure,
the reference variable is node n7 (i.e. the variable declaration node that is
connected to the call node with an edge labeled referenceVar) and the object
it is holding is node n0. For this rule to match, the reference variable’s
value at the current operation frame should be an object and this object
should be connected to an object-type node with an edge labeled instance.
If, for example, the reference variable does not hold an object, then the
call cannot continue. The transformation rule adds two nodes and edges.
From these, the edge labeled receivingTypeStart marks the object-type from
which the traversal in the inheritance hierarchy starts. The edge labeled
receivingTypeIter marks the object-type that is traversed. Since the reference
type of the call is the type the traversal starts from and since it is the first
type to be traversed, these edges are connected to the object-type node that
is the reference type of the call.

2.1 The rule in Figure 10-(b) marks the latest declaration of the operation. If the
traversed object-type contains an operation declaration node that has the
same signature as the called signature then this operation declaration is the
latest declaration of the operation. In the depicted transformation rule, the
traversed object-type node is node n7 and the called signature is node n2.
The rule matches when the traversed type has an operation declaration node
(n5) that is connected to the same signature node as the called signature.
The rule marks the declaration by adding an edge labeled calledDeclaration
between the call node (n8) and the operation declaration node.

2.2 If the traversed object-type (i.e. the object-type where the edge labeled re-
ceivingTypeIter is pointing to) does not have the operation declaration then
its super-type should be traversed. The transformation rule in Figure 10-(c)
deletes the edge labeled receivingTypeIter and adds another edge with the
same label pointing to the super-type of the traversed object-type. This rule
has a lower priority then the rule presented in the previous step, therefore,
they do not match at the same time. The rule in the previous step deletes the

20

edge labeled receivingTypeIter if the traversed object-type has the operation
declaration. That label is required to match this rule, therefore, the traversal
stops in this case.

4. After finding the operation declaration and preparing the arguments, the
operation can be dispatched. However, before dispatching, we must be sure
that the operation is implemented. The transformation rule in Figure 10-(d)
matches when the operation declaration node marked in step 2 is also an
operation implementation node (i.e. that is also labeled OperImpl). When
this rule matches, it marks the operation implementation to be ready for
dispatch by adding the edge labeled receivingInstanceOperImpl. The previous
rule could also be modeled in a way that the traversal would search for the
operation implementation. However, we made this a separate transformation
rule because at run-time parameter passing is done after the operation is
located and before the operation is dispatched.

Fig. 11. Graph transformation rule that dispatches the operation after the object-type
that implements the operation is discovered by the rules presented in Figure 10.

After the object-type that implements the operation is discovered, the oper-
ation can be dispatched as presented by the graph transformation rule in Fig-
ure 11. Here, the dispatching is done by creating a new operation frame node
(n7), that is connected to the dispatched operation implementation (the node
labeled OperImpl) with an edge labeled executes. The self of the new frame is
the object on which the operation is called; thus, the rule adds the edge labeled
self between the newly added frame (n7) and the object the reference variable
holds (n0). The executing type of the new frame is the object-type that im-
plements the operation (n4). The frame from which the call is initiated from
is connected to the new frame with an edge labeled previousFrame. With this
edge, the frame that will be returned when the execution of the called operation
finishes is marked.

21

Execution Semantics for Before Pointcut We modeled an execution point-
cut model where the aspects intercept the entry and the exit points of the op-
erations. As discussed before, the pointcuts in DCML specify the name of the
operation that is going to be intercepted. The execution semantics of a before
pointcut evaluates whether the simulation is at the entry point of the operation
specified in the pointcut. If this evaluation yields true, then the advice code of
the pointcut is executed before the operation. Similarly, the semantics for the
after pointcut, evaluate whether the simulation has finished executing the oper-
ation specified by the pointcut. The advice code of these pointcuts is executed
just after the return action of the intercepted operation.

(a)

Fig. 12. The transformation rule modeling the semantics of before pointcut

Figure 12 shows the two transformation rules that identify the join points
for before pointcuts. At the entry point of an operation, the transformation rule
shown in Figure 12-(a) evaluates whether there is a before pointcut that can
intercept this operation. If there is, then it marks the intercepted operation and
intercepting pointcut with a node labeled Joinpoint (joint point node), node

22

n8. To evaluate whether a before pointcut can intercept the operation, the rule
checks for two conditions: 1) the execution should be at an entry point of an
operation 2) The name of this operation and the name of the object-type should
match to the names specified in the pointcut. These conditions are realized by
the transformation rule as follows:

– The entry point of an operation, in DCML, is the point where the program
counter, the edge labeled executes, connects the operation frame node to
an operation implementation node. The left-hand side of the transformation
rule shown in Figure 12-(a), includes the nodes n2, n9 and the edge labeled
executes. The node n2 represents the operation frame that is currently ex-
ecuting. This node is connected to the operation implementation node n9
with the edge labeled executes. These nodes and the edge represent the entry
point of an operation. Since, they belong to the left-hand side of the rule, the
rule only matches when the simulation is at the entry point of an operation.

– The transformation rule uses attribute operations to evaluate the pointcut
at an entry point of an operation. In the transformation rule, the nodes x200
and x201 represent the name of the operation and the value of the attribute
toMethod respectively. These nodes are generic value nodes and they can
match to any value of the attribute. The node p199 is a production node;
this is the node where the attribute operation is specified. The outgoing
edge labeled string:eq specifies the attribute operation is string comparison.
This edge is connected to the attribute node holding the value bool:true; this
states that the two string arguments of the operation should be equal for the
rule to match. The outgoing edges from a production node whose labels start
with arg are used for specifying the arguments of the attribute operation.
The arguments of the production node p199 are specified as the name of
the operation (node x200) and the value of the attribute toMethod (node
x201) with these edges. In this way, the rule evaluates whether the name
of the operation to be executed is the same as the name in the pointcut
specification. The evaluation of the name of the object-type is also realized
using the string comparison attribute operation (this attribute operation is
specified in the production node p203). Thus, the transformation rule only
matches when the string values of the pointcut specification are equal to the
object-type and operation that is to be executed.

The transformation rule shown in Figure 12-(b) evaluates whether there are
other aspects that can intercept the same operation as the aspect identified
by the rule presented in Figure 12-(a). This rule also uses attribute operations
to evaluate the pointcut. The main difference between this rule and the rule
presented in Figure 12-(a) is that this rule forms a list of join points. Assume
that there are two aspects that can intercept the currently executing operation.
The transformation rule shown in Figure 12-(a) identifies one of these aspects
and marks it by adding a join point node. Then, the transformation rule shown
in Figure 12-(b) identifies the second aspect and adds another join point node
(node n6). However, this join point node is connected to another join point node
(node n4) by an edge labeled next. In this way, a list with two join points is

23

formed. The beginning of the join point list is always the join point added by
the transformation rule of Figure 12-(a). This rule extends the join point list
by adding items to the end of the list. The edge labeled ptr is used for marking
the last item in the join point list. The rule connects the edge labeled next to
a join point node that has the self-edge labeled ptr. Since the newly added join
point is now the last item on the pointcut list, the rule adds the self-edge labeled
ptr to the new join point node (node n6 and deletes it from the previous join
point node (node n4). Note that, due to prioritization of the rules, when the
transformation rule shown in Figure 12-(b) matches, the rule in Figure 12-(a)
cannot match.

