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Abstract

The Optimized Link State Routing (OLSR) protocol is a well-known route discovery

protocol for ad-hoc networks. OLSR optimizes the flooding of link state information

through the network using multipoint relays (MPRs). Only nodes selected as MPRs

are responsible for forwarding control traffic. Many research papers aim to optimize

the selection of MPRs with a specific purpose in mind: e.g., to minimize their

number, to keep paths with high Quality of Service or to maximize the network

lifetime (the time until the first node runs out of energy). In such analyzes often the

effects of the network structure on the MPR selection are not taken into account. In

this paper we show that the structure of the network can have a large impact on the

MPR selection. In highly regular structures (such as grids) there is even no variation

in the MPR sets that result from various MPR selection mechanisms. Furthermore,

we study the influence of the network structure on the network lifetime problem

in a setting where at regular intervals messages are broadcasted using MPRs. We

introduce the ’maximum forcedness ratio’, as a key parameter of the network to

describe how much variation there is in the lifetime results of various MPR selection

heuristics. Although we focus our attention to OLSR, being a widely implemented
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protocol, on a more abstract level our results describe the structure of connected

sets dominating the 2-hop neighborhood of a node.

Key words: network lifetime, multipoint relay selection, Optimized Link State

Routing (OLSR), dominating set

1 Introduction

The Optimized Link State Routing (OLSR) protocol is a well-known and of-

ten implemented MANET (Mobile Ad-Hoc Network) route discovery protocol.

OLSR optimizes the flooding of link state information through the network

by using multipoint relays (MPRs). Only nodes selected as MPRs are respon-

sible for forwarding control traffic. Besides the mechanism for flooding control

traffic like OLSR, there exist also flooding mechanisms for data traffic, like the

Simplified Multicast Forwarding (SMF) protocol [6] that can work together

with MPR selection algorithms (like the one in OLSR). An improved ver-

sion of SMF is BMF [15]. Both mechanisms flood IP Multicast traffic over an

OLSR network, where the MPRs identified by OLSR are used to optimize the

flooding.

In this paper we present a graph related study investigating the impact of the

network structure on the MPR selection. A main question in this context is

how to measure the impact of the structure of the graph on the MPR selection.

We show that for highly regular network structures (such as e.g. grids) MPR

selection algorithms only can have a marginal influence on the choice of MPR

nodes since many nodes are fixed as MPR nodes in the sense that every MPR

selection algorithm has to choose these nodes. To demonstrate the influence of

the fixed nodes, we consider the maximization of the network lifetime (the time
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at which the first communication fails due to depletion of battery-resources).

We introduce a key parameter of networks (maximum forcedness ratio) and

show how the network lifetime under different MPR selection algorithms de-

pends on this parameter. Although we focus our attention to OLSR, being a

widely implemented protocol, on a more abstract level our results describe the

structure of connected dominating sets covering the 2-hop neighborhood of a

node.

This paper consists of two main parts. In Section 3 we provide structural

results on MPR-sets that are independent of the selection algorithm that is

used. In Section 4 and Section 5 we apply this theory to grid graphs showing

that for ’central nodes’ in grid graphs all MPR selection algorithms yield the

same sets. In Section 6 the network lifetime is addressed, showing that a new

graph parameter, the ’maximum forcedness ratio’ is strongly related to the

degree in which the structure of the graph allows improvement of the network

lifetime by a better MPR selection heuristic. For graphs with a maximum

forcedness ratio close to 1, the concrete MPR selection heuristic has little

impact on the resulting network lifetime.

