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Abstract 
This report presents the detailed steps and results of a structured review of code clone literature. The 
aim of the review is to investigate the evidence for the claim that code duplication has a negative 
effect on code changeability. This report contains only the details of the review for which there is not 
enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et 
al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence). 
 

1 Introduction 
Duplication of source code is an important factor that is suspected to affect the quality of systems in 
terms of changeability and the number of errors. We want to investigate how duplication affects quali-
ty. There is a vast body of research about code duplication, and in this review we aggregate the cur-
rent knowledge about the effects of duplication on changeability and error levels. 

1.1 Problems 
There is a lot of literature about code duplication, but only a few studies have attempted to investigate 
if and how duplication actually has a negative effect on changeability and error levels. Therefore it is 
not known if duplication is harmful, and if so, under what circumstances. This is a problem for re-
searchers because many investigations are based upon the assumption that clones are harmful, and if 
this assumption is false, the value of the research would be called into doubt.  
For practitioners this lack of knowledge about harmfulness of duplication is a problem because they do 
not know if they should invest effort in avoiding or removing clones, and if so, how to prioritize those 
efforts between different kinds of clones. Based on practitioners‟ reports and our own experience, we 
see that little use is made of clone detectors in practice. We think that solid knowledge about the 
harmfulness of clones would make such tools more attractive to practitioners. 

1.2 Contributions  
This study is a structured review of the evidence in code clone literature for harmfulness of duplication. 
The contributions are in the conference paper. 
 



2  Methodology 
We gathered information only from primary research, not from empirical observations. We have fol-
lowed a method described by Kitchenham‟s general procedure for performing systematic reviews Kit-
chenham 2007 - Procedures for Performing Systematic Reviews. Even though the entire investigation 
is not completely repeatable, as human judgment is involved in interpreting articles, Kitchenham‟s me-
thod makes steps of the process as repeatable as possible. The following sections summarize our 
steps. 

2.1 Framing the Research Questions 

To frame research questions in such a way that they can be used to drive a structured review, 
Kitchenham suggests to use the PICOC format which we apply here to our research. 

- Population: our population consists of software systems.  
- Intervention: the intervention is the presence of duplication in a system. This is more like a 

disease when compared to medical research than a cure; our research is not evaluating 
treatments, but investigating how bad the disease is. 

- Comparison: we compare software systems with duplication against software systems without 
or with less duplication. 

- Outcome: the outcome of duplication is a reduction of changeability of the software system, or 
such is the hypothesis. 

- Context: the context in which the above hypothesis holds, consists of context factors that are 
as yet not well understood. They include the sizes of clones and the refactorability of clones. 
Some context factors are mentioned in the primary sources, and they are discussed in the 
conference paper. 

 

2.2 Identification of research 

We searched a number of literature sources with several search criteria, aimed at finding a set of ar-
ticles with the most complete possible coverage of the field of code clones. We chose the criteria to 
reflect the research questions stated in §1.1. We searched the following databases: DBLP, ACM Por-
tal, CiteSeer and Scopus with the following search terms: “code clone”, “clones”, “code | duplication” 
(because “duplication” yields too many false hits), on December 17, 2008. We discarded articles that 
were not about code clones; examples include compiler optimization, set theory and DNA research. 
After our extensive searches we have validated the completeness of the search actions by looking for 
references in the selected papers to other papers that were not present in our sample but that would 
pass our search criteria. We found only 2 such references, which were workshop papers. Altogether, 
this yielded 153 papers. To our knowledge we have thus exhausted all available evidence in the pe-
riod under review. 

2.3 Selection of primary studies 

We applied the following criteria to the found sources for inclusion in this review. 
- The article must be published in a journal or conference proceedings. This excludes drafts of articles and 

technical reports found on web sites of research groups. 
- The article should present evidence for a causal relation between duplication and a quality attribute of the 

system, or between intermediate variables, e.g. between duplication and co-change. We judged this by 
reading the entire papers, not just the titles and abstracts, because sometimes evidence is stated in a 
case study which is used as an illustration of, for example, a clone detector, on which the paper focuses. 

