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Abstract 
This report presents the results of a structured review of code clone literature. The aim of the review is 
to assemble a conceptual model of clone-related concepts which helps us to reason about clones. 
This conceptual model unifies clone concepts from a wide range of literature, so that findings about 
clones can be compared with each other. The conceptual model is work in progress; more research is 
needed to refine the concepts. 
 

1 Introduction 
Duplication of logic in source code is an important factor that is suspected to affect changeability. We 
want to investigate how design decisions affect duplication, and how duplication affects changeability. 
After some initial case investigations, we found that for a deeper research into the relationships 
between these variables, we needed a better understanding of the concepts behind code duplication. 
We also found some confusion of concepts in current literature about code duplication. To better 
understand the existing concepts and relationships behind code duplication, we have undertaken this 
structured review. 
 

1.1 Problems for researchers and practitioners 
Duplication of logic in source code is widely thought to negatively affect changeability [47, 48, 63]. We 
call this the duplication hypothesis. Recently some doubt has arisen about the truth of the duplication 
hypothesis in general. Our long-term research goal is to investigate the duplication hypothesis. We 
would like to refine it in terms of which kinds of clones affect changeability and which don’t. To do this, 
we should analyze and compare the kinds of duplication mentioned in literature. We quickly found, 
however, that definitions of clones and related concepts in literature vary to an extent that makes 
comparison difficult. We illustrate this in section 2. 
 
For practitioners it is difficult to put a clone detector to good use, because it is not clear which 
properties of clones relate to which quality attributes of the system. What tool should one use with 
which parameters to assess the system's maintainability? Should one use different parameters when 
searching for refactoring opportunities or when trying to prove plagiarism? Clone detection can be 
done for various reasons. These differences are not regarded by most articles. Note that use of code 
clone detection tools in practice is very limited, judging from the experience of the authors and from 
lack of experience reports. This may be caused by the lack of knowledge about which kinds of clones 
to detect for which purposes, which leads to low-quality clone detection results for the few practitioners 
who try these techniques.  
 
The goal of this study is to create a common framework of concepts for reasoning about code clones 
and clone detectors, that enables us to compare and aggregate results about code duplication. 
 

1.2 Structured review 
We decided to attack the problems mentioned above using a structured review. This method allows us 
to collect and aggregate information from primary research in a structured way that is as repeatable as 
possible. Since our problems lie in the definitions used in literature, it is logical that we study literature 
to solve them. The approach is explained in section 3. Section 4 lists the results of the research 
identification and selection steps. 
 

1.3 Framework 
Because of the mentioned differences in concepts, findings about clones in literature are hard to 
compare and generalize. Therefore we feel the need for a framework in which these different concepts 
can be translated and compared. This framework should contain concepts, relations between those 
concepts, properties and possible values, such that concepts from all or most known code duplication 
literature can be stated in terms of the framework. This should enable us to compare findings of 



articles to each other. Based on our structured review we arrived at a framework into which all 
concepts from known literature can be translated; this framework is presented in section 5. 
 



2 Code duplication literature hard to compare 
Code cloning has received ample attention from the software engineering community. The problem 
with the current body of code duplication research, is that it is difficult to compare approaches and 
findings to each other, because of several differences among them. 

• Differences in their definitions and terminology; 
• Different abstractions of the software they measure; 
• Different goals with which tools were made or studies performed. 

 
Comparing clones found using different definitions is difficult. For example, the comparison of clones 
detected by different clone detectors is problematic, for several reasons. 

• They use different units of code: some tools use tokens, others use lines, yet others 
statements and predicates. These units are not convertible to each other, e.g. a line may 
contain multiple tokens, and tokens may cross line boundaries. 

• A single clone detected by one tool may be detected as two separate clones in another. This 
makes it meaningless to compare numbers of clones detected by one tool to those of another. 

• The tools have different ways of grouping detected clone pairs into clone sets.  
 
