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Abstract

We present an architecture designed for alert verification (i.e., to reduce false positives) in
network intrusion-detection systems. Our technique is based on a systematic (and automatic)
anomaly-based analysis of the system output, which provides useful context information
regarding the network services. The false positives raised by the NIDS analyzing the incoming
traffic (which can be either signature- or anomaly-based) are reduced by correlating them
with the output anomalies. We designed our architecture for TCP-based network services
which have a client/server architecture (such as HTTP). Benchmarks show a substantial
reduction of false positives between 50% and 100%.
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1 Introduction

Nowadays, network intrusion-detection systems (NIDSs) are employed in almost all large-scale
IT infrastructures [1] as an effective second line of defense against network-based attacks directed
to computer systems. Unfortunately, in many cases, the effectiveness of NIDSs can be hindered
by the difficulty of their configuration and management. This difficulty depends on the nature
of NIDSs that need to detect, react and adapt to attacks. For instance, the detection of a
new attack is typically followed by a configuration change (i.e., a new attack signature needs to
be added). Furthermore, the variability of these settings, due to reasons such as a change on
the security policy of the organization, or an increasing level of desired protection due to new
attacks, makes the configuration management even harder. If we consider that such changes
always require the direct involvement of IT personnel [16], who must verify the seriosness every
single alert, it’s easy to understand why this task is labor intensive and also error prone [6].
To make things worse, many of the alarms a NIDS raises are false positives (i.e., notifications
of attacks that turn out to be false) that however require human intervention before being
classified as such. The problem of false positives is a major one since practitioners [16] as well
as researchers [3, 10] observe that it is common for a NIDS to raise thousands of alerts per day,
most of which are false alerts. Julisch [11] states that up to 99% of total alerts may not be
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related to real security issues. Notably, false positives affect both signature and anomaly-based
intrusion-detection systems [2]. A high rate of false alerts is — also according to Axelsson [3] —
the limiting factor for the performance of an intrusion-detection system. Indeed, a high false
positive rate can even be exploited by attackers to overload IT personnel, thereby lowering the
defenses of the IT infrastructure.

In this article we propose a system that ease NIDS configuration management by sensibly
reducing the number of false positives they raise. The main reason why NIDSs raise false
positives is that — quoting Kruegel and Robertson [13] — they are often run without any (or very
limited) information about the network resources that they protect (i.e., the context). Chaboya
et al. [5] agree that the context knowledge (e.g., network and system configurations) can improve
significantly alert verification. Unfortunately, building and updating a database of possible
configurations or running vulnerability assessment tools (e.g., Nessus [21]) to provide context
knowledge is expensive and often not feasible when dealing with complex systems (indeed these
activities require additional labor of IT personnel, since the process of using them cannot be
completely automated). Most current techniques to improve alert verification either are tailored
to specific attacks [9, 24] (e.g., worm-like) or they support only signature-based NIDSs [19].

Here we propose a system to reduce the number of false positive by using correlations be-
tween the input and the output traffic. We claim that in many relevant situations, the context
information can be obtained by a systematic (and automatic) anomaly-based analysis of the
output traffic of the monitored network services; we believe this is possible when the output
traffic presents some regularities.

To demonstrate our claims, we have developed ATLANTIDES (Automatic Configuration for
Alert Verification in Network Intrusion Detection Systems) an innovative architecture for easing
the configuration management of any NIDS (be it signature or anomaly-based) by reducing,
in an automatic way, the number of false alarms that the NIDS raises. The main idea behind
ATLANTIDES is simple: a successful attack often causes an anomaly in the output of the
service [26], thus modifying the normal output outcome. Detecting this anomaly can help in
reducing false alerts. For instance, a successful SQL Injection attackagainst a web application
often causes the output of SQL table content (e.g., user/admin credentials) rather than the
expected web content.

Our system ATLANTIDES relieves I'T personnel from complex deployments by avoiding most
of the common side effects of standard configurations (for signature-based NIDSs in particular),
when these are left unchanged.

ATLANTIDES, which is completely network-based!, works by analyzing (using n-Gram
analysis [8]) and modeling the normal output payload of the monitored network services that is
expected to be sent in response to a client request. This normal output is specific to the site;
therefore the derived models reflect — in a way — the network/system context. By correlating the
anomalies detected on the output with the alerts raised by the NIDS monitoring the input traffic,
we can discard a number of the latter as being false alerts. This way we obtain a system that
raises considerably less false positives that the original NIDS, without this correlation system.

