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Abstract

This paper is concerned with the coordination of inventory control in divergent multi-
echelon inventory systems under periodic review and decentralized control. All the instal-
lations track echelon inventories. Under decentralized control the installations will decide
upon replenishment policies that minimize their individual inventory costs. In general
these policies do not coincide with the optimal policies of the system under centralized
control. Hence, the total cost under decentralized control is larger than under centralized
control.

To remove this cost inefficiency, a simple coordination mechanism is presented that
is initiated by the most downstream installations. The upstream installation increases
its base stock level while the downstream installation compensates the upstream one for
increased costs and provides it with additional side payments. We show that this mecha-
nism coordinates the system; the global optimal policy of the system is the unique Nash
equilibrium of the corresponding strategic game. Furthermore, the mechanism results in
a fair allocation of the costs; all installations enjoy cost savings.

Key Words: Inventory, coordination mechanism, fair allocation, multi-echelon, stochastic
demand.
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1 Introduction

In this paper we study the coordination of inventory control in divergent multi-echelon inven-
tory systems under periodic review. The stockpoints in such a system track echelon inventories
and their inventory is controlled by replenishment policies. Often, these stockpoints are man-
aged independently, that is, the system is under decentralized control, and each decides upon
a replenishment policy that minimizes its individual inventory costs. This way, the stock-
points neglect the external effects of their decisions upon the other parties in the system.
This results in larger total costs compared to the system under centralized control and the
decisions are not not globally optimal for the inventory system, that is, they do not coincide
with the optimal decisions under centralized control.
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To overcome this cost inefficiency, the ideal situation would be to consider the system
under centralized control. Then a central planner minimizes the total cost of the system
and instructs all the stockpoints about the decisions they should take to achieve this global
minimum. However, in practice stockpoints in an inventory system are not willing to give up
their independence just like that.

Alternatively, there is a need for coordination between the parties involved. This may
be achieved by implementing a suitable coordination mechanism. While maintaining decen-
tralized control, the goal of this mechanism is to change the incentives of the stockpoints
in such a way that after this change, the new decisions of the stockpoints coincide with the
global optimal decisions under centralized control. Then the inventory system is coordinated.
Further, the coordination mechanism should result in a fair allocation of the costs, where fair
means that all stockpoints should enjoy cost savings, compared to the initial situation under
decentralized control. In this paper we introduce and analyse a mechanism that coordinates
the inventory system and results in a fair allocation of the costs.

In the literature, inventory systems are studied extensively. We focus on divergent multi-
echelon inventory systems, also named distribution or production systems, under periodic
review. In Diks and De Kok (1998) these systems are studied under centralized control. They
consider a fixed lead time, stochastic demand, linear inventory costs, and penalty costs for
backorders. Under a balance assumption, every stockpoint is controlled by a replenishment
policy. Such a policy of a stockpoint consists of its base-stock level and allocation functions,
which allocate its stock in case it is insufficient to fulfill all demand. The main result of
the paper is that the optimal replenishment policy for each stockpoint can be determined by
system decomposition, in which the system is decomposed into one-dimensional problems.

It is recognized in the literature that decentralized control leads to larger costs for divergent
multi-echelon inventory systems. Several papers study coordination mechanisms to overcome
this. Often, game theory is used as a tool to study these mechanisms; see for example Osborne
and Rubinstein (1994), and Tijs (2003). Cachon (2001) studies a distribution system under
continuous review. In this system, all firms pay inventory and backorder cost. A retailer is
faced with Poisson-distributed demand and uses an (r, q) ordering policy for replenishment of
his stock. The supplier serves the retailers on a first-come-first-serve basis. It is shown that
in such a system the competitive solution need not coincide with the global optimum. Three
cooperation strategies are discussed, and two of these imply that the global optimal solution
is a Nash equilibrium of the corresponding strategic game.

A two-echelon serial supply chain under decentralized control where each party minimizes
its discounted costs, is studied in Lee and Whang (1999). The authors assume that all
installations belong to a single organisation. Under a so-called performance measurement
scheme, which is based on three basic properties, the installations minimize their discounted
costs by selecting the global optimal outcome.

A three-stage supply chain involving suppliers, manufacturers and retailers is studied in
Seliaman and Ahmad (2008). In this chain, production and inventory decisions are made
by the suppliers and manufacturers. The goal is to coordinate the production and inventory
decisions such that the total cost of the system is minimized. To achieve this goal, two
coordination mechanisms are considered. In the first mechanism, all stages adopt the same
cycle time. In the second mechanism, within a stage the same cycle time is adopted and this
cycle time is an integer multiple of the cycle time used at the adjacent downstream stage.
Numerical results show that this latter mechanism has lower costs than the first one.

Inventory systems under periodic review are studied in Zijm and Timmer (2008). The
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authors focus on serial and distribution inventoy systems under decentralized control. The
distribution system is a two-stage inventory system in which it is assumed that all the retailers
are identical. A coordination mechanism is introduced in which, among others, the retailers
compensate the supplier for cost increases. It is shown that this mechanism results in the
global optimum being the unique Nash equilibrium of the corresponding strategic game.
Furthermore, this mechanism has lower costs for all the firms compared to the situation
under decentralized control.

Recently, several excellent surveys on coordination in general supply chains have been
published (Arshinder and Deshmukh, 2008; Leng and Zhu, 2009; Li and Wang, 2007). In the
second survey, the authors remark that in most papers the mechanisms achieve coordination
of the supply chain, however “very few publications considered the ‘fair’ allocation of extra
profit or cost savings generated by the coordination” (Leng and Zhu, 2009, p. 602). Our paper
can be added to this small list of publications since we consider both coordination and fair
cost allocation.