The difficulty of comparing individual clones is illustrated in Figure 1, where a Java method has been 
copied and adapted from File1 to File2. The first comment line, parameter types, thrown exception, 
buffer size have been changed, and a line has been added to filter newlines. Two possible clone 
detection results from imaginary clone detectors have been highlighted. The square-edged clone 
detector has detected one clone pair (CP1), whose occurrences consist of tokens, starting with the 
opening accolade because the preceding token is different in the two code fragments, and ending just 
before the inserted line; it doesn’t mind the differences in parameter names and constants. The round-
edged clone detector is line based and only finds clones when at least two consecutive non-blank 
lines are exactly the same (CP2 and CP3). The square-edged clone detector does not find CP3  
because it is below a clone size treshold. Now, which clone detector is right? Which has better recall 
or precision? Which of these clones should be refactored? 
 

 
Figure 1 Clone pairs CP1, CP2 and CP3 detected according to different rules and definitions 
 
Clone occurrences are often grouped into clone sets based on grouping rules, e.g. that every 
occurrence in a clone set should form a clone pair with every other in the same set. When clone sets 
of two clone detectors are compared to each other, things get more complicated than with clone pairs 
alone, as shown in Figure 2. The round-edged and square-edged clone detector both find clone 1, 
though the square-edged detector thinks it’s a bit bigger. The round-edged detector finds a second 
clone which partly overlaps with the square-edged clone, but only in two files, and which occurs a 
second time in one of these files. Now, which detector has found more clones? Should we even 
regard clones as countable, or do they behave more like a mass noun such as water? 
 

File1.java 
 
// Copy src file to dst file. 
// If dst file does not exist, it is created 
void copy(File src, File dst) throws IOException { 
    InputStream in = new FileInputStream(src); 
    OutputStream out = new FileOutputStream(dst); 
     
    // Transfer bytes from in to out 
    byte[] buf = new byte[1024]; 
    int len; 
    while ((len = in.read(buf)) > 0) { 
        out.write(buf, 0, len); 
    }       CP1 
    in.close();    CP2 
    out.close();    CP3 
} 

File2.java 
 
// Copy src file to dst file and filter newlines. 
// If dst file does not exist, it is created 
void copy(File f1, File f2) throws Exception   { 
    InputStream in = new FileInputStream(f1); 
    OutputStream out = new FileOutputStream(f2); 
     
    // Transfer bytes from in to out 
    byte[] buf = new byte[2048]; 
    int len; 
    while ((len = in.read(buf)) > 0) { 
        filterNewlines(buf); 
        out.write(buf, 0, len); 
    } 
    in.close(); 
    out.close(); 
} 



 
Figure 2 Clones detected by round-edged and square-edged clone detector in 3 source files 
 
 
Whether it’s a problem that clones from different detectors are hard to compare depends on the goal 
with which we do the clone detection. If it is to better understand the structure of a software system, it 
may not matter. We however are trying to aggregate evidence from literature for the duplication 
hypothesis and to refine the duplication hypothesis by clone properties, so that we can reason about 
which kinds of clones are more harmful for changeability than others. 
 
The problem is, then, that findings about different kinds of clones are hard to generalize from the 
literature, because of the mentioned differences in concepts. Therefore we feel the need for a 
framework in which these different concepts can be translated and compared. This framework should 
contain concepts, relations between those concepts, properties and possible values, such that 
concepts from all or most known code duplication literature can be translated to the framework. This 
should enable us to compare findings from different articles to each other. 
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3 Research method 
This study is a structured review of the code clone literature. Information is gathered only from primary 
research, not from empirical observations. We have followed a method inspired by Kitchenham’s 
general procedure for performing systematic reviews [77] because it maximizes the repeatability of the 
research effort. Even though the entire investigation is not completely repeatable, as human 
judgement is involved in interpreting articles, the method makes steps of the process as repeatable as 
possible. We used the following steps to arrive at our results. 
 

