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Abstract

Probabilistic sensor models defined as dynamic Bayesian networks can
possess an inherent sparsity that is not reflected in the structure of the net-
work. Classical inference algorithms like variable elimination and junction
tree propagation cannot exploit this sparsity. Also, they do not exploit
the opportunities for sharing calculations among different time slices of
the model. We show that, using a relational representation, inference ex-
pressions for these sensor models can be rewritten to make efficient use of
sparsity and sharing.

1 Introduction

In sensor data, uncertainty arises due to many causes: measurement noise,
missing data because of sensor or network failure, the inherent ‘semantic
gap’ between the data that is measured and the information one is interested
in, and the integration of data from different sensors. Probabilistic models
deal with these uncertainties in the well-understood, comprehensive and
modular framework of probability theory, and are therefore often used in
processing sensor data.

There exist a lot of probabilistic sensor models which are specialized for
a certain task and sensor setup. These specialized models are accompanied
by specialized inference algorithms which derive the probability distribution
over a target variable given the observed sensor data. In contrast, there also
exist generic probabilistic models, for which the de facto standard is the
Bayesian network, in which probabilistic variables and their relations can be
defined in a modular and intuitive way. The standard inference algorithms
for Bayesian networks (of which variable elimination[11] and junction tree
propagation[9] are the most widely known) can, in this context, be seen as
meta-procedures which derive an inference algorithm from the structure
of the model. In a database analogy, these meta-procedures correspond to
query optimizers, while the algorithms they derive correspond to query
plans. However, the derived algorithms are suboptimal for sensor data for
two reasons:

1. In sensor data processing, the same calculations are made over and
over. It is better to structure the calculations so that a large part of
intermediate results can be shared.

2. The conventional ‘meta-procedures’ optimize under the implicit as-
sumption that probability distributions are dense, i.e. nonzero for a
large part of their domain. In the sensor data models we use, this is
not the case: they are sparse.



As our demonstration case, we consider the following setup, in which a
group of Bluetooth transceivers (‘scanners’) is used for localization. At
a number (K) of fixed locations in a building, a scanner is installed, and
performs regular scans in order to track the position of a mobile device,
which we define as a discrete variable X that can take the values 1..L. The
scanning range is such that the mobile device can be seen by 2 or 3 different
scanners at most places. After a certain timespan 1..T, we want to calculate
P(X:|sl-X): the probability distribution over the location at time ¢ € 1..T
based on the received scan results during the timespan. This inference
computation forms the base for different online and offline processing tasks
like forward filtering (using sensor data from the past to enhance the present
probability distribution) and smoothing (using sensor data from before and
after the target time).

We investigate how the inference task scales up when we enlarge the
area covered by the scanners, while keeping the granularity of the discrete
location variable fixed, as well as the density of the scanners. In other
words, we jointly increase L and K.

Using conventional inference methods, the inference time will scale
quadratically: for each time ¢, it will take all the probabilities P(s{|x;) into
account, where ¢ ranges over 1..K and x; ranges over 1..L. Most of these
probabilities are irrelevant, because most locations x; are out of the question
anyway (due to estimates of the location at nearby times, combined with
the knowledge that the mobile device can only move with a certain speed).
The number of locations that do need to be considered does not depend
on L, so if we restrict ourselves to these, the complexity becomes linear.
However, there is still a lot of redundant work: the result s{ of each sensor
is taken into account and contributes to the processing time, although it
is known beforehand that only results of nearby scanners can be positive.
This means that in the joint sensor model, the number of combinations
(s},$2,...,8K, x) with a nonzero probability grows linearly when we jointly
scale up L and K. This number is small enough to simply store all these
probabilities and do a lookup in logarithmic time.

We show that both optimizations can be achieved in a straightforward
way when probability distributions are represented as relations (in the
relational algebra sense) between domain indices and probabilities. This
has two advantages:

o The base probability distributions of the model, as well as intermedi-
ate results during inference, can be stored using a sparse representation
by omitting all tuples with zero probability. Multiplication and ad-
dition of probabilities can be performed consistently with respect to
this representation using conventional relational operators.

o Optimizations like the ones we propose can be discovered, formulated
and validated using the rewrite rules of relational algebra; among
other things, this makes it easy to spot opportunities for sharing sub-
calculations.

