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Abstract

In this paper we define a stochastic bisimulation concept for a very
general class of stochastic hybrid systems, which subsumes most classes
of stochastic hybrid systems. The definition of this bisimulation builds
on the concept of zigzag morphism defined for strong Markov processes.
The main result is that this stochastic bisimulation is indeed an equiva-
lence relation. The secondary result is that this bisimulation relation for
the stochastic hybrid system models used in this paper implies the same
kind of bisimulation for their continuous parts and respectively for their
jumping structures.

Keywords: stochastic hybrid systems, Markov processes, simulation
morphism, zigzag morphism, bisimulation, category theory

1 Introduction

Significant progress in verification of probabilistic systems has been done, how-
ever mostly for discrete distributions or Markov chains. Continuous stochastic
processes are much more difficult to verify. It is notorious that theorem proving
of stochastic properties (with the probability one) can be carried out on the unit
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circle only. Model checking and reachability analysis are strongly conditioned
by abstraction techniques. When the state space is not only infinite but also
continuous, abstraction techniques must be very strong. Hybrid systems add
an extra level of complexity because of the hybrid nature of the state space
(discrete and continuous states coexist) and stochastic hybrid systems push fur-
ther this complexity by adding non-determinism and uncertainty. Therefore, it
is necessary to have an abstraction theory for stochastic processes that can be
used for verification and analysis of stochastic hybrid systems.

Reachability analysis and model checking are much easier when a concept of
bisimulation is available. The state space can be drastically abstracted in some
cases. In this paper, we focus on defining bisimulation relations for stochastic
hybrid systems, as a first step towards creating a framework for verification.

Besides of different bisimulation concepts in concurrency theory, the notion
of bisimulation is present
• in the ‘deterministic world’: continuous and dynamical systems [23] or hybrid
systems [16];
• or in the ‘probabilistic world’: probabilistic discrete systems [19], labelled
Markov processes [9], piecewise deterministic Markov processes [24].

In this paper we define different bisimulation concepts for a very large class
of Markov processes. This work is motivated by the fact that the realizations of
different models for stochastic hybrid systems make up, under mild assumptions,
stochastic processes with the strong Markov property. Our interest is related
with the so-called general stochastic hybrid systems, abbreviated GSHS, intro-
duced in [2, 1, 12]. Mainly, we present two approaches to define stochastic
bisimulation, both of them defined a categorical framework.

The first definition of bisimulation builds on the ideas of Edalat [9, 15] and
of Larsen and Skou [19] and of Joyal, Nielsen and Winskel [18]. We extend
the definition of bisimulation for labelled Markov processes to continuous time
strong Markov processes defined on analytic spaces. We consider the category of
continuous time strong Markov processes defined on analytic spaces, eqquiped
with some arrows (called zigzag morphisms), which are morphisms defined on
the state spaces that “preserve” the transition probabilities. The stochastic
bisimulation is defined via a span of zigzag morphisms. The main result is
that this bisimulation is indeed an equivalence relation. This turns out to be a
rather hard mathematical result, which employs the whole stochastic analysis
apparatus associated to this class of strong Markov processes.

The second definition of bisimulation uses the same class of Markov pro-
cesses, but another definition of zigzag morphism. In this case, the zigzag mor-
phism between two Markov processes is defined between the cones of excessive
functions associated to those two processes, provided that it commutes with the
kernel operators corresponding to the processes considered.

These two concepts of stochastic bisimulation are defined in a category the-
ory framework. Therefore, these stochastic bisimulations, as notions of system

equivalence, have some fundamental mathematical properties. Moreover, we
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give an algebraic characterization of these bisimulation through a measurable
relation between the state spaces, which induces equivalent quotient processes.
For the case of GSHS, we prove that this is a natural notion of bisimulation
since the bisimilarity of two GSHS realizations implies that their diffusion /
jumping components are bisimilar.

The rest of the paper is organized as follows. Next section gives some nec-
essary background on Markov processes. Section 3 gives a short presentation
of GSHS. Section 4 is the main body of the paper. It presents two categor-
ical approaches to define bisimulation for Markov processes. It starts with a
quick tour on stochastic bisimulation, and the main difficulties, which we have
to overcome when we aim to define a concept of bisimulation for very general
Markov processes. It is stressed the fact that the key point in the construction
of bisimulation is the definition of morphism. Two concepts of categorical bisim-
ulation are defined. The main result is that these bisimulations are equivalence
relations. Algebraic characterizations and specific features in the case of GSHS
are provided. The paper ends with some conclusions and further work.

2 Preliminaries

Stochastic processes, we consider here, are non-deterministic systems with a
continuous state space, where “non-determinism” can be measured using tran-
sition probability measures. Markov processes form a subclass of stochastic
systems for which, at any stage, future evolutions are conditioned only by the
present state (in other words, they do not depend on the past).

A probability space (Ω,F , P ) is fixed and all X−valued random variables
are defined on this probability space. The trajectories in the state space are
modelled by a family of random variables (xt), where t denotes the time. The
reasoning about state change is carried out by a family of probabilities Px one for
each state x ∈ X. The construction is similar to the coalgebraic reasoning in the
semantics of specification languages: the system behavior is described by giving
for each state the possible evolutions. For Markov processes, for each state x, the
probability Px(xt ∈ A) to reach a given set of state A ⊂ X (provided that A is
measurable) starting at x0 = x describes the system evolution. We remark two
ingredients that make the difference from the deterministic case: the evolutions
are described from an initial state to a set of final set (nondeterminism) and all
we know is a probability to have such trajectories (randomness).

For the purposes of this paper, we have to give some background about
strong Markov processes.

2.1 Strong Markov Processes

LetM = (Ω,F ,Ft, xt, Px) be a Markov process with the state spaceX. Suppose
that X is an analytic space. Then, we take the measurable space (X,B(X)),
where B(X) or B is the Borel σ-algebra of X (i.e. the σ-algebra generated by the
open sets). An analytic space is the image of a Polish space under a continuous
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function from one Polish space to another. A Polish space is a topological space
homeomorphic with a complete separable space. A Borel space is a topological
space, which is homeomorphic to a Borel subset of a complete separable metric
space. Any Borel space is an analytic space.

(Ω,F , Px) denotes the sample probability space for each process with initial
start point x. The family of σ-algebras {F0

t } denotes the natural filtration, i.e.
F0
t = σ{xt, s ≤ t} and F0

∞ = ∨tF0
t . The trajectories of M are modelled by a

family of X-valued random variables (xt), which, as functions of time, might
have some continuity properties (as the càdlàg property, i.e. right continuous
with left limits). This means that, for each t > 0 the function xt : (Ω,F) →
(X,B) is a F0/B-measurable function for all t ≥ 0. The (Wiener) probabil-
ity Px : (Ω,F) → [0, 1] is a probability measure such that Px(xt ∈ A) is B-
measurable in x ∈ X, for each t ∈ [0,∞) and A ∈ B, and Px(x0 = x) = 1.
If µ is a probability measure on (X,B) then one can define

Pµ(Λ) =
∫
X

Px(Λ)µ(dx),Λ ∈ F0.

We then denote by F (resp. Ft) the completion of F0
∞ (resp. F0

t ) with respect
to all Pµ, probability measure on (X,B). The family {Ft}t denotes the natural
filtration of M .
We say that a family {Mt} of sub-σ-algebras of F is an admissible filtration if
Mt is increasing in t and xt ∈ Mt/B for each t ≥ 0. Then F0

t is the minimum
admissible filtration. An admissible filtration {Mt} is right continuous if Mt =
Mt+ = ∩{Mt′ |t′ > t}.
Given an admissible filtration {Mt}, a [0,∞]-valued function τ on Ω is called
an {Mt}-stopping time if {τ ≤ t} ∈ Mt, ∀t ≥ 0.

For an admissible filtration {Mt}, we say that M is called strong Markov
process with respect to {Mt} if {Mt} is right continuous and

Pµ(xτ+t ∈ E|Mτ ) = Pxτ (xt ∈ E); Pµ − a.s.

for all probability measures µ on (X,B), E ∈ B, t ≥ 0, and for any {Mt}-
stopping time τ .

The stochastic analysis identifies concepts (like infinitesimal generator, semi-
group of operators, resolvent of operators) that characterize in an abstract sense
the evolutions of a Markov process. Under standard assumptions, all these con-
cepts are equivalent, in the sense that given one concept then all the others
can be constructed from it. For a detailed presentation of these notions and
the connections between them, the reader can consult, for example [20]. These
tools can be further used to define a concept of stochastic bisimulation.