Because it is based on output payload analysis, our architecture is designed for TCP-based
client /server network services (such as HT'TP). Like all (external) payload-based analysis, AT-
LANTIDES works properly with encrypted data only if the cryptographic keys are provided.

In the past, simple correlations between input and output traffic have already been used to
identify possible worm attacks [9, 24]. To the best of our knowledge, ATLANTIDES is the first
proposed solution for alert verification that:

11t relies only on information gathered over the network, without involving any host-based component.



e works in combination with both signature-based and anomaly-based NIDSs

e operates in a completely automatic way after a quick setup, without any further human
involvement (i.e., reducing the IT personnel overload), thus easing NIDS configuration
management

We benchmarked ATLANTIDES in combination with the signature-based NIDS Snort [20],
as well as in combination with the anomaly-based NIDS POSEIDON [4]. We carried out bench-
marks both on a private data set as well as on the common DARPA 1999 data set [14] (for the
sake of completeness and to allow duplication of our results, despite criticism [15, 17]). In seven
out of eight cases, our benchmarks show a reduction of false positives between 50% and 100%.

2 Background

In this section, we introduce the concepts used in the rest of the paper and explain how false
positives arise in signature and anomaly-based systems.

Signature-based systems Signature-based systems (SBSs), e.g., Snort [20], are based on
pattern-matching techniques: the NIDS contains a database of signatures of known attacks
and tries to match these signatures with the analyzed data. When a match is found, an alert
is raised. A specific signature must be developed off-line, and then loaded into the database
before the system can begin to detect a particular intrusion. One of the disadvantages of SBSs
is that they can detect only known attacks: new attacks will be unnoticed till the system is
updated, creating a window of opportunity for attackers (and affecting NIDS completeness and
accuracy [7]). Although this is considered acceptable for detecting attacks to e.g. the OS, it
makes them less suitable for protecting web-based services, because of their ad hoc and dynamic
nature.

Deployment and management SBSs raise an alert every time that traffic matches one of
the signatures loaded into the system: however, legal traffic could be mismatched as malicious.
The main reasons why alerts produced by SBSs can turn out to be either false or irrelevant
are: (a) SBSs are mostly deployed with out-of-the-boz configurations, mainly because of lack of
specific knowledge, without a signature-selection process. (b) Writing signatures for NIDSs is
a thorny task [18], in which it is difficult to find the right balance between an overly specific
signature (which is not able to detect a simple attack variation, leading to false negatives) and
an overly general one (which will classify legitimate traffic as an attack attempt, raising false
positives). (c¢) The monitored environment is not susceptible to a certain vulnerability. (d)
Misconfigured network devices or services producing atypical output (usually, in this case, it is
possible to observe recurrent and periodic phenomena).

The first task to accomplish when deploying a SBS is a tuning activity: this activity, based
on deactivation of unneeded signatures, requires a thorough analysis of the environment by
qualified IT personnel. To remain effective, SBSs require regular configuration updates to reflect
changes in the environment: new vulnerabilities are discovered daily, new signatures are released
regularly, and systems may be patched, thereby (possibly adding or) removing vulnerabilities.

Anomaly-based systems As opposed to SBSs, anomaly-based systems (ABSs) use statistical
methods to monitor network traffic. Intuitively, an ABS works by training itself to recognize
normal behavior and then raising an alert each time it detects something outside the boundaries



of its training. In the training phase, the ABS builds a model of the normal network traffic.
Later, in the operational phase, the ABS flags as an attack any input that significantly deviates
from the model. To determine when an input significantly deviates from the model the ABS uses
a distance function and a threshold set by the user: when the distance between the input and
the model exceeds the threshold, an alarm is raised. When compared to SBSs, the ABSs’ main
advantage is that they can detect zero-day attacks: novel attacks can be detected as soon as
they take place. The high false positive rate is generally cited as one of the main disadvantages
of anomaly-based systems.

Deployment and management The only task the IT personnel has to accomplish when
deploying an ABS is to set the threshold value. The threshold has a direct influence on both
false negative and false positive rates [23]: a low threshold (too close to the model) yields a high
number of alerts, and therefore a low false negative rate, but a high false positive rate. On the
other hand, a high threshold yields a low number of alerts in general (therefore a high number
of false negatives, but a low number of false positives).

