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Abstract. Reachability analysis is the core of model checking of time systems. For
stochastic hybrid systems, this safety verification method is very little supported mainly
because of complexity and difficulty of the associated mathematical problems. In this
paper, we develop two main directions of studying stochastic reachability as an optimal
stopping problem. The first approach studies the hypotheses for the dynamic program-
ming corresponding with the optimal stopping problem for stochastic hybrid systems.
In the second approach, we investigate the reachability problem considering approxima-
tions of stochastic hybrid systems. The main difficulty arises when we have to prove the
convergence of the value functions of the approximating processes to the value function
of the initial process. An original proof is provided.
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1 Introduction

Stochastic hybrid systems are a class of non-linear stochastic continuous time/space hybrid dy-
namical systems. For these systems different models have been developed by many researchers
in the field of hybrid systems. These models can be used to analyse and design complex em-
bedded systems that operate in the presence of variability and uncertainty, and incorporate
complex (hybrid/stochastic) dynamics, randomness, multiple modes of operations. Under some
natural assumptions on their parameters, their behaviour can be described by stochastic pro-
cesses having good properties. A very important verification problem for such systems consists
mainly in reachability analysis. The aim of reachability analysis is to determine the probability
that the system will reach a set of desirable/unsafe states, and the difficulty of this problem
comes from the interaction between discrete/continuous dynamics and the active boundaries.
The paper addresses the reachability problem for stochastic hybrid systems. Starting with
the characterization of the reachability problem as an optimal stopping problem for the Markov
processes that describe the semantics of a stochastic hybrid systems, we further develop different
foundational approaches that hopefully will conduct, in final, to computational methods. The
main difficulty comes from the fact that these Markov processes belong to a relatively restrictive
class of stochastic processes. They have “good” mathematical properties (like strong Markov
property, some continuity properties of traces, etc), in fact, they are included in the large
class of Borel right (Markov) processes[8]. But, because of the influence of the boundaries on
the dynamics, these processes cover only a specific subclass of Borel processes, with a very
little intersection with other subclasses of processes more popular in the theory of stochastic
control (Feller-Markov processes [22], standard processes [40], jump-diffusion processes [38]).
In consequence, for these processes, the optimal control problems have been studied mostly at
a theoretical level. This situation compels us to study the optimal stopping problem for Borel



right processes, in a separate section of the paper, and to give an overview for the different
methods that can be employed in dealing with this problem.

For a stochastic hybrid system, the reach set probabilities coincide with the value functions of

some particular optimal stopping problems corresponding to the indicator functions of the target
sets [6]. These optimal stopping problems are formulated in the language of the Markov process
that describes the realizations of the given hybrid system. We make a guiding inventory of the
possible methods that could be used for solving the optimal stopping problems. Considering
the complexity of the right (Markov) processes that appear in the context of stochastic hybrid
systems, we further develop two such methods.
One approach is based on the characterization of the value functions as viscosity solutions of
some variational inequalities associated to an integro-differential operator (that is represented
by the infinitesimal generator of the underlying Markov process). The main drawbacks and
difficulties when they are applied to the optimal stopping of stochastic hybrid systems come
from the fact that we need some continuity assumptions for the reward function or for the
transition probabilities of the Markov processes involved. But, for the reachability problem, the
reward function is discontinuous, and the continuity of the transition probabilities imply no
boundary activity.

Another method is to approximate the stochastic hybrid systems realization by simpler
Markovian processes (like purely jump processes or Markov chains) and to derive convergence
results for the sequences of value functions associated to the optimal stopping problem corre-
sponding to the approximating processes. The corner stone of this approach is, in fact, proving
the convergence results under such general hypotheses (the reward function is not continuous
and the limiting process is only a Borel right process). We use an original argument based on the
correspondence between reach set probabilities and the so-called Choquet capacities developed
by us in [9].

Furthermore, for a particular class of stochastic hybrid systems, namely for Piecewise deter-
ministic Markov processes different other methods to deal with optimal stopping problem, so
with stochastic reachabil.ity, are available. These are explained briefly at the end of the paper.

2 Stochastic Hybrid Systems

Stochastic Hybrid Systems can be described as an interleaving between a finite or countable
family of diffusion processes (or, sometimes, only dynamical systems) and a Markov chain.
Modelling and analysis of these systems have been proved to be a very difficult task from
a mathematical point of view. The stochastic analysis apparatus, employed to study their
probabilistic properties is complex and rather difficult to manage. This study involves the ability
to combine tools available for diffusion processes and jump processes, in order to characterise
the semantics of these systems. The switching mechanism (governed by a Markov chain in most
cases) between the continuous dynamic of the modes, together with the interaction between
paths and boundaries, make studying the stochastic processes that arise in this way very difficult
and challenging.