More precisely, in this paper we study the multi-echelon inventory system in Diks and
De Kok (1998) but now under decentralized control. To overcome the resulting cost ineffi-
ciency, compared to the system under centralized control, we introduce a simple coordination
mechanism that will result in a fair allocation of the costs. This mechanism is initiated by
the most downstream installations. They start negotiations with their upstream supplier.
The upstream installation increases its base stock level while the downstream installation
compensates the upstream one for the increase of costs and provides it with additional side
payments. These monetary incentives result in new policies selected by the stockpoints that
imply cost savings for all these installations. Hereafter, the upstream installations start simi-
lar negotiations with their supplier, and so on. Hence, in an N -echelon inventory system there
will be N − 1 rounds of negotiations. Thereafter the final results of the negotiations will be
communicated to the downstream installations. This takes an additional N−2 rounds of com-
munication. It is shown that this mechanism coordinates the supply chain, that is, the global
optimal policy of the inventory system is the unique Nash equilibrium of the corresponding
strategic game. Furthermore, the coordination mechanism results in a fair allocation of the
costs; all installations agree upon the implementation of thise mechanism because it results
in lower costs for each installation.

This paper contributes to the literature as follows. Our mechanism (i) coordinates the
inventory system, and (ii) results in a fair allocation of the costs. Besides, our mechanism is an
generalisation of the mechanism in Zijm and Timmer (2008) in two ways. First, the system
under consideration allows for unequal holding and penalty costs among the installations,
whereas all installations are identical in Zijm and Timmer (2008). Second, in this work
we consider coordination of a system with at least three stages, which is considerably more
complex than a system with just two stages as in Zijm and Timmer (2008) since now multiple
rounds of negotiation and feedback are needed in the coordination mechanism.

The outline of this paper is as follows. In the next section we introduce our model. The
inventory system under decentralized control is analyzed in section 3. Thereafter, in section
4 we introduce and study our coordination mechanism. Section 5 concludes. All proofs may
be found in the appendix.
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2 Model

In this section we introduce our model, which is based on the model in Diks and De Kok
(1998).

We consider a single-item three-stage divergent inventory system, which is a system where
each stockpoint has a unique supplier. Denote this unique supplier or preceding stockpoint
of stockpoint i by pre(i). Note that we use the terms stockpoint and installation interchange-
ably. An echelon is a set of stockpoints starting from a certain installation and including
all stockpoints downstream, that is, toward the end-stockpoints that try to meet customer
demand. Denote by e(i) the echelon starting from installation i. The echelon stock consists
of all stock at the stockpoint plus all stock in transition to or on hand at any installation
downstream minus eventual backlogs at the end-stockpoints. Finally, the echelon inventory
position equals the echelon stock plus materials that are ordered but not yet delivered at the
most upstream stockpoint in the echelon.

Periodically, each stockpoint bases its decision with regard to replenishment of stock on
its echelon inventory position. It decides upon a so-called base stock level, that is, each period
the stock is replenished to this desired level. The base stock level of stockpoint i is denoted
by yi. Let Vi be the set of all stockpoints that are directly supplied by i, then yi ≥

∑
n∈Vi

yn

because the firms track echelon inventories. For ease of notation let ∆i = yi −
∑

n∈Vi
yn be

the physical stock at stockpoint i.
The most upstream stockpoint in the system, stockpoint 1, orders to an outside supplier,

who always has sufficient stock. The stockpoints use periodic review policies to control their
inventories. Every period stockpoint i places an order for replenishment of stock to its base
stock level yi. This order arrives after a lead time of Li periods. Now one of two cases will
occur. If the inventory covers the demand for installation i then this demand is fulfilled;
any remaining stock is kept at stockpoint i for future use. Otherwise, if the echelon stock
x of installation i is insufficient to satisfy all demand of its successors then this stock will
be rationed according to the allocation functions zj(x), j ∈ Vi, that efficiently distribute the
available stock:

∑
j∈Vi

zj(x) = x. We assume that this rationing always allocates nonnegative
quantities; this is the so-called balance assumption. Furthermore, if the echelon stock happens
to be sufficient then each installation receives its requested amount: zj(

∑
n∈Vj

yn) = yj .
Let E denote the set of end-stockpoints and M the set of the other (intermediate) stock-

points. For ease of notation we define by Ui the set of stockpoints on the path from the
outside supplier to stockpoint i. Notice that U1 = ∅. Also, a low level code (LLC) is assigned
to every stockpoint. This code shows the level in the supply chain where the stockpoint
operates, counted from the most downstream stockpoints. So an end-stockpoint n ∈ E has
LLC(n) = 1 and an intermediate stockpoint i ∈ M has LLC(i) = 1+maxj∈Vi LLC(j). Denote
by Wi the stockpoints with low level code i. Notice that W1 = E.