Note that the transformation rules shown in Figure 12 work on aspects that
do not specify a precedence. The execution semantics for aspects with precedence
are handled by another two transformation rules. These two rules also attribute
operations to compare the precedence value of the aspect-type nodes.

(a) (c)

(b) (d)

Fig. 13. a) Transformation rule for starting the execution of the join point list. b) The
transformation rule that starts the execution of the advice code for a pointcut. c) The
transformation rule that advances to the next join point in the join point list. d) The
transformation rule that resumes the execution of the intercepted operation.

After the join points are identified and the join point list is formed, the
join point list is traversed and the advice code of the pointcuts is executed.

24

The execution semantics of these are modeled in the 4 transformation rules
shown in figure 13. The transformation rule shown in Figure 13-(a) adds a new
operation frame, node n10, for traversing the join point list. This operation frame
is connected to the first join point of the join point list, node n9, with edge
labeled executes; thus, the dispatching of the advices start form this join point.
The operation frame node n3 is the frame of the operation that is intercepted by
the aspects. The edge labeled previousFrame connects the new operation frame
to this node so that when the traversal of the join point list is finished the
intercepted operation can resume its execution.

The transformation rule shown Figure 13-(b) dispatches the advice code for
the current join point. This is the join point node connected to the operation
frame node n4 with the edge labeled executes. The dispatching is realized by
adding an operation frame node, node n0. The self of this new operation frame
node is the aspect-type node, node n3, where the pointcut is declared. The node
n2 represents the first action of the advice. The new operation frame is connected
to this node with the edge labeled executes; thus, the execution of the advice code
starts from this action. The edge labeled previousFrame is connected to frame
where the join point dispatched the advice. When the advice code returns, the
execution is given back to this operation frame; so the traversal of the join point
list resumes.

When the advice code returns, the transformation rule shown in Figure 13
matches. This rule advances to the next join point in the list. When there are
no more items to be traversed in the join point list, the transformation rule in
Figure 13 matches. This rule deletes the operation frame in which the join point
list is traversed and resumes the execution of the intercepted operation.

3.4 Verification of Execution Sequences

When simulating the execution of a DCM, GROOVE generates the space of
states in which the program can be as well as all possible sequences of these
states. Next GROOVE verifies if specified constraints are violated by at least
one execution sequence; in this case, it has detected a conflict. To generate
the execution sequences, it iteratively applies the graph-transformation rules
constituting the operational semantics, as discussed in the previous subsection,
to the DCM of the design. The result of this simulation is represented as a so-
called graph transformation system (GTS) [23]. A GTS is, again, a graph, where
the nodes represent distinct runtime states and the directed edges represent
graph-transformation rules that were applied to transition from one state to the
other. When multiple rules can be applied at a certain state, one edge is created
for each rule.

Figure 14 shows an excerpt from a GTS demonstrating the simulation of a
UML models of the CMS with the aspects CarCrashScenario and PresidentialAc-
cidentScenario. The execution starts in the state labeled start. The labels of the
transitions are the names of the applied graph transformation rules. It is impor-
tant to note that some of the labels are parameterized, in particular, these are
executes(object-type name), executeMethod(operation name, object-type name)

25

and returnframe(operation name, object-type name). A rule with a parameter-
ized name, specifies a set of node attributes whose values should be outputted in
the transition labeled instead of the parameters. When applied, GROOVE ex-
tracts the values of from the target graph and replaces the parameters with the
extracted value. We use this mechanism to learn about the operations/aspects
that have executed during simulation. For example, the edge between nodes start
and S2 is labeled executeMethod(“fireStart”, “ScenarioOutSideEvent”) shows
that the simulation is at the entry point of the operation ScenarioOutSideEvent.
fireStart().

In the sample GTS, we see that after state S2 the simulation continues in two
branches. Each of these branches start with a transition labeled beforePointCut-
Start. This label is the name of the transformation rule shown in Figure 12-(a).
The design of the CMS contains two aspects and both of these aspects specify
a before pointcut to the operation fireStart(). So the transformation rule before-
PointCutStart can match at two different places; one for aspect CarCrashSce-
nario and the other one for aspect PresidentialEmergencyScenario. Application
of this rule to one of these aspects, adds a join point node specific for that as-
pect. This in turn causes the branching in the GTS. In fact, when more than
one aspect specifies a pointcut to the same operation, each application of the
rule beforePointCutStart to one of these aspects adds a branch to the GTS.

Because there are two aspects with a pointcut to the same operation, the
transition labeled beforePointCutStart is followed by the transition labeled be-
forePointCutNext once in each branch. The label beforePointCutNext is the name
of the transformation rule shown in Figure 12-(b) and as discussed before it adds
join points to the end of the join point list. Here, this rule matches once in each
branch because after the application of the transformation rule beforePointCut-
Start there is another aspect that has a pointcut to the operation fireStart().

It can be seen from the transition between state S15 and S17 that at the left
branch first the advice of the aspect PresidentialEmergencyScenario is executed.
Thus, the transformation rule beforePointCutStart has matched to this aspect in
this branch and the join point node marking this aspect is the first item in the join
point list. Following this, the next item in the join point list should be the join
point of the aspect CarCrashScenario. This can be confirmed at the sample GTS
where after advice code of the aspect PresidentialEmergencyScenario returns (i.e.
after the transition labeled returnframe(”adviceFireStart”, ”PresidentialEmer-
gencyScenario”)) there is a transition labeled executeMethod(”fireStart”, ”Car-
CrashScenario”) between the states S43 and S47 in the left branch.

The left branch is further divided into two branches after the state S17. As
can be seen from the sequence diagram shown in Figure 3-(c), the execution of
the operation adviceFireStart has two paths depending on the condition on the
parameter scenarioType. If this parameter is equal to PresidentEmergencySce-
nario, then the actions within the frame fragment is executed. On the other hand,
if the parameter is not equal to PresidentEmergencyScenario then the operation
returns (i.e. the actions within the frame fragment is not executed). The trans-
formation rule named ConditionalAdapt matches when there is conditional paths

26

Fig. 14. Excerpt from a graph transition system showing advice execution and a con-
ditional exeuction in the advice.

27

in the execution. The application of this rule picks one of the conditional paths
as the execution path; each application of this rule adds a branch to the GTS.
So, it can be seen that after state S20 the actions within the frame fragment is
executed because the operation ScenarioData.ScenarioStart() is executed in this
branch. The branch after the state S19 constitutes to the execution path where
the parameter scenarioType is not equal to PresidentEmergencyScenario.

Since the GTS contains all possible execution sequences, in order to identify
conflicts, it must be checked whether one path of the GTS violates an invariant.
Computation Tree Logic (CTL) is a suitable formalism to specify constraints
that have to be satisfied by every path in the GTS, i.e., which must be invariant
during all possible executions of the system. If there is at least one path that
violates the invariant, the verification fails. GROOVE implements an algorithm
to evaluate GTS against CTL formulae.

In a CTL formula, the transition labels from the GTS and their parameters
are used as operands. Together with the CTL operators, execution sequences can
be specified which are required to occur. For example, the operator EF specifies
a label which eventually has to occur in a successive state. The CTL formula
below specifies that an edge with the label executeMethod(“adviceFireStart”,
“CarCrashScenario”) must eventually be followed by an edge returnframe(“ad-
viceFireStart”, “CarCrashScenario”). In natural language, this means than af-
ter the advice CarCrashScenario.adviceFireStart has started executing it must
eventually terminate normally. In the GTS shown in Figure 14, this formula is
only satisfied in the right-hand execution sequence, therefore, the overall system
violates the invariant.