2 Related work

2.1 MPR selection

The classical MPR selection problem is to find for a given node a set of MPRs

of minimum size that covers the whole 2-hop neighborhood. Selecting the

MPR-set of minimal cardinality has been proven to be NP-complete ([17],

[14]).
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In practice, heuristic algorithms are used to select MPR-sets. To set up MPR

sets in a network, different MPR selection algorithms exist. In these algorithms

each node (the selector nodes) independently chooses its MPR-set. These sets

then act as relay nodes for messages sent by the selector node, and, thus can

organize the broadcast communication in a network. The existing approaches

mostly aim to optimize the selection of MPRs with a specific purpose in mind:

e.g., to minimize their number (as was the objective in the original specifica-

tion ([5]), or to improve QoS (see [1]). In [12] other purposes are presented:

to reduce the number of collisions, minimize the overlap between MPRs or

maximize the global bandwidth.

The heuristics mentioned above have a structure that can be divided into

three steps and use an incremental approach to compute an MPR-set. The

first step always consists of selecting neighboring nodes as MPR that cover

nodes in the 2-hop neighborhood that cannot be covered by other neighboring

nodes. The second step extends this set in order to ensure that the complete

2-hop neighborhood is covered and in the last step it is investigated if some

of the current selected nodes can be dropped without violating the requested

properties of an MPR set. In [2] an interesting probabilistic analysis of the

influence of the first step is given. The authors conclude that almost 75 % of

the relay nodes are selected by the first step of the heuristics. In this paper we

show that for a specific class of graphs all MPRs are selected in the first step

of the algorithm. In [8] MPR selection algorithms in a specific probabilistic

setting are analyzed. In this setting the edges in the graph have a weight, which

represents the probability of successful transmission over that edge. For this

probabilistic edge model the MPR selection heuristics are more complicated

than the three step model.
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2.2 Network lifetime problem

The network lifetime is an important parameter for battery-operated net-

works. Examples for such networks are personal area networks that are used

in emergency situations. Such networks are deployed in regions where it is

impractical to recharge/replace the battery of a node. This limited battery

capacity of nodes participating in a MANET is a topic of a wide variety of

literature on problems related to energy-efficiency. Many algorithms have been

developed addressing the Network Lifetime Problem in general networks. From

them, the following approaches are closely related to the topic of this paper:

(a) maximization of network lifetime for broadcast traffic. Kang and Pooven-

dran [9] present an algorithm that maximizes the static network lifetime. Low

and Goh [11] consider the problem of maximizing the minimum residual energy

that remains after a broadcast transmission from a source. Park and Sahni [13]

present an alternative heuristic for determining a tree with maximum ’critical

energy’ (minimum residual energy). These references form a small collection

of approaches in this area. Note, that all approaches above assume that the

transmission originates from a single source and that none of the approaches

provides a specific discussion of the impact on MPR selection.

(b) minimization of total energy consumption for broadcast traffic. The prob-

lem of minimizing the total energy consumption for broadcast has been widely

studied. The relation with the lifetime problem is that each broadcast reduces

the sum of all battery capacities in the network with the total energy required

for that broadcast. Liang [10] and Cagalj et al. [3] have proven independently

that the minimum-energy broadcast problem with the objective of minimizing
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the total transmitted power is NP-hard. One of the first algorithms on broad-

casting in wireless network with usage of the wireless multicast advantage is

the Broadcast Incremental Power algorithm (BIP) [19], with its variants [20].

(c) Extension of network lifetime by topology control. The idea behind topol-

ogy control is to reduce the number of connections in a network, to get a

subnetwork with some given desired properties. This reduction can be real-

ized by lowering the transmission power at certain nodes. The main issue is to

find a topology with less connections and consequently less transmit power.

The distributed algorithm XTC [18] is an algorithm that provides such a re-

duction. Calinescu [4] studies an approach where the lifetime of the network

is maximized taking into account the energy cost to maintain the topology.

Closest to the problem studied in this paper is [7], where adjustments are

made to the MPR selection algorithm to increase the network lifetime.

3 The structure of MPR sets: forced sets and fixed nodes

In this section we derive properties of multipoint relay (MPR) sets. A MPR

set of a node is defined as a subset of its neighbors which cover the complete

2-hop neighborhood of that node, i.e. if all vertices of an MPR set of a vertex

v forward a message received by v, the complete 2-hop neighborhood of v

receives that message.