The most commonly used tuning procedure for ABSs is finding an optimal threshold value,
i.e., the best compromise between a low number of false negatives and a low (or acceptable)
number of false positives. This is typically carried out manually by trained IT personnel: dif-
ferent improving steps may be necessary to obtain a good balance between detection and false
positive rates.

3 Architecture

ATLANTIDES’s architecture (see Figure 1) consists of one external and two internal compo-
nents. The external component is the NIDS monitoring the incoming traffic. We do not make
any assumption about it except that it is capable of raising an alert: ATLANTIDES can work
together with any kind of NIDS (signature or anomaly-based).
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Figure 1: ATLANTIDES’s architecture

The first internal component is the output anomaly detector (OAD), which is actually an
anomaly detection system monitoring the outgoing traffic: the OAD refers to a statistical model



describing the normal output of the system, and flags any behaviour that significantly deviates
from the norm as the result of a possible attack.

The second internal component is the correlation engine (CE), which tracks (using stateful-
inspectionand correlates alerts related to incoming traffic and raised by the input NIDS with
the output produced by the OAD.

ATLANTIDES works as follows (see Figure 1). The input NIDS monitors the incoming
traffic while, simultaneously, the OAD (after a training phase) analyses the output of network
services. When the input NIDS raises an alert, this is forwarded to the CE, together with the
information regarding the communication endpoints (i.e., source and destination IP addresses,
source and destination TCP ports as well as sequence numbers and communication status) of
the packet that raised the alert. This information is stored in an internal table. At this time, the
alert is not considered an incident yet (it is a pre-alert) and is not forwarded yet to I'T specialists.
Next, the CE marks the communication relative to the given endpoints as suspicious and waits
for the output of the OAD: if the OAD detects an anomaly in the outgoing traffic related to the
tracked communication, then the system considers the alert as an incident (i.e., a positive) and
the alert is forwarded to the IT specialists for further handling and countermeasure reactions,
otherwise it is considered a false positive and discarded. The IT personnel can manually set (or
adjust) a time value ¢ that the CE waits before dropping an entry from its hash-table, because
no output has been produced: during our experiments we set this value at 60 seconds. This time
could be critical if an attack results in a large data transfer (but in this case the OAD should
detect the anomaly in the transferred data) or in the case where attacker is able to delay server
response (although this seems quite difficult to realize and the literature does not provide any
example of such an attack). The delay, introduced to allow the OAD to process the data sent
back to the client, does not affect the detection itself: in fact, the delay, in the worst case of no
output sent at all, is equal to the time value t.

It should be clear from the architecture that ATLANTIDES will never raise more false
positives that its input NIDS. In fact, the output of the OAD is evaluated only when an alert
has already been raised by the input NIDS. Thus, the worst case is that a false positive is not
suppressed, but no new false alerts can be generated.

On the other hand, we have to discuss the possibility that ATLANTIDES will introduce
additional false negatives (w.r.t. the input NIDS). This happens every time the OAD classifies
an alert corresponding to a true attack as a false alert. False negatives are a common problem
for alert verification systems (and for ABSs in general). Because of our solution bases its
verification on an anomaly-based engine, the threshold used to discern outgoing traffic can be
adjusted manually by IT specialists to avoid false negatives (previous proposed solutions cannot
be tuned in the same way, e.g. [13]). Although it is theoretically possible that the attacker crafts
a particular payload to send a normal response on the current connection after the exploitation,
there exist several difficult technical problems which limit the success of this kind of attack. The
attacker must inject an attack payload containing the routines to generate the normal output
too (or to jump to the original code where this is done): since exploitable buffers are normally
small in size, it could be difficult to include the necessary payload.

Missing output response What we just described is the most common behavior; nevertheless
we have to take into account that there exist attacks which, e.g., aim to disrupt completely the
service or that, exploiting a buffer overflow, radically modify the normal execution. In this
case, if the OAD does not detect any output related to the pre-alert raised by the NIDS,
during the time window ¢, then the pre-alert is considered an incident and is forwarded to an IT
security specialist. Although this could be considered rough, because the missing response could



occur for different reasons than a successful attack (e.g., an internal error), this strategy does
not introduce any additional false negatives/positives, since with a single NIDS (monitoring
the incoming traffic) the alert would be forwarded anyway. Furthermore, Chaboya et al. [5]
experimentally verified that most of the buffer overflow attacks against an HT'TP server do not
produce any output from the attacking requests.

