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1 Introduction

In standard cooperative game theory it is assumed that any coalition of players may
form. However, in many practical situations the collection of feasible coalitions is
restricted by some social, economical, hierarchical, communicational, or technical
structure. The study of TU games with limited cooperation introduced by means
of communication graphs was initiated by Myerson [9]. In this paper we restrict
our consideration to classes of rooted-tree and sink-tree digraph games in which all
players are partially ordered and a possible communication via bilateral agreements
between participants is presented by a directed rooted tree or sink tree respectively.
A rooted-tree cooperation structure allows modeling of various splitting processes
and different hierarchical structures that are a widespread organizational form in
a broad range of economic, political and military activities, evolutionary biology.

∗The research was supported by NWO (The Netherlands Organization for Scientific Research)
grant NL-RF 047.017.017.

†I would like to thank Gerard van der Laan who attracted my interest to the problem of sharing
a river with a delta that later resulted in this paper.
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While a sink-tree cooperation structure provides modeling of different merging pro-
cesses. Following Myerson, we assume that for a given game with cooperation struc-
ture, cooperation is possible only among connected players and focus on component
efficient values.

We introduce values for rooted-tree and sink-tree digraph games axiomatically
and provide their explicit formula representation. We show that the so-called tree
value for a rooted-tree digraph game coincides with a particular marginal vector,
first considered in Demange [3]. It turns out that the tree value for rooted-tree
digraph games and the sink value for sink-tree digraph games may be considered
as natural extensions of the lower equivalent and upper equivalent solutions for
line-graph games studied in Brink, Laan, and Vasil’ev [2] respectively. We study
the distribution of Harsanyi dividends. Furthermore, we show that the problem of
sharing a river with a delta or with multiple sources among different agents located
at different levels along the riverbed can be embedded into the framework of a
rooted-tree or sink-tree digraph game correspondingly.

The structure of the paper is as follows. Basic definitions and notation are intro-
duced in Sect. 2. Sect. 3 provides an axiomatic axiomatization of the tree value for
a rooted-tree digraph game via component efficiency and subordinate equivalence.
In Sect. 4 we discuss application to the water distribution problem of a river with a
delta.

2 Preliminaries

First recall some definitions and notation. A cooperative game with transferable
utility (TU game) is a pair 〈N, v〉, where N = {1, . . . , n} is a finite set of n ≥ 2
players and v : 2N → IR is a characteristic function, defined on the power set of N ,
satisfying v(∅) = 0. A subset S ⊆ N (or S ∈ 2N ) of s players is called a coalition,
and the associated real number v(S) presents the worth of the coalition S. The set
of all games with a fixed player set N we denote GN . For simplicity of notation and if
no ambiguity appears, we write v instead of 〈N, v〉 when refer to a game. A subgame
of a game v is a game v|T with a player set T ⊆ N , T 6= ∅, and v|T (S) = v(S) for
all S ⊆ T . A game v is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N ,
such that S ∩ T = ∅. A value is an operator ξ : GN → IRn that assigns to any game
v ∈ GN a vector ξ(v) ∈ IRn; the real number ξi(v) represents the payoff to the
player i in the game v. In what follows we use standard notation x(S) =

∑

i∈S xi

and xS = {xi}i∈S , for all x ∈ IRn, S ⊆ N .
It is well known [10] that unanimity games {uT }T⊆N

T 6=∅
, defined as uT (S) = 1 if

T ⊆ S, and uT (S) = 0 otherwise, create a basis for the game space GN , i.e., every

game v ∈ GN can be uniquely presented in the linear form v =
∑

T⊆N
T 6=∅

λv
T uT , where

λv
T =

∑

S⊆T

(−1)t−s v(S), for all T ⊆ N , T 6= ∅. Moreover,

v(S) =
∑

T⊆S

λv
T , for all S ⊆ N. (1)

Following Harsanyi [5] the coefficient λv
T is referred to as the dividend of the coalition

T in the game v.
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The core [4] of a game v ∈ GN is defined as

C(v) = {x ∈ IRn | x(N) = v(N), x(S) ≥ v(S), for all S ⊆ N}.