2.2 Operator Characterizations of Markov Processes

In this subsection, we shortly present some standard notions associated to a
Markov process as operator semigroup, operator resolvent, infinitesimal genera-
tor. These will be used in the next subsection to define the simulation morphisms
and the zigzag morphisms for our processes.

4



Let Bb(X) be the lattice of bounded non-negative measurable functions on
X. This is a Banach space under the norm

‖f‖ = sup
x∈X

|f(x)|.

Let P = (Pt)t>0 denote the operator semigroup associated to M , which maps
Bb(X) into itself given by

Ptf(x) = Exf(xt),∀x ∈ X (1)

where Ex is the expectation w.r.t. Px. The semigroup P = (Pt)t>0 can be
thought of as an abstraction of M , since that from P one can recuperate the
initial process [8]. This kind of abstraction can be related with the concept of
abstract control system from [25], but in our case due to the stochastic features
of the model, the domain of the abstraction is not longer the state space X, but
Bb(X). The transition probabilities associated to M are defined as follows

pt(x,A) = Pt(IA)(x) = Px(xt ∈ A). (2)

A function f is excessive (w.r.t. the semigroup (Pt) or the resolvent (V α)) if it
is measurable, non-negative and Ptf ≤ f for all t ≥ 0 and Ptf ↗ f as t ↘ 0.
Let denote by EM the set of all excessive functions associated to M . The strong
Markov property can be characterized in terms of excessive functions [?].
The resolvent of operators V = (Vα)α≥0 associated with the semigroup P are
given by formula

Vαf(x) =
∫ ∞

0

e−αtPtf(x)dt, α > 0.

Let us denote by V the initial operator V0 of V, which is known as the kernel
operator of Markov process M . The operator resolvent (Vα)α≥0 is the Laplace
transform of the semigroup.
The strong generator L is the derivative of Pt at t = 0. Let D(L) ⊂ Bb(X) be
the set of functions f for which the following limit exists (denoted by Lf)

lim
t↘0

1
t
(Ptf − f) (3)

2.3 Fine Topology and Order on Trajectories

Suppose that M is a transient Markov process, i.e. there exists a strict positive
Borel measurable function q such that V q is a bounded function. The transience
means that for any Borel set E in X for almost all trajectories there exists a
finite stopping time t∗such that xt /∈ E for all t > t∗ (for more explanations
about the transience property see [?]).

On the state space X we define a preorder relation ≺M given

x ≺M y ⇐⇒ V f(y) ≤ V f(x),∀f ∈ Bb(X)
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Intuitively, ≺M is the order on the trajectories of M . In particular, if M de-
generates in a semi-dynamical system, ≺M is exactly the order relation on the
trajectories.

One can define on X the fine topology, which consists of the sets G ⊆ X with
the following property: for each x ∈ G there exists a measurable set A ⊃ X\G
and Px(TA > 0) = 1, where

TA(ω) = inf{t > 0|xt(ω) ∈ A} (4)

is the first hitting time of A. Intuitively, this means that each trajectory starting
from x remains for a while in G. The fine topology is separated and is finer
than the initial topology.

3 Stochastic Hybrid Systems

Stochastic hybrid systems are ‘traditional’ hybrid systems with some stochastic
features. These systems typically contain variables or signals that take val-
ues from a continuous set and also variables that take values from a discrete
(finite or countable) set. Differential equations or stochastic differential equa-
tions tipically give the continuous dynamics of such systems. Usually, a Markov
chain governs the discrete-variable dynamics. The stochastic features might be
present in the continuous dynamics or in the discrete dynamics, or in both. The
continuous and discrete dynamics coexist and interact with each other and be-
cause of this it is important to use models that accurately describe the dynamic
behaviour of such hybrid systems. The realizations of the different models of
stochastic hybrid systems (see [21] for an overview) can be thought of as partic-
ular classes of strong Markov processes with the continuous evolution disturbed
by forced or spontaneous transitions.

3.1 Syntax

In this section we give a short presentation of the general model for stochastic
hybrid systems, introduced in [2], which is used in the following sections. In [7],
a quite general model of stochastic hybrid systems that can be related to GSHS
as a particular case, has been implemented in Charon [4]).

General Stochastic Hybrid Systems (GSHS) are a class of non-linear stochas-
tic continuous-time hybrid dynamical systems. GSHS are characterized by a
hybrid state defined by two components: the continuous state and the discrete
state. The continuous and the discrete parts of the state variable have their
own natural dynamics, but the main point is to capture the interaction between
them.

The time t is measured continuously. The state of the system is represented
by a continuous variable z and a discrete variable i. The continuous variable
evolves in some “cells” Xi (open sets in the Euclidean space) and the discrete
variable belongs to a countable set Q.
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As usual, we define the hybrid state space of the GSHS as X =
⋃
i∈Q{i}×Xi

and x = (i, xi) ∈ X the hybrid state. The closure of the hybrid state space is

X = X ∪ ∂X,

where
∂X =

⋃
i∈Q

{i} × ∂Xi.

It is known that X can be endowed with a metric ρ whose restriction to any
componentXi is equivalent to the usual component metric [14]. Then (X,B(X))
is a Borel space, where B(X) is the Borel σ-algebra of X.

The intrinsic difference between the discrete and continuous variables, con-
sists of the way that they evolve through time. The continuous state evolves
according to an SDE whose vector field and drift factor depend on the hybrid
state. The discrete dynamics produces transitions in both (continuous and dis-
crete) state variables z, i. Switching between two discrete states is governed
by a probability law or occurs when the continuous state hits the boundary
of its state space. Whenever a switching occurs, the hybrid state is reset in-
stantly to a new state according to a probability law which depends itself on the
past hybrid state. Transitions, which occur when the continuous state hits the
boundary of the state space are called forced transitions, and those which oc-
cur probabilistically according to a state dependent rate are called spontaneous
transitions.

Formally, a GSHS is defined as follows.

Definition 1 A General Stochastic Hybrid System (GSHS) is a collection
H = ((Q, d,X ), b, σ, Init, λ,R) where

• Q is a countable set of discrete variables;

• d : Q → N is a map giving the dimensions of the continuous state spaces
(for each location);

• m : Q→ N is a map giving the dimensions of the Wiener processes

• X : Q→ Rd(.) maps each q ∈ Q into an open subset Xq of Rd(q);

• b : X → Rd(.) is a vector field;

• σ : X → Rd(·)×m(·) is a X(·)-valued matrix;

• Init : B(X) → [0, 1] is an initial probability measure on (X,B(S));

• λ : X → R+ is a transition rate function;

• R : X × B(X) → [0, 1] is a transition measure.
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3.2 Semantics

A probability space (Ω,F , P ) is fixed and all X−valued random variables are
defined on this probability space. The realization of a GSHS H is built as a
Markov string [3, 12] obtained by the concatenation of some diffusion processes
(zit), i ∈ Q together with a jumping mechanism given by a family of stopping
times (Si). Let ωi be a diffusion trajectory, which starts in (i, zi) ∈ X. Let
t∗(ωi) be the first hitting time of ∂Xi of the process (zit). Define the function

F (t, ωi) = I(t<t∗(ωi)) exp(−
∫ t

0

λ(i, xis(ωi)))ds. (5)

This function will be the survivor function for the stopping time Si associated
to the diffusions (zit).

Definition 2 (GSHS Execution) A stochastic process xt = (qt, zt) is called
a GSHS execution if there exists a sequence of stopping times T0 = 0 < T1 <
T2 ≤ . . . such that for each k ∈ N,

• x0 = (q0, x
q0
0 ) is a Q × X-valued random variable extracted according to

the probability measure Init;

• For t ∈ [Tk, Tk+1), the discrete state qt remains constant

qt = qTk

and the continuous state zt is a solution of the SDE:

dzt = b(qTk , zt)dt+ σ(qTk , zt)dWt (6)

where Wt is a the m(qTk)-dimensional standard Wiener;

• Tk+1 = Tk + Sik where Sik is a stopping time chosen according with sur-
vivor function F given by (5).

• The probability distribution of zTk+1 is governed by the law R
(
(qTk , zT−k+1

), ·
)
.

It is known, from [1], that the realization of any GSHS, H, under standard
assumptions (see below) is a strong Markov process.

• Assumption about the diffusion coefficients ensures that for any i ∈ Q,
the existence and uniqueness of the solution of the equations (6):

Assumption 1 Suppose that b : Q × X(·) → Rd(·), σ : Q × X(·) → Rd(·)×m(·)

are bounded and Lipschitz continuous in z.