Since nowadays attacks against connection-less protocols are less common (see the Common
Vulnerabilities and Exposures [22] (CVE) database for detailed statistics), we have designed AT-
LANTIDES with the explicit goal of reducing false positives when monitoring network services
based on the TCP protocol (e.g., HTTP, SMTP and FTP) where a response is typically sent by
the server to the client

Although we do not aim to handle all kinds of possible attacks (e.g., worms or DDoS attacks
perpetrated generating a high quantity of legal connections), we believe our solution can improve
the accuracy of a NIDS without any additional component installed directly on the monitored
hosts (an additional component could affect under certain circumstances host performance, i.e.,
a high amount of connections).

3.1 The OAD

The OAD is basically an anomaly payload-based NIDS, monitoring the output of a network
service rather than the input of it. In our embodiment we use the architecture of POSEIDON
as the OAD, because we are familiar with it and it gives better results than its leading competi-
tor [4]. POSEIDON is a 2-tier anomaly-based network intrusion detection system that combines
a neural network with n-gram analysis to detect anomalies. POSEIDON performs a packet-
based analysis: every packet is classified by the neural network; then, using the classification
information given by the neural network, the real detection phase takes place based on statistical
functions considering the byte-frequency distributions (n-gram analysis).

The fact that the OAD is anomaly-based (rather than signature-based) has several advan-
tages: the OAD can adapt to the specific network environment /service, and it does not require
the definition of new signatures to detect anomalous output, working in an unsupervised way
(after the initial setup). Creating and maintaining a set of signatures for outgoing traffic is a
thorny and labor-intensive task, as these signatures heavily depend on the local application, and
must be updated each time that modifications of the application change its output content. On
the other hand, our OAD can simply include these modification in its model, without re-doing
the training. The disadvantage of being anomaly-based is that our OAD needs an extensive
(though unsupervised) training phase: a significant amount of (normal) traffic data is needed
to build an accurate model of the service we monitor.

Setting the threshold As we mentioned in Section 2, the completeness and accuracy of
anomaly detection systems are intrinsically related to and heavily influenced by the threshold
value. Here, we call completeness the ratio TP/(TP + FN) and accuracy the ratio TP/(TP +
FP), where TP is the number of true positives, F'N is the number of false negatives and F' P
is the number of false positives raised during the benchmarks. Consequentely, we have to set a
threshold value also for our OAD.

Our experiments show that we can empirically set the threshold to a reasonable value without
having to try various values by following a simple heuristic referring to functions from the
probability theory. The Chebyshev’s inequality theorem characterizes the dispersion of data
away from its mean and puts an upper bound on the probability that the difference between



the value of a random variable x and its mean o exceeds a certain threshold ¢, for an arbitrary
distribution with mean ¢ and variance o

plle = pl > 1) < %.

Therefore, by computing first the mean and the standard deviation of the distance value
observed between the training samples and the model we can then set the threshold at ko. Our
experiments show that setting the threshold at 2¢, usually yields reasonably good results. Thus,
ATLANTIDES set this parameter following this procedure and IT personnel can later adjust it
upon request.

4 Experiments and results

To validate our architecture, we benchmark ATLANTIDES in combination with the signature-
based NIDS Snort [20] as well as ATLANTIDES in combination with the anomaly-based NIDS
POSEIDON [4]. To carry out the experiments, we employ two different data sets. First, we
benchmark the system using a private data set. Secondly, we use the DARPA 1999 data set [14]:
despite criticism [15, 17] this is a standard data for benchmarking NIDSs (see, e.g., [19, 25]) and
it has the advantage that it allows one to compare experiments. No other data set, containing
sufficient data to perform verifiable benchmarks, is publicly available.

We consider an attack to be successfully detected when at least one packet carrying the
attack payload is correctly flagged as malicious; all the other non-detected packets carrying
the attack payload are not considered to be false negatives. On the other hand, each packet
incorrectly flagged as malicious is considered to be a false positive. Thus, the detection rate is
attacked-based, while the false positive rate is packet-based.