2.1 General Stochastic Hybrid Systems

We adopt the General Stochastic Hybrid System model presented in [8,11]. This subsection
describes the model and establishes the notation.

Let @ be a set of discrete states. For each ¢ € Q, we consider the Euclidean space R
with dimension d(q) and we define an invariant as an open subset X? of R¥®) . The hybrid
state space is the set X(Q,d,X) = U;co{i} x X and x = (i,2%) € X(Q,d,X) is the hybrid



state. The closure of the hybrid state space will be X = X UdX, where X = [J;co{i} x 0X".
It is known that X can be endowed with a metric p whose restriction to any component X is
equivalent to the usual component metric [16]. Then (X, B(X)) is a Borel space (homeomorphic
to a Borel subset of a complete separable metric space), where B(X) is the Borel o-algebra of
X. Let B(X) be the Banach space of bounded positive measurable functions on X with the
norm given by the supremum.

Definition 1. A (General) Stochastic Hybrid System (SHS) is a collection
H=((Q,d,X),b,o,Init, \, R) where

Q is a countable set of discrete states (modes);

— d:Q — N is a map giving the dimensions of the continuous state spaces;
— X :Q — R maps each q € Q into an open subset X9 of RHU®D;
—b:X(Q,d, X) — R is q vector field;

- 0:X(Q,d, X) = R¥)>*™ s ¢ XO) _valued matriz, m € N,

— Init : B(X) — [0,1] is an initial probability measure on (X, B(X));

A: X(Q,d, X) — RY is a transition rate function;

R: X x B(X) —[0,1] is a transition measure.

The realization of an SHS is built as a Markov string H [8] obtained by the concatenation
of some diffusion processes (z!), i € Q together with a jumping mechanism given by a family
of stopping times (S?). Let w; be a diffusion trajectory, which starts in (i,2%) € X. Let t.(w;)
be the first hitting time of X of the process (x!). Define the function

t

F(t01) = Tiat. o ©D(— | Al 2 (wi))ds. M
0

This function will be the survivor function for the stopping time S* associated to the diffusions

(20)-

Definition 2 (SHS Execution). A stochastic process x; = (q(t),z(t)) is called an SHS exe-
cution if there exists a sequence of stopping times Ty = 0 < Ty < Ty < ... such that for each
keN,
e 20 = (qo, 20°) is a Q x X -valued random variable extracted according to the probability measure
Init;
o Fort € [Ty, Th+1), ¢ = qr,, s constant and z(t) is a solution of the stochastic differential
equation (SDE):

dz(t) = b(qry, 2(t))dt + o (g, 2(£))dW; (2)

where Wy is a the m-dimensional standard Wiener process;
o Tjyq1 = T) + S where S is chosen according with the survivor function (1).
o The probability distribution of x(Tk+1) is governed by the law R ((quz(T,;_s_l))7 ).

It is known, from [8], that the realization of any SHS, H, under standard assumptions
(about the diffusion coefficients, non-Zeno executions, transition measure, etc, see [8] for a
detailed presentation) is a strong Markov process (see the definition, for example, in [19]). Let
M = (2, F, F;, x+, Pr) be the Markov process associated to H, where (£2, F), {x:} is a collection
of X-valued random variables, {F;} is the natural filtration of the process (the ‘history’ of the
process). The meaning of the elements of M can be found in any source treating continuous-
parameter Markov processes (for e.g. [5,19,16]). We adjoin an extra point A (the cemetery)
to X as an isolated point, Xao = X U {A}. The existence of A is assumed in order to have a



probabilistic interpretation of P,(x; € X) < 1, i.e. A is the state where the process lies when
it ‘dies’. Then, the ‘termination time’ {(w) is the random time when the process M escapes to
and is trapped at A.
Let P = (P;)t>0 denote the semigroup of operators associated to M, which maps B(X) into
itself given by

P.f(z) = Eyf(zy),Ve € X (3)

where F, is the expectation w.r.t. P,. The semigroup P = (FP;):>0 can be thought of as
an abstraction of M, since from P one can recuperate the initial process [5]. Recall that a
nonnegative function f € B(X) is called a-excessive (o > 0) if e"* P, f < f for all ¢t > 0 and
e P f / fast\,0.If a = 0, a 0-excessive function is simply called ezcessive function. Let us
denote the cone of excessive functions by Eys. In the theory of Markov processes, the excessive
functions play the role of the superharmonic functions from the theory of partial differential
equations (for e.g. a function f > 0 is superharmonic w.r.t. the Laplace operator if Af < 0).
Note, that the definition of excessive function can be given in terms of the operator resolvent
U, which is the Laplace transform of P. The operator resolvent U = (V,),>¢ associated with P
is