• Assumption about non-Zeno executions: We denote

Nt(ω) =
∑

I(t≥Tk)
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Assumption 2 For every starting point x ∈ X, ExNt <∞, for all t ∈ R+.

• Assumption about the transition measure the transition rate function is:

Assumption 3 (A) λ : X → R+ is a measurable function such that t →
λ(xit(ωi)) is integrable on [0, ε(xi)), for some ε(xi) > 0, for each zi ∈ Xi and
each ωi starting at zi.
(B) (i) for all A ∈ B(X), R(·, A) is measurable; (ii) for all x ∈ X the function
R(x, ·) is a probability measure; (iii) R(x, {x}) = 0 for x ∈ X.

Let M = (Ω,F ,Ft, xt, Px) be a strong Markov process. In the following
sections, usually M will represent the realization of a stochastic hybrid system
model, H.
For a GSHS, H, the expression of the infinitesimal generator L of its Markov
process semantics is given in [2]. For f ∈ D(L) (the domain of generator) Lf is
given by

Lf(x) = Lcontf(x) + λ(x)
∫
X

(f(y)− f(x))R(x, dy) (7)

where:
Lcontf(x) = Lbf(x) +

1
2
Tr(σ(x)σ(x)THf (x)). (8)

It should be noticed that D(L) contains at least those measurable functions
f on X∪∂X, which are twice differentiable and satisfy the following boundary
condition

f(x) =
∫

X
f(y)R(x, dy), x ∈ ∂X.

Given a function f ∈ C1(Rn,R) and a vector field b : Rn → Rn, we use Lbf
to denote the Lie derivative of f along b given by Lbf(x) =

∑n
i=1

∂f
∂xi

(x)bi(x).
Given a function f ∈ C2(Rn,R), we use Hf to denote the Hamiltonian operator
applied to f , i.e. Hf (x) = (hij(x))i,j=1...n ∈ Rn×n, where hij(x) = ∂2f

∂xi∂xj
(x).

AT denotes the transpose matrix of a matrix A = (aij)i,j=1...n ∈ Rn×m and
Tr(A) denotes its trace.

For a strong Markov process defined on an analytic space (which is the case
for the GSHS realization), the opus of the kernel operator is the inverse operator
of the infinitesimal generator of the process [?].

A stochastic differential equation generates a much richer structure than just
a family of stochastic processes, each solving the stochastic differential equation
for a given value. In fact, it gives a flow of random diffeomorphism, i.e. it
generates a random dynamical system (RDS) [5]. Therefore, the construction
of a GSHS as a Markov string (see [3]) of diffusions does not only generate a
Markov process, but it also generates an RDS (which is a ‘string’ of the RDS
components). The theory of random dynamical systems is relatively new and
we refer to [5], as the first systematic presentation of this theory. We present
only the necessary definitions that we need in this paper.

Let θt : Ω → Ω for all t ∈ [0,∞). (Ω,F , P, θt) (abbreviated θ) is called a
metric dynamical system, if:
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1. The map θ : Ω×[0,∞) → Ω, (ω, t) 7→ θt(ω) is measurable from (Ω×[0,∞),
F ⊗ B([0,∞)) to (Ω,F);

2. θ satisfies the flow properties: (i) θ0 = idΩ and (ii) θ(t + s) = θt ◦ θs
∀s, t ∈ [0,∞);

3. θ is measure preserving, i.e. θtP = P ∀t ∈ [0,∞) (where fP := P ◦
f−1). The metric dynamical system is necessary to model the random
perturbations of an RDS.

A measurable random dynamical system on the measurable space (X,B) over
the metric dynamical system θ with time [0,∞) is a map ϕ : [0,∞)×Ω×X → X,
(t, ω, x) 7→ ϕ(t, ω, x) with the following properties:

1. ϕ is B([0,∞))⊗F ⊗ B/B - measurable;

2. If ϕ(t, ω) = ϕ(t, ω, ·) then ϕ forms a perfect cocycle over θ, i.e. (i)
ϕ(0, ω) = idX and (ii) ϕ(t + s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) ∀ω ∈ Ω ∀s, t ∈
[0,∞).

The RDS associated to a GSHS realization arises from its construction as
a Markov string: the shift operator (θt) of the corresponding Markov string is
exactly the metric dynamical system for the RDS and for each x ∈ X, ω ∈ Ω,
t ≥ 0 the value of the RDS cocycle ϕ(t, ω, x) is exactly xt(ω) with x as the
starting point (or ϕ(t, ω, x) is the execution of GSHS with x as the starting
point). In other words, the cocycle ϕ is a replacement of the flow from the
determinist case.

4 Categorical Approaches to Bisimulation

In the first subsection, we discuss a general methodology to define bisimulation
for strong Markov processes on analytic spaces. Then, in the next two sub-
sections we give two possible methods to define the category of strong Markov
processes with analytic state spaces. The difference consists in the way to define
the arrows in such categories. In each case we define the concept of bisimulation
and we show that the respective category has semi-pullback. The later result
implies that the bisimulation is an equivalence relation. The resulting concept
of bisimulation will be compared with a concept of bisimulation via open maps
(as introduced by Winskel et.al. and applied to continuous dynamical system
by Tabuada et.al.) for semi-dynamical system. After that we introduce the
concept of bisimulation for GSHS and study some specific properties.

4.1 Methodology

The classical paper of Joyal, Nielsen and Winskel [18] presents a general cate-
gorical view of what bisimulation is for deterministic systems. The bisimulation
concept is given in terms of open maps and simulation morphisms.
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Then, based on the work of Larsen and Skou [19] and of Joyal, Nielsen and
Winskel [18], the concept of bisimulation has been extended to a specific class
of Markov processes (labelled Markov processes) by Edalat et.al. [15].

For the continuous-time continuous-space Markov processes, this definition
can not be adapted in a direct manner. The main problem is how to define
the simulation morphisms and the open maps. In this case, we say that a
Markov process M1 simulates another Markov M2 if there exists a surjective
continuous morphism ψ between their state spaces such that each transition
probability of M2 ‘is matched’ by a transition probability on M1, in sense that
for each measurable set A ⊂ X1 and for each u ∈ X2 we have

p2
t (u, ψ

−1(A)) ≤ p1
t (ψ(u), A) ∀t ≥ 0 (∗)

where (p2
t ) and (p1

t ) are the transition functions corresponding to M2, respec-
tively to M1. A such morphism ψ is called simulation morphism.
The open maps are replaced by the so-called zigzag morphisms, which are sim-
ulation morphism for which the above condition holds with equality.

Practically, a simulation condition as before is hard to be checked because the
time t runs in a ‘continuous’ set. Then, it is necessary to require supplementary
assumptions about the transition probabilities of the processes we are talking
about. This kind of simulation morphisms and zigzag morphisms have been
defined for labelled Markov processes and for stationary Markov processes with
discrete time defined on Polish or analytic spaces (see [15] and the references
therein). The categories considered there have the above Markov processes as
objects and the zigzag morphisms as morphisms. Then the bisimulation notion
for these processes is given in a classical way. Two labelled Markov processes,
for example, are probabilistically bisimilar if there exists a span of zigzag mor-
phisms between them. In this context, we point out also another reason why
only some special kind of Markov processes are considered, as follows. This
bisimulation relation is always reflexive and symmetric. But, the transitivity
of a such relation (the bisimulation should be an equivalence relation) is usu-
ally implied by the existence of semi-pullbacks in the Markov process category
considered [18, 15]. That means, in the respective category, for any pair of
morphisms

ϕ1 : M1 →M and ϕ2 : M2 →M

where M1,M2,M are objects in that category, there exist an object M0 and
morphisms πi : M0 →M i (i = 1, 2) such that

ϕ1 ◦ π1 = ϕ2 ◦ π2.

The construction of the semi-pullback in the above categories of Markov pro-
cesses is strongly based on the stationarity property of the Markov processes
considered [15]. In this case the transition probabilities do not depend on time.
Then the construction mechanism of the semi-pullback in a such categories of
Markov processes is reduced to the construction of the semi-pullback in the
category of transition probability functions and surjective transition probability
preserving Borel maps (as morphisms in the respective category).
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We develop a novel concept of stochastic bisimulation for strong Markov
processes defined on analytic spaces. The novelty consists of the way to define
the simulation morphisms and the zigzag morphisms. Specifically, we replace
the condition (∗) by a ‘global condition’ given in terms of kernel operators. We
present two approaches to define these morphisms:

1. In the first approach these are defined on the state spaces and commute
with the kernel operators of the processes considered.