A value ξ is called stable if for any superadditive game v ∈ GN , ξ(v) belongs to the
core C(v).

A cooperation structure on a player set N is specified by a graph L without loops,
undirected or directed. An undirected graph is given by a collection of unordered
pairs of nodes/players L ⊆ Lc

N = { {i, j} | i, j ∈ N, i 6= j}, where Lc
N is the complete

undirected graph on N and an unordered pair {i, j} is a link between i, j ∈ N . A
directed graph, or digraph, is a collection of directed links L ⊆ {(i, j) | i, j ∈ N, i 6= j}
while in a directed link (i, j) ∈ L, i is an origin and j is a terminus, or else i is
a parent of j and j is a child of i. All players having the same parent in L are
called brothers. In a digraph L we say that i 6= j is a predecessor of j and j is a
successor of i if there is a sequence of directed links (ih, ih+1) ∈ L, h = 1, . . . , k,
such that i1 = i and ik+1 = j. For any node i ∈ N we denote by PL(i) the set of
all predecessors of i in L, by OL(i) the set of all parents of i in L, by TL(i) the set
of all children of i in L, by SL(i) the set of all successors of i in L, and by BL(i)
the set of all brothers of i in L, moreover, P̄L(i) = PL(i) ∪ i, S̄L(i) = SL(i) ∪ i and
B̄L(i) = BL(i) ∪ i. An undirected graph L is cycle-free, if it contains no cycles.
A sequence of nodes {i1, . . . , ik+1} ⊆ N presents a cycle in an undirected graph
L if (i) k ≥ 2, (ii) ih 6= il, for all h, l = 1, . . . , k + 1, h 6= l, (iii) ik+1 = i1, and
(iv) {ih, ih+1} ∈ L, for all h = 1, . . . , k. An undirected cycle-free connected graph is
called a tree. A directed graph is cycle-free, if the corresponding undirected graph
is cycle-free. A directed graph L is a rooted tree, if there is one node in N , called a
root, having no predecessors in L, and there is a unique sequence of directed links
in L from this node to any other node in N . In a rooted tree graph the root plays
a roll of the source of the stream presented via this graph. A directed graph L is
a sink tree, if the directed graph, composed by the same set of links as L but with
the opposite orientation, appears to be a rooted tree; in this case the root of a tree
changes its meaning to the absorbing sink. A line-graph is a directed graph that
contains links only between subsequent nodes.

A pair 〈v, L〉 of a game v ∈ GN and a communication graph L on N composes
a game with cooperation structure or, in other terms, a game with graph structure,
a graph game or a digraph game, when we want to emphasize that a graph L is
directed. The set of all games endowed with a cooperation structure on a fixed
player set N we denote GL

N . Under a value for a game with graph structure, or
a G-value we understand an operator ξ : GL

N → IRn that assigns to a graph game
〈v, L〉, v ∈ GN , a vector of payoffs ξ(v, L) ∈ IRn.

For any graph L on N and any coalition S ⊆ N , the subgraph of L on S is the
graph L|S = {{i, j} ∈ L | i, j ∈ S}. A sequence of different nodes {i1, . . . , ik} ⊆ N is
a path in a graph L if {ih, ih+1} ∈ L, for all h = 1, . . . , k−1. Two nodes i, j ∈ N are
connected in L if there exists a path {i1, . . . , ik} with i1 = i and ik = j. A graph is
connected if any two nodes in it are connected. Given a graph L, a coalition S ⊆ N
is said to be connected if the subgraph L|S is connected. For a given graph L and a
coalition S ⊆ N , denote by CL(S) the set of all connected subcoalitions of S. Any
coalition S ⊆ N splits by any graph L into maximally connected coalitions called
components. By S/L we denote the set of components of S and let (S/L)i be the
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component of S containing player i ∈ S. Notice that S/L is a partition of S. For
a graph game 〈v, L〉 ∈ GL

N , a payoff vector x ∈ IRn is component efficient if it holds
that x(C) = v(C), for every component C ∈ N/L.