- The article should not be published before 1990. This boundary is chosen arbitrarily to limit the search for 
sources. 

We have not applied quality criteria to the primary sources, because so few papers passed the selection criteria 
that no additional selection was needed. The resulting set contains 18 papers, which are discussed in section 3. 

2.4 Aggregation of evidence 

We analyzed the evidence in the included papers. When a claim was made, we analyzed the external 
validity, that is, for which situations the claim would hold. For example, if a paper draws conclusions 
from an experiment with one system, then those conclusions may not be valid in another system be-
cause of any kind of difference between those systems. However if conclusions are based on five dif-
ferent open source Java systems, and another paper draws the same conclusions from two other 



open source Java systems, we may generalize the conclusions to the class of open source Java sys-
tems. An overview of the conclusions is in section 4. Since we are interested in the circumstances un-
der which duplication is harmful, we also list what is known about the context factors under which 
these conclusions hold. 



3 Article identification and selection 
This section presents the results from steps 1, identification of research, and 2, selection of primary 
studies. We used the criteria specified in paragraph 2.3 to select and rate articles for inclusion in our 
review. The results of the searches are the combined papers listed below. Those papers that passed 
our inclusion criteria are listed under „Included‟, the others are under „Not included‟. The discarded 
papers are those that seemed to fit our criteria from looking at the title only, but were discarded after 
reading the paper itself. We have included the titles to be able to distinguish between papers from the 
same authors in the same year. Full details are given in the bibliography. 
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19. Beyer, Noack et al. 2003 - Simple and Efficient Relational Querying of Software Structures 
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Bodík, R., R. Gupta, et al. (2004). "Complete removal of redundant expressions." ACM SIGPLAN Notices 39(4): 

596-597. 
Bouktif, S., G. Aritoniol, et al. (2006). A novel approach to optimize clone refactoring activity. GECCO 2006 - 

Genetic and Evolutionary Computation Conference, Seattle, WA. 



Bruntink, M., A. Van Deursen, et al. (2004). An evaluation of clone detection techniques for identifying 
crosscutting concerns. IEEE International Conference on Software Maintenance, ICSM, Chicago, IL. 

Bruntink, M., A. van Deursen, et al. (2005). "On the use of clone detection for identifying crosscutting concern 
code." IEEE Transactions on Software Engineering 31(10): 804-818. 

Burd, E. and J. Bailey (2002). Evaluating Clone Detection Tools for Use during Preventative Maintenance. 2nd 
IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'02), IEEE Computer 
Society. 

Burd, E. and M. Munro (1997). Investigating the Maintenance Implications of the Replication of Code. 
International Conference on Software Maintenance. 

Canfora, G., L. Cerulo, et al. (2006). On the use of line co-change for identifying crosscutting concern code. IEEE 
International Conference on Software Maintenance, ICSM, Philadelphia, PA. 

Canfora, G., L. Cerulo, et al. (2007). Identifying changed source code lines from version repositories. Fourth 
International Workshop on Mining Software Repositories, MSR Minneapolis, MN. 

Casazza, G., G. Antoniol, et al. (2001). Identifying Clones in the Linux Kernel. International Workshop on Source 
Code Analysis and Manipulation. 

Church, K. W. and J. I. Helfman (1993). "Dotplot: A Program for Exploring Self-Similarity in Millions of Lines for 
Text and Code." American Statistical Association, Institue for Mathematical Statistics and Interface 
Foundations of North America 2(2): 153-174. 

Clements, P., R. Kazman, et al. (2002). Evaluating Software Architectures: Methods and Case Studies, Addison-
Wesley Professional. 

Cordy, J. R., T. R. Dean, et al. (2004). Practical Language-Independent Detection of Near-Miss Clones. 
Conference of the Centre for Advanced Studies on Collaborative research, Ontario, Canada. 

Dagpinar, M. and J. H. Jahnke (2003). Predicting Maintainability with Object-Oriented Metrics - An Empirical 
Comparison. Working Conference on Reverse Engineering, Victoria, BC. 