More formally, let G = (V, E) be a connected graph (throughout this paper we

assume bi-directional links), and let Nk(u) denote the strict k-hop neighbor-

hood of u, i.e., the set of nodes for which the shortest path to u has exactly

k edges. A subset M(u) ⊂ N1(u) is called an MPR-set if M(u) dominates
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N2(u), i.e., each node in N2(u) has a neighbor in M(u)). Furthermore, for a

given MPR-set M(u), we call nodes from this set an MPR of node u. Finally,

we denote the set of all possible MPR-sets of u by MPR(u).

To avoid circulating messages, MPRs only react on the first instance of a

message. If this first instance is received by a neighboring node for which the

given node is an MPR, the message is retransmitted, otherwise it is ignored.

Further instances of the same message are ignored independently of the sender

of this message. This is called ’duplicate message detection’. To be able to

implement this process, every node maintains a duplicate set, in which all

received messages are listed. This set is used to check if an incoming message

already has been processed. Consequently, the following is possible: (1) a node

receives a message from a node for which it is not an MPR; (2) later it receives

the same message from a node for which it is an MPR. Both messages will

not be retransmitted: in case (1) because the node was not an MPR, in case

(2) because the message is in the duplicate set. However, it is still easy to see

that broadcasting via MPR’s in the above sense reaches all possible nodes in

the network.

The existing MPR selection algorithms differ in the selection process of the

sets M(u), u ∈ V . Our aim in this section is to analyze how far the chosen

MPR sets can differ. More precisely, we are interested in the subset of nodes

of a neighborhood N1(u) which belong to every possible MPR-set of u. We

denote this set by F 1(u) and call it the forced set of node u. Note, that nodes

in F 1(u) are chosen as MPR for node u by every MPR selection algorithm.

To simplify arguments, we also introduce the inverse notion of a forced MPR-

set. For a given node u ∈ V , the set of nodes that force u to be MPR, is
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defined as F−1(u) = {v|u ∈ F 1(v)}. Clearly, both definitions are related by:

v ∈ F 1(u) ⇔ u ∈ F−1(v). In the remainder of this paper, when it is not of

any interest to the situation at hand, we simply state that v is an MPR and

omit the name of the selector node.

The following lemma gives a characterization of F−1(u) in terms of properties

of the graph G.

Lemma 1 v ∈ F−1(u) if and only if there exists a node v∗ ∈ N(u) such that

there a unique 2-hop path from v to v∗, being the path v−u− v∗. In this case,

node v∗ belongs also to the set F−1(u).

Proof. (⇐) Suppose that there exists a node v∗ ∈ N(u) such that there is a

unique 2-hop path from v to v∗, being the path v − u − v∗. Then any subset

of N1(v) that dominates N2(v) must contain u in order to dominate v∗. So

v ∈ F−1(u), and by symmetry also v∗ ∈ F−1(u).

(⇒) Let v ∈ F−1(u) and suppose that every node v∗ ∈ N2(v) can be reached

via a 2-hop path v−w−v∗ with w 6= u. In this case N1(v)\u is a possible MPR-

set of v, which contradicts the fact that u is forced to be MPR. Consequently,

there exists a v∗ ∈ N2(v) for which the only 2-hop path between v and v∗

is v − u − v∗. Since we have bi-directional links, v∗ ∈ N2(v) means that also

v ∈ N2(v∗). If we combine this with the fact that u is the only node that

connects to both v and v∗, u has to be MPR for v∗ in each possible MPR

selection. Thus, v∗ ∈ F−1(u). 2

An extreme case occurs, when all neighbors of a node u force u to be MPR,

i.e., F−1(u) = N(u). In such a case we call u a fixed MPR. An example of a

fixed MPR is e.g. the center node in a star topology. In Figure 1 and Table 1

we present an example graph with its forced and fixed nodes. In this example
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there is only one fixed node, namely node u4.

u1 u2

u3

u4 u5

u6

Fig. 1. An example network with forced and fixed nodes.