Vi f(z) = /000 e "'Pf(x)dt, f € B(X), x € X. (4)

The infinitesimal generator £ is the derivative of P; at ¢t = 0. Let D(L£) C By(X) be the set
of functions f for which the following limit exists (denoted by Lf)

.1
lin 1 (Pef — f) )
The following SHS property, proved in [8], has a major influence over the coming results.

Proposition 1. Under the standard assumptions the realization M of an SHS is a Borel right
process with cadlag property.

Recall that a Borel right process is defined by the following properties: (i) its sample paths
t — x¢ are right-continuous almost sure. (ii) X is a separable metric space homeomorphic to
a Borel subset of some compact metric space, equipped with Borel o-algebra B(X) or shortly
B (i.e. X is a Lusin state space). (iii) The operator semigroup of M, given by (3), maps B(X)
into itself. (iv) If f is an a-excessive function for P, then the sample path t — f(x¢(w)) is a.s.
right continuous (this property is equivalent with the fact M is a strong Markov process).

The sample paths of M are right continuous with left limit, i.e. are cadlags [8]. Moreover,
the cadlag property added to the fact that the state space is a Lusin space, which insures a
‘tightness’ property of this right process, that it is concentrated on compacts.

The infinitesimal generator of an SHS is an integro-differential operator (according with the
terminology of [22]). We have proved in [11] that the extended generator of an SHS has the
following expression:

£1(&) = Loons (@) + Mz) [ (1) = F(@)) Rz, dy) (©
X

where Leontf(x) has the standard form of the diffusion infinitesimal operator. What makes

this generator different from the generator of a Feller Markov process (see [22]) is its domain

that contains at least the set of second order differentiable functions that satisfy the boundary

condition, as follows:

f(z) = / f()R(z,dy), = € OX. (7)



In the presence of forced jumps, the generator of an SHS is an operator that is difficult to deal
with, since its domain does not even contain the set of all compactly supported C* functions.

2.2 Piecewise Deterministic Markov Processes

Piecewise deterministic Markov processes (PDMP) represent a very general class of non-
diffusion processes that can be considered a particular class of SHS. The standard monograph
presenting the theory of PDMP is considered to be [16]. However, the PDMP applications are
presented in very rich series of papers including [14, 15,33, 20]. SHS models from the previous
subsection have been tailored after the model of PDMP. This means that if in the SHS models
the SDEs, which govern the continuous evolutions between jumps, degenerate in ordinary dif-
ferential equations (ODE), one can obtain the PDMP model. The generator of a PDMP is also
with the generator of an SHS, the only difference is that the ‘continuous operator’ L.,,: from
(6) is replaced by the Lie derivative.

Many results available for PDMP have been proved also for SHS [8], but, of course, there is
still place for many generalizations from PDMP to SHS. These generalizations are not straight-
forward; the main difficulty is given by the continuous evolution in the SHS modes described
by diffusion processes. In fact, many times, in this process of adapting results from PDMP to
SHS, new research issues appear and some PDMP mathematical objects have to be completely
redesigned for SHS.

The executions of a PDMP depend on three local characteristics, namely the flow o(-, x),
the jump rate A(z) and the reset map (stochastic kernel) R(z,-). All the mathematical objects
associated to a PDMP are defined in an analogous way as those for SHS, with the natural
differences given by the missing of diffusions. For a detailed presentation of PDMP, consult
[16].

2.3 Stochastic Reachability

Let us consider M = (§2, F, F, x¢, P.) being a (strong right) Markov process, the realization of
a stochastic hybrid system. For this strong Markov process we address a verification problem
consisting of the following stochastic reachability problem.

