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Abstract

Recently a new way of modeling dependence has been introduced considering a sequence
of parametric copula models, covering more and more dependency aspects and approximating
in this way the true copula density more and more. The method uses contamination families
based on Legendre polynomials. It has been shown that in general after a few steps accurate
approximations are obtained. In this paper selection of the adequate number of steps is treated,
and estimation of the unknown parameters within the chosen contamination family is estab-
lished. There should be a balance between the complexity of the model and the number of
parameters to be estimated. High complexity gives a low model error, but a large stochastic
or estimation error, while a very simple model gives a small stochastic error, but a large model
error. Techniques from model selection are applied, thus letting the data tell us which aspects
are important enough to capture into the model. Natural and simple estimators complete the
procedure. Theoretical results show that the expected quadratic error is reduced by the selec-
tion rule to the same order of magnitude as in a classical parametric problem. The method is
applied on a real data set, illustrating that the new method describes the data set very well:
the error involved by the classical Gaussian copula is reduced with no fewer than 50%.

Keyword and phrases: copula, model selection, penalty function, Legendre polynomials, conta-
mination family, nonlinear correlation.
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1 Introduction

When modeling dependence with the multivariate normal distribution, all we need to know for
the dependence structure are the linear correlations. Recently it is realized that considering
only linear correlation is far too restricted and there is nowadays much attention for going
beyond the linear dependence, in particular in finance and insurance (see e.g. Cherubini et al.
(2004), Embrechts et al. (2002, 2003), McNeil et al. (2005)), but also in other areas like for
instance hydrology (see e.g. Genest and Favre (2007)). For continuous multivariate distribution
functions, the univariate margins and the multivariate dependence structure can be separated,
using Sklar’s (1959, 1996) theorem and the dependence structure can be represented by a
so called copula. This copula is the multivariate distribution function of the random vector
obtained by applying on each of the components its probability integral transformation, thus
giving them uniform marginals. For a lot of results on copulas see also Joe (1997), Nelsen
(1999), Cherubini et al. (2004), McNeil et al. (2005).



The great emphasis on copulas has been criticized by Mikosch (2006), leading to a passionate
discussion, see e.g. Genest and Rémillard (2006). Some of the issues in that discussion concern
the goodness-of-fit, the choice of the copulas and estimating aspects. In this paper this kind of
issues is investigated following the new approach, started up in Kallenberg (2008).

A possible strategy to find a suitable copula is to consider a certain copula or family of
copulas and to apply goodness-of-fit tests for testing the simple null hypothesis of a given
copula, or the composite hypothesis of a parametric family of copulas, see e.g. Fermanian (2005),
Panchenko (2005), Genest et al. (2008) and references therein. But in case of rejection, it is
not clear what to do. In Biau and Wegkamp (2005) the problem of finding a particular copula,
given a class of candidate copulas is attacked. They restrict attention to copulas with a bounded
density. In their oracle inequality the upper bound consists of a model error term, expressing
the distance between the true density and the parametric family of candidate copulas, and a
second part giving the stochastic error or estimation error. Also in the approach presented here
the total error is splitted up into the model error and the stochastic error, see (2.5) in Section
2.1 and (3.2) in Section 3.1. The modeling step has already been executed in Kallenberg (2008).
The next steps, the required model selection and the estimation part are the topics of the present
paper.

The modeling step, a new way of choosing a suitable copula to model dependence, can
be described as follows. It consists of an intermediate approach between a parametric family
(advantage: small estimation error, because only a few parameters have to be estimated; disad-
vantage: possibly a large model error due to a gap between the true distribution function and
the chosen parametric family of copulas) and a nonparametric approach (advantage: no model
error; disadvantage: large estimation error unless we have a huge number of observations). This
is done by considering a sequence of parametric copula models, approximating the true copula
more and more. Starting point is a given (family of) copula(s). It has been shown in Kallen-
berg (2008) that contamination families based on suitable Legendre polynomials give with a
uniform start in general after a few steps accurate approximations, while applying a Gaussian
start looks also very promising. A numerical study involving a large number of well known
copulas illustrates clearly the results: errors of 10% when using the classical Gaussian copula
are reduced in a few steps to only 1%. Even errors of more than 50% are reduced to only 4%,
thus yielding for instance 0.030 as approximation for the true probability 0.029, see Table 11 in
Kallenberg (2008).