Tests with a private data set To carry out our validation the first set of experiments, we
use a private data set we collected at the University of Twente: we call this data set A. Data were
collected on a public network for 5 consecutive working days (24 hours per day), logging only
TCP traffic directed to (and originating from) a heavy-loaded web server (about 10 Gigabytes of
total traffic per day). This web server hosts the department official web sites as well as student
and research staff personal web pages: thus, the traffic contains different types of data such as
static and dynamically generated HTML pages and, especially in the outgoing traffic, common
format documents (e.g., PDF) as well as raw binary data (e.g., software executables). We did
not inject any artificial attack. We focus on HTTP traffic because nowadays Internet attacks
are mainly directed to web servers and web-based applications [12].

To train the anomaly-detection engines of both POSEIDON and the OAD on data set A,
we used a snapshot of the data collected during working hours (approximately 3 hours, 1.8
Gigabytes of data, randomly chosen). The chosen training data set has not been pre-processed
and made attack-free: it is thus possible that the model includes some malicious activity (that
could negatively affect accuracy). Similarly, for the test we randomly chose another snapshot
(approximately 1.8 Gigabytes of data) to benchmark POSEIDON stand-alone against POSEI-
DON in combination with ATLANTIDES: we set the threshold of POSEIDON experimetally to
achieve the best detection rate at the lowest false positive rate possible.

To distinguish true positives from false positives, the authors have classified alerts manually:
we found evidences of XSS and SQL Injection attacks, plus some probes checking for well-known
paths (33 attack detections in total). Table 1 summarizes the results we obtained. Figure 2
shows detailed results of ATLANTIDES on data set A. Here, left is better than right and above
is better than below. A point left-top indicates a configuration in which (almost) every attack



POSEIDON
Protocol POSEIDON +
ATLANTIDES
DR 100% 100%
HTTP FP || 1683 (2,83%) 774 (1,30%)

Table 1: Comparison between POSEIDON stand-alone and POSEIDON in combination with
ATLANTIDES using data set A; DR stands for detection rate (attack instance percentage), while
FP is the false positive rate (packets and corresponding percentage); ATLANTIDES reduces false
positives by more than 50% without affecting the detection rate (i.e., without introducing false
negatives).
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Figure 2: Detection rates for POSEIDON in combination with ATLANTIDES using data set A
(HTTP protocol): the x-axis and y-axis present false positive rate (packets) and detection rate
(attacks instances) respectively. It is possible to observe that ATLANTIDES presents a lower
false positive rate than POSEIDON, considering the same detection rate. It is possible to notice
how different ATLANTIDES’ threshold settings affect detection and false positive rates.

has been correctly forwarded, with very few false positives left. On the other hand, a point
on the low-right side indicates a configuration in which some real attacks have been incorrectly
suppressed and a good deal of licit traffic was marked anomalous.

We cannot compare ATLANTIDES in combination with Snort on data set A for the reason
that Snort does not find any true attack to the system (Snort raised only false alerts): this is
not surprising, since Snort has only few signatures devoted to SQL Injections and XSS attacks.
By setting a high threshold value in ATLANTIDES we could remove all the false positives, but
this would give no indication of the completeness and accuracy of ATLANTIDES.

Tests with the DARPA 1999 data set The testing environment of the DARPA 1999 data
set contains several internal hosts that are attacked by both external and internal attackers: in
our tests, we consider only inbound and outbound TCP packets that belong to attack connections
against hosts inside the network 172.16.0.0/16. We focus on FTP, Telnet, SMTP and HTTP
protocols. This is due to the fact that only these protocols, among the ones contained in this
data set, provide us with a sufficient number of samples to train the OAD and, at the same time,



allow us to compare our architecture with POSEIDON stand-alone, that has been benchmarked

following the same procedures.