1. Identification of research 
2. Selection of primary studies 
3. Text analysis  
4. Synthesizing our framework from concepts and definitions 
5. Checking our framework against the primary studies 

 
Note that the primary studies are used in step 3 and in step 5. First we use them to build our 
framework, then we go back and check whether our framework still accomodates all the concepts of 
the primary sources. The last step is needed to enable others to check our findings. 
 

3.1 Identification of research 
We searched a number of literature sources with several search criteria, aimed at finding a set of 
articles with the most complete possible coverage of the field of code clones. The search criteria and 
results are documented in section 4.1. 
 

3.2 Selection of primary studies 
The following criteria were applied to the found sources for inclusion in this review. 

• The article must be published in a journal or conference proceedings. This excludes drafts of 
articles and technical reports found on web sites of research groups. 

• The article should have code clones as its primary subject. It can be about clone detectors, 
reasons why clones occur, or the impact of clones on quality attributes, but it must be about 
clones.  

• The article should not be published before 1990. This boundary is chosen arbitrarily to limit the 
search for sources. 

 
When a structured review is performed to aggregate quantitative data, for example in the field of 
medicine to aggregate the findings of different clinical tests for the effectiveness of a drug, this phase 
is followed by a quality assessment of the primary studies based on predefined criteria. In our case, 
this is not necessary, as our goal is to unify all views into the framework. 
 

3.3 Text analysis  
We analyzed the primary studies using text analysis techniques from conceptual modeling [110]. We 
searched the articles for pieces of text from which the meaning of concepts, the existence of relations 
between concepts, properties of concepts or the possible values of those properties can be deduced. 
We reported these quotes together with the framework deductions as raw data in a simple textual 
format. Some examples of quotes from articles and our deductions are given. 
 

• “Minimum clone length defines the minimum amount of lines present in a clone.” [16] 
– A clone has a property length 
– A clone consists of lines of code 
– The minimum length is a similarity rule 

• "Two lines of code are considered to be identical if they contain the same sequence of 
characters after removing comments and white space“ [7] 

– Comments and white space are types of differences 
– Allowing any differences of types comment and white space is a similarity rule 

 
 



3.4 Synthesizing our framework 
From the concepts identified in the previous step, we drew up a framework. The framework consists of 
two parts: 

• A domain model of code clones, including concepts, definitions, attributes and possible values 
for those attributes, relations between concepts, and constraints.  

• A generalized description of the processes needed to detect and report clones in software. 
These include rules e.g. used for detection of clone pairs. This can be used to compare clone 
detection tools on a conceptual level. 

 

3.5 Checking our framework 
We matched our framework against each of the primary articles. In the previous step, we have not 
only lumped together a number of definitions, but we have also added information, such as the 
relations and constraints, which is not written explicitly in any of the sources. Therefore this step is 
needed, in which we check whether our framework still matches all the information in the sources. Any 
mismatches and unclear parts are reported.  
 



4 Article identification and selection 
This section presents the results from steps 1, identification of research, and 2, selection of primary 
studies.  
 

4.1 Identification of research 
We used the following search engines with the specified search strings: 
 
Searched in www.scopus.com on november 1, 2007 using search string:  

TITLE-ABS-KEY(+code +clones) AND LIMIT-TO(SUBJAREA,"COMP") 
The limitation to the subject area of computing (“COMP”) is necessary to filter out all articles about 
clones from biology and neighbouring fields. This has yielded 65 articles. Some of these clearly were 
not about code clones and were discarded. 38 articles remained. The two oldest articles are from 
1996 and most are from 2007, showing that code duplication is a growing research field. 
 
Some relevant articles about code clones apparently do not have “Comp” as one of their subject 
areas. We did another search where we included engineering (“ENG”) and multi-disciplinary (“MULT”) 
articles, and found 19 new relevant articles, which were added to the list. 
 
We checked our list of articles for completeness by trying these other search criteria: 

• Code duplication: 9 new articles, apparently not containing the term ‘clone’. 
• Code replication: no new articles. Apparently the term replication is used in cases where 

hardware is replicated to improve availability or where a piece of software replicates itself 
during runtime, such as viruses. 

