Inference Optimization using Relational Algebra

Sander Evers, Maarten M. Fokkinga, and Peter M.G. Apers

University of Twente, The Netherlands

Abstract. Exact inference procedures in Bayesian networks can be ex-
pressed using relational algebra; this provides a common ground for opti-
mizations from the AT and database communities. Specifically, the ability
to accomodate sparse representations of probability distributions opens
up the way to optimize for their cardinality instead of the dimensionality;
we apply this in a sensor data model.

1 Introduction

Since their conception in the 1980s, Bayesian networks have rapidly become a de
facto standard in the AI community for concisely and intuitively representing a
probabilistic model. Recently, (dynamic) Bayesian networks have also received
much interest from the database community for processing sensor data; e.g. see
[1]. However, although it has been known for over a decade that exact inference
in Bayesian networks can be formulated as a relational database query [2], the
area of inference optimization has not yet seen a lot of interdisciplinary work.

In this article, we advocate the use of relational algebra in inference proce-
dures to bridge the gap between the two communities. In database management
systems, relational algebra is used to represent queries at a level between the in-
put query language (usually SQL) and the language in which they are executed,
and plays an essential role in optimization of these queries. This is possible be-
cause a relational algebra expression has a denotational semantics specifying
what is calculated, and a operational semantics specifying how it is calculated; a
query is optimized by substituting (sub)expressions with equivalent denotational
semantics but more efficient operational semantics.

Our contributions are twofold: after reviewing Bayesian network inference in
section 2, we (a) show an intimate link between numeric probability expressions
and relational algebra expressions which makes it possible to write and manipu-
late inference procedures using relational algebra (section 3), and (b) apply this
theory to a sensor data model, improving its scalability (section 4): when the
number of variables K and the number of values L for one particular variable
are jointly increased, inference time scales sublinearly, where using conventional
methods it scales quadratically. This optimization is possible because relational
algebra accommodates a sparse representation of probability distributions, which
can exploit sparsity that is not visible in the structure of the Bayesian network.

2 Bayesian Network Inference

A Bayesian network [3] represents a probabilistic model over a set of n discrete
stochastic variables V = {V1,...,V,}, and consists of:

1. A directed acyclic graph (V,P) with the variables as nodes. Variable V}, is
called a parent of V; if (V}, — V;) € P. This induces a function par on the
indices:

def

par(i) = {h|1<h<n,(V})—» V) eP}
2. For each V;, the conditional probability distribution (cpd) P(v;|Vparci))-

The joint probability distribution defined by this Bayesian network is the product
of these cpds:

P(V): H P(/Ui|vpa7"(i))

1<i<n

An inference query P(vg|vg) partitions the variables V into query variables Vg,
evidence variables Vg and the remaining variables V. The goal is to calculate
P(vg|vEe) for all values v, given certain fixed values vg. The probabilities
P(vg, vE) also suffice; using these, the former can be calculated as P(vg|vg) =
P(vq,ve)/P(ve) =P(vq,vE)/ 3.y, P(vQ. vE). Hence, to simplify expositions,
we will hereafter equate inference with the calculation of P(vg,vg) for all vg.
Substituting the definition of the joint probability for the Bayesian network gives:

P(VQavE) = Z P(V) = Z H P(Ui|vpar(i)) (1>

VR vr 1<i<n

The right hand side of this equation suggests a naive approach for performing
the calculation: determine the value of the product (using the fixed vg) for all
v values, and sum these products; repeat this for each vg. The time taken by
this approach is exponential in |Q U R|, the number of unobserved variables.