Given a target set, the objective of the reachability problem is to compute the probability
that the system trajectories from an arbitrary initial state will reach the target set.
Formally, given a set A € B(X) and a time horizon T > 0, let us define :

Reachr(A) ={w e 2|3 €[0,T] : z+(w) € A}

Reachoo(A) ={w e 2|3t >0: 2 (w) € A}. (8)
These two sets are the sets of trajectories of M, which reach the set A (the flow that enters A)
in the interval of time [0, 7] or [0, 00).
The reachability problem consists of determining the probabilities of such sets. It can be shown
that under our assumptions, since the process M is Borel right process and has the cadlag

property, the reachability problem is well-defined, i.e. Reachr(A), Reachs(A) are indeed mea-
surable sets [12]. Then the probabilities of reach events are

P(ToA<T)or P(Ta <) (9)
where ( is the life time of M and T is the first hitting time of A

T4 =inf{t > 0|z, € A} (10)



and P is a probability on the measurable space ({2, F) of the elementary events associated
to M. P can be chosen to be P, (if we want to consider the trajectories that start in x) or
P, (if we want to consider the trajectories that start in with an initial condition given by the
distribution ). Recall that

Pu(A) = / Py(A)dp, A € F.

3 Stochastic Reachability as an Optimal Stopping Problem

In this section, in the framework of SHS, we explain how the stochastic reachability problem
can be transformed in an equivalent optimal stopping problem.

3.1 Optimal Stopping Problem

In the following, the optimal stopping problem for a (strong right) Markov process M =
(2, F, Fi, x4, Pr) taking values in a Lusin space is briefly reviewed.

Let X denote the set of stopping times (finite or not) with respect to the filtration {F;} (i.e.
Te X eVt {r <t} €F). Consider g : X — R a bounded measurable function called the
reward function (the interpretation being that if we stop the process at a point € X we obtain
a reward g(z)). Obviously, the definition of OSP requires some integrability conditions over the
paths of M (see, for example [18], for more details). Let (y;);>0 be the reward process defined
by

yr = g(z), t > 0.

The mazimal payoff function (or the value function, in the terminology of [16]) is

v(x) == sup{Eyy.|T € X'} (11)
The value function has been characterised in terms of the minimal excessive function lying
above the reward function for standard Markov processes [40], or more general for right Markov
processes [18].
3.2 Stochastic reachability as an optimal stopping problem
Let us introduce the reachability function wa : X — [0, 1] associated to A, defined as

wa(x) := Py[Reachoo (A)]. (12)

Taking the reward function g to be equal with the indicator function of A, ie. g := 14

according to the characterization of the reach set probability derived in the previous subsection
we obtain the following result:

Proposition 2. [6] If A € B(X) then the reachability function wa coincides with the value
function of the reward process yy = 1a(xy), i.e.

wa(x) = sup{Py(xz, € A)|7 € X}, Vo € X.



4 Optimal Stopping Problem for Borel Right Processes

The realizations of SHS are (Borel) right processes, and therefore the general theory of optimal
stopping developed for right processes [3,36] can be applied. This theory is foundational since
it provides mathematical characterizations of the value function using different tools available
for right processes:
e The approach presented in [3] relies on a well-known connection between excessivity and a
special type of functional concavity.
e The main result of [36] shows that the value function of an optimal stopping problem co-
incides with the Snell’s enevelope of the reward process. The Snell’s envelop is the smallest
supermartingale that dominates the reward process.

Markov processes, which appear in the SHS semantics are (Borel) right processes, but they
may or may not be
e standard Markov processes (whose theory is well-developed in [5]) because the quasi-left
continuity might fail, due to the existence of the active boundaries when the process jumps in
a new mode;
e or, Feller processes (processes with continuous transition probabilities) since they have pre-
dictable jumps (i.e. forced transitions). See [16], for discussion of the Feller property for piecewise
deterministic Markov processes.

Therefore, the optimal stopping times need not exist, and the treatment of the OSP re-
quires some additional hypotheses. We recall the following inclusions (which are classical in the
literature of Markov processes [23]) among the various classes of processes:

(Feller)C (Hunt)C (special standard)C(right)

These different types of processes were introduced at various stages during of the recent theory
of Markov processes. This remark leads to the fact that the well developed OSP methods
available for standard Markov processes [40], or those available for Feller Markov processes
(and their elliptic integro-differential operators) [22] are certainly not directly applicable for
the Borel right processes that arise in the SHS context.

For right Markov processes, the value function has been characterised as the minimal ex-
cessive function lying above the reward function [18]. Therefore, for Borel right processes, the
computation of the value function corresponding to the OSP has to be based on specific features
of these processes. Then, we distinguish:

e analytic methods, when the characterization of the value function for the OSP has to consider:
(1) different representation way of excessive functions (as integrals of the Green kernel of the
process or the Riesz decomposition [24]);

(ii) variational inequalities associated to some energy functional constructed using the hit-
ting/balayage operator [25];

(iii) proving that the value function is the solution of some variational inequality [21, 33], then
solving numerically this inequality;

e probabilistic methods that consist in

(i) approximations of the underlying Markov process by a Markov chain and compute the value
function corresponding to the chain by some specific algorithms [30, 39];

(ii) martingale methods based on Snell’s envelope;

(iii) Monte Carlo Methods [28].