Snort POSEIDON
Protocol Snort + POSEIDON +
ATLANTIDES ATLANTIDES
HTTP DR 59,9% 59,9% 100% 100%
FP || 599 (0,069%) 5 (0,00057%) 15 (0,0018%) 0 (0,0%)
FTP DR 31,7%%% 31,75% 100% 100%
FP 875 (3,17%) 317 (1,14%) 3303 (11,31%) 373 (1,35%)
Telnet DR 26,83% 26,83% 95,12% 95,12%
FP || 391 (0,041%) 6 (0,00063%) 63776 (6,72%) 56885 (5,99%)
SMTP DR 13,3% - 100% 100%
FP 0 (0,0%) - 6476 (3,69%) 2797 (1,59%)

Table 2: Comparison between Snort stand-alone, Snort in combination with ATLANTIDES,
POSEIDON stand-alone and POSEIDON in combination with ATLANTIDES using the DARPA
1999 data set: DR stands for detection rate (attack instance percentage), while FP is the false
positive rate (packets and corresponding percentage); ATLANTIDES reduces false positives by
more than 50% most of the times, being close to zero in 3 tests, without affecting the detection
rate (i.e., without introducing false negatives).

We train the OAD of ATLANTIDES with the data of weeks 1 and 3 (attack-free): for each
different protocol we use a different OAD instance. Afterwards, we test ATLANTIDES together
with both POSEIDON and Snort using week 4 and week 5 traffic. In order to distinguish
between true and false positives, we refer to the attack instance table provided by the DARPA
data set authors. Table 2 reports a comparison of the detection and false positive rates of
Snort stand-alone (first column), Snort in combination with ATLANTIDES (second column),
POSEIDON stand-alone (third column) and POSEIDON in combination with ATLANTIDES
(fourth column).

In both cases, ATLANTIDES achieves a substantial improvement on the stand-alone system,
without affecting the detection rate nor introducing false negatives; ATLANTIDES reduces the
false positive amount by at least 50% on every protocol benchmarked, except for the Telnet
protocol together with POSEIDON. In our opinion, this discrepancy is due to the fact that
Telnet has a great output variability, since an user could issue hundreds of different commands
with different output; on the other hand, protocols like HTTP, FTP and SMTP present well-
defined protocol schemas to exchange information between client and server. We did not test
ATLANTIDES on SMTP traffic in combination with Snort because in this case Snort raises no
false positives.

4.1 Supporting NIDS configuration and management

As we mentioned in Section 2, the most important and time-consuming tasks of NIDSs’ man-
agement are their tuning and the verification of alerts raised. The former could be a thorny
task, especially in the case of signature-based systems, since personnel with high technical skills
must be involved: performing a poor tuning phase (or even omitting it) usually leads to a high
rate of false positives. Next to the reduction in workload due to the reduction of false positives,
ATLANTIDES reduces the workload of the IT specialists by allowing them to carry out a less
precise tuning phase. In fact, ATLANTIDES is effective in reducing the false positive rate even
when a tuning phase of the input NIDS has not taken place. To support this, in our benchmarks
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Figure 3: Detection rates for POSEIDON in combination with ATLANTIDES using DARPA
1999 data set (SMTP protocol): the x-axis and y-axis present false positive rate (packets) and
detection rate (attacks instances) respectively. Is it possible to observe that ATLANTIDES
presents a lower false positive rate than POSEIDON, considering the same detection rate. It
is possible to notice how different ATLANTIDES’ threshold settings affect detection and false
positive rates.

with Snort we did not tune it wrt our testing environment: the latest available set of signatures
has been loaded into the signature database without any signature selection process.

Also (and perhaps even more so) in the case of anomaly-based systems, ATLANDITES
eases the task of the IT specialist: as we mentioned before, the main difficulties one faces when
deploying an anomaly-based IDS are (a) coping with the usually high number of false positives
and (b) finding the optimal value of the threshold, i.e. the value reaching the best compromise
between false positives and false negatives. ATLANTIDES influences directly (a) by reducing
the number of false positives and indirectly (b) by allowing the system to produce good results
even when the threshold is not set optimally.

5 Related work

Although no specific solution has been previously developed to ease NIDS management, some
previous work regarding alert verification is also relevant to this topic.

Kruegel and Robertson [13] introduces a plug-in for Snort to verify alerts: the plug-in inte-
grates the Nessus vulnerability scanner into the Snort’s core. When an alert is raised, this is
not immediately forwarded but is firstly passed to the verification engine. Since every Snort’s
signature comes with a unique identifier (assigned by CVE [22]), this index is used to check the
presence of a corresponding Nessus attack script. If found, the script is executed against the
target machine/network: the output is extracted and used to flag the alert as either true or
false; an output cache is used to avoid further verification for the same alert/target. Although
this approach is effective, there are several drawbacks: one has to maintain the Nessus’s attack
script database updated, and this approach works only for signature-based NIDSs, while AT-
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LANTIDES can work with both types and in a complete automatic way (i.e., no manual updates
needed). Besides, Nessus could produce false positives/negatives too.