Davey, N., P. C. Barson, et al. (1995). "The development of a software clone detector." International Journal of 
Applied Software Technology 1(3-4): 219-36. 

De Lucia, A., R. Francese, et al. (2004). Reengineering web applications based on cloned pattern analysis. 12th 
IEEE International Workshops on Program Comprehension, Bari. 

Deissenboeck, F., B. Hummel, et al. (2008). "Clone detection in automotive model-based development." ICSE: 
603-612. 

Di Lucca, G. A., M. Di Penta, et al. (2002). An approach to identify duplicated web pages. IEEE Computer 
Society's International Computer Software and Applications Conference, Oxford. 

Di Penta, M. (2005). Evolution doctor: A framework to control software system evolution. European Conference 
on Software Maintenance and Reengineering, CSMR, Manchester. 

Di Penta, M., M. Neteler, et al. (2005). "A language-independent software renovation framework." Journal of 
Systems and Software 77(3): 225-240. 

Duala-Ekoko, E. and M. P. Robillard (2007). Tracking code clones in evolving software. International Conference 
on Software Engineering, Minneapolis, MN. 

Duala-Ekoko, E. and M. P. Robillard (2008). "Clonetracker: tool support for code clone management." ICSE: 843-
846. 

Ducasse, S., O. Nierstrasz, et al. (2006). "On the effectiveness of clone detection by string matching." Journal of 
Software Maintenance and Evolution 18(1): 37-58. 

Ducasse, S., M. Rieger, et al. (1999). Language independent approach for detecting duplicated code. Conference 
on Software Maintenance, Oxford, UK, IEEE. 

Ducasse, S. e., M. Rieger, et al. (1999). Tool Support for Refactoring Duplicated OO Code. ECOOP'99 Workshop 
on Experiences in Object-Oriented Re-Engineering, Forschungszentrum Informatik, Karlsruhe. 

Evans, W. S., C. W. Fraser, et al. (2007). "Clone Detection via Structural Abstraction." WCRE: 150-159. 
Falke, R., P. Frenzel, et al. (2008). "Empirical evaluation of clone detection using syntax suffix trees." Empirical 

Software Engineering 13(6): 601-643. 

Fanta, R. and V. Rajlich (1999). "Removing Clones from the Code." Journal of Software Maintenance and 
Evolution 11(4): 223-243. 

Fioravanti, F., G. Migliarese, et al. (2001). Reengineering analysis of object-oriented systems via duplication 
analysis. International Conference on Software Engineering, Toronto, Ont. 

Flores, A. and M. Polo (2005). Dynamic component assessment on PvC environments. IEEE Symposium on 
Computers and Communications, Murcia. 

Fowler, M. (1999). Refactoring - Improving the Design of Existing Code, Addison-Wesley. 
Gabel, M., L. Jiang, et al. (2008). "Scalable detection of semantic clones." ICSE: 321-330. 
Gallagher, K. and L. Layman (2003). "Are Decomposition Slices Clones?" IWPC: 251-. 
Geiger, R., B. Fluri, et al. (2006). Relation of Code Clones and Change Couplings. Fundamental Approaches to 

Software Engineering. 
Giesecke, S. (2006). "Generic modelling of code clones." Duplication, Redundancy, and Similarity in Software. 
Gitchell, D. and N. Tran (1999). "Sim: a utility for detecting similarity in computer programs." SIGCSE Bull. 31(1): 

266-270. 
Godfrey, M., X. Dong, et al. (2004). Four Interesting Ways in Which History Can Teach Us About Software. 

International Workshop on Mining Software Repositories  (MSR-04), Edinburgh, Scotland. 
Godfrey, M. W. and L. Zou (2005). "Using Origin Analysis to Detect Merging and Splitting of Source Code 

Entities." IEEE Transactions on Software Engineering 31(2): 166-181. 