Following Myerson [9], we assume that for a given game with cooperation struc-
ture 〈v, L〉, cooperation is possible only among connected players and consider a
restricted game vL ∈ GN defined as

vL(S) =
∑

C∈S/L

v(C), for all S ⊆ N.

The core C(v, L) of a graph game 〈v, L〉 is defined as a set of component efficient
payoff vectors that are not dominated by any connected coalition, i.e.,

C(v, L)={x ∈ IRn |x(C)=v(C), ∀C∈N/L, and x(T )≥v(T ), ∀T ∈CL(N)}.

It is easy to see that the core of a graph game 〈v, L〉 coincides with the core of the
restricted game vL, i.e., C(v, L) = C(vL).

In the paper we concentrate on values for two special subclasses of cycle-free
digraph games, the so-called rooted-tree and sink-tree digraph games. A rooted-
tree/sink-tree digraph game 〈v, L〉 is specified by a digraph L, such that all subgraphs
L|C on components C ∈ N/L, are rooted trees or sink trees correspondingly.

In the sequel for the cardinality of a given set A we use a standard notation |A|
along with lower case letters like n = |N |, s = |S|, and so on.

3 Component efficient values

3.1 Axiomatic characterizations

Our approach to the value is close to that of Myerson [9] being based on ideas of
component efficiency and a certain deletion link property.

A G-value ξ is component efficient (CE) if, for any graph game 〈v, L〉, for all
C ∈ N/L,

∑

i∈C

ξi(v, L) = v(C).

A G-value ξ is successor equivalent (SE) if, for any rooted tree digraph game
〈v, L〉, for every link (i, j) ∈ L, for all k ∈ S̄L(j),

ξk(v, L\(i, j)) = ξk(v, L).

It turns out that two axioms of component efficiency and successor equivalence
uniquely define a G-value for a rooted-tree digraph game.

Theorem 1 On the class of rooted-tree digraph games there is a unique G-value
that satisfies CE and SE, and for any rooted-tree digraph game 〈v, L〉 it is given by

ti(v, L) = v(S̄L(i)) −
∑

j∈TL(i)

v(S̄L(j)), for all i ∈ N. (2)

From now we refer to the G-value t as to the tree value.
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The tree value of a rooted-tree digraph game assigns to every player the payoff
equal to the worth of the coalition composed of this player and all his successors
minus the sum of the worths of all coalitions composed of any child of the considered
player and all successors of this child. The tree value was first introduced in Demange
[3] where it was also shown that under the mild condition of superadditivity it
belongs to the core of the restricted game. Besides, afterwards the tree value was
used as a basic element in the construction of the average tree solution for cycle-free
graph games in Herings, Laan, and Talman [6].

Remark 3.1 Because of the rooted-tree structure of L, for any i ∈ N , S̄L(i) is
connected and sets S̄L(j), j ∈ TL(i), provide a partition of SL(i). Wherefrom, as it
was already mentioned in [6], the tree value t of any rooted-tree digraph game 〈v, L〉
can be equivalently presented in terms of restricted games as

ti(v, L) = vL(S̄L(i)) − vL(SL(i)), for all i ∈ N, (3)

i.e., in terms of restricted games, the payoff to each player is equal to this player’s
contribution to all his successors when he joins them.

Proof. I. First show that CE and SE on a subclass of rooted-tree digraph games
uniquely define a G-value that satisfies these axioms. Consider a G-value ξ meeting
CE and SE, and let 〈v, L〉 ∈ GL

N be a rooted-tree game. Let l = |L| be the number of
links in L and c = |N/L| the number of components in N defined by L. CE implies
that

∑

k∈C

ξk(v, L) = v(C), for all C ∈ N/L. (4)

It is not difficult to see that all c equations of the type (4) are linearly independent.
Further, for a link (i, j) ∈ L, let Cj be the component in N/{L\(i, j)} containing

player j. Because of CE, it holds that

∑

k∈Cj

ξk(v, L\{i, j}) = v(Cj). (5)