Moreover, the relational representation frames inference optimization
as a form of query optimization, which can be performed without any
regard to probabilistic semantics. This allows the database community
to attack the problem without requiring any insight into the semantics of
probabilistic models.

At the same time, we also show how these semantics can inform query
optimization under sparse representations: in the above example, it has
suggested a join order which the triangulation heuristics used in variable



elimination and junction tree propagation would never have selected.

In section 2, we describe how a (dynamic) Bayesian network in general,
and our Bluetooth localization model in particular, is represented as a set
of relations. We also introduce variants of relational algebra operators to
perform probabilistic processing on these relations.

In section 3, we present probabilistic inference using the relational rep-
resentation, apply this to our localization model. We show how to structure
the inference calculation such that it makes use of sparsity and sharing. We
show how knowledge about the probabilistic model informs this optimiza-
tion.

2 Representation of probabilistic models

A probabilistic model defines a set of variables, each with a fixed domain
(which we assume to be discrete), and the relation between them. This
relation is probabilistic instead of deterministic: it does not answer the
question what are the possible values of C, given that A = a and B = b? but
rather what is the probability distribution over C, given that A = aand B = b? In
sensor data processing, the observed values a and b correspond to sensor
readings, and C is a property of the sensed phenomenon; in our case, the
location at a certain time. A popular way of defining a probabilistic model
is as a Bayesian network; we will review what this means in section 2.1,
and define one for our demonstration case in section 2.2. In section 2.3, we
show how a Bayesian network can be represented using the relational data
model.

How to answer to the above question for a Bayesian network is discussed
in section 3.

2.1 Defining a probabilistic model using a Bayesian
network

A Bayesian network over a set V of probabilistic variables is defined by:

1. A directed acyclic graph with V as nodes. Its directed edges define a
function that maps a variable to its parents: V; € Parents(V)) iff there
is an edge from V; to V.

2. For each variable V; its conditional probability distribution (cpd) given
Parents(V;).

Technically, this cpd is a function; for example, if Parents(V1) = {V, V3, V4},
the required cpd for V; would be a function that produces the probability
P(Vy1=v1|V,=0,, V3=03, V4=0,) given the arguments v4, v, v3 and v4. How-
ever, we often simply talk about “the cpd P(v|v,, v3,74)”, in which we (a)
conflate the function itself with its function value on a set of abstract ar-
gument values, and (b) use the syntactic shorthand a for A=a. In order
to abstract away from which variables actually constitute Vs parents, we
use a further syntactic shorthand: P(v, |parents(V1)). Notice the lowercase
p in parents here, indicating that not the actual variables are meant, but
rather a set of abstract values for these variables. We also use the lowercase
shorthand for other sets of variables: if we have defined a set X = {Xi, X3},
then P(X) means P(X;=x;, X3=x3).

A principal property characterizing the probabilistic semantics of a
Bayesian network is that, for a set of variables X closed under Parents,



its joint probability P(%) factorizes into the product of the cpds:

P(x) = H P(x;|parents(X;)) for X such that X; € X = Parents(X;) € X
X;eX
(Fact-BN)
In particular, this holds for the set V of all the variables in the network.
So, for an arbitrary assignment & of values to all variables, P(7) is obtained
by multiplying all the conditional probabilities with those values as argu-
ments.

This joint probability defines a complete and unambiguous probabilistic
semantics for the model; all other probabilities over subsets of V can be
derived from it (by marginalization, i.e. summation over the other variables).

Bayesian networks can model a variable X whose value (or probability
distribution) changes over time by defining an instance X; of this variable
for each time f in a discrete time domain 0..T. These kind of networks are
referred to as dynamic Bayesian networks[4, 7, 10]. Usually, the term implies
some further restrictions:

o for each point in time ¢, the relations between variables at ¢ are the
same

o relations between variables at different times are restricted to parent-
child arrows pointing from variables at ¢ — 1 to variables at ¢ (in other
words, a Markov condition); these relations, too, are are same for
each ¢

Hence, the model consists of identical ‘slices’. An example of this can be
seen in the next section, where we define the MSHMM model, an instance
of a dynamic Bayesian network.