• Software clone: 1 new article, apparently not containing the word “code”. 
• Software duplication: 1 new article. 
• Clone detection: no new articles. 

 
We also searched the ACM guide to computing literature at http://portal.acm.org with the search string 
“code clone” and published after January 1990. This has yielded 8 more articles which could not be 
found in Scopus; those were added to our list. We did a cross-check to evaluate if starting with Scopus 
had been the right choice. It appeared that many results from the Scopus search did not occur in the 
ACM Portal search. While Scopus is less precise (it yields a lot of articles that are not relevant), it has 
higher recall, which is more important for a structured review. 
 
We checked CiteSeer using a Google search with search string “site:citeseer.ist.psu.edu code clone”. 
This gave 22 new articles. Some of these articles could not be found in Scopus or ACM Portal, even 
by searching on the full title. Some could be found, but do not have terms like clone or duplication in 
their title or abstract, which explains why they were not found in the previous searches. They use 
descriptions like “textual redundancy” [62] or “sections of code that are identical” [9]. Some have the 
word ‘clone’ in their title, but still did not come up in our earlier search [61] due to missing or incorrect 
meta information. 
 
We have checked a sample of references in the selected articles to see if referenced articles about 
clones were missing in our list of articles, to check if our list of articles was complete. This has yielded 
10 more papers. This indicates a potential validity problem as more papers may have been missed. 
 

4.2 Selection of primary studies 
We used the criteria specified in paragraph 3.2 to select and rate articles for inclusion in our review. 
The results of the searches are presented in Table 1. For each search, the references are given in the 
column ‘Included’ if they passed our criteria, else under ‘Discarded’. The discarded papers are those 
that seemed to fit our criteria from looking at the title only, but were discarded after reading the paper 
itself. The row ‘References’ contains the papers that were not found in our searches but were added 
from bibliographies of other papers. The number of papers in each cell is given in parentheses. 



 
Table 1 Results of the searches for literature 
Database Search string Included Discarded 
Scopus +code +clones 

COMP 
(31) [1, 4-6, 11, 13, 18-20, 26, 37, 39-41, 44, 
45, 54, 58, 59, 63, 67, 81, 84, 88, 92, 94, 96, 
100, 102, 103, 111] 

(7) [21, 30, 57, 64, 
70, 89, 105] 

Scopus +code +clones 
ENG MULT 

(15) [2, 14-17, 25, 29, 36, 46, 52, 56, 68, 76, 
82, 108] 

(4) [24, 34, 101, 
107] 

Scopus +code 
+duplication 

(6) [22, 42, 86, 87, 97, 109] (3) [3, 10, 23] 

Scopus +software +clone  (1) [38] 
Scopus +software 

+duplication 
(1) [8]  

ACM Portal code clones (5) [27, 55, 69, 79, 90] (3) [53, 74, 99] 
CiteSeer code clone (15) [7, 28, 31, 35, 50, 51, 61, 62, 66, 72, 83, 

91, 93, 98, 104] 
(7) [9, 12, 43, 65, 
71, 75, 78] 

References  (10) [32, 33, 48, 49, 60, 73, 80, 85, 95, 106]  
Totals  (83) (25) 
 
 



5 Framework 
A framework that unifies the common concepts of code clone research is shown in a class diagram in 
Figure 3. The attributes and their possible values are described in the subsections. 
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Figure 3 Code clone domain model 
 
First, we give definitions of the concepts in Figure 3 and explain the relations. Then we enumerate and 
define their attributes. 
 

5.1 Concepts and relations 
A code unit is a small, atomic unit of source code. With atomic we mean that the internal structure of 
a code unit is considered unimportant. Code units cannot overlap with each other. Breaking the code 
into units is the first step of any clone detection effort. The type of units affects which detection rules 
can be used in subsequent steps of clone detection. Common examples of types of code units are 
tokens and lines. 
 