4.1 Variational inequalities

Let X be a bounded open set in RN with smooth boundary. RY can be thought of as the
Euclidean space where the state space of a stochastic hybrid system can be embedded.



According to [1,33], for the existence of the viscosity solutions some assumptions are nec-
essary. For the Dirichlet problem given by (14) and (15), these assumptions can be formulated
as follows:

(A1) F e C(RYN xR x RN x Sy x R),
(A.2) F satisfies the local and non-local degenerate ellipticity condition(s): for any x € RV,
ueR, peRY, A, BeSN 1,1, eR

F(z,u,p, A l1) < Fz,u,p,B,lo) if A> B, 1 >y

(A.3) R(x,-) is a probability measure on X for z € 9X such that the linear operator

Ru(z) = /X v(y) Rz, dy) (13)

satisfies
|Rv(z)| < C||v||p1(x), for all v € L'(X)

where C' does not depend on v.

(A.4) The function  — Ruv(z) is continuous w.r.t. z € X, uniformly for v € L>(X).
Motivated by the expression of the generator associated to an SHS, let us consider the linear

integro-differential equations of the following form:

F(a:,u,Dwu,Diu,/xu(y)R(x,dy)) =0, (14)

where D,u denotes the space gradient, D?u the matrix of second derivatives and R(x,-) is a
probability kernel. Here, SV denotes the space of symmetric N x N real valued matrices. The
applications for (14) are dynamic programming equations associated with the control of the
right Markov processes that appear as SHS realizations.

In the case when the state space X is a bounded domain of a Euclidean space, the process
jumps back into X upon hitting the boundary, which leads to the following boundary condition
to be coupled with the equation (14),

u(x) = /X u(y)R(z,dy), z € 0X. (15)

For a bounded function u : X — R, its upper/lower semicontinuous envelopes can be defined
in a standard way [33, 1]. Furthermore, the definitions of the viscosity (sub/super) solutions for
second-order elliptic integro-differential equations are well established now in the literature [1].

Let v be a bounded function.

(i) u* is a viscosity subsolution of (14) if

Fa,u', D0, D%, [ ' (5)Ria.dy) <0
X
for any ¢ € C%(X) and any local maximum z for u* — ¢.
(ii) uy is a wviscosity supersolution of (14) if

F(a,u.. Doty D26, / w(y)R(z, dy) > 0
X

for any ¢ € C%(X) and any local minimum « for u, — ¢.
(iii) w is a wviscosity solution if u is a viscosity sub- and supersolution.



A bounded function u : X — R is a wviscosity subsolution (resp. supersolution) of the
Dirichlet problem given by (14) and (15), if it is a subsolution (resp. supersolution) of (14) in
X and, any ¢ € C?(X) and any local maximum (resp. minimum) x € 9X for u* — ¢ (resp.
s — 8) min{u*(z) — k(z), F(z,u", Dad, D26, [y u* (y) R(, dy)} < 0 (resp.
max{u, (x) — k(z), F(2, uy, D¢, D29, [ us(y)R(z,dy)} > 0) where k(z) := [ u(y)R(x,dy),
x € 0X.

In general, the existence of the solutions is proved by Perron’s method, introduced in the
viscosity setting in [31]. That is, one proves that the supremum of a suitable set of subsolutions
is the solution. In order to do this, one needs the help of a comparison principle.

In particular, for an appropriate choice of F', this Dirichlet problem becomes

min(—Lu,u—g) =01in X, (16)
u(x) = / u(y)R(x,dy) on 0X (17)
X

where, £ is the generator associated to an SHS, given by (6). Equation (16) with the bound-
ary condition (17) is the dynamic programming equation associated with the optimal stopping
problem for SHS [10]. In this case, the assumption A.2 involves that the diffusion term is non-
degenerate. This is also in force in [29]. The assumption A.3 hints at the stochastic kernel R
(the SHS reset map) that should provide a bounded linear operator and the assumption A.4 in-
volves the Feller property of the SHS realization [16]. For the case of Feller processes, the reward
function is allowed to be semicontinuous, and the value function will be also semicontinuous
[2].