By the rooted-tree structure of L, Cj = S̄L(j). Then SE implies that

∑

k∈Cj

ξk(v, L) =
∑

k∈S̄L(j)

ξk(v, L)
SE
=

∑

k∈S̄L(j)

ξk(v, L\{i, j})
(5)
= v(Cj). (6)

Again due to the rooted-tree structure of L, every i ∈ N has at most one parent and
for all j, k ∈ TL(i) such that j 6= k, S̄L(j)∩ S̄L(k) = ∅. Wherefrom it follows that all
l equations of type (6) are linearly independent. Since the rooted-tree digraph L is
cycle-free, l+c = n. Moreover, since equations of type (4) involve entire components
C ∈ N/L and equations of type (6) involve proper subcoalitions of these components,
all n equations of types (4) and (6) together are linearly independent and, therefore,
uniquely determine ξ(v, L).

II. Verify now that the tree value t, defined by (2), satisfies CE and SE. As it was
already observed in [6], CE follows easily from definition (2). Indeed, let C ∈ N/L,
then L|C is a rooted tree, and let i ∈ C be its root. Obviously, C = S̄L(i). Moreover,
because of the rooted-tree structure of L and by equality (2), the defined by the
tree value total payoff to any player together with all his successors is equal to the
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worth of the coalition composed by this player and all his successors. In particular,
the last statement holds for the root player i. Wherefrom,

∑

j∈C

tj(v, L) =
∑

j∈S̄L(i)

tj(v, L) = v(S̄L(i)) = v(C),

which proves CE.
Next observe that, due to the rooted-tree structure of L, for any link (i, j) ∈ L,

for all k ∈ S̄L(j), the sets S̄L\(i,j)(k) and S̄L(k) coincide. Whence and by definition
(2), it follows immediately that t meets SE.

Observe that the claim of Theorem 1 holds true only on the subclass of rooted-
tree digraph games, since among cycle-free digraphs only a rooted tree graph struc-
ture guarantees that every node (player) has at most one parent. Otherwise, there
is at least one node i∗ ∈ N having at least two different parents, say j and k, j 6= k.
In such a case both links (j, i∗) and (k, i∗) generate the same equation of type (6),
i.e., the system of n equations (4) and (6) looses its independence, and therefore it
cannot determine uniquely a G-value.

Consider another deletion link axiom:

A G-value ξ is predecessor equivalent (PE) if, for any rooted tree digraph game
〈v, L〉, for every link (i, j) ∈ L, for all k ∈ P̄L(i),

ξk(v, L\(i, j)) = ξk(v, L).

It turns out that two axioms of component efficiency and predecessor equivalence
uniquely define a G-value for a sink-tree digraph game.

Theorem 2 On the class of sink-tree digraph games there is a unique G-value that
satisfies CE and PE, and for any sink-tree digraph game 〈v, L〉 it is given by

si(v, L) = v(P̄L(i)) −
∑

j∈OL(i)

v(P̄L(j)), for all i ∈ N. (7)

From now we refer to the G-value s as to the sink value.

The proof of Theorem 2 is a pure mimicking of the proof of Theorem 1, and
we skip it. Moreover, applying similar arguments as in case of Theorem 1, we may
declare that the claim of Theorem 2 holds true only on the subclass of sink-tree
digraph games.

Remark 3.2 The sink value s of any sink-tree digraph game 〈v, L〉 can be equiva-
lently presented in terms of restricted games as

si(v, L) = vL(P̄L(i)) − vL(PL(i)), for all i ∈ N, (8)

i.e., in terms of restricted games, the payoff to each player is equal to this player’s
contribution to all his predecessors when he joins them.

As it was already pointed at in [6], from Kaneko and Wooders [7] and Le Breton,
Owen, and Weber [8], it follows that the core of the restricted game of any superad-
ditive cycle-free graph game is not empty. In particular, this is true for the restricted
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game of a superadditive rooted-tree or sink-tree digraph game. The core stability
property of the tree value was already mentioned above with reference to Demange
[3]. Applying the similar type arguments we can show that the sink value on a class
of sink-tree superadditive games also belongs to the core of the restricted game.