 
Figure 4 Running example of a potential clone pair 
 
A code fragment is a set of code units, e.g. a (part of a) method in Java. Most code fragments are 
sequences of code units, except for PDG slices which consist of statements with data or control 

double avScore(double scores[]) { 
  double sum = 0; 
  for (int i = 0; i < scores.length; i++) { 
    sum += scores[i]; 
  } 
  return sum / scores.length; 
} 
 
 
public double avModSize(int sizes[]) { 
    if (sizes.length==0) logError("sizes"); 
    double total = 0; 
    for (int i=0; i<sizes.length; i++) { 
  total += sizes[i];      F2 
    }                   
    return total / sizes.length;  F1 
} 



dependences [79]. The concept of code fragment is important because clone detectors compare code 
fragments to find clone pairs.  
 
Figure 4 shows a running example that we will use throughout this paper. It contains two methods that 
may or may not form or contain a clone pair, depending on the definitions used. 
 
Code fragments can overlap with each other. Different clone detectors use different types of 
fragments. For example, detectors based on string comparison often allow arbitrary fragments [7, 42], 
which would allow F1 in the example, while parser-based detectors only allow sequences of AST 
subtrees that have the same parent [19] (F2 is an example). Most detectors that use metrics to 
compare fragments only use complete methods as fragments [80, 92]. Fragments may be represented 
in a different form, such as abstract syntax trees, but they can always also be represented as 
sequences of code units. Some clone detectors use multiple internal representations of fragments, for 
example, token strings for efficient comparison and AST subtrees for filtering. 
 
A clone occurrence is a code fragment that is a member of a clone pair. 
 
A clone pair is a pair of code fragments which have a certain similarity. The similarity is determined 
using a set of similarity rules. This set of rules may leave room for some differences between 
occurrences of a clone pair. The similarity rules form the most important aspect of a clone detection 
tool. Examples of similarity rules are “the fragments are identical” [7] and “the edit distance between 
the fragments is below a parameterized threshold” [68]. 
 
An alternative definition of clone pair focuses on the origin of the fragments: one must have been 
derived by copying the other [2]. Other definitions focus on the functionality (semantics) of the code: 
clone occurrences must ‘do’ the same thing, e.g. compute the same value from the same arguments 
[20]. Both these definitions have as a major drawback that they cannot be automatically measured 
from two fragments. Therefore all papers that mention such definitions use some sort of textual 
similarity as an objectification, and we have not included origin and semantics in the model. 
 
A difference is a difference between the two occurrences in a clone pair. The detection rules of a 
clone detector determine which types of differences are allowed. Some examples are in 5.6. When a 
clone detector uses pre-processing of the code before clone detection, then this step may also cause 
certain types of differences to be allowed, such as white space, comments and pre-processing 
directives of the source language. In the latter case, the differences are not counted towards the size 
of the fragments. This has been modelled as a separate concept because it has significant impact on 
the refactorability of clones. 
 
A clone set is a set of clone occurrences. Some clone detectors, not all, have a set of grouping rules 
to collect clone occurrences into sets. This is necessary if one wants to talk about the number of times 
a clone occurs in the system. Clone sets are usually formed such that each clone occurrence in the 
set forms a clone pair with every other clone occurrence in the same set. When differences between 
the clone occurrences in a clone pair are allowed, the rules for forming clone sets are non-trivial: 
occurrences (A, B) and occurrences (B, C) may form clone pairs, but (A, C) not; a clone occurrence 
may then belong to multiple clone sets. In other words, not all similarity rules form transitive 
relationships; similarity is not always equality.  
 

5.2 Code unit properties 
Type: The type of code unit.  
Values: 

• Character. 
• Token. The types of tokens are further defined by tokenization rules. 
• Statement. 
• Predicate. 
• Line of code.  
• HTML tag (in web applications). 