2.2 Bluetooth localization with the MSHMM model

We now proceed with defining a Bayesian network for the Bluetooth local-
ization setup described above, taking into account the parameters L (the
number of locations), K (the number of sensors) and T (the number of
timesteps). We call this network the multi-sensor Hidden Markov Model
(MSHMM). An instance with K = 2 and T = 4 is shown in Fig. 1.

There are two kinds of probabilistic variables in the model. The variable
X, for t € {0,..., T} represents the location of the mobile device at time ¢
and has the domain {1, ...,L}. The variable S forc € {1,..,K},t € {1,...,T}
represents the scan result of sensor ¢ at time ¢. Its domain consists of the
values 0 (device not detected) and 1 (device detected).

The cpd P(x;|x;-1) is called the transition model and consists of the prob-
abilities to go from one location to another in one time step. We assume it
to be equal for each value of . Although the Bayesian network framework
does not forbid this model to contain L? nonzero probabilities, it is in fact
always sparse in our localization setup, because it is only possible to move
to a bounded number of locations. For example, assume a partial floor plan
of the localization area looks like Fig. 2, where the numbered squares are
15 discrete values (locations) that the X variable can take. For simplicity,
we assume that in one time step the mobile device can only move to an
adjacent square, and only if there is no wall in between. It is also possible
that it stays in the same square. Then, as is shown in Fig. 3, there are only
two x; values for which P(X; = x¢|X;.; = 7) > 0, and only five x; values
for which P(X; = x;|X;-; = 8) > 0. On average, there are 3 locations x; for
which P(x|x;1) > 0. We could represent this transition model using an



sensor 1 @ dom(X;) ={1,...,L}

. dom(S;) = {0, 1}
location @ @ @ @ @ P(x:|x;-1) equal for all ¢
sensor 2 @ @ @ @ P(sf|x;) equal for all ¢

Figure 1: MSHMM with two sensors (K = 2) and four timesteps (T = 4)
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Figure 2: Example (partial) floor plan for the localization model. The
numbered squares are the L = 15 discrete values that a location variable
X, can take. At K = 5 positions, a sensor is installed. In one time step,
it is possible to move to an adjacent location, but not through a wall; this
is encoded in the transition model P(x;|x;_1). For sensor 3, the detection
probabilities for the locations in its reach are also given; they determine the
sensor model P(s?|x;). Simultaneously scaling up L and K can be imagined
as extending this floorplan in the direction of the arrow. If the upper and
lower edges of the floor plan are ignored, each sensor has a reach of 9
locations, as is shown for sensors 2 and 3.
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Figure 3: Partial transition model corresponding to the floor plan in Fig. 2.
Rows sum to 1. This model encodes the fact that it is only possible to move
to an adjacent room (and not through walls).
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Figure 4: Sensor model for sensor 3 in Fig. 2. Columns sum to 1. This
model encodes the limited reach of each sensor.



array with a density (fraction of nonzeros) of 3/L (Fig. 3), or as a relation
with 3L tuples (which we will show in section 2.3).

The cpd P(s{|x;) is called the sensor model for sensor ¢ and is also assumed
to be equal for each t. Itis different for each ¢, because each sensor is fixed at
a different position and thus will get positive readings for different locations
of the mobile device. The sensor has a bounded reach: in Fig. 2, the reach of
sensor 3 is shaded in gray. Hence, there is a bounded number of x; values
for which P(S; = 1|x;) > 0; for sensor 3, these 9 probabilities are shown in
the gray squares. However, P(S; = 0|x;) is positive for each x;. Therefore,
the array representing P(s|x;) would have a density of (9+L)/2L (see Fig. 4).

We could also look at the sparsity of the sensor models in another way:
given a fixed location x;, there is a bounded number of sensors that can detect
the device, i.e. a bounded number of ¢ values with P(S{ = 1|x;) > 0. This
bound depends on the sensor density and detection reach, and is 3 in our
example.