Node u F 1(u) F−1(u)

u1 {u2, u3} ∅

u2 {u4} {u1, u4}

u3 ∅ {u6}

u4 {u2} {u2, u5, u6}

u5 {u4} ∅

u6 {u3, u4} ∅
Table 1

F 1(u) and F−1(u) for the example network in Figure 1.

Fixed nodes have an important impact on the network lifetime. The following

proposition states that fixed nodes provide an upper bound to the network

lifetime independent of which nodes initiate the broadcasts. In the setting of

this paper, we assume that different broadcasts do not interfere in time (a

new broadcasts does not start before the previous is finished). Therefore, the

network lifetime can be expressed in the number of messages that can been

broadcasted until the first node runs out of energy.

To formulate the proposition, we introduce the notion of the Network Lifetime
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NLT (G) of a graph G. This value denotes the maximum number of messages

which can be broadcasted within the network represented by G. Note, that in

this definition the nodes which broadcast the messages may be chosen in such

a way that a maximal lifetime is achieved.

Proposition 2 Let G = (V,E) be a connected graph with a set S 6= ∅ of fixed

MPRs. Furthermore, let the initial battery capacity of a node u be denoted by

E(u) and the battery cost per transmission of a message in node u ∈ V be

C(u). Then,

NLT (G) ≤ min
u∈S

⌊

E(u)

C(u)

⌋

. (1)

Proof. Let u be a fixed MPR in a connected network. Then u has to transmit

each broadcast message in the network if MPR flooding is used for commu-

nication. To see this, we distinguish two cases. If u is the source, it obviously

transmits the message. If u is not the source, the message reaches node u

via one of its neighbors. Since F−1(u) = N(u), u is MPR for every neighbor.

Therefore, the first message that arrives at u is being relayed and the (possi-

bly) next duplicate messages are ignored. So, every broadcast message reduces

the battery of a node u ∈ S exactly once with C(u). This immediately gives

the bound stated in the proposition. 2

Note, that we need the fact that u is MPR for all its neighbors to ensure that

it relays all message it receives. If node u would not be MPR for some neighbor

v and u receives some message first from this node v, then u would not relay

this message due to the duplicate message detection property.

The previous proposition provides an upper bound to the network lifetime. In

general, the lifetime of the network may be even smaller, if a non-fixed MPR,
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say w, exists with a low ratio E(w)
C(w)

. However, if we assume that this is not the

case, the given bound is tight as we show below.

Corollary 3 Let G = (V,E) be a connected graph with a set S 6= ∅ of fixed

MPRs. If

min
w∈V

⌊

E(w)

C(w)

⌋

≥ min
u∈S

⌊

E(u)

C(u)

⌋

, (2)

then NLT (G) = minu∈S

⌊

E(u)
C(u)

⌋

.

Proof. By the duplicate message detection property, a single message will

reduce the battery capacity of a node w by at most C(w). Therefore node w

can not run out of battery before E(w)
C(w)

broadcasts. Thus, the inequality (2)

guarantees that the bound in Proposition 2 is tight. 2

4 The structure of MPR sets in grid graphs

In this section, we apply the results of the previous section to grid structures.

Grid structures are characterized by their regular structure and turn out to

have restricted possibilities to vary their MPR sets. Even though grid graphs

in their pure form hardly occur in practical settings, a lot of real networks have

grid-like structures or sub structures and, as a consequence, the results derived

for pure grid graphs occur in some ’weaker’ sense also in these networks.