The main problem, in this context, is that an SHS is not a Feller process unless there are no
active boundaries. Then, these results can be applied only in some particular cases. For PDMP,
dynamic programming equations have been developed in a series of papers (see [14][16][20],
and the references therein), but, in all these papers, the reward function has some continuity
properties (on the whole space, or only on the trajectories of the process). Therefore, again
these results can not be applied to reachability analysis of PDMP since the reward functions
for OSP associated do not have such continuities.

5 Approximation Methods for Stochastic Reachability

In Section 3, we have seen that computation of the reach set probabilities could be reduced to
the computation of the value function of an optimal stopping problem with the reward function
given by the indicator function of the target set involved.

The OSP methods discussed in the Section 4 can be adapted to SHS realizations considering
the special features of SHS (mixture of deterministic/stochastic continuous motion with ran-
dom jumps), in order to obtain specific optimal stopping methods where the randomness and
hybridicity of SHS are clearly illustrated. On the other hand, these features can be employed
in order to obtain direct approximations of value function of the OSP. We consider that for the
stochastic processes that arise in the SHS semantics, numerical computation of the reach set
probabilities as value functions for some optimal stopping problems could be supported by the
following methods:

1. approximate the underlying Markov process by a Markov chain [30] and then compute the
value function corresponding to the chain.

2. prove that the value function of the indicator function of a measurable set is the fixed point
of some “jump operators” [14, 15]



5.1 Approximations of Stochastic Hybrid Systems

In this section, we summarize briefly the exponentially timestepping approximation scheme
(ETAS) for strong Markov processes with cadlag property developed in [7].

Let us consider a strong Markov process M = (2, F, Fy, ¢, P;). Suppose that M has the
cadlag property and the state space (X, B). M is thought of as the realization of a stochastic
hybrid system H. Let d be a compatible metric on X. Let (P;);>0 (resp. (V;-)r>0) be its operator
semigroup 3 (resp. operator resolvent 4).

Fix z € X; in the following discussion, P, is the law of M under the initial condition x¢y = x.
In order to construct the sequence of jump processes that approximate M, we need the following
ingredients:

1. A sequence of Markov chains (a™). Each o = (a})k=0,1,2,.. is a Markov chain on Xx
with some initial distribution v and the (homogeneous) transition function, K, (i.e. a time-
homogeneous Markov chain), given by

K, (z,dy) = nV,(x,dy) (18)

where V,, is the stochastic kernel computed from formula (4), i.e. is the Laplace transform of
the transition probability function of M for r = n.

2. A sequence of Poisson processes (0"). Each 0" = (0} );>0 is a Poisson process! with the
parameter n, independent of a™.

Using these ingredients, we then define, for each n > 1, a continuous-time (regular) Markov
step or Markov jump process on X by

py = oggn, t = 0. (19)

whose embedded marked point process has the intensity equal to n and state space X . This
means that the jump times of the process (p}') are given by the arrival times of the Poisson
process (6}) and its values between jumps are provided by the Markov chain (a}).

Note that K, (z,-), given by (18), can be thought of as the P,-distribution of xr, where T
is a random time independent of M and exponentially distributed with rate n [27]. The kernel
V,, can be computed using the generator L of the process M by formula

Vii=mI-L)"'n>1 (20)

where I is the identity operator [19]. Moreover, V,, is the potential kernel of the process M
killed with the exponential rate n [27].

The above sequence of step processes converges in the Skorokhod topology and consequently
it converges weakly (in distribution)? to the initial Markov process.

Theorem 1. [7] If aff = x, then the sequence {p"},>1 of step processes converges weakly to
M (under P,) as n — oo.

We explain how the hybrid structure of an SHS dynamics is considered in ETAS. For each
w € {2, a hybrid trajectory z;(w) = (qi(w),z:(w)) of an SHS, H, can be thought of as the
union of ‘diffusion components’ {z;(w)|Tx(w) <t < Tpt1(w), k =1,2,...} where T1 < Tp < ...
represent the jump times of H. Each component is provided with the label g7, (., (w) since

Lie. P(07 = k) = exp(—nt) m,f!)k

2 A sequence of r.v. (n)n=1,2,.. X-valued, defined on (2, F,P) converges weakly (or in distri-
bution) to a r.v. zo if Ef(z,) — Ef(xz0) as n — oo Vf bounded continuous on X. Here,
Ef(zn) = [y f(z)Pn(dz) for n >0, where P, =P ox," for n > 0.



gt(w) is constant in the random time interval [Ty (w), T+1(w)). Then, a cadlag trajectory of H
is implicitly carrying the hybrid dynamics structure. In the ETAS, we do not interpolate the
Poisson times of step processes considered there with the jumping times of H. The reason for
not doing this is that the latter jumping times can not be explicitly computed since a jumping
time might be the first boundary hitting time of some diffusion process or some random time
exponentially distributed with a rate depending on the piece of diffusion trajectory covered
until that moment.