Without loss of generality we assume that customer demand only occurs in the end-
stockpoints. During a period, demand between end-stockpoints may be correlated but de-
mands across periods are independent and identically distributed. The stochastic demand for
stockpoint i during a single period has cumulative density function Fi and expected value µi.
By F

(L)
i we denote the cumulative density function of the demand for i during L periods with

expected value Lµi. Any demand that cannot be satisfied immediately will be backordered
and it incurs a penalty cost of pi per unit backordered per period. Stockpoint i adds hi to
the value of a unit of stock. Hence, stockpoint i pays a holding cost hi +

∑
j∈Ui

hj per unit
of stock per period.
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A policy of an echelon prescribes for all stockpoints in the echelon its base stock level
and allocations functions; for the end-stockpoints it prescribes their base stock levels. This
policy is denoted by a pair (yi,Ψi), in which Ψi summarizes the parameters downstream of
stockpoint i: Ψi = ∅ if i ∈ E and Ψi = ∪j∈Vi(zj , yj ,Ψj) if i ∈ M .

Assign the following one-period costs (holding and penalty) to installation i if its echelon
stock at the beginning of the period is increased to x:

Ci(x) =
{

hi(x− µi), i ∈ M,
hi(x− µi) +

∫∞
x (hi +

∑
j∈Ui

hj + pi)(u− x)dFi(u), i ∈ E.

The expected cost of echelon i given the policy (yi,Ψi) is as follows.

Lemma 1 (Diks and De Kok, 1998) For replenishment policy (yi,Ψi) the average cost of
echelon i equals

Di(yi,Ψi) =
∫ ∞

0
Ci(yi − u)dF

(Li)
i (u) +

∑
n∈Vi

(∫ ∆i

0
Dn(yn,Ψn)dF

(Li)
i (u)

+
∫ ∞

∆i

Dn(zn(yi − u),Ψn)dF
(Li)
i (u)

)
.

Hence, the expected cost of echelon i consists of the cost of stockpoint i and the costs generated
by its successors. These latter costs depend on whether or not stockpoint i has sufficient stock
to satisfy all the demand from its successors.

Under the balance assumption, Diks and De Kok (1998) show that the cost D1(y1,Ψ1) of
the inventory system is minimized in the global optimal replenishment policy (ŷ1, Ψ̂1). This
optimum can easily be implemented in a system under centralized control. But in practice,
divergent systems often operate under decentralized control in which each stockpoint decides
about its private base stock level yi and allocation functions zj , j ∈ Vi. Once these decisions
are made, they are implemented over an infinite horizon. Such a situation can be analysed by
means of a (noncooperative) strategic game; see for example (Osborne and Rubinstein, 1994;
Tijs, 2003). In such a game each player has to choose a strategy; this is done independently
and simultaneously from the other players. Thereafter, each player incurs a cost that depends
on the strategies chosen by all the players.

More formally, a strategic game consists of a set of players and for each player a strategy
set and a cost function. Here, the player set is the set of stockpoints. Player i’s strategy
set Yi, i ∈ M , is the set of all its feasible echelon base stock levels and allocation functions.
For end-stockpoints i ∈ E the strategy set Yi only contains the feasible echelon base stock
levels. In the sequel, we also refer to a player’s strategy as his policy. The average cost Hi

of player i depends on the strategies (y1,Ψ1) chosen by all players in the system and will
be specified later. The goal of each player is to choose a strategy that minimizes its average
cost. A solution of a strategic game is a Nash equilibrium. The strategies (ȳ1, Ψ̄1) are called
a Nash equilibrium if individual deviations do not pay off: Hi(ȳ1, Ψ̄1) ≤ Hi(ȳ−i

1 , Ψ̄−i
1 ), where

the superscript −i denotes that all parameters remain unchanged except player i’s strategy.

3 System under decentralized control

Consider the divergent system under decentralized control, that is, each stockpoint decides
upon its individual echelon base stock level and allocation functions. The true one-period
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cost C̃n of stockpoint n ∈ E equals holding costs for goods in stock and penalty costs for
backlogs,

C̃n(x) =
∫ x

0
(hn +

∑
j∈Un

hj)(x− u)dFn(u) +
∫ ∞

x
pn(u− x)dFn(u)

= Cn(x) +
∑
j∈Un

hj(x− µn).

This implies that the true expected cost per period equals

D̃n(yn) =
∫ ∞

0
C̃n(yn − u)dF (Ln)

n (u)

= Dn(yn) +
∑
j∈Un

hj(yn − (Ln + 1)µn). (1)

Let wn denote the real base stock level as experienced by installation n. Then w1 = y1 since
the outside supplier always has ample stock to supply stockpoint 1. Further, the demand of
stockpoint n is fulfilled if its supplier i, i = pre(n), has ample stock and otherwise he receives
an allocated part of installation i’s stock,

wn =

{
yn,

∑
m∈Vi

ym ≤ wi − u
(Li)
i ,

zn(wi − u
(Li)
i ), otherwise.

Occasionally we write wn(u(Li)
i ) to stress the dependence of wn on u

(Li)
i . Also, let E be the

expectation. These notations allow for an easy formulation of the average cost of the system.

Lemma 2 The average cost of echelon 1 equals

D1(y1,Ψ1) = h1(y1 − (L1 + 1)µ1) +
∑
i∈V1

EDi(wi,Ψi)

where

Di(wi,Ψi) = hi(wi − (Li + 1)µi) +
∑
n∈Vi

EDn(wn)

for i ∈ W2 and

EDn(wn) = Dn(yn) +
∫ ∞

∆i

(Dn(zn(wi − u))−Dn(yn)) dF
(Li)
i (u)

for n ∈ E ∩ Vi.

The proof of this Lemma, as well as all subsequent proofs, may be found in the appendix.
The true expected cost H̃n per period for installation n ∈ E is H̃n(y1,Ψ1) = ED̃n(wn).