However, it is possible to rewrite the expression; some factors can be pulled
out of the summations due to the distributive laws

Yo.lexn) = (>, € xn if x does not occur free in 7

(2)

Yo.lexn)=ex> n if x does not occur free in €

in which (exn) is a numeric expression containing free variable x. It is sometimes
suggested that applying these laws (as rewrite rules, from left to right) makes the
expression more efficient to evaluate, and therefore forms the basis of efficient
inference algorithms. This statement alone is somewhat misleading. For example,
if the product is P(a)P(b|a)P(c|b), we can rewrite:

> P(a)P(b]a)P(c|b) = Y P(a) Y P(bla) Y P(c|b)
a b c

a,b,c

If we expand each) -expression into a list of additions in the above equation,
the left hand side contains 2 x [dom(A)| * [dom(B)| * |dom(C)| multiplications

p1 — {b—> P(c|b) | b € dom(B) }
p2 — { a3, P(bla)ur(b) | a € dom(A4) } p3 — {b—> P(a)P(b|a)|b € dom(B) }
return) P(a)p2(a) return), . ps(b)P(c[b)

Fig.1: Two programs to efficiently calculate -, .P(a)P(bla)P(c[b), using assign-
ments to array variables p;. Such an array is represented as a set-theoretic function:
a set containing key-value pairs (k — v). Function application p;(k) corresponds to
array lookup.

7 (plA1M 75 (pIBI A7 _cpC|B])) = F-p.c (F-a (plA] ¥ p[B|A]) ¥ p[C] B])

Fig. 2: Relational expressions corresponding to these programs, and their equality.

while the right hand side contains |[dom(A)| x (1 + |dom(B)|), so the latter can
indeed be considered more efficient; however, it still contains the same number of
additions: [dom(A)|*|dom(B)|*|dom(C)| —1. A lot of them are redundant; each
summation that is expanded from) _P(c|b) is copied |dom(A)| times, although
it does not depend on a. To eliminate this redundancy, a notion of sharing
or storage has to be introduced. Therefore, a conventional inference procedure
calculates the expression using a program; see Fig. 1.

The program on the left has the same structure as the above expression and
is efficient to evaluate. However, it is more cumbersome to read, and harder to
reason about. For example, it is not easy to see that it is equivalent (equal in
value, not in processing time) to program on the right; one has to transform
them back into single expressions, and then compare these.

In this article, we present an alternative: a relational representation, in which
the the basic building blocks of an expression are sets of values like p1, instead
of single values like p;(b). Using this representation, we are able to express both
the above programs, as well as their equivalence, by the equation in Fig. 2:
vhe relational expressions on the two sides of the equals sign can be assigned
an operational semantics similar to the two programs, while their denotational
semantics are equal. This equivalence can be established by using rewrite rules
(see Fig. 5) similar to those used in database theory; moreover, new equivalent
expressions can be obtained using these rules.

3 Relational Expressions for Inference

3.1 Relational Algebra

In relational algebra, every expression represents a relation, a structured collec-
tion of data. In composite expressions like w4 pr and r X s, unary and binary

def

mar ¥ {(Aqt|ter) Aat={A—v[(A—v)et, A A}
moar S {Ant|ter) Aat={A—v|(A-v) et AgA}
TNSd:ef{trUts‘trentsESaCQtT:CQtS}

where C = schema(r) N schemal(s)

def

pa—pr = { {A}At)U{B—t(A)}|ter}
[A] ¥ {{A—a}|acdom(A)} ogr = {t|tert)}
[A1,..., A €A] X ... X [A] [6] & o [schema(0)]

Fig. 3: Relational algebra, consisting of operators for projection 7, natural join X,
renaming p, embodiment [...] and selection o. The restriction operators <, 4 on
tuples (i.e. functions) are defined for auxiliary purposes.

operators transform the operand relations (r and s) into new relations. Rela-
tional algebra comes in different variants; some used in commercial database
systems support relations with duplicates (multisets), null values and aggrega-
tion operators. For expositional reasons, we define a simple variant.

We presuppose a set of attributes 4ttr and a set of values 7al; each attribute
A € Attr has a domain dom(A) C 7af. A relation r consists of

1. A schema, a set of attributes: schema(r) C Attr.

2. A set of tuples, also simply denoted as r. Each tuple ¢ € r contains a value for
each attribute in the schema. Formally, ¢ is a function of type schema(r) —
Val, where t(A) € dom(A) for each A € schema(r). The relation’s cardinality
|r| is the number of tuples in the set.