2. In the second approach these are defined on the cones of excessive functions
and have a similar commutativity property with the kernel operators.
These kind of functions can be thought of as general solutions associated
to the processes generator. In this case the zigzag morphisms change the
directions of arrows. The simulator process has a larger cone of excessive
functions. Then the zigzag morphism spans between Markov processes
used to define the bisimulation relation become co-spans of morphims
between the excessive function cones.

Then the bisimulation relation is naturally given via zigzag morphism spans
between Markov processes. Moreover, the category of strong Markov processes
defined on analytic spaces with these kinds of zigzag morphisms as arrows has
semi-pullback.

Therefore, the bisimulation relation is an equivalence relation.

4.2 First Approach

4.2.1 The Category of Markov Processes

Let GMP be the category of the strong Markov processes, defined on analytic
spaces, with continuous time, as objects. In this category, the arrows are the
zigzag morphisms defined on the state spaces, which will be defined in the
following. The aim of this subsection is to give an appropriate definition of these
zigzag morphisms (and of simulation morphisms) between such processes, which
will be used to define the concept of stochastic bisimulation in this category.

Let M1 and M2 be two objects of GMP, defined on X(1), respectively X(2).

Definition 3 A simulation morphism between the processes M2 and M1 (the
process M1 simulates the process M2) is a measurable, monotone, finely con-
tinuous map ψ : X(2) → X(1) such that

V 2(f ◦ ψ) ≤ V 1f ◦ ψ,∀f ∈ Bb(X(1))

where V 1 (resp. V 2) is the kernel operator associated to M1 (resp. M2).

Def. 3 illustrates, in terms of kernel operators, that the simulating process can
make all the transitions of the simulated process with greater probability than
in the process being simulated.

12



A surjective simulation morphism ψ : X(2) → X(1) induces an equivalence
relation ∼ψ on X(2)

u ∼ψ v ⇔ ψ(u) = ψ(v). (9)

In this way, to each x ∈ X(1) we can associate an equivalence class [u]ψ w.r.t.
∼ψ such that [u]ψ = ψ−1(x). We call ∼ψ the simulation relation induced by ψ.

Definition 4 A surjective simulation morphism ψ between the processes M2

and M1 is called zigzag morphism if the condition from Def. 3 holds with equal-
ity, i.e.

V 2(f ◦ ψ) = V 1f ◦ ψ,∀f ∈ Bb(X(1)). (10)

It is easy to show that a surjective simulation morphism ψ between the
processes M2 and M1 is a zigzag morphism if and only if for almost all1 t ≥ 0
the following equality holds

P 2
t (f ◦ ψ)(u) = (P 1

t f)(ψ(u)),∀f ∈ Bb(X(1)), u ∈ X(2), (11)

where (P 1
t ) (resp. (P 2

t )) is the semigroup of operators associated to M1 (resp.
M2).

Remark 1 The monotony of a zigzag morphism ψ can be derived from condi-
tion satisfied by a zigzag morphism. Roughly speaking, this means that whilst the
process M2 evolves from u to ψ−1(A) (A ∈ B(X(1))) on a trajectory with a given
probability, the process M1 evolves from ψ(u) to A with the same probability.

Remark 2 A zigzag morphism ψ : X(2) → X(1) induces a morphism be-
tween the lattices of measurable functions associated with the two processes:
Ψ : Bb(X(1)) → Bb(X(2)) such that

Ψ(f) = f ◦ ψ (12)

for all f ∈ Bb(X(1)). Then the condition (11) can be written as follows

Ψ(P 1
t f) = P 2

t (Ψ(f)) (13)

for all f ∈ Bb(X(1)), or equivalently the following diagram commutes

Bb(X(2))
P 2
t→ Bb(X(2))

Ψ ↑ ↑ Ψ

Bb(X(1))
P 1
t→ Bb(X(1))

The Remark 2 shows that a zigzag morphism between two Markov processes
can be thought of as a generalization for the stochastic case of the simulation
concept for abstract control systems defined in [25].

1i.e. except with a zero Lebesgue measure set of times
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More explicitly, the operator semigroups (P 1
t ) and (P 2

t ) define two dynamical
systems (the abstractions of M1, resp. M2) on the Banach spaces Bb(X(1)) and
Bb(X(2)), respectively

φ1 : R+ × Bb(X(1)) → Bb(X(1)); φ1(t, f) = P 1
t f

φ2 : R+ × Bb(X(2)) → Bb(X(2)); φ2(t, f) = P 2
t f.

A zigzag morphim between M2 and M1 implies that φ1 is simulated by φ2. The
condition (13) is, in fact, the characterization of an open map between these
dynamical systems [16]: when φ1 evolves from f to P 1

t then φ2 evolves from Ψf
to Ψ(P 1

t f) = P 2
t Ψf .

4.2.2 Stochastic Bisimulation

We consider the category GMP of strong Markov processes, defined on analytic
spaces, with continuous time as objects and zigzag morphisms as arrows.

Then, we define the stochastic bisimulation between two processes in this
category as the existence of a span of zigzag morphisms between them.

Definition 5 Let M1 and M2 be two objects in GMP. M1 is stochastic bisimi-
lar to M2 (written M1 ∼M2) if there exists a span of zigzag morphisms between
them, i.e. there exists a Markov process M12 (object in GMP) and the zigzag
morphisms ψ1 (where ψ1 : X12 → X(1)) and ψ2 (where ψ2 : X12 → X(2)) such
that

M12

ψ1

↙
ψ2

↘
M1 M2

Proposition 6 M1 and M2 are stochastic bisimilar if and only if there exists a
co-span between their lattices of measurable functions, i.e. there exists a Markov
process M12 and the zigzag morphisms ψ1 (where ψ1 : X12 → X(1)) and ψ2

(where ψ2 : X12 → X(2)) such that

Bb(X12)
Ψ1

↗
Ψ2

↖
Bb(X1) Bb(X2)

where Ψ1 and Ψ2 are induced from ψ1 and ψ2 by the formula (12).

Lemma 7 The category GMP has semi-pullbacks.

Proof. Let M1,M2,M be three strong Markov processes defined on the an-
alytic spaces X(1), X(2), X, respectively. Suppose that there exist two zigzag
morphisms ψ1 : X(1) → X, ψ2 : X(2) → X. We have to prove that there exist
another object M0 (a strong Markov process defined on a analytic space X(0))
and two zigzag morphisms π1 : X(0) → X(1) and π2 : X(0) → X(2) such that
the following diagram commutes

14



X(0)

π1

↙
π2

↘
X(1) X(2)

↘
ψ1

↙
ψ2

X

Let X(0) = {(x1, x2)|ψ1(x1) = ψ2(x2)} equipped with the subspace topology of
the product topology on X(1)×X(2). Note that X(0) is nonempty since ψ1 and
ψ2 are surjective (in fact, for all x1 ∈ X(1) there exists some x2 ∈ X(2) such that
(x1, x2) ∈ X(0)). Clearly, X(0) is an analytic space since it is a closed subset
of the analytic space X(1) × X(2). We take M0 as the part of the product of
the Markov processes M1,M2 restricted to X(0), i.e. M0 is the product process
M1 ⊗M2 “killed” outside of X(0). More explicitly, M0 is the subprocess of
M1 ⊗M2 with respect to the multiplicative functional Nt = I[0,T )(t), where T
is the first exit time of X(0) and I[0,T ) is the indicator function of [0, T ) (see [8],
Ch.3 for background on multiplicative functionals and subprocesses).
Let (P 1

t ), (P 2
t ) be the operator semigroups associated with M1 and M2. Let P̂ 1

t

and P̂ 2
t the semigroups defined on Bb(X(1) ×X(2)) by

P̂ 1
t f(x1, x2) = P 1

t (f(·, x2))(x1), P̂ 2
t f(x1, x2) = P 2

t (f(x1, ·))(x2).

The semigroup associated with M1 ⊗M2 is Pt = P̂ 1
t P̂

2
t = P̂ 2

t P̂
1
t [13]. Then

according with the Th. 3.3 [8], the process M0 is a Markov process and the
semigroup associated with it is Qtf(x1, x2) = Ex[f(x1

t ⊗ x2
t )Nt] for any f ∈

Bb(X(1)×X(2)) or, equivalently, Qtf(x1, x2) = Ptf(x1, x2) for any f ∈ Bb(X(0)).
Moreover, M0 is a strong Markov process since Nt is a strong functional

multiplicative (see Prop. 3.12 [8]).
Then π1 and π2 can be taken as the projection maps. Using product semigroup
and the Prop.4.2.1, it follows that these projection maps are indeed zigzag mor-
phisms. For example, for π1, we have f ◦π1 (for f ∈ Bb(X(1))) depends only on
x1 and P 2

t does not change it. Then Qt(f ◦ π1)(x1, x2) = (P 1
t f)(π1(x1, x2)) for

all (x1, x2) ∈ X(0). The surjectivity of π1 or π2 can be easily derived using the
sujectivity of ψ1 and ψ2 and the definition ofX(0). The equality ψ1◦π1 = ψ2◦π2

trivially holds.�

Proposition 8 If a category has semi-pullbacks then the bisimulation relation
is an equivalence relation.