Formally, we denote by Gm×n(r) a graph with m · n nodes on grid points

of a m × n grid. We assume the horizontal and vertical distance between

neighboring grid points to be 1. Furthermore, two nodes u and v are connected

by an edge in Gm×n(r) if and only if d(u, v) ≤ r, where d(u, v) denotes the
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Euclidean distance between the nodes u and v. Note, that n and m determine

the vertex set and r determines the edge set of the graph Gm×n(r). As examples

(see Figure 2) we consider the graphs for r = 1 and r =
√

2. Gm×n(1) has only

horizontal and vertical edges and Gm×n(
√

2) has also edges between diagonal

neighboring grid points. Note, that Gm×n(1) is what normally is considered as

a grid graph.

(a) The graph G3×4(1). (b) The graph G3×4(
√

2).

Fig. 2. Two graphs on grids.

The grid structure of a graph induces two important properties, which are the

basic elements for the proof of the theorem presented below.

• Translation Property

If u, v are grid points and −→a is a vector such that u + −→a is a grid point,

then v + −→a is also a grid point.

• Symmetry Property

If v is a grid point, then the point obtained by mirroring v through another

grid point is again a grid point.

Note, that for the two mentioned properties we assume that the grid structure

is large enough; i.e. that the translated or mirrored point is still within the

grid. Also for the following results, we are not interested in the specific issues

at the border of the graph, but we concentrate on central nodes. A node
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v ∈ Gm×n(r) is called a j-hop central node, with j ∈ {1, 2} , if v is located in

the (m − 2j⌊r⌋) × (n − 2j⌊r⌋) subgrid that is created by removing j⌊r⌋ grid

rows from the upper and lower side of the grid and j⌊r⌋ grid columns from the

left and right side of the grid. Nodes in Gm×n(r) that are not j − hop central

nodes, are called border nodes. Note that the j−hop neighborhood of a j−

hop central node v is point symmetrical in v, j = 1, 2.

Using the above terminology, we now apply the results of the previous section

to grid graphs. The following theorem states the rather surprising fact that,

for a 2-hop central node u in a grid graph we have F−1(u) = F 1(u) and that

F 1(u) is an MPR-set of u. As can be seen from Figure 1, this is in general not

true.

To keep the paper concise, we only present a sketch of the proof of Theorem

4. A full proof can be found in [16].

Theorem 4 For every 2-hop central node u ∈ Gm×n(r) with r ≥ 1, the set

F−1(u) is an MPR-set of u, i.e. F−1(u) ∈ MPR(u).

Proof. (Sketch). Let u be a 2-hop central node in Gm×n(r) with r ≥ 1.

(1) Then v ∈ F−1(u) if and only if the mirror image vu (obtained by point

mirroring v in u) is the only node in N(u) with a unique 2-hop path to v.

(2) Using this, it follows from the translation property that v ∈ F−1(u) if and

only if u ∈ F−1(v), hence F−1(u) = F 1(u).

(3) Next a geometrical characterization of F−1(u) is given: v ∈ N(u) is in

F−1(u) if and only if v is an extreme point of the convex hull C(u) of N(u);

i.e. the smallest convex space in which all nodes in N(u) are located (a point

x ∈ C is called an extreme point if it is not an interior point of any line segment

in C).
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(4) Let u be a 2-hop central node in Gm×n(r) with r ≥ 1. Then for every node

w ∈ N2(u) it holds that w ∈ C2(u). Here, C2(u) is the convex hull multiplied

by a factor of 2: C2(u) = {2x‖x ∈ C(u)}.

(5) The proof is completed by showing: all grid points in C2(u) are the grid

points defined by
⋃

f∈F−1(u) N(f). This can be proven by a simple geometric

argument. 2

5 MPR selection algorithms

The analysis in the previous section forms the fundament for our main result

on MPR selection algorithms for grid graphs. Before presenting the theorem we

discuss the structure of MPR selection algorithms. MPR-selection algorithms

are localized algorithms, where each node u ∈ V selects an MPR-set M(u),

independently from the other nodes. Most MPR selection algorithms use the

following structure to calculate an MPR-set M(u) for node u:

(1) Start with an empty MPR-set of node u, and add nodes of N(u) that are

the only neighbor of a node in N2(u). So, after this step M(u) = F 1(u).