The algebra’s operators are defined in Fig. 3. The w4, X and p operators can be
found in any database textbook; however, note that we define an additional m_
variant that mentions the discarded attributes instead of those remaining. The
definition of the selection operator oy, which only retains tuples that satisfy the
predicate (boolean expression) 6, is not so conventional. Instead of only simple
comparison predicates like A; < Ao, we support an arbitrary predicate where
(some of) the relation’s attributes take the place of values, e.g. A1 + Ay = As.
Therefore, we model 8 as a function of type (Attr — Val) — B: given a certain
binding of type Attr — Val, it yields a boolean value.

We also define a less conventional operator [A], the embodiment of at-
tribute A, producing a relation with schema {A}, of which the tuples are all
the values a € dom(A). Likewise, we define [A] for a set of attributes A =
{A1,..., A, }; its tuples consist of all the possible combinations of values for
these attributes. Finally, we define [f], whose schema consists of all the at-
tributes appearing in § and whose contents are all the bindings that satisfy 6.

3.2 Role of Relational Algebra in Query Optimization

As a language between the query language and machine instructions, relational
algebra plays an essential role for query optimization in database systems. Es-
sentially, an expression in a query language like SQL is a logical predicate 6;
the answer to such a query consists of [0], all tuples that satisfy the predicate.
Compound predicates using A and 3 can be translated into compound relational
expressions, because these are represented by X and 7 in the following way:

[61 ™ [<] = [0 A K] 3)
m_4 [0] = [Fa € dom(A). O[a/A]] (4)

Here, 6[a/A] means the substitution of value a for attribute A in predicate 6.
After the query is translated to relational algebra in this way, the relational
algebra expression can be optimized, i.e. rewritten into an equivalent expression
with a minimal cost. Indeed, two equivalent expressions can have a different
cost; the reason for this is that, next to their denotational semantics in terms
of sets defined in Fig. 3, relational algebra expressions also have an operational
semantics: a mapping to machine instructions.

The cost (e.g. processing time, memory, number of I/O operations) of per-
forming these instructions is estimated by a cost function. In this article, we
use a very simplistic cost function, namely the summed cardinality of the in-
termediate relations. For a given query expression, this number can be reduced
by considering general equivalences in the denotational semantics, for example
(r X s)X¢=rNX(sXt). Although the result on both sides is the same relation
(containing, say, 100 tuples), it is possible that |r X s| = 5000 while |s X ¢| = 50,
so the total cost for (r X s) X ¢ equals 5100 and that for r X (s X ¢) equals 150.

Thus, relational algebra plays a double role: its denotational semantics spec-
ifies what is to be calculated, but its expression structure also specifies how to
calculate it, and how much that costs. For probabilistic inference queries, rela-
tional algebra can play this double role as well.

3.3 Relational Representation of Numeric Expressions

In analogy to a boolean expression 6 containing A and 3 operators, a numeric
expression € (over variables V) containing multiplication (x) and summation
(3°) operators can be represented by a relational expression as well. We will
write this expression as [e], ;. The schema of this relation is V' U {val}; its tuples
consist of each possible combination v of values for V, combined with (under
val) the value of the whole expression with these values filled in. For example,
the relation [(A — B) * (A — C)],,, contains a tuple ¢ with t(A) = 1, t(B) = 2,
t(C) = 4 and ¢(val) = 3, because (1 —2)* (1 —4) = 3. The embodiment operator
[...],, is defined in Fig. 4, together with the operators 7 and (the counterparts
of m and M for numeric expressions) that use the dedicated attribute val.

le]ya = [e = val]

+ def

TAT = { tU{val =37, e oy t'(val)} ‘ temar }

+ def +
T—AT = T(schema(r)\val)\AT

def

riXs =1 ({val} At Uts)) U{val — t.(val) x ts(val)} | t, € r,ts € 5,C<tr = C<ts }

where C = (schema(r) N schema(s)) \ {val}

Fig. 4: Relational representation of numeric expressions.