Having established the nice accuracy of the approximations, we should select the dimension
of the parametric contamination family and estimate the unknown parameters within the chosen
contamination family. Considering higher and higher dimensions of the contamination families,
we get in the limit the true density and in this way the method is "nonparametric". On the other
hand, at every earlier step we have the advantage of a parametric family and hence we do not
encounter a nonparametric estimation problem, but have to estimate (only) some parameters.
There should be a balance between the complexity of the model and the number of parameters
involved. To get such a balance we apply techniques from model selection, adapted to the
problem at hand. In this way the data tell us which aspects are the most important ones to
capture into our model. The model is kept as simple as possible, but if a more complicated
model gives a much better fit, it is applied. The penalty in the selection step ensures that only
a real improvement is awarded.

The unknown parameters within the chosen contamination family are estimated by moment
estimators. They are linked up with the L?-distance, which is also invoked for the modeling
step. Therefore, these estimators are the natural (and simple!) estimators to apply. The whole
procedure is easily implemented as is shown by a practical application.

Obviously, the marginal distributions should be estimated as well, but that is a very well
known estimating problem with many solutions, depending on the assumptions made on the
marginals (e.g. a parametric family). The comparison between the present approach based on



separating the marginal distributions and the copulas (including the influence of estimating the
marginals on the modeling and estimation steps for the copulas) and on the other hand a fitting
of the multivariate distribution as an entity to the data (see Mikosch (2006)) goes beyond the
scope of this paper. To avoid too many technicalities we concentrate on bivariate distributions,
but see Remark 2.7 in Kallenberg (2008) for an extension to the multivariate case.

The paper is organized as follows. In Section 2 the contamination families based on Legendre
polynomials are introduced and the decomposition of the total error into the model error and
the stochastic error is explained. Section 3 deals with the model selection problem. As we
should avoid a large model error, the natural way to select the adequate model is to add new
parameters as long as a substantial improvement of the model error is implied. A suitable
penalty function, depending on the number of observations and the dimension of the model,
does the job. Starting with a given copula or a given parametric family of copulas, with
as typical examples the uniform density and the Gaussian copula densities, respectively, this
leads to the estimated copula density in the appropriate contamination family, chosen by the
data. Theoretical results are gathered in Section 4. It is shown that within a contamination
family with a fixed, but unknown dimension, the selection rule selects the ’right’ dimension
with probability tending to 1 in a fast way. Moreover, also the right Fourier coefficients are
chosen. The model error and stochastic error are investigated. It is shown that, although the
approach has a nonparametric flavor, the selection rule reduces the expected quadratic error
to the classical order O(n~!) of a parametric problem. An application of the method to a real
data set shows in detail the (easy) implementation of the method. Moreover, it illustrates the
improvement due to taking nonlinear correlations into account. Although the linear correlation
is prominently present in the data set, nevertheless an improvement of no fewer than 50% is
obtained when going beyond the classical Gaussian copula.

2 Preliminaries

Let (X1,Y1),...,(Xy, Yn) be ii.d. random vectors with continuous distribution function Fx y.
The marginal distribution functions of X and Y are denoted by Fx and Fy, respectively. We
consider the copulas (U;, V;) with

Ui=Fx(X;),Vi=FY:),i=1,..,n.

In case of independence the simultaneous density of U; and V; equals 1 on the unit square,
but due to dependence it may have another form. We assume that (U;, V;) has a density w.r.t.
the Lebesgue measure on the unit square and we denote the true density of (U;, Vi) by f and
its distribution function by F. (Sometimes the distribution function of a copula is denoted by
C and its density by ¢, but we prefer to use the notation F' for the distribution function and
f for its density.) Hence, we have the following relations Fxy(z,y) = F (Fx(x), Fy(y)) and
F(u,v) = Fxy (F)zl(u), F;l(v))

To model and estimate the true density f of (U;, Vi), a sequence of parametric models is
introduced, containing more and more dependency aspects. As starting point we take a given
copula or a given parametric family of copulas, denoted as fy. In particular we consider the
independence start, given by the uniform density on the unit square, and the Gaussian copulas.
The uniform density is denoted by f§" (u,v) and the Gaussian copula densities by

G 92 (27(w), 2 (v):p)
o) = e T e @ 1)

where ® denotes the standard normal distribution function, ¢ its density and @9 (z,y; p) the
density of the bivariate normal distribution with expectations 0, variances 1 and correlation
coefficient p.