EF (executeMethod(”adviceF ireStart”, ”CarCrashScenario”) ∧
(EF (returnframe(”adviceF ireStart”, ”CarCrashScenario”)))

4 Application of our approach to the case study

While adding a new scenario, it is important that the modified parts do not
violate the invariants of the software system. In order to prevent resulting errors,
whether the invariants are violated or not must be verified. Especially, great
attention should be paid to verifying invariants of mission-critical systems like
a CMS because errors could have catastrophic effects.

The CMS software can be deployed at different crisis domains. Not every
type of crisis in a domain can be known when the software is deployed. Due
to this, CMS software is designed to be extendable such that new crisis man-
agement scenarios can easily be incorporated into the system. However, before
incorporating a new scenario into the system, the validity of the following two
conditions should be ensured: 1) the new scenario does not violate the invariants
of the CMS software 2) the old scenarios respect the invariants of the CMS so
that they do not cause problems with the new scenario. For verifying the second
condition one has to consider all possible interactions between different crisis
scenarios.

28

Assume that initially the stakeholders wanted to deploy the CMS software
to manage only car accidents. To fulfil this deployment, the pattern class Car-
CrashScenario was designed, implemented as an aspect with the same name and
shipped with the CMS software to the stakeholders. As the stakeholders gained
experience with car accidents, they noticed that some car accidents have a high
priority and the crisis resources should be first allocated to these accidents. One
such accident is the presidential accident, which always dispatches an ambu-
lance to the crisis scene. Thus, if all the ambulances are allocated by other car
crash scenarios, one of the crash scenarios should pre-empt the resources it has
allocated.

To manage presidential accidents, a new pattern class called PresidentialE-
mergencyScenario is added to the design of the CMS. The CMS already supports
prioritization of the crisis scenarios and pre-emption of resources: by calling the
operation ScenarioBroadcastEvent.firePreEmpt() a scenario may request other
scenarios to release the resources. This feature is used by the newly added sce-
nario; as can be seen from the sequence diagram shown in Figure 3-(b), the
pattern class PresidentialEmergencyScenario calls the operation Server. Sce-
narioBroadCastEvent() to request pre-emption when the operation fireStart()
is invoked. The sequence diagram in Figure 16 shows how the pattern class
PresidentialEmergencyScenario allocates resources. This design does not handle
failures during resource allocation because it assumes all other crisis scenarios in
the system have correctly pre-emptied the required resources. In an environment
where pre-emption is required, the pattern classes of the scenarios are required
to implement a “before invoke” operation for the operation firePreEmpt(). The
”before invoke” operation realizes how the pre-emption is realized in the crisis
scenario.

However, pre-emption was not a requirement when the CMS is initially de-
ployed and the aspect CarCrashScenario does not handle the request to pre-
empt resources. As a result, one of calls to allocate a resource in the presidential
emergency scenario fails and returns null. When the pattern class Presidential-
EmergencyScenario is implemented as an aspect by following the design pre-
sented in Figure 16, it would crash because a reaction on a failed resource allo-
cation is not specified.

In the reminder of this section, we describe how the graph-based semantic
interference detection is used to verify the pre-emption requirement of the pres-
idential emergency scenario based on the UML models of CMS (i.e. before the
aspect PresidentialAccidentScenario is implemented).

4.1 Simulation of the UML models of the CMS

The sequence diagram in Figure 15 shows the class Server receiving 4 events from
the users. Two of these events request a new crisis scenario to be initialized and
the other two require the newly initialized scenarios to allocate the resources.
To apply graph-based model checking, we used this sequence diagram, the class
diagram of the CMS software (these two diagrams constitute the “theme” main),
the UML diagrams of the “theme” Car Crash Scenario and the UML diagrams

29

 : Serve

ScenarioEvent:=ScenarioEvent(eventType, scenarioData, evetData)

scenarioOutsideEvents

fireStart:=fireStart(scenarioType1, scenarioData)

ScenarioEvent:=ScenarioEvent(eventType, scenarioData, evetData)

fireStart:=fireRequest(scenarioType1, scenarioData)

ScenarioEvent:=ScenarioEvent(eventType, scenarioData, evetData)

fireStart:=fireStart(scenarioType2, scenarioData)

ScenarioEvent:=ScenarioEvent(eventType, scenarioData, evetData)

fireStart:=fireRequest(scenarioType2, scenarioData)

Fig. 15. The class Server receiving 4 events from the user

of the “theme” Presidential Emergency Scenario. Some of the sequence diagrams
of the “theme”s are not shown in this paper for ease of understanding; however,
interested readers can download the full diagrams from [2]. Table 1 presents the
details on the number of actions of the sequence diagrams of the CMS.

The generated DCML model from these diagrams contains 490 graphs ele-
ments (nodes and edges). In this DCML model, the pattern classes are mapped
to the aspect-types CarCrashScenario and PresidentialEmergencyScenario. Both
of these aspects have 3 before pointcuts because there are 3 “before invokes” op-
erations in each theme. The simulation of this model generated a state-space
consisting of 7803 states, 8075 transitions; the simulation took 18.54 seconds1.
Since every possible order of the aspects is a different branch, each invoke of
the operations fireStart and fireResourceAllocate adds two branches to the GTS.
In addition to this, the conditional paths also add two branches for each advice
invocation. Furthermore, the GTS contains one node for each simulation step of
the non-aspect-oriented semantics.

1 The simulation was exeuted on a laptop with Core 2 Duo 2.4 GHz CPU 4GB Ram
running Windows Vista Ultimate 64-bit and JDK 1.6 Update 6.

30

Table 1. The details of the UML models of the CMS used for the simulation

Theme #Classes #Actions in
the sequence
diagram

#Binding Spec.

Main 14 8 0

Car Crash Scenario fireStart 1 13 1

Car Crash Scenario fireResourceAllocate 1 16 1

Presidential Scenario fireStart 1 17 1

Presidential Scenario fireResourceAllocate 1 21 1

Presidential Scenario firePreEmpt 1 4 1

«pattern class»

ccs : PresidentialEmergencyScenario

«templateParameter» _fireStart:

=fireRequest(scenarioType, scenarioData)

beforeInvoke()

adviceFireStart:=allocationStart(scenarioType, scenarioData)

gotResource:=allocateResource(type)

 : Resource::ResourceManager

resource

scenarioData : Scenario::ScenarioData

addAllocatedResource:=addAllocatedResource(goResource)

state : States::ResourceAllocate

ResourceAllocate(res)

executeSateAction:=executeSateAction(executingScenarioData)

_fireRequest:=_fireRequest(scenarioType, scenarioData)

gotResource:=allocateResource(type)

resource

scenarioType=PresidentialEmergencyScenario

res::Resource

type: = getType()

Fig. 16. The sequence diagram from theme Presidential Emergency Scenario showing
the resource allocation of the pattern class

31

4.2 Methods for Pruning the State-Space

The number of states generated by the simulation in the worst case is bounded
above by O(nk × cnk), where n is the number of aspects, k is the number of
operation with shared join points and c is the maximum number of alternative
executions in the aspects. On average, this number is much less then the pro-
vided upper bound because GROOVE detects isomorphic states in branches and
merges them into one branch. Nevertheless, if there are many aspects on shared
join points, the state-space becomes to large. Therefore, we offer the use of the
following methods for pruning the state-space:

– Simulating with reduced number of aspects: By simulating a subset of
the aspects that are important for the verification, the size of the state-space
may be reduced greatly. However, the important aspects for an invariant are
selected manually and, as a result, an aspect that causes interference may
be left-out.