As announced, X and satisfy the equivalences
[[d]val m [[nﬂval = [[6 * n]]val (5)
Foa Tl = [Zacaomia €le/A]] (6)

val

and can therefore be used to translate a compound numeric expression into a
compound relational expression. An important effect of this is that a numeric
statement ¢ = n that holds for all values of the variables also holds as a relational
statement [e] ., = [1],,- E.g., the commutativity of * carries over to X:

AxB=BxA for all bindings of A and B
= definition of [...] ,, and [...]

[AxB],, =[B=*A]
= by (5

[Al o X [Bya = [Blya X [AlLa

By the same reasoning, associativity of * carries over, so we can unambiguously
write rq X7y r3, or even r;. See Fig. 5 for more rewrite rules pertaining

val

val

1<i<3
to ¥ and 7. The next step is representing probability expressions as relations. Of
course, these are just numeric expressions, but as they are central to this article,
we use special shorthands:

plA|B,C] = [P(A|B,C)]

Using this notation, we can relationally represent specific probabilistic state-
ments. For example, P(A, B) = P(A)P(B) (the independence of A and B) can
be expressed as p[A, B] = p[A] X p[B]. Next, we will apply this to the inference
expression for Bayesian networks.

cpd[Vi] = p[Vi |Vpa7‘(i)]

val

3.4 Relationally Rewriting the Inference Expression

Following the method above, the inference expression for a Bayesian network (1)
is translated into a relational expression:

p[VQ7VE] = 7J%—VR Dﬂq CPd[Vi}

1<i<n

rXs=sKr (7)

ri(sWt) = (rXs) K¢ (8)
%7A%7Br = 7+1'7B7J§',A7“ (9)
+ . .
Y
Eoars) = T *AI s ?f A ¢ schema(s) (10)
rmT_as if A ¢ schema(r)
T_pOp=cr X s if E € schema(r), E ¢ schema(s)
TopOE—e(rXs) = rMT_pop—.s if E ¢ schema(r), E € schema(s)
T pOp—er W T _pop—.s if E € schema(r), E € schemaf(s)
(11)
+ + .
M_ACB=bpT" = OB=bT— AT if A#B (12)

Fig. 5: Rewrite rules for X and 7. Eq. (10) represents the distributive law (2).

However, when performing an inference query, we are not interested in the answer
for all bindings of Vg; we are interested in one particular vg value. In our
original discussion of the inference query, this value was bound by the context
in which we used the expression; in the relational representation, it has to be
specified in the expression itself. We do this by adding a selection ov -y, on
both sides of the above equation. After this selection, we might as well discard
the Vg attributes from the tuples using a %—VE operator (which is in this case
equivalent to a m_v, operator). This leaves us with:

7+r*VEO-VE:VEp[\/Qa\,E] :%—*VEUVE:VE;?*VR Dﬂq de[v;} (13)
1<i<n

Now, we can formulate the central thought of this article:

Efficient inference in a Bayesian network is performed by rewriting the
right hand side of Fq. (13) into an equivalent expression with low cost.

This will involve rewriting the multi-way Dﬂ into a parenthesized expression of
n—1 binary X operators (join ordering) and pushing the 7+T_VE, OV g=vy and
+

T_vj operators into the expression (observing the rules in Fig. 5).

Indeed, the conventional inference procedures can be translated into proce-
dures that rewrite a relational expression in this way. We demonstrate this for
variable elimination [4], also known as bucket elimination [5];' see Algorithm 1.
Proof that it obeys the rewrite rules is omitted due to space constraints.

Algorithm 1: Variable elimination.
Input: N
— unoptimized inference expression 7J?_VE UVE:VE%:_VR NKK" cpd[V;]

— variable elimination order «, ordering the m variables Vg as V1), ..., Va(m)

QOutput: an expression e equivalent to the input expression
S — { Tov,ov,—v,cpdVi]|1<i<n }
where L = EN{j|V; € schema(cpd[Vi]) }
for i =1..m do
r— {s|sé€s, Vou € schema(s) }

s (s\r)U{F v, Xr}

TETr

end
%

e «— M s
sEs

Note: where the algorithm specifies a multi-way join, any order can be taken.

sensor 1(5]) (5D (5 (5D dom(Xy) ={1,...,L}

| dom(S5) = {n,}
location @ @ @ P(x¢|zt—1) equal for all ¢
— @ @ @ @ P(sf|z¢) equal for all ¢

Fig. 6: MSHMM with two sensors (K = 2) and four timesteps (7" = 4)

4 Sensor Data Inference

In this section, we put the above theory to use in a sensor data setup, in which a
group of Bluetooth transceivers (‘scanners’) is used for localization. At K fixed
locations in a building, a scanner is installed, performing a scan at discrete times
1 <t < T in order to track the position of a mobile device. The scanning range
is such that the device can be seen by 2-3 different scanners at most places.