(2.1)



2.1 Contamination families

We start with copula density fy. Let b, be the r*" Legendre polynomial on (0,1). The Legendre
polynomials by, ..., bs are given by

bo(u) =1

bi(u) = vV3(2u—1)

ba(u) = V5(6u? — 6u + 1)

bs(u) = V7(20u® — 30u? + 12u — 1)

ba(u) = 3(70u* — 140u> 4 90u? — 20u + 1)

bs(u) = V11 (252u° — 630u* + 560u® — 210u + 30u — 1) .

We approximate f — fy by a linear combination of the functions b,(u)bs(v), yielding the k-
dimensional contamination family

k
Jre (u,030) = fo(u,v) +> 0;by, (w)bs, (v). (2.2)

J=1

Denote the Ly-norm of f by || f||, and thus in particular the Ly-norm of f by

11l = { | 1 /0 o v)2dudv}

and write the inner product of f and g as

1/2

1 1
< f,g>= / / f(u,v)g(u, v)dudv.
0o Jo
Let f, fo € Lo, that is || f||, < 00, || fol|; < 0o. We then have (with equality in the Lo-sense)

flu,v) — fo(u,v) ZCTS

with Fourier coefficients

crs =< f — fo,bpbs >= //{f u,v) — fo(u,v)} by (uw)bs(v)dudv
= Esbr(U)bs(V) = Eybr(U)bs (V) = p (b-(U), b5 (V); ) = p (b (U), bs(V'); fo)

for copulas f and fy, where p (b,(U),bs(V); f) denotes the correlation coefficient of b,(U) and
bs(V) under f. (Often we write simply E,var or P instead of Ey,vary or Py when the expec-
tation, variance or probability under f is considered.) So, ¢,s has a nice interpretation: it is
just the change of the correlation coefficient of b,(U) and bs(V'), when going from fy to f. For
instance, c11 is just de change of the linear correlation coefficient of U and V', when going from
Jo to f.

Writing

k
Tk (ua U) = fO(ua U) + Z Crjs; brj (u)ij (U)
j=1
the following proposition gives a "Pythagorean" result showing that fi is the projection of f
into the contamination family with "base" fo: ||f — f (9)\\3 is minimized by taking 0; = ¢, s,
because in that case the second term on the right-hand side of (2.3) vanishes.



Proposition 2.1 For each 8 € R* we have

1f = £ O3 = I1F = fell + 1 £ — fr O3 (2.3)

In particular, let ¢.s be an estimator of c.s and let

k
Fr (u,0) = fo(u,v) + > Gy bry (w)bs, (V) (24)
j=1
then
—~ 112 2 —~ 12
|7 =3[, = 17 = 53+ |5 - B (2:5)
k k
Zcrs - rjsj + Z (ersj o /C\rjsj-)2 ’
j=1 j=1

Proof. Because f(u,v) — fx (u,v) = Z(r,s);é(rj,sj)Crsbr(u)bS(U) and fi (u,v) — fx (u,v;6) =

Z?:l (¢rys; — 05) br; (w)bs, (v), orthonormality of the system b, (u)bs(v) gives the result. m

Equation (2.5) can be interpreted as

Total Error = Model Error + Stochastic Error.

2.2 Estimation

Obviously, ¢,s depends on the unknown copula f and should be estimated. Writing

Crs = / / W)dF (u,0) — Egyby (U)bs(V)

the natural estimator of ¢,; is obtained when replacing F' by F,,, the empirical distribution
function based on observations (Ui, V1), ..., (Un, Vi,); that is F}, gives probability mass n~! to
each of the points (U1, V1), ..., (Uy,, V). We then obtain the estimator

Crs = — Zb Efob (U)b (V)7 (26)

which also can be seen as the moment estimator of ¢.s. So, indeed the moment estimators are
the natural estimators in this context, linked up with the Ls-distance. When fy belongs to
a parametric family, its parameter should be estimated as well. This aspect will be added in
Section 3.3. Up to that point fj is assumed to be known.