For intermediate installations i ∈ M the true expected cost equals inventory costs for goods
in stock and in transit to installations n ∈ Vi.

H̃i(y1,Ψ1) = E
∫ ∞

0
(hi +

∑
m∈Ui

hm) max(wi − u−
∑
n∈Vi

yn, 0)dF
(Li)
i (u)

+
∑
n∈Vi

∫ ∞

0
(hi +

∑
m∈Ui

hm)udF (Ln)
n (u).

These cost functions reduce to simpler expressions, as shown below.
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Lemma 3 The true expected cost functions may be written as

H̃i(y1,Ψ1) = (hi +
∑

m∈Ui

hm)(Ewi − Liµi −
∑
n∈Vi

Ewn) +
∑
n∈Vi

(hi +
∑

m∈Ui

hm)Lnµn

for intermediate stockpoints i ∈ M , and

H̃n(y1,Ψ1) = EDn(wn) +
∑
j∈Un

hj(Ewn − (Ln + 1)µn)

for end-stockpoints n ∈ E.

From this we easily deduce the total cost per echelon, where H̃e(i) =
∑

j∈e(i) H̃j is the cost
of echelon i resulting from cost function H̃.

Lemma 4 The total cost of echelon i equals

H̃e(i)(y1,Ψ1) = EDi(wi,Ψi) +
∑
k∈Ui

hk(Ewi − (Li + 1)µi).

As a corollary we obtain that the cost functions H̃i efficiently distribute the total cost of
the inventory system among the stockpoints.

Corollary 5 H̃e(1)(y1,Ψ1) = D1(y1,Ψ1).

The cost functions H̃i may be interpreted as cost functions of a strategic game in which each
stockpoint is a player. Upon doing so, each installation simultaneously and independently
chooses a strategy — a pair consisting of a base stock level and a set of allocation functions
— that minimizes its expected cost. These choices result in a Nash equilibrium of the game.

Theorem 6 A Nash equilibrium of the strategic game with cost functions H̃i is a policy
(y∗1,Ψ

∗
1) satisfying y∗i =

∑
j∈Vi

y∗j for i ∈ M , and y∗n minimizes H̃n(y1,Ψ1) for n ∈ E.

Notice that there exist multiple Nash equilibria because any set of allocation functions
{z∗j }j∈Vi is optimal. Further, no intermediate stockpoint will keep any extra stock in a Nash
equilibrium (y∗1,Ψ

∗
1), and its cost is H̃i(y∗1,Ψ

∗
1) =

∑
n∈Vi

(hi +
∑

m∈Ui
hm)Lnµn. Hence, the

end-stockpoints n ∈ E will incur large costs due to large probabilities of stock-out at their
suppliers.

4 Coordination mechanism

In this section we introduce our mechanism for the three-stage divergent inventory system
that results in: (i) a coordinated inventory system, and (ii) a fair allocation of the cost; all the
installations enjoy cost savings compared to the situation under decentralized control. The
mechanism consists of two rounds of negotiations between adjoining stages, namely first be-
tween the two most downstream stages and thereafter between the two most upstream stages.
Finally, a feedback round will carry over the results from the second round of negotiations to
the most downstream stage.

7



4.1 First round of negotiations

Under decentralized control any end-stockpoint n is confronted with large costs due to a
high probability of stockouts for its supplier. Therefore — to reduce their costs — the end-
stockpoints will start negotiations with their immediate suppliers. During these negotiations
we assume that the policies of the other stockpoints in the system remain unchanged; they
remain equal to the policies as set under decentralized control.

For each stockpoint i ∈ W2, the stockpoints n ∈ Vi initiate negotiations with their supplier
i. The installations n ∈ Vi ask i to increase its base stock level to some amount yi >

∑
n∈Vi

yn.
This results in a cost increase for stockpoint i of size

H̃i(y1,Ψ1)− H̃i(y∗1,Ψ
∗
1) = (hi + h1)(Ewi − Liµi −

∑
n∈Vi

Ewn).

The installations in Vi will compensate i for this increase. In particular, installation n ∈ Vi

will pay the part

(hi + h1)(Ezn(wi − u
(Li)
i )− Ewn).

These payments leave installation i indifferent to cooperation since now its cost is equal to
its initial cost. Hence, to persuade installation i to participate, its new cost should be lower
than the initial cost. To achieve this, installation n uses its surplus — its cost savings minus
the compensation paid to i:

H̃n(y∗1,Ψ
∗
1)− H̃n(y1,Ψ1)− (hi + h1)(Ezn(wi − u

(Li)
i )− Ewn).

Installation i receives a fraction γi of this surplus from all stockpoints n it supplies.
The new cost for installation n ∈ Vi resulting from these negotiations, includes its original

cost H̃n, and the compensation and the fraction of its surplus paid to its supplier i.

H ′
n(y1,Ψ1) = H̃n(y1,Ψ1) + (hi + h1)E(zn(wi − u

(Li)
i )− wn)

+ γi

(
H̃n(y∗1,Ψ

∗
1)− H̃n(y1,Ψ1)− (hi + h1)E(zn(wi − u

(Li)
i )− wn)

)
= (1− γi)

(
H̃n(y1,Ψ1) + (hi + h1)E(zn(wi − u

(Li)
i )− wn)

)
+ γiH̃n(y∗1,Ψ

∗
1).

(2)

Along similar lines, the new cost for installation i is its original cost H̃i reduced by the
compensations and the fractions of the surplusses it receives of its buyers.