Guo, J. and Y. Zou (2008). "Detecting Clones in Business Applications." WCRE: 91-100. 
Hayase, Y., Y. Y. Lee, et al. (2008). "A criterion for filtering code clone related bugs." DEFECTS: 37-38. 
Higo, Y. (2006). Code Clone Analysis Methods for Efficient Software Maintenance. Graduate School of 

Information Science and Technology, Osaka University. 
Higo, Y., T. Kamiya, et al. (2004). Aries: Refactoring support environment based on code clone analysis. 8th 

IASTED International Conference on Software Engineering and Applications, Cambridge, MA. 
Higo, Y., T. Kamiya, et al. (2005). ARIES: refactoring support tool for code clone. 3rd workshop on Software 

quality, ICSE, St. Louis, Missouri, ACM Press. 
Higo, Y., T. Kamiya, et al. (2007). "Method and implementation for investigating code clones in a software 

system." Information and Software Technology 49(9-10): 985-998. 

Higo, Y., Y. Ueda, et al. (2002). On software maintenance process improvement based on code clone analysis. 
4th International Conference on Product Focused Software Process Improvement, Springer-Verlag. 

Higo, Y., Y. Ueda, et al. (2007). "Simultaneous Modification Support based on Code Clone Analysis." APSEC: 
262-269. 

Hill, R. and J. Rideout (2004). Automatic method completion. 19th International Conference on Automated 
Software Engineering, ASE, Linz. 

Hordijk, W., M. L. Ponisio, et al. (2008). Structured Review of Code Clone Literature, University of Twente, The 
Netherlands. 

Hordijk, W., M. L. Ponisio, et al. (2009). Harmfulness of Code Duplication - A Structured Review of the Evidence. 
13th International Conference on Evaluation and Assessment in Software Engineering, Durham, UK. 

Imai, T., Y. Kataoka, et al. (2002). Evaluating software maintenance cost using functional redundancy metrics. 
IEEE Computer Society's International Computer Software and Applications Conference, Oxford. 

Jablonski, P. and D. Hou (2007). "CReN: a tool for tracking copy-and-paste code clones and renaming identifiers 
consistently in the IDE." ETX: 16-20. 

Jarzabek, S. and S. Li (2006). "Unifying clones with a generative programming technique: A case study." Journal 
of Software Maintenance and Evolution 18(4): 267-292. 

Jiang, L., G. Misherghi, et al. (2007). DECKARD: Scalable and accurate tree-based detection of code clones. 
International Conference on Software Engineering, Minneapolis, MN. 

Jiang, L., Z. Su, et al. (2007). "Context-based detection of clone-related bugs." ESEC-FSE '07: Proceedings of the 
the 6th joint meeting of the European software engineering conference and the ACM SIGSOFT 
symposium on The foundations of software engineering: 55-64. 

Jiang, Z. M. and A. E. Hassan (2007). "A Framework for Studying Clones In Large Software Systems." SCAM: 
203-212. 

Johnson, J. H. (1993). Identifying redundancy in source code using fingerprints. Conference of the Centre for 
Advanced Studies on Collaborative research: software engineering, Toronto, Ontario, Canada, IBM Press. 

Johnson, J. H. (1994). Substring Matching for Clone Detection and Change Tracking. International Conference on 
Software Maintenance (ICSM1 '94). 

Johnson, J. H. (1994). Visualizing Textual Redundancy in Legacy Source. Conference of the Centre for Advanced 
Studies on Collaborative research. 

Juillerat, N. and B. Hirsbrunner (2006). An Algorithm for Detecting and Removing Clones in Java Code. 3rd 
Workshop on Software Evolution through Transformations. 

Jürgens, E., B. Hummel, et al. (2008). "Static Bug Detection Through Analysis of Inconsistent Clones." Software 
Engineering (Workshops): 443-446. 

Kamiya, T. (2008). "Variation analysis of context-sharing identifiers with code clones." ICSM: 464-465. 
Kamiya, T., S. Kusumoto, et al. (2002). "CCFinder: A multilinguistic token-based code clone detection system for 

large scale source code." IEEE Transactions on Software Engineering 28(7): 654-670. 

Kamiya, T., F. Ohata, et al. (2001). Maintenance support tools for JAVA programs: CCFinder and JAAT. 
International Conference on Software Engineering, Toronto, Ont. 