Notice that a line-graph is a particular case of both, a rooted tree and a sink
tree. It is not difficult to see that the tree/sink value of an arbitrary line-graph game
coincides respectively with the lower/upper equivalent solution proposed in Brink,
Laan, Vasil’ev [2]. Thus, the tree/sink value can be considered as a natural extension
of the lower/upper equivalent solution defined on the class of line-graph games
to rooted/sink-tree digraph games. Moreover, the axiom of successor/predecessor
equivalence applied to a line-graph game coincides with the lower/upper equivalence
axiom that, as it is shown in [2], together with component efficiency characterizes
the lower/upper equivalent solution on the class of line-graph games.

Recall that CE together with axiom of fairness1 (F) uniquely define the Myer-
son value [9] of any graph game 〈v, L〉 ∈ GL

N with arbitrary undirected graph L. In
particular, CE and F define the Myerson value of any given rooted-tree or sink-tree
graph game. However, the Myerson value, being equal to the Shapley value of the
restricted game, does not respect the graph orientation and therefore, does not re-
flect extra information provided by the given orientation in the digraph structure.
Furthermore, CE together with component fairness2 (CF) uniquely define the aver-
age tree (AT) solution [6] of any undirected cycle-free graph game. In particular,
CE and CF define the AT solution of any rooted-tree or sink-tree graph game, and
we may apply its formula representation to a rooted-tree or sink-tree game as well.
But the AT solution is defined as an average of tree values assuming that any node
in a given cycle-free graph can be chosen as a root of a directed rooted tree. Having
a priori prescribed orientation of links in a given rooted-tree (or sink-tree) graph
structure, the procedure of constructing the AT solution becomes meaningless.

3.2 Distribution of Harsanyi dividends

We consider now the rooted-tree and the sink-tree values with respect to the distri-
bution of Harsanyi dividends. By (1), the worth of any coalition is equal to the sum
of Harsanyi dividends of the coalition itself and all its proper subcoalitions. Whence
the Harsanyi dividend of a coalition has a natural interpretation as the extra revenue
from cooperation among the players of the coalition that they did not already re-
alize cooperating in proper subcoalitions. How the value under scrutiny distributes

1A G-value ξ is fair (F) if, for any graph game 〈v, L〉, for every link {i, j} ∈ L,

ξi(v, L) − ξi(v, L\{i, j}) = ξj(v, L) − ξj(v, L\{i, j}).

2A G-value ξ is component fair (CF) if, for any cycle-free graph game 〈v, L〉, for every link
{i, j} ∈ L,

1

|(N/L\{i, j})i|

∑

t∈(N/L\{i,j})i

(

ξt(v, L) − ξt(v, L\{i, j}
)

=

1

|(N/L\{i, j})j |

∑

t∈(N/L\{i,j})j

(

ξt(v, L) − ξt(v, L\{i, j}
)

.
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the dividend of a coalition among the players provides important information con-
cerning the interest of different players to create the coalition. This information
is especially important in games with limited cooperation structure when it might
happen that one player (or some group of players) is responsible for creation of a
coalition. If in such a case the player(s) responsible for the creation of a coalition
obtain(s) no quota from the dividend of this coalition, he (they) may simply block
the creation of this coalition at all. This happens, for example, with some values for
games with line-graph cooperation structure, see discussion concerning the topic in
Brink, Laan, and Vasil’ev [2].

From the equivalent definition of the tree value in terms of restricted games (3)
and the representation of the worth of a coalition via Harsanyi dividends (1), it
follows that for any rooted-tree digraph game 〈v, L〉 ∈ GL

N ,

ti(v, L) =
∑

S⊆S̄L(i)

λvL

S −
∑

S⊆SL(j)

λvL

S , for all i ∈ N.