We model this using the Bayesian network in Fig. 6, which we call a multi-
sensor Hidden Markov Model (MSHMM). The position of the mobile device at
time t is modelled as a discrete variable X; that can take the values 1-L; the
different X, variables form a Markov chain with transition model P(x¢|z:—1).
The result of scanner c¢ at time ¢ is modelled by variable Sf; it can be n (device
not detected) and y (device detected). An example floor plan and the resulting
transition and sensor models are shown in Fig. 7.

! In principle, it is also possible for junction tree propagation [6,7], but this is more
complex as it performs multiple inference queries at once. In the relational represen-
tation, this means that some subexpressions are shared between multiple queries.

1 2 3 5
1 j location number — wall

4 ! 4 ’ 2— 2 reach of sensor 2 C @ sensor c
7 8 9 reach of sensor 3
3—e9 4 1 4 and P(S? = y|z)
10 11 12
4 4 o 4 Ty
- 14 = P(z¢|zi—1)|1 23 4 56 7 8 9 10111213 14 15
5 2 7 |000000.95.05 0 000 0 O0DO0
L JE— T=1 8 10000.20.15.3.150 20 0 0 0
scale
up T
P(sflzt) 123456 7 8 9 101112131415
3 n [811661.1 6 9 6 61 .81 1
5t y 2004409 4 1 4 .40 200

Fig. 7: Example (partial) floor plan for the localization model. The numbered squares
are the L = 15 discrete values that location variable X; can take. At K = 5 positions,
a sensor is installed. In one time step, it is possible to move to an adjacent location,
but not through a wall; this is encoded in the transition model P(z¢|xz¢—1) of which the
table is partially shown. For sensor 3, the detection probabilities for the locations in its
reach are also given; they determine the sensor model P(s¥|z;) (also shown in a table).
Simultaneously scaling up L and K can be imagined as extending this floorplan in the
direction of the arrow. If the upper and lower edges of the floor plan are ignored, each
sensor has a reach of 9 locations, as is shown for sensors 2 and 3.

The inference query is P(z,|s), the probability distribution over the location
at time u based on the received scan results s = { s |1 < ¢ < K, 1<t < T }.

4.1 Dynamic Bayesian Network Inference

The MSHMM model is an example of a dynamic Bayesian network [8,9], which
means that it has a special repetitive structure: it repeats for every t, and the
parents of a variable at time ¢ are either at time t—1 or at time ¢ as well. We
can rewrite the inference expression to reflect this structure:

Tx,05=sP[Xu, S] = Tx, 0s—s l>*4 (de[Xt] X D*<] de[&?]) = fu X byt
1<t<T 1<e<K

where we define

Tt = +XtUSt:s1s <ft—1 X epd[X¢| M Dﬂ de[StC]> fo = []ya

1<e<K

by & Tx,_,08,—s, (de[Xt] X (X de[S§]> mbt-kl) bror = [

1<c<K

In the last rewrite step, we do two things at the same time. Firstly, we order
the parentheses in the outer join: assuming 7 as a shorthand for the operands,
we rewrite D*<]1<t<T re into (([1], M re) .. Rry) W (ryqq B (rp B[] ,))-
Secondly, we push ¢ and T operators down this expression.

The result consists of two expressions f,, and b, 1 with a repetitive structure,
known in conventional inference procedures as a forward and backward pass. The
repeating f; and b; parts can be seen as small inference expressions themselves;
for example, in f;, the query variable is X; and the evidence variables are S;.
The remaining variables consist of all the other attributes (except val) in the
relations joined in f;: this happens to be only one, namely X;_;, which occurs
in ¢pd[X:] and in f;—1 (as this relation starts with a %thl operator, X;_1 is its
only variable).