2.3 Relational representation of a Bayesian network

In this section, we show how to represent the cpds of a Bayesian network, as
well as the intermediate results that occur during inference, as relations. In
the first place, a relation is a mathematical data model that is convenient for
expressing bulk multiplication and summation operations; we use this to
rewrite inference expressions into a more efficient form. In the second place,
it closely maps to an implementation for storing a sparse multidimensional
array; instead of storing all the values (where a value’s position in memory
is determined by its array indices), only the nonzero values are stored, in
combination with their indices.
We use the following set-theoretic definition of a relation:

A relation’s schema schema(r) consists of a set of attributes.

Each attribute A has a domain dom(A).

A relation r consists of a set of tuples.

Each tuple t € r is a function with domain schema(r), where t(A) €
dom(A) for each A € schema(r).

For each variable V in the Bayesian network, we define a relation cpd[ V] that
contains the nonzero probabilities P(v|parents(V)). The contents of cpd[V]
are as follows. Say that Parents(V) = {V4,...,V;}, then

(Vi o, Vieso,..., Vieov,val - P, ..., v;)} € cpd[V]
iff P(ol|vy,...,0)>0

Thus, the schema of cpd[V] consists of the attributes {V} U Parents(V) U {val},
where val is the attribute containing the probability. Every relation that
we use in this article will contain such a val attribute; we will refer to the
other attributes of a relation R as its regular attributes, and write the set as
regattr(R).

For the manipulation of probabilities necessary during inference, we de-
fine two variants of relational operators in which val plays a distinct role. We
define them in terms of their conventional counterparts from an extended
relational algebra, which we assume to include a generalized projection
operator 1[6] providing functionality similar to grouping, aggregation and
renaming constructs in SQL.



An often occurring task is multiplying two probability distributions,
e.g. (the resulting value f(a, b, ¢, d) might or might not be interpretable as a
probability again):

f(a,b,c,d) = P(alb, c)P(c|d)

We define the operator » to perform this multiplication in a ‘bulk” fashion.
With cpd[A] representing P(a|b, ¢) and cpd[C] representing P(c|d), we want
cpd[A] % cpd[C] to represent f, i.e. contain f(a, b, c,d) for all values a,b, ¢, d.
Therefore, we define r»<s as a ‘natural’ join on all regular attributes that r and
s have in common, combined with a generalized projection that performs
a multiplication of their respective val attributes and renames the result to
val as well:

" def
rxs = 7Tregattr(r)Uregattr(s), r.valss.val—val (V Nregattr(r)ﬂregattr(s) S)
Or, in SQL:
ras ¥ select regattr(r) U regattr(s), r.val » s.val as val
from r join s using(regattr(r) N regattr(s))

The second operator we define sums up all the probabilities in relation »
for tuples that have values in common for a subset of regular attributes
V C regattr(r):

a

e

.
Tyt = Ty suM(val)—val
Or, in SQL:

7tpr £ select V, SUM(val) as val from r group by V

The 7t operator can be used to ‘marginalize’ probabilities: if we want to cal-
culate P(a, b) from a relation r that contains probability P(a, b, c) we can use
Ttap - This usage appeals to the notion of projecting a three-dimensional
probability distribution onto two of its dimensions.

However, when we want to emphasize the correspondence to the alge-
braic expression ). P(a,b, ¢) it is useful not to name the variables (dimen-
sions) that remain, but those that are projected away. For this case we define
the notation 7t_cr:

ﬁ-vf £ Tlregattr(r)\V, SUM(val)—val !

For s« and 7, similar rewrite rules as for = and Y, apply. The operator
% is associative and commutative, which means that we can unambigu-
ously write r 51 s 5 r and even Nxdw} x. In a multi-dimensional sum
Y. 2 f(a,b) order is of no importance (we might also writeit }., ., f(a,b,c)
or )., f(a,b,c)), and this also holds for 7t if we use the negative notation for
variables: Tt_aTt_gtr = T_pTl_a¥ = ﬁ_(A,B}r.