Wherefrom and since the dividends of the restricted game of all disconnected coali-
tions are equal to zero, we easily obtain the validity of

Theorem 3 The tree value of any rooted-tree digraph game 〈v, L〉 in terms of the
distribution of the Harsanyi dividends is given by

ti(v, L) =
∑

S⊆CL(S̄L(i))
S∋i

λvL

S , for all i ∈ N. (9)

Since in a rooted tree every connected coalition is a rooted tree as well, the next
corollary arises directly from (9).

Corollary 3.1 The rooted-tree value of a rooted-tree digraph game assigns dividend
of any connected coalition to its root.

Similarly, for any sink-tree game 〈v, L〉 ∈ GL
N , for all i ∈ N ,

si(v, L)
(8),(1)

=
∑

S⊆P̄L(i)

λvL

S −
∑

S⊆PL(j)

λvL

S , for all i ∈ N,

which yields the validity of

Theorem 4 The sink value of any sink-tree digraph game 〈v, L〉 in terms of the
distribution of the Harsanyi dividends is given by

si(v, L) =
∑

S⊆CL(P̄L(i))
S∋i

λvL

S , for all i ∈ N. (10)

Corollary 3.2 The sink-tree value of a sink-tree digraph game assigns dividend of
any connected coalition to its absorbing sink.
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4 Sharing a river with a delta or with multiple sources

Ambec and Sprumont [1] approach the problem of optimal water allocation for a
given river with certain capacity over the agents (cities, countries) located along
the river from the game theoretic point of view. Their model assumes that between
each pair of neighboring agents there is an additional inflow of water. Each agent, in
principal, can use all the inflow between itself and its upstream neighbor, however,
this allocation in general is not optimal in respect to total welfare. To obtain more
profitable allocation it is allowed to allocate more water to downstream agents which
in turn can compensate the extra water obtained by side-payments to upstream ones.
The problem of optimal water allocation is approached as the problem of optimal
welfare distribution. Brink, Laan, and Vasil’ev [2] show that the Ambec-Sprumont
river game model can be naturally embedded into the framework of a graph game
with line-graph cooperation structure. We extend the line-graph model of a river
to the rooted-tree digraph model of a river with a delta and and to the sink-tree
digraph model of a river with multiple sources.

Let N be a set players (users of water) located along the river from upstream
to downstream. Let eki ≥ 0, i ∈ N , k ∈ O(i), be the inflow of water in front of
the most upstream player(s) (in this case k = 0) or the inflow of water entering the
river between neighboring players in front of player i. Fig. 1 provides a schematic
representation of the model.

1 2 i i + 1

i + 2

i + 3

i + 4

i + 5

e0,1

e1,2 ei−1,i ei,i+1

ei+1,i+2

ei+2,i+5

1

2

3

4

5

6

7

8 9 n − 1 n

e0,1

e0,2

e0,3

e0,4

e1,5

e0,7

e5,8 e8,9 en−2,n−1 en−1,n

a)

b)

Fig. 1

a) a river with a delta; b) a river with multiple sources

Following Ambec and Sprumont [1] and Brink, Laan, and Vasil’ev [2], it is as-
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sumed that each player i ∈ N has a quasi-linear utility function given by ui(xi, ti) =
bi(xi) + ti where ti is a monetary compensation to player i, xi is the amount of
water allocated to player i, and bi : IR+ → IR is a continuous nondecreasing function
providing benefit bi(xi) to player i by the consumption of xi of water. An allocation
is a pair (x, t) ∈ IRn

+×IRn of water distribution and compensation scheme, satisfying

∑

i∈N

ti ≤ 0, and



















∑

j∈P̄L(i)

xj ≤
∑

j∈P̄L(i)

∑

k∈O(j)

ekj ,

∑

j∈PL(i)∪B̄L(i)

xj ≤
∑

j∈PL(i)∪B̄L(i)

∑

k∈O(j)

ekj ,
for all i ∈ N,

with L being a graph presenting the river structure. The first condition is a budget
constraint. While the second condition on the one hand reflects that a player can
use only his upstream inflow of water, and on the other it reflects that the total
usage of water by any set of all brothers in L cannot exceed the total upstream
inflow to all of them. Notice that in the second constraint the summation over a
set of parents O(j) may contain more than one element only in case of a river with
multiple sources. In the second constraint the second inequality differs from the
first one only for a river with a delta. Moreover, in case of a river with a delta for
all brothers the second inequality in the second constraint is the same. The optimal
water distribution x∗ ∈ IRn

+ maximizes the total welfare, i.e. solves the following
optimization problem

max
x∈IRn

+

∑

i∈N

bi(xi) s.t.



