Kapser, C. and M. Godfrey (2003). A taxonomy of clones in source code: The re-engineers most wanted list. 2nd 
International Workshop on Detection of Software Clones. 

Kapser, C. and M. Godfrey (2003). Toward a Taxonomy of Clones in Source Code: A Case Study. Evolution of 
Large-scale Industrial Software Applications (ELISA), Amsterdam. 

Kapser, C. and M. W. Godfrey (2004). Aiding comprehension of cloning through categorization. International 
Workshop on Principles of Software Evolution (IWPSE), Kyoto. 

Kapser, C. and M. W. Godfrey (2005). Improved tool support for the investigation of duplication in software. IEEE 
International Conference on Software Maintenance, ICSM, Budapest. 

Kapser, C. and M. W. Godfrey (2006). "Cloning Considered Harmful" Considered Harmful. 13th Working 
Conference on Reverse Engineering, IEEE Computer Society. 

Kapser, C. and M. W. Godfrey (2008). ""Cloning considered harmful" considered harmful: patterns of cloning in 
software." Empirical Software Engineering 13(6): 645-692. 

Kapser, C. J. and M. W. Godfrey (2006). "Supporting the analysis of clones in software systems: A case study." 
Journal of Software Maintenance and Evolution 18(2): 61-82. 

Kataoka, Y., M. D. Ernst, et al. (2001). Automated Support for Program Refactoring Using Invariants. International 
Conference on Software Maintenance. 

Kim, M. (2007). Understanding and Aiding Code Evolution by Inferring Change Patterns. 29th International 
Conference on Software Engineering, IEEE Computer Society. 



Kim, M., L. Bergman, et al. (2004). An ethnographic study of copy and paste programming practices in OOPL. 
International Symposium on Empirical Software Engineering. 

Kim, M. and D. Notkin (2005). "Using a clone genealogy extractor for understanding and supporting evolution of 
code clones." ACM SIGSOFT Software Engineering Notes 30(4): 1-5. 

Kim, M. and D. Notkin (2006). Program element matching for multi-version program analyses. International 
workshop on Mining software repositories, Shanghai, China, ACM Press. 

Kim, M., D. Notkin, et al. (2007). Automatic Inference of Structural Changes for Matching across Program 
Versions. International Conference on Software Engineering, IEEE Computer Society. 

Kim, M., V. Sazawal, et al. (2005). An empirical study of code clone genealogies. 10th European Software 
Engineering Conference. 

Kitchenham, B. (2007). Procedures for Performing Systematic Reviews, University of Durham, UK. 
Komondoor, R. and S. Horwitz (2001). "Tool Demonstration: Finding Duplicated Code Using Program 

Dependences." Lecture Notes in Computer Science 2028: 383-?? 

Komondoor, R. and S. Horwitz (2001). Using Slicing to Identify Duplication in Source Code. 8th International 
Symposium on Static Analysis. 

Komondoor, R. V. (2003). Automated duplicated code detection and procedure extraction, The University of 
Wisconsin - Madison. 

Kontogiannis, K. (1997). Evaluation Experiments on the Detection of Programming Patterns Using Software 
Metrics. 4th Working Conference on Reverse Engineering, IEEE Computer Society. 

Kontogiannis, K. A., R. Demori, et al. (1996). Pattern matching for clone and concept detection. Reverse 
engineering, Kluwer Academic Publishers. 3: 77-108. 

Koschke, R. (2006). "Survey of Research on Software Clones." Duplication, Redundancy, and Similarity in 
Software. 

Koschke, R., R. Falke, et al. (2006). Clone detection using abstract syntax suffix trees. Working Conference on 
Reverse Engineering. 

Krinke, J. (2001). "Identifying Similar Code with Program Dependence Graphs." Proc. Eigth Working Conference 
on Reverse Engineering: 301-309. 

Krinke, J. (2007). "A Study of Consistent and Inconsistent Changes to Code Clones." WCRE '07: Proceedings of 
the 14th Working Conference on Reverse Engineering: 170-178. 