To efficiently rewrite f¢, we can apply an inference procedure of our choice.
In this case, rewriting is almost trivial:

fo=m—x, . (fior Wepd[X)) K] 7_ 50050 ge cpd[SE] (14)
1<e<K

in which the structure of parentheses in the m factor is irrelevant. This is also
the expression generated by Alg. 1 (where the V g variables consist only of X;_1).

As the f; expressions are all similar—except f1, because ¢pd[X] is different—
and all b; expressions as well, we only need to apply the inference procedure
over three expressions of 2 + K variables. This saves a lot of query optimization
time compared to applying it over the whole model (T'(1 + K) variables). This
procedure can be applied to any dynamic Bayesian network.

4.2 Exploiting Sparsity and Sharing

The cpds in the MSHMM model contain a lot of zeros. In the common usage of
inference procedures, this is irrelevant: the cpds, as well as intermediate results,
are represented by arrays in which zeros are treated the same as any other value.
Up to a certain number of zeros, this representation is optimal, as it incurs
low overhead. The size of these arrays, however, grows exponentially with the
number of variables that are represented (the array’s dimensionality): if each of
the variables Vi,...,V, has a domain of size d, the array contains d" entries.
This also holds for the relations that we have considered up to this point: due
to the definition of [e] ,,, an expression e over these variables is represented by a
relation with cardinality d”. (In fact, such a relation can be directly represented
by an array: the values t(V1),...,t(V,,) of a tuple t together determine the index,
at which the value ¢(val) is stored.)

If we consider the simple cost function from Sect. 3.2, each intermediate f;
relation will contribute, apart from f;_1, a term of the order O(L? + K L) to the
total cost. This will become a problem as the model is scaled up. By scaling up
we mean that the detection area is expanded by installing more scanners; the
granularity of the discrete location variable (i.e. the number of m? per z; value)
is kept fixed, as well as the density of the scanners (the number of scanners per

m?). In other words, the K and L parameters of the model are jointly increased
(see Fig. 7); this causes the inference cost to increase quadratically.

However, as we will show, the number of non-zero values in the intermediate
relations only increases linearly; therefore, for a certain size of the model, it will
become more efficient to represent only these non-zero values. We define this
sparse representation by replacing the earlier [€],,, representation with

lela = [e = val Aval > 0]

Crucially, equations (5) and (6) still hold when we use this sparse representation,
so the relational inference equation (1) is still valid, as are all the rewrite rules;
therefore, we can still use the rewritten expression (14) for f;.

What are the effects on the inference cost? This depends on the size of the
ft—1 relation. Some probabilistic reasoning will show that this relation is equal
to Tx, 08, , 1=s, .1 PIXt—1,S1.+—1]; therefore, its size equals the number of
X;_1 locations that have a nonzero joint probability with the sensor input up to
t — 1. If one scanner produced y at ¢ — 1, this number is 9: see the gray area in
Fig. 7. When this f; is joined with ¢pd[X;], the resulting relation will contain 13
tuples: all the locations reachable from this area in one step. Unfortunately, the
other half of the f; expression will still cost O(K L): almost all scans Sf return
a n, and %,sgagtc:ncpd[Sf] contains L tuples.

However, we can rewrite f; into:

ft = ;(—-_Xt—l (ft—l X de[Xt]) X 7#—51,051,:51, m de[Sﬂ
1<e<K

At first sight, this seems strange: each ¢pd[S§] contains L + 9 tuples, so joining
them will certainly cost O(K L) or more. Also, it goes totally against the heuris-
tics in conventional inference procedures, which try to minimize the largest di-
mensionality in the intermediate relations. The trick is that evaluating this join
can be done upfront, as it does not depend on the evidence s;. Because the rela-
tions cpd[S5] are the same for each ¢, it does not even depend on ¢, and can thus
be reused within an inference query as well as among different inference queries.
The relation is equal to p[S;|X;], from which we can deduce its size: for each
location x4, 3 scanners may or may not produce y, giving 23 = 8 possible (2, s;)
combinations with nonzero probability. Hence, the relation contains 8L tuples;
so storage size scales linearly when we increase the detection area.