– Simulating with reduced number of operations with shared join
points: The operations which are intercepted by more than one aspects
is likely to cause interference problems. However, not all of these methods
need to be simulated to verify an invariant. If one can select a subset of these
operations important to the invariant, then one of the dominating factors in
the size of the generated state-space would be reduced. This method shares
the same disadvantage of the previous method, as manual selection may miss
an operation that violates the invariant.

– Using aspect precedence: For certain invariants, the execution of order
of the aspects may not be important. Thus, the state-space can be reduced
by specifying the precedence of the aspects. For example, this is applicable
for scenarios of the CMS because scenarios are mission critical and extra
attention must be paid in verifying whether they obey the invariants.

– Identifying mutually exclusive conditions: As discussed in Section 3.4,
the transformation rule ConditionalAdapt just picks one of the conditional
paths. When the conditions are mutually exclusive, semantically impossible
executions may be generated due to this. The size of the state-space may
be reduced by specifying which conditional frame fragments are mutually
exclusive in the sequence diagrams. Using the stereotype <<exclusive>>,
the designers can specify that these conditional paths as exclusive. When
the simulation reaches an exclusive conditional path, it picks one of the
execution paths but adds edges describing the picked execution path to the
value of the variable declaration the condition is taken upon. Thus, exclusive
conditional statements that take conditions upon the same value, are only
allowed to pick the path that is different then the marked path. For example,
the conditional paths of the aspects CarCrashScenario and PresidentialE-
mergencyScenario are exclusive in that, when one of them is executes the
actions within the frame fragment the other one returns (skips the actions
in the frame fragment). Without mutually exclusive conditional paths, the
simulation may generate a branch where actions within the frame fragment

32

is executed for both aspects (i.e. an execution sequence where the param-
eter scenarioType is equal to CarCrashScenario and PresidentialScenario.
This execution sequence is omitted when the condition on the parameter
scenarioType is specified as mutually exclusive.

To test the effects of these state space reduction mechanisms on the design of
the CMS, we run the simulation without the reduction mechanisms and with the
reduction mechanisms. We also added crisis scenarios, whose executions are very
similar to the car crash scenario, to see how the simulation scales. In Table 2 the
size of the generated state-space and the simulation time of each run is shown.
It can be seen that without any reduction method, as the number of scenarios
increases, the size of the state-space grows significantly.

When the aspect precedence is used, the size of the state-space reduces by
a factor of 9 compared to the size of the state-space without any reduction
methods. Because with precedence, only one execution order for aspects are
generated. In this case, the number of states is bounded above by O(cnk); where
c is the maximum number of alternative execution paths in the aspects, n is the
number of aspects and k is the number of shared operations at join point.

For four scenarios, when exclusive “ifs” are used with aspect precedence,
in total, the state-space contains at 25 branches. This is because in the se-
quence diagram given in Figure 15, the subsequent invocations to the operations
fireStart() and fireResourceAllocate() used the same value. After the first invo-
cation of the operation fireStart(), 5 branches are generated with exclusive “ifs”
(in 4 of these branches one of the aspects executed the actions within the frame
fragment, and in the fifth one none of the aspects have executed this code). The
first invocation of the operation fireResourceAllocate() does not cause branches
because the parameter eventType is the same as the parameter passed the op-
eration fireStart(). After this, the second invocation of the operation fireStart()
causes another 5 branches. This time exclusive “ifs” caused branches because
the variable eventType2 is passed and no path decision is made according to the
value of this variable (Figure 15). Similar to the first invocation, the second in-
vocation to the operation fireResourceAllocate() does not generate any branches
because the variable eventType2 is passed to this operation. Thus, the number
of states in the worst case exclusive “ifs” is bonded above by O(nk). This worst
case happens when all of the k operations are invoked with a distinct value.
However, for practical cases the number of states is much less because not every
operation invocation uses a distinct value. For example, with CMS for operation
invocations are simulated with two distinct values. This reduced the state-space
size to be bounded above by O(n2).

4.3 Verification of Invariants of the Presidential Emergency
Scenario

As discussed before, the invariants are verified by checking whether there is a
path in the GTS that violates the invariant. Such a check is realized by expressing
an execution sequence that violates the invariant as a CTL formula. If the CTL

33

Table 2. The effects of the state-space reduction mechanisms

of Sce-
narios

No Reduction Mechanism Aspect Precedence Precedence and Exclusive
“ifs”

of
States

of
Transi-
tion

Simulation
time in
s.

of
States

of
Transi-
tion

Simulation
time in
s.

of
States

of
Transi-
tion

Simulation
time in
s.

2 7803 8075 18.54 3735 3881 9.29 623 652 2.22

3 99464 98689 368.68 14711 15367 38.12 1258 1324 2.96

4 525940 544100 1059.56 59149 62079 171.07 1824 1928 5.541

evaluation algorithm finds states that conform to the formula (i.e. states where
the CTL formula evaluates to true) then the invariant is violated. Using this, we
evaluate the following three invariants of the presidential emergency scenario:

– The scenario presidential emergency should not release its re-
sources when it receives the request for pre-emption. A scenario re-
leases a resource by calling the operation ResourceManager.deallocateResource().
Thus, if the operation deallocatedResource() is called from the aspect-type
PresidentialEmergencyScenario within the advice for the operation firePre-
Empt, then the invariant is violated. This execution sequence can be ex-
pressed with the following CTL formula

EF (executeMethod(”adviceF irePreEmpt”, ”PresidentialEmergencyScenario”) ∧
(EF (executeMethod(”deallocateResource”, ”ResourceManager”) ∧

(EF (returnframe(”adviceF irePreEmpt”, ”PresidentialEmergencyScenario”))))))

This formula looks for a path where before the advice code at the as-
pect PresidentialEmergencyScenario for the operation firePreEmpt returns,
the operation the deallocateResource() executes. Here, the labeled return-
frame(”adviceFirePreEmpt”, ”PresidentialEmergencyScenario”) designates
the exit point of an operation. The verification did not find any states that
satisfy this formula. So, we can conclude that the invariant is not violated.
This invariant is not violated because in the “theme” presidential emergency
scenario the designers specified a sequence diagram, which shows the “before
invoke” for the operation firePreEmpt() only returns.

– The resource allocation for the scenario presidential emergency
should always complete. This invariant is violated if the advice for the
method fireResourceAllocate() of the aspect-type PresidentialEmergencySce-
nario does not complete successfully. The transitions labeled returnframe
(operation name, object-type) only occur when the operation successfully re-
turns. Thus, with the following CTL formula we can search an execution
sequence where the advice starts executing but does not return.