Then, an immediate consequence of the existence of semi-pullbacks in the cat-
egory GMP is the following result:

Theorem 9 The stochastic bisimulation in the category GMP is an equiva-
lence relation.
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4.3 Second Approach

4.3.1 The Category of Markov Processes

Let G̃MP be the category of the strong Markov processes defined on analytic
spaces as the objects and the E-zigzag morphisms (which will be defined in the
following) as the arrows.

The zigzag morphisms between Markov processes can be defined also as
morphisms between their cones of excessive functions. Let M1,M2 be two
strong Markov processes defined on analytic spaces X(1), respectively X(2). Let
EM1 , EM2 the associated cones of excessive functions.

Definition 10 An E-morphism (between these two cones) can be defined as an
application

Ψ : EM1 → EM2 (14)

such that the following properties hold: (i) Ψ(f+g) = Ψ(f)+ Ψ(g), ∀f, g ∈ EM1 ;
(ii) f ≤ g ⇒ Ψ(f) ≤ Ψ(g); fk ↗ f ⇒ Ψ(fk) ↗ Ψ(f); (iv) Ψ(f · g) = Ψ(f)·
Ψ(g), ∀f, g ∈ EM1 ; (v) Ψ(1) = 1. An E-morphism Ψ is called finite if f <
+∞⇒ Ψ(f) < +∞.

Proposition 11 If ψ : X(2) → X(1) is a H-map then Ψ : EM1 → EM2 given by

Ψ(f) = f ◦ ψ (15)

for all f ∈ EM1 , is a finite E-morphism.

Intuitively, in the formula (15) the H-map ψ can be thought of as a variable
change, i.e. for all f ∈ EM1

Ψ(f)(u) = f(ψ(u)),∀u ∈ X(2). (16)

Remark 3 (i) The map Ψ defined by (15) can be extended as a map between the
two cones of measurable positive functions defined on X(1), respectively X(2),
loosing the property of finely continuity. Prop.11 shows how a function between
the state spaces of M1,M2 can provide an E-morphism.
(ii) Conversely, if Ψ is an E-morphism as in (14) then there exists a unique
measurable monotone and finely continuous application ψ from X(2) to an ex-
tension of X(1) such that: Ψ(f) = f ◦ ψ,∀f ∈ EM1 . To obtain this result one
can use results from [22].

Using (16), each function g belonging to the range of Ψ can be extended to
X(2)/∼ψ, i.e. g([u]ψ) = f(x) provided that [u]ψ = ψ−1(x) and g = Ψ(f).

Proposition 12 If ψ : X(2) → X(1) is a surjective and finely open H-map such
that each excessive function g ∈ EM2 has the property

u ∼ψ v ⇒ g(u) = g(v) (17)

then the E-morphism Ψ : EM1 → EM2 given by formula (15) is surjective.
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Proof. For each g ∈ EM2 we have to define f ∈ EM1 such that Ψ(f) = g. Let
f : X(1) → [0,∞) defined by f(x) = g(u) for each x ∈ X(1), where u ∈ X(2) is
such that ψ(u) = x (there exists a such u since ψ is surjective). The function
f is well defined because of (17). Then f can be written as f = g ◦ ψ−1 and
for any open set D ⊂ [0,∞) we have f−1(D) = ψ(g−1(D)). Since ψ is a finely
open map we obtain that f−1(D) is finely open in X(1). Then f ∈ EM1 .�

Remark 4 It is easy to check that if in the Prop. 11 both ψ and Ψ are surjective
then Ψ must be bijective. Therefore the two excessive function cones can be
identified and the two processes are equivalent.

Definition 13 A simulation E-morphism between M1,M2 is an E-morphism
such that

V 2 ◦Ψ ≤ Ψ ◦ V 1. (18)

A surjective E-morphism Ψ is called zigzag E-morphism if

V 2 ◦Ψ = Ψ ◦ V 1 (19)

i.e. the following diagram commutes

EM1
Ψ→ EM2

V 1 ↑ ↑ V 2

EM1
Ψ→ EM2

Remark 5 It is clear that if ψ is a H-map which is a zigzag morphism in
the sense of the first approach, i.e. it satisfies the condition (10) then the E-
morphism generated by (15) is a zigzag E-morphism.

4.3.2 Stochastic Bisimulation

We can define another version of the stochastic bisimulation via E-morphisms:

Definition 14 Let M1 and M2 be two objects in G̃MP. M1 is stochastic
bisimilar to M2 (written M1 ∼ M2) if there exists a cospan of E-zigzag mor-
phisms between them, i.e. there exists a Markov process M12 (object in G̃MP)

and the E-morphisms Ψ1 and Ψ2 between their excessive function cones

EH12

Ψ1

↗
Ψ2

↖
EH1 EH2

Proposition 15 The category G̃MP has semi-pullbacks.
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Proof. If we define the stochastic bisimulation defined via zigzag E-morphisms,
then the semi-pullback existence for the category of Markov processes (with mor-
phisms given by zigzag E-morphisms) is equivalent with the pushout existence
in the category of their excessive function cones (with the morphisms given by
zigzag E-morphisms). Let us take the following span of morphims between the
excessive function cones

EM
Ψ1

↙
Ψ2

↘
EM1 EM2

Naturally, we consider E as the tensor product EM1⊗EM1 of the cones EM1 , EM1

(which correspond to the product of operator semigroups or to Markov process

product defined on X(1) × X(2)). Then the ‘inclusions’ EM1
Γ1

↪→ E , Γ1(f1) =

Ψ1(f) ⊗ Ψ2(f) if f1 = Ψ1(f) and EM2
Γ2

↪→ E , Γ2(f2) = Ψ1(f) ⊗ Ψ2(f) if
f2 = Ψ2(f) (essentially, Ψ1 and Ψ2 are surjective) gives the desired pushout
construction, i.e. the following diagram commutes

EM
Ψ1

↙
Ψ2

↘
EM1 EM2

↘
Γ1

↙
Γ2

E

Proposition 16 The stochastic bisimulation defined by Def. 14 in G̃MP is an
equivalence relation.

4.4 Characterization of stochastic bisimulation

Let us consider two bisimilar processes M1 and M2 and ψ1 and ψ2 are zigzag
morphisms as in the Def.5. Then we can define a relation R ⊂ X(1) × X(2),
called bisimulation relation, given by

x1Rx2 ⇔ (ψ1)−1(x1) ∩ (ψ2)−1(x2) 6= ∅ (20)

Proposition 17 x1Rx2 if and only if

x1 ∈ ψ1[(ψ2)−1(x2)].

For A1 ×A2 ∈ B(X(1))× B(X(2)), we define

R−1(A1) = {(x1, x2)|x1 ∈ A1, x1Rx2}
R−1(A2) = {(x1, x2)|x2 ∈ A2, x1Rx2}

R is called measurable if for all A1×A2 ∈ B(X(1))×B(X(2)) the sets R−1(A1),
R−1(A2) are measurable w.r.t. σ-algebra produs B(X(1))⊗ B(X(2)).
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Then we can extend the bisimulation relation (20) to the measurable sets

A1RA2 ⇔ (R1)−1(A1) = (R2)−1(A2).

or, equivalently,

A1RA2 iff ∀x1 ∈ A1∃x2 ∈ A2 s.t. x1Rx2 and viceversa.

R is called weak measurable if for all A1×A2 ∈ B(X(1))×B(X(2)) with A1RA2

then R−1(A1), R−1(A2) are measurable w.r.t. σ-algebra produs B(X(1)) ⊗
B(X(2)).

Lemma 18 If ψ1, ψ2 are finely open H-maps then
(i) A1RA2 iff

A1 = ψ1[(ψ2)−1A2]
A2 = ψ2[(ψ1)−1A1]

(ii) R is a weak measurable relation.