H ′
i(y1,Ψ1) = H̃i(y1,Ψ1)−

∑
n∈Vi

(hi + h1)E(zn(wi − u
(Li)
i )− wn)

−
∑
n∈Vi

γi

(
H̃n(y∗1,Ψ

∗
1)− H̃n(y1,Ψ1)− (hi + h1)E(zn(wi − u

(Li)
i )− wn)

)
= γiH̃e(i)(y1,Ψ1)− γiH̃e(i)(y

∗
1,Ψ

∗
1) + H̃i(y∗1,Ψ

∗
1). (3)

Notice that these cost functions are a reallocation of the former ones:

H ′
e(i)(y1,Ψ1) = H̃e(i)(y1,Ψ1); (4)

the negotations conserve the cost of the echelon.
The outcome of this first round of negotiations is as follows.
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Theorem 7 In the first round of the negotiations the policy (ya
1 ,Ψa

1) is chosen by the instal-
lations. Installation n ∈ Vi minimizes its cost H ′

n(y1,Ψ1) in the global optimum, ya
n = ŷn;

installation i minimizes its cost H ′
i(y1,Ψ1) in ya

i 6= ŷi and za
n 6= ẑn, n ∈ Vi.

This policy is preferred by all parties involved in the negotiations.

Theorem 8 The negotiations in the first round reduce costs: H ′
j(y

a
1 ,Ψa

1) < H̃j(y∗1,Ψ
∗
1) for

all installations j in echelon i.

4.2 Second round of negotiations

After the first round of negotiations — between stockpoints i ∈ W2 and their buyers — we
proceed to the next round. In the three-stage model under consideration, W3 = {1}. Hence,
in this round installation 1 and all installations i ∈ V1 are negotiating. Each installation
i ∈ V1 participates on behalf of its echelon because the negotiations also have impact on the
costs of the other installations in the echelon; among others, cost savings for installation i
result in lower compensations from installations n ∈ Vi to i.

The second round of negotiations proceeds among similar lines as the first round. All
installations i ∈ V1 ask stockpoint 1 to increase its base stock level y1 to some level y1 >∑

i∈Vi
yi. Recall that the policies of the other stockpoints remain unchanged: yn = ya

n = ŷn

for all n ∈ Vi as determined by the previous round of negotiations. The cost increase for 1
equals

H̃1(y1,Ψ1)− H̃1(ya
1 ,Ψa

1) = h1(y1 − L1µ1 −
∑
i∈V1

ωi).

Installation i ∈ V1 will pay the compensation h1E(zi(y1−u
(L1)
1 )−wi). The surplus of echelon

i equals

H̃e(i)(y
a
1 ,Ψa

1)− H̃e(i)(y1,Ψ1)− h1E(zi(y1 − u
(L1)
1 )− wi)

due to equation (4). Installation 1 receives a fraction γ1 of this surplus from any echelon
i ∈ V1. These payments result in new costs for echelon i:

He(i)(y1,Ψ1) = H ′
e(i)(y1,Ψ1) + h1E(zi(y1 − u

(L1)
1 )− wi)

+ γ1

(
H̃e(i)(y

a
1 ,Ψa

1)− H̃e(i)(y1,Ψ1)− h1E(zi(y1 − u
(L1)
1 )− wi)

)
= (1− γ1)

(
H̃e(i)(y1,Ψ1) + h1E(zi(y1 − u

(L1)
1 )− wi)

)
+ γ1H̃e(i)(y

a
1 ,Ψa

1).

(5)

The negotiations change the cost of stockpoint 1 to

H1(y1,Ψ1) = H̃1(y1,Ψ1)−
∑
i∈V1

h1E(zi(y1 − u
(L1)
1 )− wi)

−
∑
i∈V1

γ1

(
H̃e(i)(y

a
1 ,Ψa

1)− H̃e(i)(y1,Ψ1)− h1E(zi(y1 − u
(L1)
1 )− wi)

)
= γ1D1(y1,Ψ1) + H̃1(ya

1 ,Ψa
1)− γ1D1(ya

1 ,Ψa
1) (6)

The goal of each installation is to minimize its costs. This leads to the following result.
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Theorem 9 In the second round of negotiations the policy (yb
1,Ψ

b
1) is chosen by the installa-

tions. Echelon i minimizes its cost He(i)(y1,Ψ1) in (yb
i ,Ψ

b
i) = (ŷi, Ψ̂i); stockpoint 1 minimizes

its cost H1(y1,Ψ1) in yb
1 = ŷ1 and zb

i = ẑi for all i ∈ V1. Consequently, the global optimal
policy is chosen: (yb

1,Ψ
b
1) = (ŷ1, Ψ̂1).

We conclude from this theorem that after the second round of negotiations the system is
coordinated because the global optimal policy (ŷ1, Ψ̂1) is selected. This outcome is preferred
by all parties involved since they enjoy cost savings, as is shown in the next theorem.

Theorem 10 The negotiations in the second round reduce costs: H1(yb
1,Ψ

b
1) = H1(ŷ1, Ψ̂1) <

H̃1(ya
1 ,Ψa

1) and He(i)(yb
1,Ψ

b
1) = He(i)(ŷ1, Ψ̂1) < H ′

e(i)(y
a
1 ,Ψa

1) for all echelons i ∈ V1.