EF (executeMethod(”allocationStart”, ”PresidentialEmergencyScenario”) ∧

34

!(EF (returnframe(”allocationStart”, ”PresidentialEmergencyScenario”)))

Note that here allocationStart() is an operation called by the advice for the
operation fireRequest as shown in Figure 16. The verification was able find
states that satisfied this formula; thus, the invariant is violated. The advice
can fail when the resource manager runs out of resources. When there is not
any resource to allocate the operation allocateResource() returns null. The
sequence diagram shown in Figure 16 does not specify any frame fragments
that is executed when resource allocation fails (i.e. when null is returned).
Thus, the execution of the advice did not complete successfully because it
thrown a null pointer exception. We can confirm this because after receiving
the resources the advice calls ScenarioData to log the resources. With a null
resource, the call to Resource.getType() fails. We used the following CTL
formula to confirm the call to the operation getType fails:

EF (executeMethod(”allocationStart”, ”PresidentialEmergencyScenario”) ∧
(EF (executeMethod(”getType”, ”Resource”) ∧
!(EF (returnframe(”getType”, ”Resource”))))))

– The scenario car crash should deallocate its resources if the re-
source is not already dispatched. In any of the paths if the aspect-type
CarCrashScenario does not execute after the operation firePreEmpt(), then
this invariant is violated. We can express this path as follows:

EF (executeMethod(”firePreEmpt”, ”ScenarioInternalEvent”) ∧
(EF (executes(”CarCrashScenario”) ∧

(EF (returnframe(”firePreEmpt”, ”ScenarioInternalEvent”))))))

The verification found states that satisfy this formula which means that
pre-emption is not handled by the aspect-type CarCrashScenario. The UML
diagrams for the “theme” CarCrashScenario does not specify a sequence dia-
gram with a before or after invoke to the operation firePreEmpt. As a result,
there is not a pointcut for this operation in the aspect-type CarCrashSce-
nario.

5 Related work

In the following, we discuss the related work from 4 different perspectives:

Representing UML models In the literature, graph-based approaches are
used to formally define the semantics of UML class- and object diagrams [26],
to detect inconsistencies in UML diagrams caused by evolution [30], to for-
malize refactorings [31], to recover design information [35] and to correctly

35

evolve design patterns [41]. These approaches provide a graph-based model
for object-oriented systems focusing on the static structure; in contrast,
DCML is tailored more to model the dynamic structure of the software.
In our previous studies [10], we used graph transformation rules to correctly
evolve UML models by following the constraints of software structures like
design patterns (e.g. we defined transformation rules to add a strategy using
the strategy pattern). In contrast to DCML, the graph based model used in
this study is static, captures the class diagram and one sequence diagram.
It lacks also the model elements that are used for execution semantics.

Execution Semantics for UML models Although the meta-model of UML
is documented and the modeling language is widely known, the lack of formal
semantics makes it hard to reason about the models. In the literature, for-
mal semantics for different types of UML diagrams are proposed. Whittle [39]
provides a formal semantics to use-case charts that enables the specification
of use-case scenarios. Use cases capture the software system’s behavior from
the stakeholders’ view, and use-case charts model them as three-level dia-
grams. The first level is an activity diagram where the nodes are the use
cases; the second level is also an activity diagram where the nodes are sce-
narios of a use case in the previous level; and the third level is constituted
by interaction diagrams of the scenarios of the second level. Because the use-
case charts formally specify the scenarios, they can be simulated. Therefore,
a hierarchical state machine synthesis algorithm is proposed [40] and the
tool UCSIM that executes this algorithm and simulates the generated state
machines has been developed [21].
Graph transformations have been used to specify formal execution semantics
to UML state-charts [27] [29]. For example, Kung et al. [27] generate the
graph grammar that models the execution semantics for a given state-chart.
These semantics, however, work only on providing verification/visualization
for a single state-chart.
Dynamic meta modeling is also proposed as a way to add operational se-
mantics to the UML diagrams [15]. In this approach, the meta model of the
UML class diagram is extended with a dynamic meta model that uses the
collaboration diagram notations. The state-chart diagrams specify the be-
havior of the system; for example, in order to trigger a transition, a method
has to be called which in turn can trigger another event in the state chart of
the called method. Using graph transformations the operational semantics
such as state transitions or method call triggers are modeled. Using a state
space generator such as GROOVE and these graph transformations [16],
it is possible to simulate the behavior of the software system and generate
the state space of the system. Then, the requirements of the system can be
verified in the generated state space.
The main difference between the approaches presented in this section and
our semantics is that we provide semantics that are close to actual aspect-
oriented software execution. Moreover, the semantics we provide are generic
can be applied to any sequence diagram.

36

Object-oriented verification Programming languages generally have a well-
defined syntax, but their execution semantics are often informally specified.
To formalize the execution semantics of Object-oriented programs, Kasten-
berg et al. model execution semantics of the TAAL language (a simplified
version of Java) as graph transformations [22]. Here, the idea is that a pro-
gram in the TAAL language can be compiled into a graph model and simu-
lated using graph transformation rules. By using graph-based model check-
ing, the properties of the execution can be verified. In our approach, we
apply graph-based model checking to UML models by modeling the execu-
tion semantics of UML, in particular of sequence diagrams (which define
valid/desired sequences of actions) in combination with class diagrams. The
semantics defined by Kastenberg are specific for TAAL and cannot suit-
ably be adapted to represent UML-based models, without major effort. As
compared to this, we have defined an (automated) mapping from the UML
metamodel to DCML. In addition, their approach does not support aspect-
based functionality (such as explicit mappings for pointcuts, join points,
etc.).
Visser et al. propose to apply model checking to main stream programming
languages, such as Java [38]. They propose a system (Java Path Finder) to
model check programs expressed in Java Bytecode. Their approach is applied
to programs at the implementation level; this is an explicit design choice. As
compared to this, we want to detect interference at the UML design level,
while also supporting the use of aspects at this level.

Aspect-oriented verification A few approaches exist that aim to prove the
correctness (usually with regard to specific properties) of programs or models
in the presence of aspects. For example, Katz et al. propose an approach that
checks whether a given program, which may include crosscutting definitions
(such as pointcut-advice constructs), conforms to one or more scenarios [24].
In this approach, the system and aspects must be specified as a set of sce-
narios in a formal language. The verification is carried out by detecting the
join points of the aspectual scenarios and finding out if there are undesired
interferences at these points. Our approach, on the other hand, does not re-
quire the user to specify anything about the program beyond UML models;
interference is detected based on the operation semantics of these models.
An approach related to the above facilitates the automated derivation of
proof obligations from requirements models that are specified using an aspect-
oriented requirements engineering approach [25]. For example, the approach
generates temporal logic formulas that have to be satisfied (proven) in later
design stages. This allows to check the consistency between early and later
design stages. As compared to this, the approach presented in this paper ver-
ifies the consistency of several models at the same modeling level (i.e. at the
concrete design stage). As such, the approaches could be used to complement
each other.
At the level of aspect-oriented requirements engineering, [8] proposes an
approach that uses semantic annotations to make aspect composition speci-
fications less fragile. The work is related to ours, as these specifications later