Proof. (ii) The conclusion is clear since for A1 × A2 ∈ B(X(1)) × B(X(2)) we
have

R−1(A1) = {(x1, x2)|x1 ∈ A1 and x2 ∈ ψ2[(ψ1)−1x1]}
R−1(A2) = {(x1, x2)|x2 ∈ A2 and x1 ∈ ψ1[(ψ2)−1x2]}.�

Let R ⊂ X(1)×X(2) be the equivalence relation given by (20). This relation
will induce other two relations R1 and R2 define on X(1) and X(2), respectively,
as follows.

x1R1y1 ⇔ ∃x2 ∈ X(2) s.t. x1Rx2 and y1Rx2 (21)

and a similar definition for R2.

Lemma 19 x1R1y1 iff there exist u, v ∈ X12 such that x1 = ψ1u and y1 = ψ1v
provided that u ∼ψ2 v. Similarly, for R2.

Proposition 20 R1 and R2 are equivalence relations.

Proof. The previous lemma ensures the transitivity property and the surjec-
tivity of ψ1, ψ2 gives the reflectivity property. The symmetry is clear.�

Remark 6 In a similar way, for a relation R ⊂ X(1)×X(2) with Π1(R) = X(1)

and Π2(R) = X(2) we can define the induced equivalence relations R1,R2 (If it
is necessary we have to take the transitive closure of these relations).

Let

B∗(X(1)) = B(X(1)) ∩ {A1 ⊂ X(1)| if x1 ∈ A1 and [x1] = [y1] then y1 ∈ A1}
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be the collection of all Borel sets in which any equivalence class of X(1) is either
totally contained or totally not contained. Here, for x1 ∈ X(1) (resp. x2 ∈ X(2))
we denote its class of equivalence by [x1] (resp. [x2]) w.r.t. R1 (resp. R2). It can
be checked that B∗(X(1)) is a σ-algebra. Let X(1)/R1 be the set of equivalence
classes of X(1), let πX(1) : X(1) → X(1)/R1 be the mapping that maps each
x1 ∈ X(1) to its equivalence class and let

B(X(1)/R1) = {A1 ⊂ X(1)/R1 |π−1
X(1)(A1) ∈ B∗(X(1))}.

Then (X(1)/R1 ,B(X(1)/R1)), which is a measurable space, is called the quotient
space of X(1) with respect to R1. The quotient space of X(2) with respect
to R2 is defined in a similar way. Clear, B(X(i)/Ri) can be identified with
B∗(X(i)). Then, for i = 1, 2, the space X(i)/Ri can be endowed with the σ-
algebra B∗(X(i)), which is the “saturation” of the Borel σ-algebra of X(i) w.r.t.
Ri.

The following proposition shows that only the saturated sets can be bisimilar.

Proposition 21 If A1 ∈ B(X(1)) is such that there exists A2 ∈ B(X(2)) with
A1RA2 then A1 is saturated, i.e. A1 ∈ B∗(X(1)).

Proof. If y1R1x1 ∈ A1 then there exist u, v ∈ X12 such that y1 = ψ1u and x1 =
ψ1v with ψ2u = ψ2v. Since ψ2v ∈ ψ2(ψ1)−1(A1) = A2 there exists x2 ∈ A2

such that ψ2v = x2. Therefore, ψ2u = x2 ∈ A2 and ψ1u ∈ ψ1(ψ2)−1(A2) = A1,
i.e. y1 ∈ A1. That means A1 is saturated.�

Proposition 22 If ψ1, ψ2 are finely open H-maps then the quotient spaces
(X(1)/R1 ,B∗(X(1))), (X(2)/R2 ,B∗(X(2))) are homeomorph.

Proof. We can define an application ϕ : (X(1)/R1 ,B∗(X(1))) → (X(2)/R2 ,B∗(X(2)))
such that, for all [x1] ∈ X(1)/R1 we have

ϕ([x1]) = [x2] (22)

provided that x1Rx2. Definition of R1 and R2 ensure that ϕ is well-defined and
bijective. For measurability, let us consider an arbitrary A2 ∈ B∗(X(2)) then

ϕ−1(A2) = ψ1[(ψ2)−1A2]

is a measurable set in X(1), where A2 is considered as a measurable set in X(2).
The Prop.17 and the fact that A2 is saturated w.r.t. R2 ensure that ϕ−1(A2)
is saturated w.r.t. R1. Then ϕ is measurable. Similarly, ϕ−1 is measurable. �

Remark 7 The map (22) from the previous proposition shows that an equiva-
lence class [x2] ∈ X(2)/R2 is identified with an equivalence class [x1] ∈ X(1)/R1

where x1 corresponds to [u]ψ1 given by (ψ2)−1([u]ψ1) = [x2].
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Proposition 23 (reachability equivalence) If M1 and M2 are stochastic
bisimilar via finely open zigzag morphisms then for all pairs (x1, x2) ∈ X(1) ×
X(2) and (A1, A2) ∈ B(X(1))×B(X(2)) such that x1Rx2 and A1RA2 the equality
between the transition probabilities

p1
t (x

1, A1) = p2
t (x

2, A2) (23)

is fulfilled for almost all t > 0.

Proof. Since A1RA2 then, from the Prop.21, we get that (A1, A2) ∈ B∗(X(1))×
B∗(X(2)). Formula (11) can be written for the sets A1 and A2 as follows

p1
t (x

1, A1) = p12
t [u, (ψ1)−1(A1)], u ∈ (ψ1)−1(x1)

p2
t (x

2, A2) = p12
t [v, (ψ2)−1(A2)], v ∈ (ψ2)−1(x2)

But, from Lemma 18

A1 = ψ1[(ψ2)−1A2]
A2 = ψ2[(ψ1)−1A1]

which implies that (ψ1)−1(A1) = (ψ2)−1(A2) since A1, A2 are saturated. In
fact, the equality (23) results from the definition of zigzag morphism and the
existence of the homeomorphism ϕ between the quotient spaces (see Prop.22).�

Now with these two results (Prop.22 and Prop.21) in hand we can introduce
the quotient stochastic processes M1/R and M2/R with

• the quotient spaces (X(1)/R1 ,B∗(X(1))), (X(2)/R2 ,B∗(X(2))), respectively,
as state spaces;

• transition probabilities given by

p̃1
t ([x

1], A1) = p1
t (x

1, A1), for all A1 ∈ B∗(X(1));x1 ∈ X1

p̃2
t ([x

2], A2) = p1
t (x

2, A2), for all A2 ∈ B∗(X(2));x2 ∈ X2

defined for all t > 0. The way to define the induced equivalence relations
R1, R2 ensures that these transition probabilities are well-defined, i.e.
they do not depend on the representants of equivalence classes [x1] or
[x2].

Proposition 24 The quotient stochastic processes M1/R and M2/R are Markov
processes.

From Prop.22, we are able now to make the connection between stochastic
bisimulation and equivalence of stochastic processes as follows.

Proposition 25 If ψ1, ψ2 are finely open H-maps then the quotient stochastic
processes M1/R and M2/R are equivalent.
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Proof. According to the Prop.22 the quotient spaces (X(1)/R1 ,B∗(X(1))),
(X(2)/R2 ,B∗(X(2))) are homeomorph. Then the equality (23) becomes

p̃1
t ([x

1], A1) = p̃2
t ([x

2], A2)

for all A1 ∈ B∗(X(1)); x1 ∈ X1; A2 ∈ B∗(X(2)); x2 ∈ X2 and for almost all
t > 0 provided that ϕ([x1]) = [x2] and ϕ(A1) = A2 with ϕ defined as in the
Prop.22. This means that R preserves the transition probabilities, i.e. M1/R
and M2/R are equivalent.�

The properties of the bisimulation relation R induced by the existence of
a span of zigzag morphisms between M1 and M2 give the idea to introduce a
general concept of bisimulation relation, which will not depend on a given span.

Definition 26 A relation R ⊂ X(1) × X(2) is called a bisimulation relation
between M1 and M2 if the following conditions are satisfied:

1. Π1(R) = X(1) and Π2(R) = X(2);

2. R is measurable;

3. the quotient stochastic processes M1/R and M2/R are equivalent.

For a bisimulation relation R, let us define

X12 = {(x1, x2) ∈ X(1) ×X(2)|x1Rx2} (24)

The σ-algebra of X12 is defined as the product σ-algebra

B(X12) = σ{R−1(A1) and R−1(A2)|A1 ×A2 ∈ B(X(1))⊗ B(X(2))}. (25)

Assumption 4 (Analiticity of R) We suppose that if X(1) and X(2) are an-
alytic spaces then X12 is analytic.

Theorem 27 Under the Ass.4 the following assertions hold:
(A) M1 is stochastic bisimilar with M2 via finely open zigzag morphisms then
there exists a weak measurable bisimulation relation R ⊂ X(1) × X(2) between
them.
(B) If there exists a measurable bisimulation relation R ⊂ X(1) ×X(2) between
M1 and M2 then they are stochastic bisimilar.