Somewhat less trivially, the distributivity property Y,(¢*¢) = ¢p*Y., ¢ (if
¢ does not contain free variable a) also transfers to the relational operators:

Ti_a (FB4S) = ¥ UTI_45 if A ¢ regattr(r)

T_a(rsas) = T_arsas  if A ¢ regattr(s)
We need one additional operator that does not correspond to an operator
in the ), *-expressions. For an observed value (say, 7) of a probabilistic
variable V, one simply substitutes the value 7 at the place of variable V in

a cpd (turning it into a function with one argument less). In the relational
representation, this is done by selecting the tuples that have V =7.

def
Oyl = Oy=pr



Rather than a definition of a new operator o, this is actually a syntactic
shorthand again, which allows us to omit writing variable name V. We also
use this with sets of values: if E is defined as {V;, V3}, then ¢;r expands to
GV1=U1/\V3=‘U3r'

The non-representation of zero-probability tuples plays well with the
multiplication and addition semantics:

e A product a * b is nonzero iff both operands are nonzero; likewise,
a tuple in 7 >4 s exists iff there exists a tuple in r with corresponding
indices regattr(r) as well as a tuple in s with corresponding indices
regattr(s).

e Since entries for which val = 0 would not contribute anything to a
sum, it does not matter that they are not present in the operand table.
Conversely, because we are working with nonnegative numbers, a
result tuple for which the sum is 0 can never come into existence.

3 Inference as a relational query

Given a probabilistic model over a set of variables V, inference is the task of
deriving the probability distribution over a subset of query variables Q € V,
given the observed values ¢ of another subset E € V called the evidence
variables (in sensor data processing, these correspond to sensor readings).
Thus, the goal of inference is to calculate P(7|e) for all values g, given fixed
values é.

The sets Q and E do not overlap, and we define R = V - (QUE) as
the remaining variables; so, V is partitioned into three sets, and we can
write the model’s joint probability as P(5) = P(4,¢,7). Using the axioms of
probability theory, the goal probability P(j|é) can be written in terms of this
joint probability:

PO _ _L.PG2T
PO ~ L,%P@en

It is only necessary to calculate the outcome of the numerator P(7,e) =
Y.-P(g,¢,7) for all § values; the denominator can be obtained by adding all
these outcomes. Therefore, to simplify the expositions, we will hereafter
equate inference with the calculation of P(g, é) for all 4.

P(gle) =

3.1 Inference in a Bayesian network

For a Bayesian network on variables V, the joint probability in }; P(7,¢,7)
can be substituted by its factorization (Fact-BN):

P@e =) [] Pwilparents(v)
FoVev
Written using the relational representation, this expression reads
7_gox(cpd[ V1] Ba cpd[ Vo] % ... 54 cpd[ V,])

In this relational representation, it is not necessary to say ‘for all 7": this is
included in the expression by default, because it contains no selection on
a single value . On the other hand, we do have perform a selection on é.
Note that the E attributes are preserved the above expression although this
is not really necessary; all tuples will contain the same values é for these



attributes. We might as well project them out. That way, the only attributes
that remain in the result expression are the query variables Q. Therefore,
in the rest of the article, we will use

ﬁQUE(de[Vﬂ X cpd[ Vo] .. xepd[V,])

as the inference expression for a Bayesian network.

To calculate the value of this expression efficiently, the multi-way p-join
can be written as a tree of binary s-joins, after which 7t and ¢ operators
can be added in this tree. The o operators can be distributed over all joins;
it seems most efficient to add them directly above the cpds, and indeed,
this is common practice in the exisiting inference algorithms—we show in
section 3.2 that it is not the most efficient in our MSHMM model. Next,
assuming we want to decrease the number of attributes as early in the tree
as possible, there are two equivalent methods to place these 7t operators,
depending on whether the 7ty or the 7i_y view is used:

e Given a &-tree, insert a 71y node above each join, working from the
leaves to the root, where V contains those variables from the join result
for which holds that:

- itis contained in Q, or
— it is contained in R and also occurs in a base relation in another
part of the tree.