3 Model selection, estimated density

Having established estimators of the parameters within the contamination family, the appro-
priate dimension of the contamination family should be chosen. Let m,, be a control sequence,
giving the largest dimension for r, s under consideration with n observations. The estimated

density then becomes
My Mn

fo(u,0) + > Crsbr(u)bs(v) (3.1)

r=1 s=1

with ¢5 given by (2.6).



3.1 Model error, stochastic error

The model error and stochastic error when using this estimator is given in the following theorem.

Before presenting and proving this theorem we give a lemma on the behavior of [ b (u

Lemma 3.1 For each € > 0 we have
/|br(u)|4_€ du=0(1) as T — o0

and
[ s

r—»oo log r w2’

)du.

Proof. Essentially the result is given in Problem 91 on page 391 of Szegt (1959). A detailed

analysis (not presented here) gives the limiting value 6/72. m
Theorem 3.2 Let

g(u,v) = f(u,v) — fo(u,v),

My Mp
g (10) = 33 by (u
r=1 s=1
My My
G (w,0) = 3 > Crsbr(u
r=1 s=1
then
~ 2 2 ~ 2
19 = Gmallz = 19 = gma 2 + 1gm. — Gmall2
My Mn
Hg gmnH2 Zcrs chrsa
r=1 s=1
Hgm'n - /g\WLnug = ZZ (CTS - Ers)2
r=1 s=1
and
Mp Mn
E g, — G =173 war(b, (0)hs(V)) = O (n~'m? logm,) as n — co.
r=1 s=1

Moreover, if feLoyc for some € > 0, we have

Elgu, — G 3 = O (n~"m2) as n — oc.

Proof. Because g(u,v)—gm,, (u,v) = Y s, and for s>mn crsbr(u)bs(v) and gy, (U, V) —Gm,,

).

o S (ers — Crs) br(u)bs(v), orthonormality of the system by.(u)bs(v) gives (3.
Ec¢,s = cps, we have F (cps —ETS)Q = var(¢ys) = ntvar(b.(U)bs(V)). For all f
1 <r,s < m, application of the Cauchy Schwarz inequality gives

var(by(U)bs(V)) < / / F(u, )82 (w)b2(0)dudy

<i{f [ b;%<u>b;*<v>dudv}l/2

< | flly , max /bf(u)du

2
€

(3.2)

(3.3)

u,v) =

(
Since
L2 and

(3.4)



and (3.3) follows from Lemma 3.1. Let feLai. for some € > 0 and define n = 2¢/(1 +¢). By
Holder’s inequality we get for all 1 < 7, s < m,,,

var(by (U)bs(V)) < / / £, )8 (w)b2(0) dudy (3.5)

" " (14¢)/(2+¢)
S\f||2+s{ [ [ etarrin "dudv}
4 (242¢)/(2+¢)
< e { o [0l

and hence application of Lemma 3.1 gives E ||gm, — Gm., |3 = O (n~tm32), which completes the
proof. m

3.2 Selection rule

Taking all the coefficients ¢,.s for 1 < r;s < m, may be not a very good idea, because this
introduces a large estimation error, in particular if a lot of the ¢,s are small or even 0. Similarly
as has been done in Kallenberg (2008) we consider only the largest Fourier coefficients and
ignore the rest. Therefore, we replace the estimator from (3.1) by restricting to the k, largest
among ¢.s with 1 <r, s <m,, yielding

kn,
F(uw,v) = folu,v) + Y Cr,s,br, (w)bs, (v)
j=1

with

[Crusi| 2 [Crasal = o 2 [ g5,

(Note that due to continuity of the distributions we have strict inequalities here with probability
1 and hence with probability 1 the R;, S; are unique.) We have used here capitals R, S to stress
that they are random variables, because they are not chosen in advance, but depending on the
data. The obvious question then is: how large should we take k,7 If we take a larger k,, the
model error becomes smaller, but the stochastic error grows. The ’optimal’ choice depends on
f, but f is unknown. Therefore, a deterministic choice seems to be inadequate and hence we
take a data driven selection of the dimension.

The idea behind choosing the appropriate dimension is that a higher dimension is only
profitable if the approximation in the higher dimension gives a substantial improvement. The
reason for it is that the higher dimension gives a more complicate description and moreover
more parameters have to be estimated and hence a higher stochastic error occurs. Therefore,
the idea is to base the selection rule on the improvement of the model error. The model error
forfkfrom(24)isgivenbyz 2—Zfl,,s,cf( 5).