(2) While there are still uncovered nodes in N2(u), select the nodes from N(u)

that cover at least one uncovered node and provide the highest revenue

(the definition of revenue depends on the MPR selection algorithm).

(3) Optimize the MPR-set by attempting to remove a node from M(u) and

checking if N2(u) is still dominated. If this is the case, the node is removed

from M(u). Nodes are removed in the order ’lowest revenue first’.

For every MPR selection algorithm, the MPR-set of node u contains at least

the forced set of node u. Consequently, Step 1 of the three-step algorithmic
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has to be part of each MPR selection algorithm. A procedure to optimize

the selected MPR-set, as in Step 3, can also be expected to be part of an

MPR selection algorithm. However, there is some variation possible in the

order the nodes are considered for discarding. Between the initial step, Step

1, and the final step, Step 3, there has to be an intermediate step, Step 2,

that selects non-forced MPRs according to some optimization criteria. These

criteria vary per MPR selection algorithm and, therefore, mainly this step

characterizes the MPR selection algorithm. For example, instead of adding

nodes with maximum coverage, one can add nodes from N(u) in the order

‘most energy first’.

Based on the above considerations, we present our main theorem of the study

on MPR selection in graphs Gm×n(r). It states that the MPR-set for a 2-hop

central node in a grid graph is equal to its forced set.

Theorem 5 For every 2-hop central node u ∈ Gm×n(r) with r ≥ 1, the set

F 1(u) is selected as MPR-set of node u if a three-step MPR selection algorithm

is used.

Proof. Since F 1(u) = F−1(u) (see the proof of Theorem 4) and since F−1(u)

dominates N2(u) (Theorem 4), after Step 1 the set M(u) dominates N2(u).

Thus, Step 2 of the general three step MPR selection algorithm is never pro-

cessed. (Step 2 of the algorithm is only processed if there are uncovered nodes

in N2(u)). So there are no nodes added to the MPR-set and therefore F 1(u)

is selected as MPR-set of u. Step 3 can not remove any of the nodes in the

MPR-set as they are all forced to be MPR. 2

This theorem implies that in the case of graphs of type Gm×n(r), MPR selec-

tion algorithms do not influence the lifetime of 2-hop central nodes. Since the
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above results mainly are a consequence of the regular structure (translation,

symmetry) of the graphs, we may expect similar results for all graphs with

regular (sub) structures.

6 Network Lifetime Simulations

In this section we describe simulation results for MPR flooding. First, we

describe how the theoretical results derived for grid graphs, are supported

by simulations. Afterwards, we complement the analysis on grid graphs by

concentrating on random graphs. We define a graph parameter called forced-

ness and investigate to which extent it influences the network lifetime. For

the simulations we use three MPR selection algorithms: MinCar, MaxWill

and MaxWillMinForced. These algorithms are described in Table 2. (For the

’revenue’ we refer back to Section 5.)

6.1 Grid graphs

In [16] simulations are described to verify the results for grid graphs pre-

sented in this paper. The simulations consider grid graphs Gm×m(r) with

m = 8, . . . , 15 and r = 1, 2, 3. For the MPR selection algorithms: MinCar,

MaxWill and MaxWillMinForced the network lifetime is determined. These

simulations show that: (1) on the torus, for grid graphs Gm×m(r) with r ’small’

with respect to m (r < m/4), there is no difference in lifetime for the three con-

sidered MPR selection algorithms; (2) on the plane, for grid graphs Gm×m(r),

with r > 1 there are minor differences between the three algorithms, but these

can be explained from border effects: not all nodes are ’2-hop central nodes;
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MinCar Revenue is defined as ’the number of uncovered nodes

from N2(u) that are covered’. This leads to the

well-known algorithm minimizing the cardinality of

MPR(u).