Krinke, J. (2008). "Is Cloned Code More Stable than Non-cloned Code?" Source Code Analysis and Manipulation, 
2008 Eighth IEEE International Working Conference on: 57-66. 

Lague, B., D. Proulx, et al. (1997). Assessing the benefits of incorporating function clone detection in a 
development process. Conference on Software Maintenance, Bari, Italy, IEEE. 

Lanubile, F. and T. Mallardo (2003). Finding function clones in Web applications. Seventh European Conference 
on Software Maintenance and Reengineering. 

LaToza, T. D., G. Venolia, et al. (2006). Maintaining mental models: A study of developer work habits. 
International Conference on Software Engineering, Shanghai. 

Lee, S. and I. Jeong (2005). "SDD: high performance code clone detection system for large scale source code." 
OOPSLA Companion: 140-141. 

Li, Z., S. Lu, et al. (2004). "CP-Miner: a tool for finding copy-paste and related bugs in operating system code." 
OSDI'04: Proceedings of the 6th conference on Symposium on Opearting Systems Design & 
Implementation: 20-20. 

Li, Z., S. Lu, et al. (2006). "CP-Miner: Finding copy-paste and related bugs in large-scale software code." IEEE 
Transactions on Software Engineering 32(3): 176-192. 

Liu, H., Z. Ma, et al. (2006). "Detecting Duplications in Sequence Diagrams Based on Suffix Trees." APSEC: 269-
276. 

Livieri, S., Y. Higo, et al. (2007). Analysis of the Linux kernel evolution using code clone coverage. Fourth 
International Workshop on Mining Software Repositories, MSR, Minneapolis, MN. 

Livieri, S., Y. Higo, et al. (2007). Very-large scale code clone analysis and visualization of open source programs 
using distributed CCFinder: D-CCFinder. International Conference on Software Engineering, Minneapolis, 
MN. 

Lozano, A. (2008). "A methodology to assess the impact of source code flaws in changeability, and its application 
to clones." ICSM: 424-427. 

Lozano, A., M. Wermelinger, et al. (2007). Evaluating the Harmfulness of Cloning: A Change Based Experiment. 
Fourth International Workshop on Mining Software Repositories, IEEE Computer Society. 

Ma, Y.-S. and D.-K. Woo (2007). "Applying a Code Clone Detection Method to Domain Analysis of Device 
Drivers." APSEC: 254-261. 

Marcus, A. and J. Maletic (2001). Identification of High-Level Concept Clones in Source Code. 16th IEEE 
international conference on Automated software engineering. 

Mayrand, J., C. Leblanc, et al. (1996). Experiment on the automatic detection of function clones in a software 
system using metrics. Conference on Software Maintenance, Monterey, CA, USA, IEEE. 

Mende, T., F. Beckwermert, et al. (2008). "Supporting the Grow-and-Prune Model in Software Product Lines 
Evolution Using Clone Detection." CSMR: 163-172. 

Mens, T., T. Tourwe, et al. (2003). Beyond the refactoring browser: Advanced tool support for software 
refactoring. International Workshop on Principles of Software Evolution IWPSE. 

Merlo, E., M. Dagenais, et al. (2002). Investigating large software system evolution: The Linux kernel. IEEE 
Computer Society's International Computer Software and Applications Conference, Oxford. 



Monden, A., D. Nakae, et al. (2002). Software quality analysis by code clones in industrial legacy software. Eighth 
IEEE Symposium on Software Metrics. 

Rajapakse, D. C. and S. Jarzabek (2005). "An Investigation of Cloning in Web Applications." ICWE: 252-262. 
Rajapakse, D. C. and S. Jarzabek (2007). Using server pages to unify clones in web applications: A trade-off 

analysis. International Conference on Software Engineering, Minneapolis, MN. 
Rieger, M., S. Ducasse, et al. (2004). Insights into system-wide code duplication. Working Conference on 

Reverse Engineering, WCRE, Delft. 
Roy, C. K. and J. R. Cordy (2007). A Survey on Software Clone Detection Research, Queen's University at 

Kingston, Ontario, Canada. 
Roy, C. K. and J. R. Cordy (2008). "An Empirical Study of Function Clones in Open Source Software." WCRE: 81-

90. 
Roy, C. K. and J. R. Cordy (2008). "NICAD: Accurate Detection of Near-Miss Intentional Clones Using Flexible 

Pretty-Printing and Code Normalization." ICPC '08: Proceedings of the 2008 The 16th IEEE International 
Conference on Program Comprehension: 172-181. 