In the ETAS, the trajectories of the system are considered ‘first class citizens’ and the
methodology is heavily based on the use of a metric defined on the space of all possible trajec-
tories. Moreover, in this approximation scheme, the approximating processes are step processes
that can be thought of as the realizations of some simple particular SHSs. Since, the forced
transitions are removed, step processes belong to a nicer class of Markov processes, namely
standard Markov processes [5]. Therefore, computational methods for the optimal stopping
problem of step processes are well developed [40]. Moreover, we will see that because of the
weak convergence of the approximating processes in ETAS, we can derive convergence results
for the optimal stopping value functions. Then, the reach set probabilities for an SHS can be
approximated by the reach set probabilities of the step processes constructed in the ETAS.

5.2 Approximation of the reach set probabilities

Let us consider the reachability problem defined in Subsection 2.3 for an SHS, H. Suppose
that the target set A is a measurable set of X. If A is open (closed) then its indicator function
g := 14 is a lower (upper) semicontinuous function. We can define also the reward processes
associated to the step processes p™ that are defined in ETAS

yr = 1a(pt)-

Even in the case when the reward function is semicontinuous, the reward processes (y:), (y}') are
not longer cadlag processes (as the realization of H). Therefore, the results about convergence
of values in optimal stopping nicely developed in [13] are not directly applicable.

Practically, when we are studying the convergence of value functions (v") (w.r.t. (y;*)) to
the desired value function v (w.r.t. (y:)), we need to consider different aspects related to:

— the convergence of (p™) to M (in the Skorokhod topology);
— the semicontinuity of the reward function g;
— the convergence of (y}') to (yz).

Since the realization M of H is a Borel right process that may or may not have the property
of quasi left continuity (i.e. whenever T,, is an increasing sequence of stopping times with limit
T, then almost surely z7, — z7), we can not work under the hypotheses of the papers [13],
where this property is a datum from the beginning. Moreover, the results about the convergence
of the sequence of value functions have been also studied in a particular case in [32]. In the
above cited paper, the Markov processes considered are Feller, and the authors make some
assumptions about the density of Cy(X) (the space of continuous real functions on X vanishing
at infinity) in the intersections of generator domains corresponding to approximating processes
(p") and initial process (z). For the approximation scheme described in the previous subsection,
these assumptions are not longer in forced due to the peculiarity of the generator domain of an
SHS (see the boundary condition (15)).

In the above mentioned papers, the convergence results are based on the martingale problem
associated to the Markov processes involved. The type of functions that belong to the domain



of an SHS generator constitutes a corner stone of using its associated martingale in studying
the OSP defined in section 3. Since the indicator function 14 does not belong to D(L) (the
domain of the SHS generator) we can not reason about the OSP (that appears in related to
stochastic reachability) using the martingale problem.

The above discussion expresses, in fact, a very difficult situation and a major contribution
needs to be done. In the following, a propose a solution for proving the convergence of the value
functions based on the correspondence between the reach set probabilities (9) and the so-called
Choquet capacities [9].

In the context of stochastic reachability, one can define a random set

S:N—-B
w {0 <t <T}

Then
Reachr(A) = {w|S(w)N A #£ 0}

and the reach set probability gives rise to a subadditive set function (called capacity)

capr : B —[0,1]
capr(A) : = P[Reachp(A)]

that, w.r.t. the random set S, plays the same role as a distribution for a random variable. In
the same way, capo, can be defined. Analogously, we may define the capacities cap’, capl
corresponding to the step processes (pi). Then, studying the convergence of the reach set
probabilities corresponding to the approximating processes means studying the convergence
capyp — capr.

Theorem 2. If the sequence {p}n>1 of strong Markov processes converges weakly to (x¢)
(under P) as n — oo, then

capp — capr.

Proof. The proof is lengthy and very technical. Due to the inherent room limitations, we de-
scribe the main steps:

1. Weak convergence can be characterized in terms of extended generators of the processes.

2. The convergence of generators can be characterised in terms of convergence of the operator
semigroups and resolvents (Trotter-Kato theorem [19]).

3. Convergence of resolvents involves the convergence of the associated Dirichlet forms [37].

Convergence of the Dirichlet forms implies the convergence of their capacities [41].

e

5. Convergence of the Dirichlet form capacities conducts to the convergence the capacities
associated to the corresponding Markov processes.