37

drive the generation of models; it is however not aimed at (model-)checking
the correctness of the resulting system with regard to the intended semantics
of the composed system. Rather it supports the user to actually compose the
intended elements in the first place (cf. the fragile pointcut problem [28]).
In this paper we did not focus on addressing problems related to fragile
pointcuts; we do however discuss this issue (at the program level) in other
work [34, 19].
The authors of [33, 32] aim at detecting the possible semantic interferences
that can manifest in models expressed using the Aspect-UML language. To
this aim, the static language elements of Aspect-UML are mapped to the
specification language of Alloy. The operational semantics of Aspect-UML
models, however, have to be expressed manually using the dynamic state-
based specification language of Alloy. There are at least three differences
between our approach and the one proposed in [33]. Firstly, in our approach,
we derive the formal representation of models based on the static and dy-
namic semantics of the UML, and on a graph based generic pointcut model.
As such, our approach is less AOM specific. Secondly, we derive the opera-
tional semantics of models from the UML models directly; the modeler does
not need to define the dynamic behavior of models in the specific language
of the verifier. Thirdly, Alloy is designed intentionally as a limited model-
checker that mainly adopts the small scope hypothesis; that is, the errors are
searched only within a limited scope. The GROOVE model checker, how-
ever, incorporates various verification tools including a possibility for a full
state-space exploration.
In [4], Aksit et al. introduce an approach for the detection of interference
between aspects that is also based on graph transformations. There are two
major differences with the work presented in this paper: first, the paper fo-
cuses on modeling the operational semantics of aspect-specific behavior (i.e.,
advice code) within the Composition Filters approach. Thus, the approach
works at the program level and focuses on (only) the aspect-related part of
the program. Second, the paper focuses on detecting interference at shared
join points, i.e., it detects situations where the behavior of the program dif-
fers based on the order in which advices at shared join points are executed.
As compared to this, the work presented in our paper does not focus on
detecting interference at (only) shared join points, and takes the semantics
of the entire (UML-based) model into account.

6 Discussions and Conclusions

In this article, we have analyzed the example CMS case, identified two crisis
scenarios as aspects, define a model using Theme/UML, and verified its cor-
rectness at the modeling level with respect to a possible semantic interference
among the scenarios. We will now evaluate our approach from the following three
perspectives:

38

Expressivity: The expressiveness of the tool is determined by the base mod-
eling language UML, and the adopted join point model as described in sec-
tion 3.3. In the current version, our tool supports UML class and sequence
diagrams. A large set of library of rules are defined for the static and oper-
ational semantics of UML. The join point model currently supports before
and after pointcut specifications. Since our model is based on a general pur-
pose graph-verification system (GROOVE), further extensions and tailoring
should be possible within the limits of the selected approach. Our system
is also supported by UML to graph translators, pruning techniques, model
checkers. The sophistication of the graph model and the operational seman-
tics, the simulation and the complexity of the model-checking process are
hidden from the user. The user supplies UML-based AOM models to the
system, and has to use CTL formulas to specify the invariants. The user is
warned if the state space becomes too large, so that the available pruning
methods can be investigated. Our system was able to detect the UML-level
semantic errors among the aspects of the CMS model. Of course, the capa-
bility of our approach is by definition limited to the expressiveness of the
selected UML models and the join point model.

Scalability: In the CMS, scenarios are represented as aspects. The space and
time complexity of the detection algorithm depends on the simultaneously
active aspects that interfere with each other. In most aspect-oriented ap-
plications, the number of potentially conflicting aspects are expected to be
low. However, depending on its context of usage, the CMS system should be
able to handle, say 10-20 scenarios simultaneously. Within the context of the
example case, without taking any measures, the tool is capable of handling
approximately four scenarios. Since this is rather limited, we have decided
to use the available pruning methods. We first applied a precedence order
among the scenarios and investigated if such an ordering caused any artifi-
cial restriction. This did not cause any problem because, the invariants that
are used in the verification process as shown in section 4.3 are independent
of the aspect execution order. As shown in Table 2, this pruning method
has reduced the generated states more than 9 times. To further reduce the
state space, we have identified the critical operations which cause branching
in the state space. As shown in Figure 14, such as an information is easily
obtainable from the tool. We have then tagged the branches that should be
mutually exclusive. As a result, the state space is reduced more than 300
times. Concluding, from this practical experience, we observe that our ap-
proach is applicable to verifying models without pruning up to a limited set
of interfering aspects. Nevertheless, as in the case of the CMS, the pruning
process may reduce the complexity of the verification dramatically. From
the perspective of the tool, a model which consists of a high-level of inter-
fering aspects and that cannot be pruned, is considered either ill-designed
and therefore must be re-factored, or is out of the capability of the tool. We
assume this will be an exception in practice.

Applicability to AOM tools: Our tool is only applicable to UML-based AOM
models, which can be translated to our internal representation. First of all,

39

this requires mapping UML-specific parts of the AOM to our meta-model.
Secondly, the aspect and pointcut designators of the AOM must be mapped
to our pointcut model as specified in Figure 8.

Based on these evaluations, we can conclude that the tool proves its applica-
bility to the CMS example case. We think that the tool is capable of handling a
large category of aspect-interface problems that can be experienced in the current
UML-based AOM approaches. As discussed in the article, there may be certain
complex cases which the tool cannot scale. These, however, are considered as
rather exceptional cases rather than the routine.

References

1. ArgoUML [online] http://argouml.tigris.org.
2. Gace: Graph-based adaptation, configuration and evolution modeling [online]

http://trese.cs.utwente.nl/willevolve/.
3. M. Akşit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting

object-interactions using composition-filters. In R. Guerraoui, O. Nierstrasz, and
M. Riveill, editors, Object-Based Distributed Processing, pages 152–184. Springer-
Verlag Lecture Notes in Computer Science, 1993.

4. M. Aksit, A. Rensink, and T. Staijen. A Graph-Transformation-Based Simulation
Approach for Analysing Aspect Interference on Shared Join Points. In AOSD ’09:
Proceedings of the 8th ACM International Conference on Aspect-Oriented Software
Development, Charlottesville, Virginia, USA, pages 39–50, New York, 2009. ACM.

5. K. Altisen, F. Maraninchi, and D. Stauch. Aspect-oriented programming for reac-
tive systems: Larissa, a proposal in the synchronous framework. Science of Com-
puter Programming, 63(3):297–320, 2006.

6. J. Araújo, J. Whittle, and D.-K. Kim. Modeling and composing scenario-based re-
quirements with aspects. In Proc. 12th Int’l Requirements Engineering Conference,
pages 53–62. IEEE, Sept. 2004.

7. E. Baniassad and S. Clarke. Theme: An approach for aspect-oriented analysis and
design. In Proceedings of the 26th International Conference on Software Engineer-
ing, pages 158–167. IEEE Computer Society Washington, DC, USA, 2004.

8. R. Chitchyan, A. Rashid, P. Rayson, and R. Waters. Semantics-based composi-
tion for aspect-oriented requirements engineering. In Proceedings of the 6th inter-
national conference on Aspect-oriented software development, pages 36–48. ACM
New York, NY, USA, 2007.

9. R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. P. Alarcon, J. Bakker, B. Tekin-
erdogan, and A. J. Siobhán Clarke and. Survey of aspect-oriented analysis and de-
sign approaches. Technical Report AOSD-Europe-ULANC-9, AOSD-Europe, May
2005.

10. S. Ciraci, P. van den Broek, and M. Aksit. Framework for computer-aided evolution
of object-oriented designs. COMPSAC, pages 757–764, 2008.

11. S. Clarke and R. J. Walker. Composition patterns: An approach to designing
reusable aspects. In Proc. 23rd Int’l Conf. Software Engineering (ICSE), pages
5–14, May 2001.

12. S. Clarke and R. J. Walker. Generic aspect-oriented design with Theme/UML. In
R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-Oriented Software
Development, pages 425–458. Addison-Wesley, Boston, 2005.

40

13. P. E. A. Durr. Resource-based Verification for Robust Composition of Aspects. PhD
thesis, University of Twente, Enschede, June 2008.