 
Position: The position of the code unit in the source code. Possible ways to describe the position 
depend on the type of the code unit. A line of code can be described by the file name and line number, 



for example. Any code units position can be described by file name, start position in the file and end 
position in the file. 
 
Text: A textual representation of the content of the code unit as it appears in the source code. 
 
Value: The value of the code unit as it will be used further in clone detection. For clone detectors that 
use textual identity, the value may be the same as the text, but for those that use tokenization, the 
value will be a token value, such as “CONST” for a token with text “42”. 
 
Every code unit can be represented as a string of characters. We can consider strings as a canonical 
form of code unit to which all other types of code units can be transformed. 
 

5.3 Code fragment properties 
Type: The type of code fragment. 
Values: 

• Sequence. Any sequence of code units. In Figure 4, fragment F1 is a sequence of lines, but 
also a sequence of tokens. 

• Block. A sequence of code units where the start and end are on the same level of nesting. An 
example in Figure 4 is F2. 

• (Sequence of) AST subtree. A subtree of the Abstract Syntax Tree generated by parsing the 
code, or a sequence of AST subtrees under the same parent. 

• Method. A whole method/function/procedure, including its header. 
• Class. 
• File. 
• Module (also called Component) 
• Program Dependence Graph (PDG) slice: a (possibly non-contiguous) set of code units with 

data or control dependences among them. 
• Web page, in papers describing specific approaches for finding duplicated web pages. One 

paper [36] even uses a pair of web pages where one navigates to the other as fragment type. 
 
Size: A count of code units in the fragment. 
 
Dependences: A fragment may have dependences on its surrounding code, and vice versa. For 
example, a fragment may rely on a variable declaration outside the fragment; this can be detected 
automatically on a syntactic level.  
 
Context type: The type of code in which the fragment occurs. How much of the environment to take 
into account is not defined, nor how to classify the context, but some values can be given. 

• Front-end code: one paper [2] notices that code for user interfaces contains relatively many 
clones. 

• Table initializations: when differences in variable names and literal values are allowed, many 
non-refactorable clones are found in table initializations [11]. 

• The tool Aries [52] lists several context types: Class, Static, Switch, Interface, Do, 
Synchronized, Method, For, Try, Constructor, If, While. 

• Some papers [22, 58] focus on clones in library code, stating that those clones are a bigger 
problem than those in application code. 

 
Position: The relative position of a fragment within its context. This can affect which refactorings are 
possible, and is especially interesting for aspect-oriented programming [26]. In a different context the 
position within the context is used for clone categorisation [50]. Values: 

• Start of method. 
• End of method. 
• Middle of method: neither at the start nor the end. 

 
Internal repetition: One paper [54] observes that a large amount of small sub-clones within a 
fragment, also called repetitive regions, indicates that the clone is not refcatorable. This occurs for 
example in table initialization code.  
 



Other measures, such as cyclomatic complexity, can be computed when deemed interesting, if the 
nature of the fragment allows it. 
 

5.4 Clone occurrence properties 
Clone occurrences inherit the properties of code fragment. We have not identified additional 
properties. 
 

5.5 Clone pair properties 
Similarity: a detector-defined similarity measure. 
 
Distance: The distance between the clone occurrences. One measure is ‘dispersion’ [52] which is -1 
when classes have no common superclass in the code, 0 when occurrences are in the same class, 
and 1 when all occurrences are in direct subclasses. 
 
Overlap: The degree to which the two code fragments overlap with each other. One formula is 
presented by Baker [11] as the number of code units the fragments have in common, divided by the 
number of code units in the union of the fragments. Many papers rank clones with overlapping 
fragments as ‘false clones’, meaning they cannot be refactored or have not been derived from copy-
and-paste actions. 
 
Origin: How the clone pair was created. This is considered important by many authors, but is not 
automatically measurable from source code. In some articles, a human programmer or researcher 
judges the origin of clone pairs by visual inspection, but without predefined rules [2]. The origin is 
important because in many articles only clone pairs that have originated from copying a fragment are 
considered ‘real’ clones. 
Values: 

• Copy and paste 
• Typing from example 
• Template: a specific piece of code is always programmed in a specific way, for example, 

retrieving data from a database table. 
• Accident: the code ‘looks the same’, but does not ‘do the same thing’. 