Proof. Given two bisimilar processes M1 and M2 via finely open zigzag mor-
phisms, the construction of the bisimulation relation R is given by (20) and the
assertion (A) follows from Prop.22, Prop.20, and Prop.25.
Suppose now there exists a bisimulation relation R ⊂ X(1) × X(2) which sat-
isfies the conditions of Def.26. In fact, the direct sum of the quotient spaces
(X(1)/R1 ,B∗(X(1))), (X(2)/R2 ,B∗(X(2))) is embedded in (X12,B(X12)).
We construct the Markov processM12 with the following transition probabilities

p12
t [(x1, x2),R−1(A1)] = p1

t (x
1, A1)

p12
t [(x1, x2),R−1(A2)] = p2

t (x
2, A2).
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Then we define for i = 1, 2 two maps ψi from X12 to X(i) as the canonical
projections

ψi : X12 → X(i)

ψi(x1, x2) = xi

Clear, ψi are surjective since Πi(R) = X(i), i = 1, 2. If A(i) is a measurable set
of X(i) then

(ψi)−1(A(i)) = R−1(Ai) ∈ B(X12),

i.e. ψi is measurable. On the other hand we have

ψi[R−1(Ai)] = Ai

but for i 6= j we do not have the measurability of ψi[R−1(Aj)]. If AiRAj then
R−1(Ai) = R−1(Aj) and

ψi[R−1(Aj)] = ψi[R−1(Ai)] = Ai.

Then ψi are open maps only w.r.t. the σ-algebras generated by bisimilar sets.�

4.5 Specific Features of Bisimulation for GSHS

Let H1 and H2 be two GSHS with the realizations M1 and M2, respectively.

Definition 28 H1 and H2 are stochastic bisimilar if their realizations M1 and
M2 are stochastic bisimilar.

4.5.1 Properties of zigzag morphims

A zigzag morphism ψ : X(2) → X(1) between M1 and M2, induces a relation
Rψ ⊂ X(2)×X(1) as follows: uRψx⇔ ψ(u) = x. Then the equivalence relation
∼ψon X(2) can be thought of as the equivalence relation induced by Rψ in sense
of [24], i.e. u ∼ψ v iff there exists x ∈ X(1) such that uRψx and vRψx (which
is exact the meaning of (9)). The equivalence relation induced by Rψ on X(2)

is the trivial one (x can be equivalent only with itself).
The space X(2)/∼ψ can be endowed with the σ-algebra B∗(X(2)), which is

the “saturation” of the Borel σ-algebra of X(2) w.r.t. ∼ψ (i.e. the collection
of all Borel sets of X(2) in which any equivalence class of X(2) is either totally
contained or totally not contained). A function on g : X(2) → R, which is
measurable w.r.t. B∗(X(2)) will be called saturated measurable function. It is
clear that a function measurable g is saturated measurable iff (17) holds. Each
function f : X(1) → R measurable w.r.t. B(X(1)) can be identified with a
saturated measurable function g such that g = f ◦ ψ.

The morphism ψ can be viewed as a bijective mapping ψ : X(2)/∼ψ →
X(1). It is clear that ψ is a measurable application. To identify the two above
measurable spaces ψ−1 must be measurable. The main idea, which results from
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this reasoning, is that the measurable space (X(1),B(X(1))) can be embedded
in the measurable space (X(2),B(X(2))) and the measurable function on X(1)

can be identified with the saturated measurable functions on X(2).
Based on the theory of semigroups of Markov processes, one can obtain from

the zigzag condition (10): for almost all t ≥ 0 (i.e. except with a zero Lebesgue
measure set of times) the following equalities (versions of (??)) hold

p2
t (u, ψ

−1(A)) = p1
t (x,A),∀x ∈ X(1),∀u ∈ [u]ψ = ψ−1(x),∀A ∈ B(X(1))(26)

P 2
t (f ◦ ψ)(u) = P 1

t f(x),∀x ∈ X(1),∀u ∈ [u]ψ = ψ−1(x),∀f ∈ Bb(X(1))

Note that ψ−1(A) ∈ B∗(X(2)). Therefore the transition probabilities of M1

simulates ‘equivalence classes’ of transition probabilities of M2.

Remark 8 The connection between the kernel operator and the infinitesimal
generator of the strong process Markov process allows us transform the condi-
tions (19) and (10) as follows

L(2) ◦Ψ = Ψ ◦ L(1)

L(2)(f ◦ ψ) = L(1)f ◦ ψ,∀f ∈ D(L(1)) (27)

where L(1) (resp. L(2)) is the infinitesimal generator of M1 (resp. M2). The
equality (27) holds provided that for each f ∈ D(L(1)) (the domain of L1) the
function f ◦ ψ belongs to D(L(2)) (the domain of L(2)).

Since for a GSHS realization the expression of the infinitesimal generator is
known, to check if the formula (27) is true for two given GSHS is only a com-
putation exercice.
Recall that the realization of an GSHS has been constructed as a Markov string,
i.e. a sequence of diffusion processes with a jumping structure. Then the cone
of excessive functions associated to a GSHS can be characterized as a ‘sum’
of the excessive function cones associated to the diffusion components. This
characterization ‘explains’ the following result.

Proposition 29 A zigzag morphism ψ between the realizations of two GSHS
H1 and H2 defined as in Def. 4 preserves the continuous parts of the two
models.

Proof. Suppose that the two GSHS state spaces are X(1) = ∪
i∈Q1

{i}×Xi(1) and

X(2) = ∪
q∈Q2

{q} × Xq(2). We can suppose without loosing the generality that

each two modes have empty intersection and therefore X(1) = ∪
i∈Q1

Xi(1) and

X(2) = ∪
q∈Q2

Xq(2). The function ψ maps X(2) into X(1). From the construction

of H1, as Markov string, we have V 1f =
∑
i∈Q1

V i1f i,∀f ∈ Bb(X(1)),where, for

each i ∈ Q1, V i1 is the kernel operators of the component diffusion of H1 which

24



operates on Xi(1) and f i = f |Xi(1) ∈ Bb(Xi(1)). A similar expression can be
written for V 2 (i.e. V 2g =

∑
q∈Q2

V q2gq, g ∈ Bb(X(2))).

Let f be an arbitrary positive bounded measurable function on X(1). Then for
each i ∈ Q1 consider f i as before. Let Y i(2) = ψ−1(Xi(1)) (note that Y i(2)

is an open set) and ψi be the restriction of ψ, which maps Y i(2) into Xi(1).
Denote gi = f i ◦ ψi ∈ Bb(Y i(2)) and giq = gi|Y i(2)∩Xq(2) . The zigzag condition
(10) becomes W i2(f i ◦ ψi) = V i1f i ◦ ψi, where W i2 is the ‘restriction’ of V 2

to Y i(2), i.e. W i2gi =
∑
q∈Q2

V q2giq (more intuitively, W i2 is the sum of kernels

associated to the component diffusions of H2, which operate on Y i(2)). Then,
for all x ∈ Xi(1) we have

W i2gi(u) = V i1f i(x), (28)

provided that ψi(u) = x. Because V i1 corresponds to a diffusion process, it must
be the case that in the left hand side of (28) the ‘jumping part’ to not longer
exist (at least for the saturated measurable functions). Then the kernel W i2

corresponds to a continuous process (which might be a diffusion or a switching
diffusion process).�

Any zigzag morphism ψ can be extended by (finely) continuity to the bound-
ary of the state spaces. Or, we can suppose from the beginning that the
zigzag morphims operate on the closures of the state spaces. We have to as-
sume that the zigzag morphims ‘keep’ the boundary points, or, in other words,
ψ : ∂X(2) → ∂X(1) is surjective.

Remark 9 The finely continuity of a zigzag morphism between the realizations
of two GSHS is important only when we use the connection with the associated
excessive function cones. Otherwise, we can replace this continuity with the
continuity w.r.t. to the initial topologies of the state spaces.

Proposition 30 A zigzag morphism ψ between the realizations of two GSHS
H1 and H2 defined as in Def. 4 preserves the jumping structure of the two
models.

Proof. For each x ∈ X(1) there exist, by surjectivity of ψ, some elements
u ∈ X(2) such that ψ(u) = x. Then, for each f ∈ D(L(1)), a simple computation
of the right hand side of (27) gives

L(1)f(x) = L
(1)
contf(x) + λ1(x)

∫
X

(1)
(f(y)− f(x))R1(x, dy) (29)

and after, the left hand side of (27) is

L(2)(f ◦ψ)(u) = L
(2)
cont(f ◦ψ)(u) + λ2(u)

∫
X

(2)
[(f ◦ψ)(v)− (f ◦ψ)(u)]R2(u, dv).