14. H. Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus,
H. Ehrig, and G. Rozenberg, editors, Graph Grammars and Their Application to
Computer Science and Biology, volume 73 of LNCS, pages 1–69, 1979.

15. G. Engels, R. Heckel, and S. Sauer. Dynamic meta modeling: A graphical approach
to operational semantics of behavioral diagrams in uml. 1999.

16. G. Engels, C. Soltenborn, and H. Wehrheim. Analysis of uml activities using
dynamic meta modeling. In FMOODS’07, LNCS, pages 76–90. Springer-Verlag,
2007.

17. R. France, I. Ray, G. Georg, and S. Ghosh. Aspect-oriented approach to early
design modelling. IEE Proceedings Software, 151(4):173– 185, Aug. 2004.

18. A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application
conditions. Fundam. Inf., 26(3-4):287–313, 1996.

19. W. K. Havinga, I. Nagy, L. M. J. Bergmans, and M. A. sit. A graph-based ap-
proach to modeling and detecting composition conflicts related to introductions.
In O. de Moor, editor, Proceedings of International Conference on Aspect Oriented
Software Development, AOSD 2007, Vancouver, Canada, ACM International Con-
ference Proceedings Series, pages 85–95, New York, March 2007. ACM Press.

20. R. Helm, I. Holland, and D. Gangopadhyay. Contracts: specifying behavioral com-
positions in object-oriented systems. ACM Sigplan Notices, 25(10):169–180, 1990.

21. P. K. Jayaraman and J. Whittle. Ucsim: A tool for simulating use case scenarios. In
ICSE COMPANION ’07: Companion to the proceedings of the 29th International
Conference on Software Engineering, pages 43–44, Washington, DC, USA, 2007.
IEEE Computer Society.

22. H. Kastenberg, A. G. Kleppe, and A. Rensink. Defining oo execution semantics
using graph transformations. In 8th IFIP, volume 4037 of LNCS, pages 186–201,
2006.

23. H. Kastenberg and A. Rensink. Model checking dynamic states in groove. In
SPIN’06, volume 3925, pages 299–305, Berlin, 2006. Springer-Verlag.

24. E. Katz and S. Katz. Verifying scenario-based aspect specifications. Lecture notes
in computer science, 3582:432, 2005.

25. S. Katz and A. Rashid. From aspectual requirements to proof obligations for
aspect-oriented systems. In 12th IEEE International Requirements Engineering
Conference, 2004. Proceedings, pages 48–57, 2004.

26. A. Kleppe and A. Rensink. On a graph-based semantics for uml class and object
diagrams. In Proceedings of the 7th International Workshop on Graph Transfor-
mation and Visual Modeling Techniques, volume 10 of Electronic Communications
of the EASST, page 16, 2008.

27. J. Kong, K. Zhang, J. Dong, and D. Xu. Specifying behavioral semantics of uml
diagrams through graph transformations. J. Syst. Softw., 82(2):292–306, 2009.

28. C. Koppen and M. Störzer. PCDiff: Attacking the fragile pointcut problem. In
K. Gybels, S. Hanenberg, S. Herrmann, and J. Wloka, editors, European Interactive
Workshop on Aspects in Software (EIWAS), Sept. 2004.

29. S. Kuske. A formal semantics of uml state machines based on structured graph
transformation. In UML’01, pages 241–256, London, UK, 2001. Springer-Verlag.

30. T. Mens, R. V. D. Straeten, and M. Dı́Hondt. Detecting and resolving model
inconsistencies using transformation dependency analysis. In Model Driven Eng.
Lang. and Sys., volume 4199/2006, pages 200–214, 2006.

31. T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using
graph transformation. Software and Systems Modeling, 6(3):269–285, 2007.

41

32. F. Mostefaoui and J. Vachon. Design-level Detection of Interactions in Aspect-
UML models using Alloy. Journal of Object Technology, 6:137–165, 2007.

33. F. Mostefaoui and J. Vachon. Verification of Aspect-UML models using Alloy. In
Proceedings of the 10th international workshop on Aspect-oriented modeling, pages
41–48. ACM New York, NY, USA, 2007.

34. I. Nagy, L. Bergmans, W. Havinga, and M. Aksit. Utilizing design information
in aspect-oriented programming. In A. P. Robert Hirschfeld, Ryszard Kowalczyk
and M. Weske, editors, Proceedings of International Conference NetObjectDays,
NODe2005, volume P-69 of Lecture Notes in Informatics, Erfurt, Germany, Sep
2005. Gesellschaft für Informatik (GI).

35. C. Rich and L. Wills. Recognizing a program’s design: a graph-parsing approach.
Software, IEEE, 7(1):82–89, Jan 1990.

36. A. Sampaio, R. Chitchyan, A. Rashid, and P. Rayson. EA-Miner: a tool for au-
tomating aspect-oriented requirements identification. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering, pages
352–355. ACM New York, NY, USA, 2005.

37. A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Retschitzegger, M. Wimmer,
and G. Kappel. A survey on aspect-oriented modeling approaches. Relatorio
tecnico, Vienna University of Technology, 2007.

38. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering, 10(2):203–232, 2003.

39. J. Whittle. Precise specification of use case scenarios. In FASE’07, volume 44 of
LNCS, pages 170–184. Springer-Verlag, 2007.

40. J. Whittle and P. K. Jayaraman. Generating hierarchical state machines from use
case charts. In RE ’06, pages 16–25, Washington, DC, USA, 2006. IEEE Computer
Society.

41. C. Zhao and et al. Pattern-based design evolution using graph transformation. J.
Vis. Lang. Comput., 18(4):378–398, 2007.

Appendix – DCML elements

In this appendix, all elements of the DCML and examples for them are discussed
in detail. For convenience, we have copied the figures used in this discussion to
the appendix which are already used throughout the paper. Figure 17 repeats
the DCML meta model.

Structural Part of DCML

The structure part covers the elements of the meta-model for modeling the
classes, the interfaces and the relations between these. This part is generated
from the class diagram. Because classes and interfaces are types at runtime,
they are represented with nodes labeled ObjectType (object-type nodes). If the
object-type node is representing an interface, then the attribute interface is set
to true. The equivalent of the generalization relation is the edge labeled super-
type. Figure 18-(a) shows a portion of the class diagram from the CMS with
three classes, namely State, ResourceAllocation and ScenarioData. Figure 18-(b)
shows the DCML representation of this class diagram; here, the three object-type

42

-name : string

Type

-final : bool

-abstract : bool

-interface : bool

ObjectType
PrimitiveType

-final : bool

-static : bool

OperDecl

-operations

OperImpl

ListLookup

Action

CallAction
return

-body

-name : string

VarDecl
-Type

-attributes

ListType

-e
le
m
e
n
tL
o
o
k
u
p

-next
-statement

-name : string

Signature -signature

-parameter

-returnVal

CreateAction

-superType

Super This
-referenceVar

Event

RegisterEvent OperFrame

Object

-s
e
lf

-previousExecution

-e
x
e
c
u
tin
g
T
y
p
e

instanceValue

-encapsulates

Value

-i
n
s
ta
n
c
e

-paramValue, assignedValue

-e
x
e
c
u
te
s

-c
a
lle
d
S
ig
n
a
tu
re

-instance

InstanceCall

StaticCall

ThisCall

SuperCall

-referenceType-r
e
fe
re
n
c
e
V
a
r

-referenceVar

Fig. 17. The DCML meta-model

nodes represent the classes in the class diagram. For example, the object-type
node with the attribute name ResourceAllocation (i.e. the name of object-type
node) is the class with the same name represented in DCML. The class Re-
sourceAllocate generalizes the class State in the class diagram. This is shown
in DCML with the edge labeled SuperType connecting the object-type nodes
representing these classes.