∑

j∈P̄L(i)

xj ≤
∑

j∈P̄L(i)

∑

k∈O(j)

ekj ,

∑

j∈PL(i)∪B̄L(i)

xj ≤
∑

j∈PL(i)∪B̄L(i)

∑

k∈O(j)

ekj ,
∀i ∈ N. (11)

A welfare distribution distributes the total benefits
∑

i∈N bi(x∗
i ) of optimal water

distribution x∗ among the players. In case of a river with a delta it is also assumed
that if a splitting of the river into branches happens to occur after a certain player,
then this player takes, besides his own quota, also the responsibility to split the
rest of the water flow to the branches such to guarantee the realization of the water
distribution plan x∗ to his successors.

Approaching the optimization problem (11) the same way as in Brink, Laan,
and Vasil’ev [2] in case of line-graphs, it turns out that the problem of finding an
optimal welfare distribution among users of water located along a river with a delta
or with multiple sources can be modeled as a rooted-tree or sink-tree digraph game
correspondingly. For any pair of players, the water inflow entering the river before
the upstream player can only be allocated to the downstream player if all players
between them cooperate, otherwise any player between them can take this water for
his own use. Hence, only coalitions of consecutive players are admissible. To define
the characteristic function v, put v(N) =

∑

i∈N bi(x∗
i ) with x∗ being a solution of

(11). For any connected coalition S, put v(S) =
∑

i∈N bi(xS
i ), where xS ∈ IRs solves

max
x∈IRs

+

∑

i∈S

bi(xi) s.t.



















∑

j∈P̄L(i)

xj ≤
∑

j∈P̄L(i)

∑

k∈O(j)

ekj ,

∑

j∈PL(i)∪B̄L(i)

xj ≤
∑

j∈PL(i)∪B̄L(i)

∑

k∈O(j)

ekj ,
∀i ∈ S. (12)
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For any disconnected coalition S ⊂ N , v(S) =
∑

T∈CL(S)

v(T ), and so, the restricted

game vL is equal to v. Depending on the river graph structure L, we refer to this
game as the river game with a delta or the river game with multiple sources, or
shortly river game similarly as in [2], if no ambiguity appears.

It is easy to see that the river game is superadditive. Hence both, the tree
value in the river game with a delta and the sink value in the river game with
multiple sources, are core selectors. The tree value of the river game with a delta
is a natural extension of the lower equivalent solution for the line-graph river game
studied in Brink, Laan, and Vasil’ev [2]. The tree value assigns the total dividend
of any connected coalition to its most upstream player, its root. This seems to be
reasonable, since the most upstream player of any connected coalition keeps control
over creating this coalition. The sink value of the river game with multiple sources
can be considered as an extension of the upper equivalent solution for a line-graph
river game [2], which in turn coincides with solution for the river game proposed by
Ambec and Sprumont [1]. The sink value assigns the full dividend of any connected
coalition to its most downstream player, its absorbing sink. Since the creation of
any connected coalition is fully up to the upstream players, the sink value, even
being a core selector, is contradictious from the perspective of the distribution of
Harsanyi dividends.

5 Concluding remarks

This paper opens a few interesting and important questions concerning the values
for digraph games which respect the given graph orientation. Which component
efficient value for a sink-graph game supplies a quota of the dividend of a connected
coalition to its most upstream player? Are there any component efficient values for
digraph games with graph structure given by merging of a sink tree and a rooted
tree that, in particular, can solve the river game with both multiple sources and a
delta? How to solve a digraph game with general cycle-free digraph presenting flow
situation when some links may merge while others split into several separate ones?
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