MaxWill Revenue is defined as ’willingness’. OLSR has eight

values available for the willingness (from 0 (”will

never”) to 7 (”will always”)). This MPR selection al-

gorithm selects first the nodes with the highest willing-

ness. When willingness indicates the remaining energy

of the node, this algorithm attempts to maximize the

minimum energy of the network by saving energy of

nodes with a low remaining energy. In this paper we

assume ’willingness’ to be equal to the residual energy,

to avoid rounding effects.

MaxWillMinForced In this variant revenue is defined as s(v) = E(v)(1 −

f(v)). The term E(v) denotes the residual energy of

a node v. This additional element aims to further im-

prove the network lifetime. It provides a look-ahead on

the residual energy in the future, as it describes the

expectation that a node will consume much energy as

it is forced to be MPR by many nodes.

Table 2

The MPR selection algorithms considered in this paper

(3) When r = 1 for both torus and plane all algorithms give identical results.
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6.2 Random Graphs

In Section 3 we have shown that fixed nodes provide an upper bound to the

network lifetime, independent of the MPR selection algorithms. We therefore

are interested in the impact of ‘almost’ fixed nodes on the network lifetime

performances of different MPR selection algorithms. To that order, we intro-

duce the Forcedness Ratio to define ‘how fixed’ a node is. For a node u the

Forcedness Ratio f(u) is defined as

f(u) =
|F−1(u)|
|N1(u)| .

Obviously, we have 0 ≤ f(u) ≤ 1 and f(u) = 1 if and only if node u is

fixed. If f(u) is close to 1, node u is forced by many of its neighbors, so for

many neighbors of u the node u has to be an MPR, irrespective of the MPR

selection algorithm. We define MFR := maxu∈V f(u). Evidently, MFR = 1 if

there is a fixed node in the network. Consequently, when MFR is close to 1,

we expect the MPR selection algorithms too have little influence on some of

the MPR-sets and, therefore, on the network lifetime.

To analyze the relation between the MFR and the network lifetime realized

by different MPR selection algorithms, we generated a set of networks with a

wide range of MFRs. Based on preliminary simulations, we choose to place 150

nodes in a square field of 1000×1000 units, while selecting for each simulation

a transmission range from the set [200, 250, 300, 350] and assigning this range

to all nodes. For every transmission range we created 200 networks, resulting

in 800 networks in total.
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In each of these networks we initiated broadcast messages according to the

same sendpattern. The messages are broadcasted by MPR flooding, where the

MPRs are selected by the different algorithms. We discuss them separately.

6.2.1 MaxWill versus MinCar

The results of the simulations are presented in Figure 3. The Performance

Ratio in this graph is defined as the network lifetime using MaxWill divided

by the network lifetime using MinCar.

Analyzing the graph we see that when the Maximum Forcedness Ratio ap-

proaches 1 the difference in network lifetimes become smaller. This can also

be concluded from Table 3 in which the mean and the standard deviation

of the Performance Ratio is listed per intervals of the Maximum Forcedness

Ratio. The results support the expected effect that the ‘more fixed’ the ‘most

fixed’ node is, the smaller the performance differences are. If the Maximum

Forcedness Ratio is smaller, also bigger performance differences occur. The

graph also shows that in almost every simulation the network lifetime of MPR

flooding using MaxWill is larger than the network lifetime of MPR flooding

using MinCar.

Maximum Forcedness Ratio Intervals

[0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1)

Mean 1.89 1.71 1.52 1.29 1.19 1.10 1.05 1.02

SD 0.32 0.39 0.33 0.22 0.15 0.11 0.06 0.03

Table 3

The mean and standard deviation of the Performance Ratio concerning MaxWill

and MinCar per interval of the Maximum Forcedness Ratios.
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Fig. 3. The effect of the Maximum Forcedness Ratio on the performance differences

using MPR flooding with MPRs selected by the MaxWill algorithm and the MinCar

algorithm.