Hence, Z j=1C r s; should grow sufficiently fast in order to take a higher dimension. For that
purpose we introduce a penalty. The penalty is linear in k and decreasing in n. Obviously, we
do not know the ¢,s and therefore we replace them by ¢,s. This leads to the following selection
rule o

S:{O 1fcR151<An
arg maxi<p<m? {Zf 1cR s - A k} otherwise ’

where A,, is decreasing and tends to 0 as n — oo. (Note that by continuity of the distributions
the maximum is attained at a unique k with probability 1.) The selection rule can also be

expressed as
G 0 if ¢h g, < An
] max {1 <k<m2: ’c\%k s = An} otherwise

(3.6)

(3.7)

as is seen in the following lemma.



Lemma 3.3 With probability 1 we have

ar max E C —
& 1<k<m2 R;S;

:max{l <k< m c%ksk > An}
if ¢h g, > An.

Proof. Let i
Ok = Z/C\%zjsj — Ank
j=1

With probability 1 the sequence ap — ap_1 = E?—zk S, — A, is strictly decreasing and hence the
sequence ay, is "strictly concave": it strictly grows as long as ’c%k s, — Ay > 0 and then it strictly
goes down, implying that its maximum is attained at the (unique) largest k& with E%k s, —An >0,

that is at max{l <k< m% :/c\%ksk > An}. [

The expression in (3.7) has a nice interpretation: we proceed until the (estimated) Fourier
coefficients are too small.

Classical penalties are for instance n~! logn (in line with Schwarz’s rule) or 2n ! (in line with
Akaike’s criterion). However, we should realize that we are not going through the dimensions
in an in advanced prescribed way, but we take so to say the "best" route by taking the largest
(estimated) Fourier coefficients first. Obviously, we therefore should take a larger penalty. We
can see this also from the formulation given by (3.7). Suppose that ¢, = 0 for all » > K and/or
s > K. Then we should have S < K? with high probability. But ’c\% 24152, still may be

relatively large, because it is the largest among m?2 — K2 palrs ¢2,. Therefore, 1t may be better
to take a larger penalty, taking into account the variance of ¢2, In view of (3 4), noting that
maxi<,<m, | b(u)du behaves like 672 log m,,, one may thlnk on penalties like

A, =n"! (logn) (logm,). (3.8)

3.3 Estimated density

The estimated density now becomes
R S
Flw,v) = folu,v) + > Cr;s;br; (u)bs; (v).
j=1

When fy belongs to a parametric family, fo(u,v;7), say, then the parameter 7 should also
be estimated. Note that ¢,s; depends in that case on 7 as well, see (2.6), and hence we end up
with

~

S
fu,v) = fo(u,v;7) + Z/C\stj (T)br; (u)bs; (v), (3.9)
j=1

where
Crs(T Zb // v) fo(u,v; T)dudv.

When 7 is given, we often use the shorter notation ¢, instead of ¢,5(7), as we have done before,
but this shorter notation ¢,s is never used when 7 is estimated as well.
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Remark 3.1 The growth of Zj 1 2 s, can also be measured relative to >, ¢, That is

considering Z T] s; — Ank Zr, s Crs in the selection rule. On the one hand, as >, 2, <
0o, the order of the penalty does not change in this variant. On the other hand, we should
estimate in that case ), c2,, for instance by Y7 S 22 . However, it should be realized
that F (’\2 ) does not tend to 0 if ¢y — O. For instance, take f = fém, then c¢;; = 0, but
E (@) =n"' [ [{b1(w)b1(v)}? dudv = n~' > 0. Therefore, -7, 3" 22 may give too much

noise and hence we prefer the more simple rule, given in (3.6).