When the cost for this relation is not taken into account (which is reasonable
if T gets large), the og,—s, D*QISCSK cpd]S¢] part of f; will only contribute a
constant term (at most 9) to the cost if at least one scan is y. If all scans are n,
it will contribute an O(L) term; then, it is better to postpone the selection, and
first join on X; instead.

In conclusion, when the upfront calculation is not taken into account, the
inference cost remains constant when scaling up the model using a sparse rep-
resentation. Under a more realistic cost metric that also takes into account the
time taken by selections and joins on base relations, it will scale logarithmically.

5 Related Work

The realization that probabilistic inference can be expressed as a relational query
goes back to [2]. More recently, it has been shown[10] that variable elimination
can be combined with a query optimization[11] that pushes down T_a opera-
tors. Although both acknowledge that an inference query can be processed and
optimized by a relational database, neither shows the intimate connection be-
tween probability expressions and relational expressions such as (1) and (13).
Also, neither mentions the advantages of a sparse representation.

Sparse/relational representations for probabilistic processing have been con-
sidered in the areas of constraint propagation [12] and information retrieval
models [13], where good performance is reported. However, none of this work
considers the area of sensor data management, whose scalability requirements
make a sparse representation absolutely necessary.

6 Conclusions

We have shown how inference can be analysed and carried out using a relational
representation. As its main advantage, we see the use of rewrite rules like in
Fig. 5 for deriving or checking new inference optimizations. These rules can be
applied by database researchers without any probabilistic knowledge, or indeed
by automatic query optimizers. In this article, we have applied them manually,
and shown that a (sparse) relational representation and a cost function depend-
ing on cardinality instead of dimensionality can be crucial for scalable sensor
data processing. We hope this research clears a little bit of the path connecting
database and Al research in inference query optimization.

References

1. Kanagal, B., Deshpande, A.: Online filtering, smoothing and probabilistic modeling
of streaming data. In: Proceedings of the 24th International Conference on Data
Engineering (ICDE2008). (April 2008) 1160-1169

2. Wong, S.K.M., Butz, C.J., Xiang, Y.: A method for implementing a probabilistic
model as a relational database. In: Proc. 11th Conf. on Uncertainty in AI. (1995)
556-564

3. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, USA (1988)

4. Zhang, N.L., Poole, D.: Exploiting causal independence in Bayesian network in-
ference. J. Artif. Intell. Res. (JAIR) 5 (1996) 301-328

5. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artif. Intell.
113(1-2) (1999) 41-85

6. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society. Series B 50(2) (1988) 157-224

7. Huang, C., Darwiche, A.: Inference in belief networks: A procedural guide. Int. J.
Approx. Reasoning 15(3) (1996) 225-263

10.

11.

12.

13.

Dean, T., Kanazawa, K.: A model for reasoning about persistence and causation.
Computational Intelligence 5(3) (1989) 142-150

Murphy, K.P.: Dynamic Bayesian Networks: Representation, Inference and Learn-
ing. PhD thesis, University of California, Berkeley (2002)

Corrada Bravo, H., Ramakrishnan, R.: Optimizing MPF queries: decision support
and probabilistic inference. In: SIGMOD Conference. (2007) 701-712

Chaudhuri, S., Shim, K.: Including group-by in query optimization. In Bocca,
J.B., Jarke, M., Zaniolo, C., eds.: VLDB, Morgan Kaufmann (1994) 354-366
Larkin, D., Dechter, R.: Bayesian inference in the presence of determinism. In:
Proceedings of the Ninth International Workshop on Artificial Intelligence and
Statistics. (January 2003)

Cornacchia, R., Héman, S., Zukowski, M., de Vries, A.P., Boncz, P.A.: Flexible
and efficient IR using array databases. VLDB J. 17(1) (2008) 151-168