If the set V turns out to contain all the variables from the join result,
the 7ty node can of course be omitted.

o Given a p-tree, start with a set of 71_g operators, one for each R € R,
at the top of the tree. Then, for each TR, repeatedly move it down
the single branch of the tree of which the join result contains R in its
regular attributes, until there are two or more of such branches. Next,
add mt_g operators, for each E € E, right above the selection operators
T,.

The challenging part is to find the tree in which the variables can be pro-
jected out as early as possible.

In the Al community, the problem of efficiently (and exactly) calculating
P(g, &) has been the subject of extensive research, under the name of exact
inference in a discrete Bayesian network. Two well-known algorithms that have
resulted from this are variable elimination[11] and junction tree propagation[9].
In the light of the relational representation, both algorithms can be regarded
as procedures to produce a X-tree, and both try to minimize the largest
dimensionality of an intermediate relation (after the above addition of 7
operators is taken into account). As this minimization problem is known
to be NP-hard[1], both algorithms use heuristics.

In a setting where the intermediate relations are represented as dense
arrays, it makes a lot of sense to minimize their largest dimensionality,
because the size of an array (and hence, the time needed to calculate it)
relates exponentially to its dimensionality. However, when using a sparse
representation, it mightbe the case that relations with a large dimensionality
actually have a small number of tuples. We will show this for our MSHMM
model.

3.2 Inference in the MSHMM model

When constructing a join tree for an inference query on a dynamic Bayesian
network, it is possible to take advantage of its repetitive structure: build
the same join tree for each timeslice and connect these to each other.



We do this for the MSHMM model, where the inference query variable
is X, (for some u with 1 < u < T) and the evidence consists of all the sensor
readings of the form S{=s{. We write the collection of all these readings s}:?,
and use s]-X for the collection of all the readings at a certain time f.

The inference query P(x,, s%:IT() is written as follows:

Tix, Oy x (cpd[Xg] sa DX epd[X,] s cpd[S!] 54 . .. s cpd[sf])
- t=1.T
Following common practice, this is split into F B, consisting of a ‘forward’
factor F from 0 to u# and a ‘backward’ factor B from T to u + 1. The evidence
is split over the factors:

F= ﬁxlﬁs}-K (cpd[Xo] s DX epd[X,] % cpd[S!] 5 .. . s cpd[Sf])

t=1.u

B = fix, Ok ( DX cpd[X,] % cpd[S!] 5 ... 5 cpd[sf])
R VO |
We will discuss only factor F from now; the reasoning for B is very similar.
Apart from cpd[X,], the expression F consists of similar subexpressions for
each time . We can write F as a chain f,,(f,-1(. .. fi(cpd[Xo])...)), where we
have defined:

fi(r) = ﬁxtos}_.x (cpd[Xt] B cpd[SH] 5 . ... 5 cpd[SK] % r)

This partially determines the join tree for the F expression: the different
fi parts are connected to each other as a right-deep tree, but we have not
yet specified how the f; parts are structured inside. However, what we do
already know is that we can push down the projections removing the Sf
variables and the X;_; variable into the f; part, as these variables do not
occur higher up in the tree. Therefore, the only variable (regular attribute)
that remains is X;. Likewise, we push down every selection s} regarding
the evidence for a sensor c at time ¢ into the f; part.

The reason that we can not project out X; is that it occurs in a cpd
relation higher in the tree, in f,1: regattr(cpd[X;1]) = {X;, Xi41}. We say that
{X;} forms the interface between f; and f.1. In general dynamic Bayesian
networks, the interface between slices t and t + 1 consists of those variables
in slice t that have a child in slice f + 1. (In this definition, we follow
Murphy[10], except that he calls this the forward interface of slice t.)

Each f; consists of the same kind of relations; although their contents
differ, their schema is the same (modulo the variable subscript t). This is
also true for r; it always contains the interface variables between t —1 and .
Therefore, one can construct a similar join tree for each f;, and then connect
them to each other as the chain we defined above. In construction of this
join tree, r plays the same role as the cpd relations, the evidence consists of
si-K, and the query variables are those that form the interface to fi.1.