4.3 Feedback round

Finally, the stockpoints i ∈ W2 will inform their buyers about the outcome of the second
round of negotiations. In this feedback round the cost He(i)(ŷ1, Ψ̂1) has to be divided among
the installations in echelon i. Recall that

He(i)(ŷ1, Ψ̂1) = H ′
i(ŷ1, Ψ̂1) +

∑
n∈Vi

H ′
n(ŷ1, Ψ̂1) + h1E(ẑi[ŷ1 − u

(L1)
1 ]− wi)

+ γ1

(
H̃e(i)(y

a
1 ,Ψa

1)− H̃e(i)(ŷ1, Ψ̂1)− h1E(ẑi[ŷ1 − u
(L1)
1 ]− wi)

)
.

A natural division of this cost prescribes that stockpoint n ∈ Vi pays H ′
n(ŷ1, Ψ̂1) and stock-

point i pays the remaining

H ′
i(ŷ1, Ψ̂1) + γ1

(
H̃e(i)(y

a
1 ,Ψa

1)− H̃e(i)(ŷ1, Ψ̂1)− h1E(ẑi[ŷ1 − u
(L1)
1 ]− wi)

)
.

This need not be unfavorable to i because the change in policy from (ya
1 ,Ψa

1) to (ŷ1, Ψ̂1)
results in an extra payment of γi

(
He(i)(ya

1 ,Ψa
1)−He(i)(ŷ1, Ψ̂1)

)
from n ∈ Vi to i. This covers

the payments from i to 1 if

γi >
H ′

i(ŷ1, Ψ̂1) + γ1

(
H̃e(i)(ya

1 ,Ψa
1)− H̃e(i)(ŷ1, Ψ̂1)− h1E(ẑi[ŷ1 − u

(L1)
1 ]− wi)

)
He(i)(ya

1 ,Ψa
1)−He(i)(ŷ1, Ψ̂1)

=: γ
i
.

Notice that 0 < γ
i
< 1. This immediately implies our main result:

Theorem 11 Consider the strategic game corresponding to the mechanism, in which the cost
function of installation i is Hi for i = 1 or i ∈ V1 ∩ W1, and H ′

i otherwise. If i ∈ V1 pays
the compensation to 1, and if γi > γ

i
for i ∈ W2 then the global optimal policy (ŷ1, Ψ̂1) is the

unique Nash equilibrium of this game. Further, this Nash equilibrium is a fair cost allocation.

Hence, the mechanism coordinates the system because the global optimal replenishment
policy is chosen by all the installations. Further, all stockpoints enjoy cost savings, compared
to the initial situation under decentralized control, due to the fair cost allocation.

10



5 Conclusions

In this paper a coordination mechanism for divergent multi-echelon inventory systems under
periodic review and under decentralized control is presented and analysed. For ease of notation
we studied a three-echelon system. Our coordination mechanism can readily be extended to
general divergent N -echelon inventory systems. In that case, it will contain N − 1 rounds of
negotiations and N − 2 rounds of feedback.

The decentralized control implies that the echelon base stock levels set by the installations
need not be optimal from the perspective of the supply chain as a whole. The selfish instal-
lations act in their own self interest, which conflicts with global interests. A coordination
mechanism is introduced to align the interests of the installations. The mechanism starts
from the equilibrium outcome under decentralized control, which needs improvement since it
is not globally optimal. In this outcome the most downstream firms incur the largest costs
and therefore these will initiate negotiations with their supplier with the goal of decreasing
their costs.

During the negotiations a mechanism is employed that is based upon two ideas: first,
upstream installations should be fully compensated for cost increases due to larger base
stock levels, and second, they should also receive a part of the surplus of the downstream
installations. The mechanism changes the incentives in such a way that the global optimal
policy is the unique Nash equilibrium of the corresponding strategic game. Hence, the system
is coordinated. This result is due to the monetary side payments in the mechanism, which not
only reduce the cost of the upstream installations but result in lower costs for all installations.
Hence, the final cost allocation is a fair allocation. This is very important for the acceptance
of the mechanism by all installations.

The coordination mechanism has several nice characteristics. First, the mechanism in-
duces the upstream installation to carry inventory since the extra costs of this inventory will
be reimbursed. Second, the monetary side payments redistribute the costs among the in-
stallations, so the cost of the system is conservated. Third, the mechanism is designed for
implementation in systems with multiple independent firms, which are more complex than
systems in which all firms belong to a single organisation. Finally, the resulting cost allocation
is fair — all firms benefit from the mechanism.

A Proofs

Proof of Lemma 2.
Using lemma 1 and the definition of C1, we derive

D1(y1,Ψ1) =
∫ ∞

0
h1(y1 − u)dF

(L1+1)
1 (u) +

∑
i∈V1

(∫ ∆1

0
Di(yi,Ψi)dF

(L1)
1 (u)

+
∫ ∞

∆1

Di(zi(y1 − u),Ψi)dF
(L1)
1 (u)

)
= h1(y1 − (L1 + 1)µ1) +

∑
i∈V1

EDi(wi,Ψi).

11



Along similar lines, stockpoints for i ∈ W2

Di(wi,Ψi) =
∫ ∞

0
hi(wi − u)dF

(Li+1)
i (u) +

∑
n∈Vi

(∫ wi−
∑

n∈Vi
yn

0
Dn(yn)dF

(Li)
i (u)

+
∫ ∞

wi−
∑

n∈Vi
yn

Dn(zn(wi − u))dF
(Li)
i (u)

)
= hi(wi − (Li + 1)µi) +

∑
n∈Vi

EDn(wn).