 
Intention: The reason why the code has been cloned. This can be important for refactoring decisions 
because if there was a valid reason to duplicate the code, it may not be wise to eliminate the clone. 
We have collected some intentions mentioned in literature without being complete. Note that intentions 
are usually just mentioned as part of the motivation for studies and are not themselves subject to 
investigation. 

• Lack of knowledge: the programmer was not aware that code was already present somewhere 
else and typed similar code. 

• Saving initial effort: to avoid duplication, more initial effort would be needed because some 
abstraction must be programmed. 

• Performance: the abstractions needed to avoid duplication would make the system less 
resource-efficient. This argument typically occurs in older papers. 

• Maintaining architectural clarity: avoiding duplication would introduce dependencies between 
architecturally separate entities, or would violate architectural standards. 

• Improving changeability: in some cases avoiding duplication would yield less changeable code 
because of the extra complexity needed. 

• Risk of errors: to avoid duplication, one may need to change code that is known to work. The 
risk of introducing errors can be too big to take. 

• Language limitations: some code clones cannot be avoided because the programming 
language lacks facilities for unification. 

• Code ownership: one needs an adapted version of some code that one cannot change 
because it is used by another group. 

• Increasing code size: some papers suggest that programmers copy code because their 
performance is assessed based on the amount of code they produce. 

 



Conflict ratio: When systematic renaming of variables is an allowed type of difference between clone 
occurrences, one can allow a fraction of the variables to be renamed non-systematically [87]. This way 
one can find errors due to inconsistent renaming of variables. 
 

5.6 Difference properties 
Type: Differences are categorized based on the sort of editing operations one needs to perform to 
transform one clone occurrence into the other. Some types are generalizations of several more 
specific types of differences; we have listed specialisations in sub-lists. 
Values: 

• Different use of white space. Also described as code layout. The methods in Figure 4 have 
different formatting. 

o Different use of whitespace within lines. The line breaks must be the same. 
• Comments are ignored by most clone detectors, although they too have to be maintained or 

else outdated comments will decrease changeability. 
• Substitution of a token of one type by a token of a different type [17]. 
• (Systematic) Substitution of identifier: Substitution of an identifier by a different identifier. 

Systematic means: every use of identifier x in fragment 1 is replaced by identifier y in fragment 
2. Also called p-matching [7]. 

o Substitution of a variable name by a different variable name. The type of the variable 
(int, string etc.) is not taken into consideration. We consider as variables all kinds of 
variables including class fields, method parameters, array components and structure 
members. In Figure 4 there are systematic substitutions between ‘sum’ and ‘total’ and 
between ‘scores’ and ‘sizes’. 

o Substitution of a called method name. 
o Substitution of a literal value by a different literal value. 
o Substitution of a type by a different type. 

• Substitution of a variable with an expression (not just a variable) of the same type. See [11] for 
examples. 

• Insertion of a random code unit in one fragment. This is a broad category because it allows 
every kind of difference. In Figure 4 this is the first line of code in the second method. 

• When the fragment type is ‘method’: a different method signature. 
o A different method name. 
o A different return type. 
o A different parameter type. 
o A difference in the set of thrown exceptions. 

• Insertion of C preprocessor statements, Java ‘import’ statements etc. in one fragment.  
• Insertion of block delimiters. Some clone detectors ignore block delimiters such as accolades. 
• Insertion of common language constructs. Some clone detectors ignore common keywords 

like ‘if’, ‘for’, ‘while’ etc. 
• Insertion of namespace qualifiers or package names. 
• Insertion of template parameters (for languages that use generics). 
• Insertion of array initialization lists ( = {x, y, z, …}). 
• Insertion of accessibility keywords (public, private, etc.). 