In comparison to constructing a global join tree, this approach of chain-
ing together local join trees can save a lot on optimization time. Moreover,
it can be done in a streaming way; the join tree can be grown every time a
batch of sensor readings arrives.

For the MSHMM, two possible join trees that the conventional algo-
rithms could construct for f;(r) are the following;:

filr) = ﬁ,sg I cpd[SH s (... % (ﬁ,sfasfcpd[sf] % 7i_x,  (cpd[X] % 1))...)
fi(r) = (ﬁ_s} o cpd[S}]sa (... B4 ﬁ_slxasfcpd[Sf] L)) BTy, (cpd[X] sar)

10



Judging by the number of attributes of the intermediate relations, these
trees are optimal: all attributes are projected out immediately (except for
X;, which can not be projected out anyway, because it is the query variable).
If we use a dense (array) representation of the relations, the processing times
will not be very different. When we jointly scale up L and K, these times
will scale quadratically for two reasons:

1. The relation r, which contains L tuples, is joined with cpd[X;], which
contains L? tuples.

2. There are K joins of o.cpd[S°] relations, which all contain L tuples.

If we use a sparse representation, things look quite different. In the first
query tree:

The relation r contains the locations for which P(x;_1,30.-1) > 0 (see
section 3.3 for the probabilistic semantics of intermediate relations); let us
designate the number of these locations by m. If there has just been a sensor
reading S¢_, = 1, m is around 3; if the last positive sensor reading has
occurred a short time ago, it is the number of locations to which transitions
could have happened since then—which is bounded by a constant. Joining »
with cpd[X,;] will produce around 3m tuples; we assume this takes O(m log L)
time. Joining with O cpd[S;] will maintain the number of tuples for s{ = 0,
and reduce it to around 3 for s{ = 1. All the sensor models together take
O(KmlogL) time. Thus, jointly scaling up L and K increases the costs with
O(nlogn).

In the second query tree, the oycpd[S;] are joined independent of the
contents of r. This can have a positive or negative effect, depending on the
values s;. If they are all zero, these relations all contain L tuples just like in
the dense case; joining K tables would have a quadratic cost again. On the
other hand, if a reading for sensor ¢ deep down in the tree (i.e. for a c close
to K) is positive, asgcpd[Sf] will contain 9 tuples, and all the intermediate
relations higher in the tree will have an equal or smaller size. This would
render the cost linear in K, and independent of m, which is an advantage
if m is large due to a lack of positive readings in the past. In an average
case analysis, however, a positive sensor reading will occur somewhere half
way between 1 and K, which results again in a quadratic cost.

A possible remedy would be to dynamically choose a join tree for f,(r)
depending on the values of s;*: reorder the o cpd[S;] relations such that
one with s{ = 1 is at the bottom, and if there is no such reading put r at the
bottom. However, we will present a better alternative with a static join tree

for fi(r):
fi(r) = ﬁ,XH (ﬁ_s}..KO—sfl..K (cpd[X;] % (cpd[S}] B (... X de[Sf] L)) r)

At first sight, this seems like a very bad idea: the o« and 7+1,5f operators
have been pulled out of the join of the cpd[S{] relations. Using the dense
representation, the result of this join would contain 2KL, tuples, which is
unmanageable when scaling up L and K. Again, using a sparse represen-
tation leads to a totally different picture. Because a fixed location x; can
only trigger 3 sensors, there are only 2° = 8 possible s/*K combinations for
this x;; the 3 sensors in question can produce either 0 or 1, and all other
sensors readings are 0. So, the join of all cpd[S{] relations contains about 8L
tuples. This inherent linearity in the MSHMM model can not be exploited
by the conventional inference algorithms, because it is not apparent in the
structure of the Bayesian network.

Still, why pull the selection operators out of the join? The answer is
that it gives an opportunity for sharing among the different f; subtrees. The
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results of the join are now independent of the sensor readings at time f,
and because the sensor models cpd[S{] are equal for each t, we can reuse
these results in every f; tree. The only operations specific to each time step
are the selection Oy and joining its result with r. With a good index, this
can be done in O(log K) time. So, we have traded a lot of repeated small
calculations for a one-time big calculation and repeated lookup.