Finally,

EDn(wn)

=
∫ wi−

∑
n∈Vi

yn

0
Dn(yn)dF

(Li)
i (u) +

∫ ∞

wi−
∑

n∈Vi
yn

Dn(zn(wi − u))dF
(Li)
i (u)

= Dn(yn) +
∫ ∞

wi−
∑

n∈Vi
yn

(Dn(zn(wi − u))−Dn(yn)) dF
(Li)
i (u)

for n ∈ E ∩ Vi. �

Proof of Lemma 3.
The true cost for stockpoint n ∈ E, H̃n(y1,Ψ1) = ED̃n(wn), follows immediately from (1).
For installation i ∈ W2 we derive

H̃i(y1,Ψ1) = E
∫ ∞

0
(hi +

∑
m∈Ui

hm) max(wi − u−
∑
n∈Vi

yn, 0)dF
(Li)
i (u)

+
∑
n∈Vi

∫ ∞

0
(hi +

∑
j∈Ui

hj)udF (Ln)
n (u)

= E
∫ ∞

0
(hi + h1)(wi − u−

∑
n∈Vi

wn)dF
(Li)
i (u)

+
∑
n∈Vi

(hi + h1)Lnµn

= (hi + h1)(Ewi − Liµi −
∑
n∈Vi

Ewn) +
∑
n∈Vi

(hi + h1)Lnµn,

because Ui = {1} for the three-echelon system under consideration. The cost H̃1(y1,Ψ1) for
stockpoint 1 follows from U1 = ∅ and Ew1 = y1. �

Proof of Lemma 4.
This proof is by induction. The statement for i ∈ W1 = E follows directly from lemma 3.

12



Now assume the statement holds for all i ∈ Wl. Let m ∈ Wl+1, then∑
j∈e(m)

H̃j(y1,Ψ1)

= H̃m(y1,Ψ1) +
∑

j∈Vm

∑
k∈e(j)

H̃k(yk,Ψk)

= (hm +
∑

k∈Um

hk)(Ewm − Lmµm −
∑

j∈Vm

Ewj) +
∑

j∈Vm

(hm +
∑

k∈Um

hk)Ljµj

+
∑

j∈Vm

EDj(wj ,Ψj) +
∑
k∈Uj

hk(Ewj − (Lj + 1)µj)


= (hm +

∑
k∈Um

hk)(Ewm − (Lm + 1)µm) +
∑

j∈Vm

EDj(wj ,Ψj)

= EDm(wm,Ψm) +
∑

k∈Um

hk(Ewm − (Lm + 1)µm)

where lemma 3 and the induction assumption are used in the second equality. The third
equality uses

∑
k∈Uj

hk = hm +
∑

k∈Um
hk,

∑
j∈Vm

µj = µm, and the final equality follows
from lemma 2. �

Proof of Theorem 6.
Stockpoint i ∈ M has cost H̃i(y1,Ψ1) as specified in lemma 3. Notice that Ewi − Liµi −∑

n∈Vi
Ewn ≥ 0 because firms track echelon inventories, and

∑
n∈Vi

(hi +
∑

m∈Ui
hm)Lnµn

are fixed costs. As a consequence minimal costs are reached if y∗i =
∑

n∈Vi
y∗n since then

Ewi − Liµi −
∑

n∈Vi
Ewn = 0. Notice that this minimum does not depend on zn.

Simultaneously, end-stockpoint n minimizes its cost H̃n(y1,Ψ1). By lemma 3, the first
order condition for a minimum is

0 =
d

dyn
EDn(wn) + h1

d

dyn
Ewn

= D′
n(yn)F (L1)

1 (∆1) + h1F
(L1)
1 (∆1)

=
(
D′

n(yn) + h1

)
F

(L1)
1 (∆1),

where D′
n(yn) = d

dyn
Dn(yn). Therefore D′

n(yn) + h1 = 0 because F
(L1)
1 (∆1) is outside of the

control of stockpoint n. By lemma 1,

D′
n(yn) = (hn + h1 + pn)F (Ln+1)

n (yn)− h1 − pn,

so end-stockpoint n selects the base stock level y∗n satisfying F
(Ln+1)
n (y∗n) = pn/(hn +h1 +pn).

One easily checks that the second order condition for a minimum is satisfied. �

Proof of Theorem 7.
Minimizing H ′

n(y1,Ψ1) with respect to yn is equivalent to minimizing

H̃n(y1,Ψ1) + (hi + h1)E(zn(wi − u
(Li)
i )− wn)
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because the other terms in H ′
n are constant. Then

H̃n(y1,Ψ1) + (hi + h1)E(zn(wi − u
(Li)
i )− wn)

= EDn(wn) + (
∑
j∈Un

hj)(ωn − (Ln + 1)µn) + (hi + h1)E(zn(wi − u
(Li)
i )− wn)

= EDn(wn) + (hi + h1)(Ezn(wi − u
(Li)
i )− (Ln + 1)µn),

so, minimizing H ′
n(y1,Ψ1) with respect to yn boils down to minimizing EDn(wn). Using

lemma 2, the first order condition for a minimum is

0 =
d

dyn
Dn(yn) + (Dn(zn(

∑
n∈Vi

yn))−Dn(yn))f (Li)
i (∆i)−

∫ ∞

∆i

d

dyn
Dn(yn)dF

(Li)
i (u)

=
(

d

dyn
Dn(yn)

)
F

(Li)
i (∆i).