 
Size: Some differences consist of code units. In those cases the size of a difference is defined as the 
number of code units it encompasses. For example, when random line insertions are allowed, the 
number of lines in one contiguous difference is its size. The random insertion in Figure 4 has one line. 
 

5.7 Clone set properties 
Population: The number of occurrences in the set. 
 
Number of files: The number of different files in which fragments of the clone set occur. 
 
Various other properties are defined on clone sets for specific purposes. These properties can be 
computed from properties of the clone occurrences in the set. We do not list all these properties. 
 



6 Checking the famework 
The last step in our review procedure is to review the selected articles to check if our framework can 
accommodate the ideas presented in them. In this section any discrepancies are motivated.  
 

6.1 Framework rationale 
In this paragraph we describe some interesting concepts from papers, which have prompted us to 
adjust our framework in some way. This gives the reader insight into our review process and the 
variety of concepts in the literature. 
 

• PDG slices [79] are code fragments, eligible to be detected as clone occurrences, which do 
not necessarily consist of consecutive code units. They may be scattered all over the code. 
This has prompted us to redefine a code fragment from a sequence of code units to a set of 
code units. 

• Repetitive regions [11] may be a good concept to add to the framework somehow, or show 
how it can be defined using the framework. 

• The concept of ‘system version’ could be added to the concepts. However this is problematic 
because, depending on the point of view, concepts such as clone occurrence and clone set 
either belong to one version, or have an identity independent of the system version. Instead of 
trying to accommodate both views, we have kept our framework simple and added a ‘source 
selection’ step to the generalized detection process. 

• Some papers aggregate individual clones into larger cloned ‘regions’ or ‘patterns’ or use them 
to compute clone relations between files. This is useful for code comprehension. We left this 
concept out of the framework because it diverges too much from our clone concepts. 

 

6.2 Exceptions 
In this paragraph we list concepts from papers which do not fit into our framework, and motivate why 
our framework cannot adapt to them. 
 

• Some approaches use metrics, computed over fragments (often type ‘method’), to compare 
fragments with each other when looking for clones. This fits in our framework, except that we 
cannot precisely define which differences are allowed by such a clone detector. For example, 
when cyclomatic complexity (CC) is used as a metric, and the difference between the CC of 
method 1 and the CC of method 2 cannot be greater than a threshold, then this rule allows 
virtually any kind of difference between the methods. Take into account that the detector uses 
several metrics values to determine similarity of fragments, and it is impossible to analyze 
which differences will be tolerated between clone occurrences. 

• Some approaches exist where the similarity of code is measured through the similarity of the 
byte code (in the case of Java) resulting from compilation [12]. We have chosen to only 
consider papers in which duplication is defined as directly measurable on source code. 

• One paper [35] presents a clone detector that uses a neural net, which is trained with a large 
number of clones and non-clones after which it can determine whether other fragments are 
clones or not. This approach falls outside our framework, because we cannot analyze which 
clones will be detected by the tool. 

• One approach [99] uses natural language analysis on words in code and comments to 
determine similarity. This looks like a very interesting and unique approach that can give 
complementary information to other clone detectors. Its results, however, are too 
unpredictable for the approach to fit in our framework. 

 



7 Conclusions 
This report presents the results from a structured review of code duplication literature in the form of a 
conceptual model. We have determined that all concepts from the reviewed papers, with a few 
exceptions in section 6.2, can be stated in terms of the conceptual model. This conceptual model will 
aid us in future research where we intend to further investigate the duplication hypothesis. 
 
A possible spin-off from the framework could be a standard for interoperability of clone detectors. It 
appears that most clone detectors can be described by the same reference model, in which 
information is exchanged between a certain number of components; these information flows can be 
described in terms of the framework, and generalized accordingly. This could result in a “clone 
interchange format” allowing practitioners for example to use the detection rules of one clone detector 
and the grouping rules of another, or to combine clones from two detectors in one visualisation. 
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