Pietraszek [19] tackles the problem by introducing an alert classifier system (ALAC, Adaptive
Learner for Alert Classification) based on machine learning techniques. During the training
phase, the system classifies alerts into true and false positives, by attaching a label from a fixed
set of user-defined labels to the current alert. Then, the system computes an extra parameter
(called classification confidence) and presents this classification to a human analyst. The ana-
lyst’s feedback is used to generate training examples, used by the learning algorithm to build
and update its classifiers. After the training phase, the classifiers are used to classify new alerts.
This approach relies on the analyst’s ability to classify alerts properly and on his availability to
operate in real-time (otherwise the system will not be updated in time); we believe that these
(demanding) requirements can be considered acceptable for a signature-based NIDS (where the
analyst can easily inspect both the signature and network packet(s) that triggered the alert),
but it could be difficult to perform the same analysis with an anomaly-based NIDS. The re-
ported benchmarks conducted over the 1999 DARPA data set, using Snort to generate alerts,
show an overall false positive reduction of over 30% (details on single attack protocols are not
given). The the main differences between ALAC and ATLANTIDES include: (a) ALAC does
not consider the outgoing traffic, and (b) ALAC relies heavily on the expertise and the presence
of an analyst (in ATLANTIDES, all the IT specialist has to do is to set the thresholds).

As we mentioned before, e.g. misconfigured devices can generate recurrent (and benign)
alerts. Julisch [10] presents a semi-automatic approach, based on techniques which discover
frequently occurring episodes in a given sequence, for identifying false positives based on the
idea of root cause: an alert root cause is defined as “the reason for which it occurs”. The
author observes that in most environments, it is possible to identify a small number of highly
predominant (and persistent) root causes: thereby removing such root causes drastically reduces
the future alert rate. Benchmarks conducted on a log trace from a commercial signature-based
NIDS deployed in a real network show a reduction of 87% of false positives. No further details
are given about the testing condition, network topology or traffic typology. We cannot compare
directly this approach with ATLANTIDES because the data used by the author is private,
nevertheless we can notice that this approach is applicable only to signature-based NIDes, while
ATLANTIDES is effective with anomaly-based systems too.

6 Conclusion

In this paper we present ATLANTIDES, an architecture for automatic alert verification ex-
ploiting in a structural way the detection of anomalies in the output traffic of a system. AT-
LANTIDES can be used to facilitate the deployment and management of NIDSs by reducing
false positives both in signature and anomaly-based systems. The core of ATLANTIDES con-
sists of an output anomaly detector (OAD), which compares output traffic with a model it has
created during the training phase. To reduce false positives on the input NIDS (be it signature
or anomaly-based) monitoring the incoming traffic, ATLANTIDES checks if the communication
raising an alert in the input NIDS actually produces an anomaly in the outgoing traffic too.
In this case (and in another exceptional situation), the alert is forwarded to the IT specialist,
otherwise it is discarded. The fact that the OAD is anomaly-based (rather than signature-based)
allows it to adapt to the specific network environment/service, and to work in an unsupervised
way (at least, after the setup). Anomaly-based systems typically use a distance function and
a threshold to discern anomalous from licit traffic. We introduce a simple heuristic to set AT-
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LANTIDES threshold in an automatic, though effective, way, to further ease the management
for IT security specialists (which can in case adjust the threshold value).

Benchmarks on a private data set and on the DARPA 1999 data set show that ATLANTIDES
determines a reduction of false positives between 50% and 100% in most of the cases, without
introducing any extra false negative, easing signifincantly the management of NIDSs.

One possible extension to our architecture is adding additional information to make the
detection of anomalies in the output more precise: this information (e.g., the usual amount of
bytes sent back from the server and the communication duration) could be included in the model
and evaluated as well. Our architecture has been designed to work with TCP-based network
services: although it could be easily adapted to work with UDP-based services, there exist some
issues related to this protocol. In fact UDP is a connection-less protocol and this add some
difficulties to distinguish real connections from the ones using spoofed IP addresses. We will
investigate this in future.
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