Thus d
dyn

Dn(yn) = 0, since ∆i > 0 by assumption. By lemma 1 this equivalent to minimizing
Dn(yn), the allocated cost for installation n under centralized control. Hence, stockpoint n
chooses yn = ŷn — the global optimum is reached. One easily checks that the second order
condition is satisfied.

According to (3) and lemma 4, minimizing H ′
i(y1,Ψ1) is equivalent to minimizing

H̃e(i)(y1,Ψ1) = EDi(w∗
i ,Ψi) + h1(Ew∗

i − (Li + 1)µi),

where w∗
i = zi(y∗1 − u

(L1)
1 ). Because the last term on the right hand side is constant, we have

to minimize EDi(w∗
i ,Ψi). Comparing this to the cost Di(yi,Ψi) of echelon i under centralized

control as denoted in lemma 1, we see that the holding costs hi are changed to hi + h1, the
lead time is increased from Li to Li + L1 and its base stock level is w∗

i instead of yi. Due to
these changes, the minimum differs from the minimum in the global optimum: ya

i 6= ŷi and
za
n 6= ẑn for all n ∈ Vi. �

Proof of Theorem 8.
For stockpoints n ∈ Vi

H ′
n(ya

1 ,Ψa
1) < H ′

n(y∗1,Ψ
∗
1)

= (1− γi)
(
H̃n(y∗1,Ψ

∗
1) + (hi + h1)E(zn(w∗

i − u
(Li)
i )− w∗

n)
)

+ γiH̃n(y∗1,Ψ
∗
1)

= H̃n(y∗1,Ψ
∗
1),

where the inequality is due to theorem 7, and the first equality follows from (2). Also, w∗
j is the

real base stock level wj depending on policy (y∗1,Ψ
∗
1), which implies zn(w∗

i − u
(Li)
i )−w∗

n = 0.
Further,

H ′
i(y

a
1 ,Ψa

1) < H ′
n(y∗1,Ψ

∗
1)

= γiH̃e(i)(y
∗
1,Ψ

∗
1)− γiH̃e(i)(y

∗
1,Ψ

∗
1) + H̃i(y∗1,Ψ

∗
1)

= H̃i(y∗1,Ψ
∗
1),

where theorem 7 and (3) are used. �
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Proof of Theorem 9.
Recall that yn = ŷn for n ∈ Vi. Using (5) and lemma 4, we obtain

He(i)(y1,Ψ1) = (1− γ1)
(
H̃e(i)(y1,Ψ1) + h1E(zi(y1 − u

(L1)
1 )− wi)

)
+ γ1H̃e(i)(y

a
1 ,Ψa

1)

= (1− γ1)
(
EDi(wi,Ψi) + h1(Ewi − (Li + 1)µi) + h1E(zi(y1 − u

(L1)
1 )− wi)

)
+ γ1H̃e(i)(y

a
1 ,Ψa

1)

= (1− γ1)
(
EDi(wi,Ψi) + h1(Ezi(y1 − u

(L1)
1 )− (Li + 1)µi)

)
+ γ1H̃e(i)(y

a
1 ,Ψa

1).

Therefore, minimizing He(i)(y1,Ψ1) is equivalent to minimizing

EDi(wi,Ψi) = hi(Ewi − (Li + 1)µi)

+ E
∑
n∈Vi

(∫ wi−
∑

m∈Vi
ym

0
Dn(yn)dF

(Li)
i (u)

+
∫ ∞

wi−
∑

m∈Vi
ym

Dn(zn(wi − u))dF
(Li)
i

)
.

We compare this to the allocated cost for echelon i under centralized control (see lemma 1),

Di(yi,Ψi) = hi(yi − (Li + 1)µi)

+
∑
n∈Vi

(∫ ∆i

0
Dn(yn)dF

(Li)
i (u)

+
∫ ∞

∆i

Dn(zn(yi − u))dF
(Li)
i

)
.

From this comparison we conclude that minimizing EDi(wi,Ψi) with respect to the allocation
functions (zn)n∈Vi results in the same outcome as minimizing Di(yi,Ψi), namely zn = ẑn.

Also, the function Di(yi, Ψ̂i) is convex in yi with minimum in yi = ŷi, and wi is a contin-
uous piecewise function in yi that is increasing (Diks and De Kok, 1998). Hence, EDi(wi,Ψi)
is minimized in yi = ŷi.

By (6), minimizing H1(y1,Ψ1) is equivalent to minimizing D1(y1,Ψ1) — the total cost of
the inventory system. Hence, stockpoint 1 chooses the same policy as in the global optimum.
�

Proof of Theorem 10.
For echelon i ∈ V1

He(i)(ŷ1, Ψ̂1) < He(i)(y
a
1 ,Ψa

1)

= (1− γ1)
(
H̃e(i)(y

a
1 ,Ψa

1) + h1E(zi(ya
1 − u

(L1)
1 )− wi)

)
+ γ1H̃e(i)(y

a
1 ,Ψa

1)

= H̃e(i)(y
a
1 ,Ψa

1)

because of theorem 9 and zi(ya
1 − u

(L1)
1 ) = wi. Along similar lines, we deduce

H1(ŷ1, Ψ̂1) < H1(ya
1 ,Ψa

1)
= γ1D1(ya

1 ,Ψa
1) + H̃1(ya

1 ,Ψa
1)− γ1D1(ya

1 ,Ψa
1)

= H̃1(ya
1 ,Ψa

1);
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stockpoint 1 also saves costs. �
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