3.3 Inference in a generic dynamic Bayesian network

In this section, we generalize the sharing optimization from the previous
section to a generic Dynamic Bayesian Network. We refer to the variables
in slice t as V},..., V¥; for variables V},..., V" we observe the values v}-".
The query variables Q,, are all in slice u. The forward factor is then:

+ . ¥ 1
F= QO pt.m (przor B4 P1<] cpd[Vi]ma. .. cpd[Vt”])
We define the set I; as the interface between t and t + 1: the variables
Vi that occur in some cpd[V/,,]. The relation prior contains the so-called
prior probability distribution P(7) derived from the model (compare to
P(xp) in the MSHMM model). For the above relation F, a chain structure is
constructed as follows:

F= ﬁ@llf,,(fu,1(. .. fi(prior)...))
ﬁ(T) = ﬁjf (ﬁjfoH av}..mﬁ, > 1’)
£l = T yovron (epdlViT 5. sa cpd[V}1)

Reading from bottom to top:

e The expression f/ represents an unoptimized join tree that joins all
relations in slice f to each other and projects onto the union of its two
interfaces and its observed variables. It is supposed to be replaced
by an optimized tree. This can be done using conventional inference
techniques, where I; U ,_; U V}-" are taken as query variables. The
result of this expression has to be calculated only once (f; is the same
for each t except for the variable names).

e Theresult f; is used at every step of the chain; its values for the current

sensor readings v}“’” are looked up, joined with the results r from the
previous step into f;(r), and propagated to the next step.

e From these steps, a chain is built, starting with prior. In the above
formulas, it is assumed that Q, C I,; if this is not the case, a different
join tree should be built for slice u, taking into regard the extra query
variables.

In order to gain more understanding about the size of the relation f/,
it is helpful to examine its probabilistic semantics. If the set { V,l, L,V
were closed under the Parents function, the semantics of the cpd product
11 j=ln P(vi |parents(v£)) (which corresponds to NFL” cpd[VL{ ]) would have
been directly given by (Fact-BN). However, the set has parents in slice t —1:
the interface variables I,_;. Therefore, we rewrite the cpd product as the
fraction of two cpd products for sets that do meet the closure requirement:

Uj=1.n Vli (all the variables up to t) and | j=1.x VI{ (the variables up to t — 1).
k=0.t k=0.4-1
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| T P@jlparents@)  pen
j I\ k=0..t _ 1.t
H P(v,|parents(v,)) = ; N P(ol
[T j=1.n P(v}|parents(v))) i
k=0..t-1

= P(v;"|vy1y) = Py [1i-1)

j=l.n

In the last equality, we have used a conditional independence property
of dynamic Bayesian networks: the set of variables V" is conditionally
independent of all variables in previous slices given the interface I;_;.

So, the tuples in relation cpd[V}]54. .. 54cpd[ V"] contain the probabilities
P(v}-"[7;_1) that are nonzero. Relation f; consists of the operator ﬁnui,,luv}--m
applied to this join, so these probabilities are marginalized to P(@;|7,1),
where W, = V" U .

In the MSHMM model, this corresponds to P(x;, s}"le,_l): as we have
explained, the number of these probabilities which are nonzero is linearly
bounded when scaling up L and K. In other models, a similar line of
reasoning may be possible.

4 Related work

Sparse/relational representations for probabilistic processing have been
considered in the areas of constraint propagation[8] and information re-
trieval models[2], where good performance is reported. The well-known
variable elimination algorithm can be successfully combined with con-
ventional database query optimizations[3]. However, none of this work
considers the area of sensor data, whose properties lead to specific opti-
mizations.

In our previous work[5], we represented inference query plans using
so-called sum-factor diagrams. The connection is as follows: a sum-factor
diagram represents a right-deep join tree, with the base relations ordered
from left to right as they would occur in the relational algebra expression.
A dot indicates that the variable occurs in the schema of the base relation; a
grey area indicates that the variable occurs in the schema of the intermediate
relation that represented by the subexpression that starts at that point. A
vertical bar indicates that the corresponding variable is projected away at
that point.
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