The key of the proof is provided by the characterization of Markov processes by Dirichlet
forms. A Dirichlet form is a quadratic form that can be naturally associated to the generator
of a Markov process [35]. B

Remark 1. We formulated the above convergence result in a very general case (not only for
step processes), such that it may be used for different kinds of approximations.



5.3 Stochastic Reachability for PDMP

In this subsection, furthermore, we investigate the stochastic reachability, as an optimal stop-
ping problem, for PDMP. The motivation for doing this is the fact, for PDMP, characterizations
of the OSP abound in the literature [14, 15,26, 34].

The approach of [34], extended then in [33], is inspired by the theory of viscosity solutions
associated to first order integro-differential operators. In the above cited papers, the results
are based on some “continuity” assumption on the reset map R (associated to a PDMP, see
Subsection 2.2). According to [16], this assumption makes the PDMP a Feller-Markov process,
and involves no boundary activity. So, practically, in this case, the PDMP is not a hybrid system
in the traditional sense. However, the optimal control problems for Feller-Markov processes are
well understood now [22], and many other results can be derived in this particular setting.

We are more interested in the approach developed in [26], and generalized in [15], and then in
[14]. Mainly, in these papers the value function of the optimal stopping problem is characterized
as the unique fixed point of the first jump operator. Moreover, since the stochastic reachability is
equivalent with an appropriate optimal stopping problem with a discontinuous reward function,
the results for OSP from [15] can be adapted for our problem in a fruitful way.

Let us recall that for the OSP problem studied in [15] optimal stopping is defined for a
function g that is a real valued bounded lower semianalytic function on X as inf,cx E,(g(x;)).
Dually, one can take the reward function g as a bounded upper semianalytic function on X and
study the OSP defined as in Subsection 3.1.

However, since the indicator functions are measurable functions (so, both upper/lower semi-
analytic), for the reachability problem we adapt the results from [15] for the value function
defined using the supremum. Denote by B*(X) the set of bounded upper semianalytic func-
tions. Let ¢*(x) the hitting time of the active boundary for the flow started in z. Define
A= fg Me(s,x))ds where 0 < t < t*(x). For z € X and 0 < ¢t < t*(x), for a PDMP the
following standard operators can be defined [16, 15]:

(a) J(vi,v2)(t, ) @ = Exlv1(p(t, )1, >4 + v2(27) 1, <41]

t
Zvl(w(t’x)e‘w”””r/ Rus((s,2))A(p(s, x))e” 1 ds
0

(b) Kva(x) = = Exlva(wr,)]
(¢) L(v1,v2)(x) : ={ inf J(vi,v2)(t,2)} A Kva(x)
0<t<t*(x)
L is called the first jump operator. Define the sequence of functions (p,,)n>0 by po = g, Ppy1 =
L(g, p,,)- Clearly, p,, is increasing and denote by p its limit.

Theorem 3. Let p,, and p be defined as above. Then
(a’) anrl = L(p'rwpn)
(b) p is the smallest solution of v = L(g,v), v € B*(X);
(c) p is the smallest solution of v = L(v,v), v > g, v € B*(X)
(d) p coincides with the value function defined by (11).

Proof. See Prop.1, Prop.2 and Cor.1 from [15].

Proposition 3. If A € BB, the reachability function w4 is the smallest bounded upper semian-
alytic function of v = L(14,v).

Proof. Take in Th. 3, g = 14, and use the characterization of w4 as a value function for an

OSP.



6 Conclusions

In this paper, we have used the characterisation of the reachability problem of stochastic hybrid
systems as an optimal stopping problem with a discontinuous reward function developed in [6],
we have investigated further developments. Because of the fact that the semantics of stochastic
hybrid systems cover only a particular subset of the class of (right) Markov processes, solving the
optimal stopping problem for such processes is difficult and challenging. For these processes,
characterizing the reachability problem as a viscosity solution for some variational inequali-
ties corresponding to their stochastic generators needs additional assumptions regarding the
continuity properties of their internal structure (transition probabilities, stopping times). For
stochastic hybrid systems, due to the interaction between continuous dynamics and boundary,
these assumptions may not be fulfilled. Therefore, to deal with the stochastic reachability, we
need to consider new approaches..

One of the major contribution of this paper is to provide rigorous evidence about reliability
of verification of SHS by optimal control. The behaviour of a complex SHS can be constructively
approximated by simpler Markov processes, for which the optimal stopping problem is well un-
derstood. The key for achieving this is the mathematical result that provides the approximation
of the reach set probabilities.
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