Remark 3.2 In similar situations in testing theory selection rules like Schwarz’s rule are applied.
Starting with Ledwina (1994) a lot of papers on data-driven tests using (modifications of)
Schwarz’s selection rule have been appeared. Also the problem of testing independence is
covered, see e.g. Kallenberg and Ledwina (1999). Occasionally, for the goodness-of-fit problem
a density estimate fitted to the data in the dimension given by Schwarz’s selection rule is
applied, see e.g. Kallenberg and Ledwina (1997), Figure 5. However, as argued in Section
4.2 in Kallenberg (2008) the testing problem really differs from the estimation problem. The
focus in testing is more on what is happening in the neighborhood of the null hypothesis, while
in estimation all types of dependence should be dealt with. As a consequence the selection
rule proposed here is different from the one in testing theory. In the testing problem the
loglikelihoodratio or the score function comes in. The score statistic in the contamination
model fi (u,v;0) = fo(u,v) + Z?:l 0;br, (u)bs; (v) becomes nZ 171 Z with Z = (Z1, ..., Zy),

n! Z - log fi (U3, iz 0)

s; (Vi)

§: ﬁ)lﬁ,VQ ’

T denoting the transpose and I the information matrix at # = 0. When f; is the uniform
distribution, we get Z; = ¢.,5; and I then equals the identity matrix, yielding Z'17 'z =
Zf 1’\% 5 However, for other densities fo we do not get this form. While in testing theory
the natural approach is to consider the ratio f/fo (and hence a multiplicative structure), in
estimation theory it seems more natural in connection with the Lo-norm to consider the additive

contamination family as introduced in (2.2).

Remark 3.3 The problem of choosing the appropriate dimension is certainly not replaced by
the problem of choosing m,. In most practical situations there is not that much change for
larger my,. This can be seen from the extensive numerical results in Kallenberg (2008).

4 Theoretical results

In this section we investigate the asymptotic behavior of the new estimator ]? presented in
(3.9). Estimation of 7 will be done by standard estimators for the parametric family, while no
estimation at all is needed when fj is a given density. Therefore, we concentrate on the second
part of (3.9) with Cg,s, (7) replaced by Cg;s, (1), which often for simplicity is written as cg,s; -

It has been seen in Kallenberg (2008) that already after a few steps the contamination
model gives in general accurate approximations. However, the number of steps is not known
beforehand and moreover, among the, for instance 5, largest Fourier coefficients we may find cg3
or c77 and not necessarily only c¢,.; with the smallest r, s. Therefore, we consider the following
contamination family as our true density

K K
F(,0) = folu,0;7) + 0 crsbr(u)bs(v) (4.1)

r=1s=1



with K fixed, but unknown. In other words, ¢,s = 0 for r > K + 1 and/or s > K + 1. (Note
that also for r, s < K some of the ¢,s can be 0.) This reflects that very small Fourier coefficients
are unimportant. In practice, they can be considered as (0. For theoretical convenience it is
more appropriate to really make them equal to 0. However, from which point on is not known
beforehand.

The ordered |cps| = | [ [ by (u)bs(v) f(u,v)dudv — Eg b (U)bs(V)|,1 < 7,5 < m,, are denoted

as
{Crfs{ > {Crgsg > ..z Cri st >0 (4‘2)
= |Ccpx  ox =..=lcx =+ | =|cx * = ...l o
T 415741 T 28% 0 T2 Sk T2

with L = 0 if ¢,s = 0 for all r, s (and thus f = fy). So, ¢rxsx has to be interpreted as the last
important Fourier coefficient.

4.1 Selecting the right dimension

We start with showing that S selects the ’right’ dimension L with probability tending to 1,
often at a fast rate.

Theorem 4.1 Let f be given by (4.1) and L by (4.2). Let

= _ 4
o= e var (b, (U)b(V) w, = max [ Bh(u)da. (43)
Suppose that

MV A\, ni\,

lim A, =0, lim m, = oo, lim =0, lim (4.4)
n—00 n—00 n—00 Un n—o0 log My,
Then, for each € > 0,
A nA
P(S=L)>1-2m2ex <—&>>1—2m2ex <——n> 4.5
F=nzi=gmen (g, ) 2 e e e, ) Y
for all n > n () and hence, assuming that
nv ATL . ATL
lim A, =0, lim m, = oo, lim Mnv2n _ 0, lim N2 0, (4.6)
n—00 n—00 n—00 Un n—0oo (IOg mn)2
we get
lim P(S=L)=1.
n—odo
If we replace
lim nAn 00
23, Togma)?
in (4.6) by
nA, > logn(logm,)?,
then for every c > 0,
P(S#L)=0(n"°) asn — oc. (4.7

If fo € Loys for some § > 0, then conditions (4.4) are sufficient for getting lim, .o P(S =

L) =1 and replacing
lim =00
n—oo log my,

in (4.4) by
nA, > logn(logmy),

yields for every ¢ > 0,
P(S#L)=0(n"°) asn — oc.