Roy, C. K. and J. R. Cordy (2008). "Scenario-Based Comparison of Clone Detection Techniques." ICPC: 153-
162. 

Roy, C. K. and J. R. Cordy (2008). "Towards a mutation-based automatic framework for evaluating code clone 
detection tools." C3S2E: 137-140. 

Rysselberghe, F. V. and S. Demeyer (2003). Evaluating Clone Detection Techniques. International Workshop on 
Evolution of Large Scale Industrial Software Applications. 

Shepherd, D., L. Pollock, et al. (2007). Case study: supplementing program analysis with natural language 
analysis to improve a reverse engineering task. 7th ACM SIGPLAN-SIGSOFT workshop on Program 
analysis for software tools and engineering, San Diego, California, USA, ACM Press. 

Sutton, A., H. H. Kagdi, et al. (2005). "Hybridizing evolutionary algorithms and clustering algorithms to find source-
code clones." GECCO: 1079-1080. 

Tairas, R. (2006). Clone detection and refactoring. Conference on Object-Oriented Programming Systems, 
Languages, and Applications, OOPSLA, Portland, OR. 

Tairas, R. and J. Gray (2006). Phoenix-based clone detection using suffix trees. 44th annual Southeast regional 
conference, Melbourne, Florida, ACM. 

Tairas, R. and J. Gray (2008). "An information retrieval process to aid in the analysis of code clones." Empirical 
Software Engineering 14(1): 33-56. 

Tairas, R., J. Gray, et al. (2006). Visualization of clone detection results. OOPSLA Workshop on Eclipse 
Technology eXchange, ETX, Portland, OR. 

Tonella, P., G. Antoniol, et al. (2000). "Reverse engineering 4.7 million lines of code." Software - Practice and 
Experience 30(2): 129-150. 

Toomim, M., A. Begel, et al. (2004). Managing Duplicated Code with Linked Editing. Symposium on Visual 
Languages - Human Centric Computing, VLHCC, IEEE Computer Society. 

Uchida, S., A. Monden, et al. (2005). "Software analysis by code clones in open source software." Journal of 
Computer Information Systems 45(3): 1-11. 

Ueda, Y., Y. Ueda, et al. (2002). On detection of gapped code clones using gap locations. Software Engineering 
Conference, 2002. Ninth Asia-Pacific. 

Wahler, V., V. Wahler, et al. (2004). Clone detection in source code by frequent itemset techniques. Fourth IEEE 
International Workshop on Source Code Analysis and Manipulation. 

Walenstein, A. (2006). "Code Clones: Reconsidering Terminology." Duplication, Redundancy, and Similarity in 
Software. 

Walenstein, A., N. Jyoti, et al. (2003). Problems creating task-relevant clone detection reference data. 10th 
Working Conference on Reverse Engineering. 

Wettel, R. and R. Marinescu (2005). Archeology of code duplication: Recovering duplication chains from small 
duplication fragments. Seventh International Symposium on Symbolic and Numeric Algorithms for 
Scientific Computing, SYNASC, Timisoara. 

Wieringa, R. J. (1996). Requirements Engineering: Frameworks for Understanding, Wiley. 
Yamamoto, T., M. Matsushita, et al. (2007). "Similarity of software system and its measurement tool SMMT." 

Systems and Computers in Japan 38(6): 91-99. 

Yoshida, N., Y. Higo, et al. (2005). "On Refactoring Support Based on Code Clone Dependency Relation." IEEE 
METRICS: 16. 

Yu, L. and S. Ramaswamy (2008). "Improving modularity by refactoring code clones: a feasibility study on Linux." 
ACM SIGSOFT Software Engineering Notes 33(2). 

 

 