(30)
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From the Prop. 29 we have the equality of the continuous parts of (29) and
(30). Then the jumping parts (29) and (30) must coincide. Then

λ1(x)
∫
X

(1)
(f(y)−f(x))R1(x, dy) = λ2(u)

∫
X

(2)
[(f ◦ψ)(v)−(f ◦ψ)(u)]R2(u, dv).

The construction of GSHS H1 and H2, as Markov strings, shows that the tran-
sition measures R1 and R2 play the role of the transition probabilities when
the processes jump from one diffusion to another (see Def.2). Then they satisfy
(26), i.e.

R2(u, ψ−1(A)) = R1(x,A),∀A ∈ B(X(1)).

It easily follows that λ1(x) = λ2(u),∀u ∈ [u]ψ = ψ−1(x).�

4.5.2 Properties of bisimulation

Consider now two bisimilar GSHS, H1 and H2, with the realizations M1 and
M2, respectively. Let M12 and ψ1, ψ2 as in the Def.5. Define the bisimulation
relation R ⊂ X(1) ×X(2) by formula (20).

Continuity property of the operator semigroups of the quotient processes
M1/R and M2/R.

Therefore, the stochastic bisimulation between two GSHS reduces to the
bisimulations between their continuous components and between their jump
structures. In this way our concept of bisimulation can be related with the
bisimulation for piecewise deterministic Markov processes (which are particular
class of GSHS) defined in terms of an equivalence relation between the deter-
ministic flows and the probabilistic jumps [24].

5 Conclusions

In this paper we develop a notion of stochastic bisimulation for a category of
general models for stochastic hybrid systems (which are Markov processes) or,
more generally, for the category of strong Markov processes defined on analytic
spaces. The morphisms in this category are the zigzag morphims. A zigzag
morphism between two Markov processes is a surjective (finely) continuous mea-
surable functions between their state spaces which ‘commutes’ with the kernel
operators of the processes considered. The fundamental technical contribution
is the proof that this stochastic bisimulation is indeed an equivalence relation.

The second result of the paper is that this bisimulation relation for GSHS
(the stochastic hybrid system models we are dealing in this paper) implies the
same kind of bisimulation for their continuous parts and respectively for their
jumping structures.

6 Further Work

From stochastic analysis viewpoint, most of the models of stochastic hybrid
systems are strong Markov processes. Then, many tools available for the Markov
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process studying can be used to characterize their main features. On the other
hand, some of them can be included in the class of random dynamical systems
(stochastic extensions of the dynamical systems). Therefore the whole ergodic
theory or stability results available for random dynamical systems might be
applied to them. As well, stability results of random dynamical systems [6]
can be lifted to these models of stochastic hybrid systems. Moreover, because
in the deterministic case there are characterizations of the Lyapunov functions
in terms of excessive function [17], it might be possible to investigate similar
connections in the stochastic case.

From the verification and analysis of stochastic hybrid systems perspective,
a concept of stochastic bisimulation can facilitate the way towards a model
checking of stochastic hybrid systems.

The work presented in this paper and the above discussion allow us to point
out some possible research directions in the stochastic hybrid system framework:

• Use the stochastic bisimulation to get manageable sized system abstrac-
tions;

• Use the stochastic bisimulation to investigate the reachability problem;

• Make a comparative study of the different approaches on reachability anal-
ysis for stochastic hybrid systems: 1. the approach based on the hitting
times and hitting probabilities for a target set [11]; 2. the approach based
on the so-called Dirichlet forms and excessive functions [10]; 3. the ap-
proach based on Lyapunov function (for the switching diffusion processes,
see [26]).

References

[1] Bujorianu, M.L. and Lygeros, J. General stochastic hybrid systems. In
IEEE Mediterranean Conference on Control and Automation, MED’04,
2004.

[2] Bujorianu, M.L. and Lygeros, J. General stochastic hybrid systems: Mod-
elling and optimal control. In 43thIEEE Conference in Decision and Con-
trol, CDC’04, 2004.

[3] Bujorianu, M.L. and Lygeros, J. Theoretical foundations of general stochas-
tic hybrid processes. In Proc. 6th International Symposium on Mathemat-
ical Theory of Networks and Systems, 2004.

[4] Alur, R., Grosu, R., Hur, Y., Kumar, V., and Lee, I. . Modular specifica-
tions of hybrid systems in charon. In Hybrid Systems: Computation and
Control, number 1790 in LNCS, pages 6–19. Springer Verlag, 2000.

[5] L. Arnold.

27



[6] L. Arnold. Lyapunov’s second method for random dynamical systems. J.
of Diff. Eq., 177:235–265, 2001.

[7] Bernadskiy, M., Sharykin, R., and Alur, R. Modular specifications of hybrid
systems in charon. In Proc. FORMATS’04, number 3253 in LNCS, pages
309–324. Springer Verlag, 2004.

[8] R. M. Blumenthal and R. K. Getoor. Markov processes and potential
theory.

[9] Blute, R., Desharnais, J., Edalat, A., and Panangaden, P. Bisimulation for
labelled markov processes. Logic in Comp. Sc., 12:149–158, 1997.

[10] Bujorianu, M.L. Extended stochastic hybrid systems. In R. Alur and
G. Pappas, editors, Hybrid Systems: Computation and Control, number
2993 in LNCS, pages 234–249. Springer Verlag, 2004.

[11] Bujorianu, M.L. and Lygeros, J. Reachability questions in piecewise de-
terministic markov processes. In O. Maler and A. Pnueli, editors, Hybrid
Systems: Computation and Control, number 2623 in LNCS, pages 126–140.
Springer Verlag, 2003.

[12] Bujorianu, M.L. and Lygeros, J. Towards modelling of general stochastic
hybrid systems. In Blom, H.A.P. and Lygeros, J., editors, Stochastic Hybrid
Systems: Theory and Safety Critical Applications, number 337 in LNCIS,
pages 3–30. Springer Verlag, 2006.

[13] R. Cairoli. Produits de semigroupes de transition et produits de processus.
Publ. Inst. Stat. Univ. Paris., 9, 1966.

[14] M. H. A. Davis. Markov Processes and Optimization. Chapman & Hall,
London, 1993.

[15] A. Edalat. Semi-pullbacks and bisimulation in categories of markov pro-
cesses. Mathematical Structures in Computer Science, 9(5), 1999.

[16] Haghverdi, E., Tabuada, P., and Pappas, G.J. Bisimulation relations for
dynamical, control and hybrid systems. Theor. Comput. Science, (342(2-
3)).

[17] M. Hmissi. Semi-groupes deterministes. In Sem. Th. Potentiel 9, pages
135–144. Springer, Paris, 1989.

[18] Joyal, A., Nielsen, M., and Winskel, G. Bisimulation from open maps. Inf.
and Comp., 127(2):164–185, 1996.

[19] Larsen, K.G. and Skou, A. Bisimulation through probabilistic testing. Inf.
and Comp., 94:1–28, 1991.

[20] Ma, M. and Rockner, M. The Theory of (Non-Symmetric) Dirichlet Forms
and Markov Processes. Springer Verlag, Berlin, 1990.

28



[21] Pola, G., Bujorianu, M.L., Lygeros, J., and Di Benedetto, M. D. Stochastic
hybrid models: An overview with applications to air traffic management.
In Conference on Analysis and Design of Hybrid System, 2003.

[22] Popa, E. and Popa, L. Morphisms for semi-dynamical systems. An. St.
Univ. Iasi, (XLIV(f.2)).

[23] Schaft, A.J. van der. . Bisimulation of dynamical systems. In R. Alur and
G. Pappas, editors, Hybrid Systems: Computation and Control, number
2993 in LNCS, pages 559–569. Springer Verlag, 2004.

[24] Strubbe, S.N. and Schaft, A.J. van der. Bisimulation for communicating
pdps. In M. Morari and L. Thiele, editors, Hybrid Systems: Computation
and Control, number 3414 in LNCS, pages 623–640. Springer Verlag, 2005.

[25] Tabuada, P., Pappas, G.J., and Lima, P. Compositional abstractions of
hybrid control systems. J. of Discrete Event Dynamic Systems: Theory
and Applications, 14:203–238, 2004.

[26] Yuan, C. and Lygeros, J. Stochastic markovian switching hybrid processes.
EU project COLUMBUS (IST-2001-38314), Deliverable DSHS3, 2004.

29