6.2.2 MaxWillMinForced versus MinCar

The relation between the performances of MPR flooding using MaxWillMin-

Forced and MinCar to select MPRs are shown in Figure 4 and Table 4. In

the graph the Performance Ratio is defined as the network lifetime using

the MaxWillMinForced MPR selection algorithm divided by the network life-

time using the MinCar algorithm. There are some similarities between this

graph and the corresponding table and the ones discussed in the previous sec-

tion, which is not surprising, as the MaxWillMinForced algorithm is based on

MaxWill and only adds a sort of look-ahead for the energy consumption. So,

the performances vary less if the Maximum Forcedness Ratio approaches one
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and the MaxWillMinForced algorithm is almost in every situation better than

the MinCar.
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Fig. 4. The effect of the Maximum Forcedness Ratio on the performance differences

using MPR flooding with MPRs selected by the MaxWillMinForced algorithm and

the MinCar algorithm.

Maximum Forcedness Ratio Intervals

[0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1)

Mean 1.91 1.74 1.51 1.29 1.18 1.10 1.05 1.01

SD 0.41 0.40 0.34 0.22 0.17 0.11 0.07 0.03

Table 4

The mean and standard deviation of the Performance Ratio concerning

MaxWillMinForced and MinCar per interval of the Maximum Forcedness Ratios.
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6.2.3 MaxWillMinForced versus MaxWill

The performance comparison between the MaxWillMinForced and MaxWill

MPR selection algorithms does not yield a clear winner. The absence of a

winner is underlined by the mean of the Performance Ratio, which equals

1.0023. When we compare MaxWillMinForced with MaxWill we see that for

424 of the 800 simulations the selection algorithms lead to exactly the same

network lifetime. MaxWillMinForced beats MaxWill in 203 simulations, but

on the other hand, MaxWill beats MaxWillMinForced in 173 simulations.

7 Conclusions

We presented an analysis of MPR flooding by looking separately at MPRs,

MPR flooding and MPR selection. By this, we are able to point out the ef-

fects of the specific elements of MPR flooding. Our conclusions are that for

general graphs fixed nodes provide an upper bound to the network lifetime,

independent of the MPR selection algorithm.

For grid graphs all MPR selection algorithms provide the same MPR-set for

2-hop central nodes, namely the set of forced nodes that is selected in the first

step of a three step MPR selection algorithm. Since this result is a consequence

of the regular structure (translation, symmetry) of the graphs, we may expect

similar results for all graphs with regular (sub) structures.

For random graphs, the maximum forcedness ratio parameter, that we in-

troduce in this paper, seems a good descriptor of the degree in which MPR

selection algorithms yield network lifetimes. In random graphs with an MFR

close to 1 there is less difference between MPR selection algorithms than in
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graphs with MFR close to 0. Therefore, it is not worthwhile to investigate new

MPR selection algorithms if the networks under consideration have an MFR

close to 1. More generally, all computational studies on MPR selection should

take into account the MFR to ensure that no wrong conclusions are drawn

from the achieved results.

As a byproduct of the simulations we got some insight in the effectiveness

of some MPR selection algorithms for random networks. MPR flooding with

MPR-sets selected by MaxWill or MaxWillMinForced leads to a significantly

longer network lifetime compared to MPR flooding with the MPR-sets selected

by MinCar. However, the comparison between MaxWill and MaxWillMin-

Forced does not yield a clear winner, even if the networks have a low MFR.

Combined with the fact that MaxWillMinForced is more difficult to imple-

ment, MaxWill therefore seems a good choice to implement in OLSR networks

where lifetime of the network is important.

While in this paper we focus on mechanisms for broadcasting traffic with a

homogeneous traffic load throughout the network, in future research it may

be interesting to verify if similar conclusions hold for heterogeneous unicast

traffic.
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