«abstract» +executeSateAction(in executingScenarioData : ScenarioData) : void

State

+ResourceAllocate(in res : ResourceAllocate)

+executeStateAction(in executingScenarioData : ScenarioData) : void

ResourceAllocate

+addAllocatedResource(in res : Resource) : void

-currentState : State

ScenarioData

(a) (b)

Fig. 18. a) An example UML class diagram. b) The DCML model of the class diagram
shown in (a)

The nodes labeled VarDecl represent the variable declarations (variable dec-
laration node); the type of the variable is modeled by the edge labeled Type,
connecting the variable declaration node to a type node. An object-type node
connected to a variable declaration node with an edge labeled attributes repre-
sents that the variable is an attribute of the object-type. For example, the class
ScenarioData has the attribute currentState and the type of this attribute is the
class State as shown in Figure 18. In the DCML equivalent of this class diagram
in Figure 18, this is also shown: the object-type node named ScenarioData and

43

the variable declaration node named currentState are connected by the edge
labeled attributes.

DCML separates the operation signatures from the operation declarations.
The operation declaration nodes (nodes labeled OperDecl) are used for repre-
senting the abstract operations and operations without implementations. The
object-type node connected to an operation declaration node with an edge la-
beled operations represents the object-type which declares the operation. The
implemented operations, on the other hand, are represented by nodes labeled
both OperImpl and OperDecl (operation implementation nodes). In Figure 18-
(a), the class State has an abstract operation; thus, the object-type node State
is connected to an operation declaration node in the DCML model of this class
diagram (Figure 18-(b)).

Each unique signature in the class diagram is represented by signature nodes
(nodes labeled Signature). The parameters of a signature are represented by
variable declaration nodes connected to the signature node with an edge labeled
parameter and the return type of the signature is represented by connecting
the signature node to a type node. In Figure 18-(a), there are two operations
with the same signature named executeStateAction that take one parameter of
type ScenarioData and do not return a value. In the DCML model of this class
diagram, this signature is represented by the signature node named executeState-
Action. Note that the operation declaration node of the object-type State and
the operation implementation node of the object-type ResourceAllocate are both
connected to this signature node by an edge labeled signature. This shows that
in the object-type State an operation with a signature named executeStateAction
is declared and in the sub-type ResourceAllocate this operation is implemented.
In this manner, operation overriding is modeled by connecting the operation
implementation node of a sub-type to a signature node to which an operation
implementation node of the super-type is connected.

s : Scenario::ScenarioData currentState : States::ResourceAllocate

addAllocatedResource:=addAllocatedResource(res)

executeSateAction:=executeSateAction(executingScenarioData)

Fig. 19. A sequence diagram showing the actions executed by the operation
ScenarioData.addAllocatedResource()

44

Dynamic Part of DCML

The dynamic part, which is generated from the sequence diagrams, covers the
elements for modeling the objects, the values and the life-lines operations. A
life-line in a sequence diagram shows the actions the object executes when it
receives a call. In the DCML meta-model (Figure 17), the specializations of the
abstract element Action represents the actions of sequence diagrams. For exam-
ple, the nodes labeled CallAction represent call actions and the nodes labeled
return represent return actions. An action node can be connected to another
action node by an edge labeled next; in this way, the order between the actions
of a life-line is represented in DCML. The first action of a life-line is connected
to an operation implementation node by an edge labeled body in DCML to show
that these actions are executed when this operation received a call. The sequence
diagram presented in Figure 19 shows the life-line of the operation addAllocat-
edResource(). The first action executed in this life-line is a call action. This
action is followed by a return action where the operation addAllocatedResouce()
returns. Figure 20 shows the DCML model generated from this sequence dia-
gram (and the class diagram in Figure 18). In this figure, the emphasized node
represents the call action belonging to the life-line of the operation addAllocat-
edResource. Because in the sequence diagram this call action is the first action
executed in the life-line of the operation addAllocatedResource(), the emphasized
node is connected to the operation implementation node representing the oper-
ation addAllocatedResource() by an edge labeled body. This call action node is
connected to the signature node named executeStateAction by an edge labeled
calledSignature to show that the call action is to the signature executeStateAc-
tion. Following the outgoing edge labeled next from the call action node, it can
be seen that the call action is succeeded by a return action.

Fig. 20. A snapshot from the simulation of the sequence diagram shown in Figure 19

45

In DCML, call actions have 5 specializations representing different kinds
calls: the calls to instances (InstanceCall), create actions (CreateOper), super
operation calls (SuperCall), self calls (ThisCall) and static operation calls (Stat-
icCall). The call action to the operation ResourceAllocate.executeStateAction in
the sequence diagram shown in Figure 19 is an instance call because this call
is received by an instance labeled currentState of the class ResourceAllocate.
Because this call action is an instance call, the emphasized node in Figure 20,
which represents it, is also labeled InstanceCall.

The classifier names are represented as variables which hold the objects in
DCML because DCML only supports communication between objects through
encapsulation. So, the classifier currentState in the sequence diagram of Figure 19
is represented as a variable declaration node with the same name in the DCML
model of this sequence diagram as shown in Figure 20. The type of this variable is
set the object-type named State because the class ScenarioData has an attribute
named currentState whose type is the class State as shown in Figure 18. If
the class ScenarioData did not contain such an attribute, then the type of the
variable currentState would be set to ResourceAllocate. Note that the emphasized
call action node is connected to this variable declaration node by an edge labeled
referenceVar to show that the call references the value of this variable.

The values of the variables are represented by connecting the variable dec-
laration nodes to value nodes (nodes labeled Value with edges labeled instance-
Value). Following the edge labeled instanceValue from the variable declaration
node named currentState in Figure 20, it can be seen that the variable is hold-
ing an object. This object is an instance of the class ResourceAllocate; this is
represented by the edge labeled instanceValue connecting the object-type node
named ResourceAllocate. The object node representing an instance of the class
ScenarioData is connected to the object node representing an instance of the
class ResourceAllocate by an edge labeled encapsulates. This means that in the
scope of this instance of the class ScenarioData, the variable currentState holds
an instance of the class ResourceAllocate. A DCML model can be generated from
more than one sequence diagram and, thus, a variable can have more then one
instance value. During simulation, the values of the variables at the executing
frame are resolved by the encapsulated edges.

The frame of an executing operation is represented by nodes labeled Oper-
Frame in DCML. These nodes are used to identify, during simulation, the object
that is currently executing, the scope of the executing object, the type that con-
tains the called operation and the statement that is being executed. The self of
an operation frame is represented in DCML by connecting the operation frame
node to an object node by an edge labeled self. In figure 20, for example, the
self of the operation frame is an instance of the class ScenarioData. The action
that is currently executing is represented by the edge labeled executes; for the
DCML model in Figure 20 the currently executing action is an instance call.
When UML diagrams are converted to DCML models, the conversion algorithm
automatically adds the operation frame node which marks the first action of

46

the sequence diagram as the action that is being executed. Thus, the simulation
starts executing from that action.

47