10



Before proving Theorem 4.1 we present some lemmas.

Lemma 4.2 Let f be given by (4.1) and L by (4.2). Suppose that limy,_oo Ap = 0. Then, for
L>1,

hmsupnlogP(cRLsL < Ay) <0.

n—oo

Proof. Because

P (s, < B0) < P (U {2 < ) <3P (2 < A1)

j=1

and L is fixed, it suffices to prove that P (’c\%* o < An) is exponentially small for each 1 < j < L.
J

We have
P (e <da) =P (fo

Cr;?s;f < An)
<r(f

~
Cprgr — Ecr’fs’f
J°J J°J

>

- VE).

Cp* g*
T]sj

Since lim,,— oo (

VA,) =

indeed P (c o <A ) is exponentially small, thus completing the proof. m

Cpxg* Cpxg*
T} s} TS}

Lemma 4.3 Let f be given by (4.1) and L by (4.2). Then

nA
P (AQ > A ) < 2m? — n ,
“Rrp1S41 = O ) = S OXP 2vp, + % (2m, + 1) VA,

where vy, is given by (4.3).

Proof. We have

m;,
2 m2 ~2 ~2
P (Chyasun = 8n) <P (U {Ehs 2 An}) < 30 P (S 2 00).
j=L+1

Noting that, cf. Sansone (1959) p. 181,

masx |b,(u)| = v2r + 1, (4.8)

0<u<l

and that Ecr*s* =Crrsr =0 for L+1 < j < m2, Bernstein’s inequality (see e.g. Serfling (1980),
p. 95) gives
P (e

< 2exp

> V/A,) (4.9)
nl\,
2vuar (b,n;_ (U)bs: (V)) + g\/<2r;‘ + 1) (283’7 + 1) JANS

Cr* s* Ecr*s*

nA\,
<2 — .
- exp{ 20n+%(2mn+ 1) \/An}

11



Hence,

m2
- nA
P (AQ > A ) < ) 2expq - E
CRp 41814 = 2 ) = Pt P { 2up, + % (2m, + 1) VA,

_o (m2 ni\,

_ L _
" )exp{ 2vn+§(2mn+1) \/An}

< Qmi exp§ — 3 nln )
2u, + 5 (2my, + 1) VA,

as was to be proved. m
Proof of Theorem 4.1. By definition (3.7) of S it follows that
P(S = L) = P (s, = Ak, 5., < On)
—1-P (E%LSL <ALUTh, 500, 2 An>
~2 ~2
=1-P (CRLSL < An) - P <CRL+ISL+1 2 An)

for L>1and P(S=0)=P (/c%lsl < Ay). Application of Lemma 4.2 gives
limsup,,_, % log P (E%DLL s < An) < 0 for L > 1 and therefore

P (/C\%%LSL < An) < exp(—ncy)

for some constant ¢; > 0 and all n > ny. By Lemma 4.3 we get

A
P (é%LHSLH = An) < Qm% exp {— nan } '

20, + 2 (2my, + 1) VA,

Let € > 0. To get the first inequality in (4.5) it remains to be shown that for n > n(e),

2y, + % (2m, + 1) VA,

nA
< 2m2 ___=n
<o ()

A,
exp(—ney) + 2m2 exp {— - } (4.10)

or, equivalently,

(2m2)_1ex (ann—nC>+ex nin L !
WP T g ) TP e \ 24 T 25 2@2mn 1 ) on WA,

<1

Since A,, — 0 and v, > var(by(U)by(V)) > 0, it immediately follows that

_ A,
nh—{go (Zmi) ! exp ((27—/:——5)’1) — ’I’LCl) =0.
n

Using lim,, oo myuv, 'VA, =0, we get

1 1 1 €
lim — = — =
n—c0 (2+s 2+§(2mn+1)vghmn> 2+e 2 2(2+e¢)

12



-1
n

-1 _

which in combination with nA,v; ! > nA, || f]l3 " w =00

(see also Lemma 3.1 and (4.4)) gives

lim e nAn 1 L 0
X — =
n—o00 p Un 24 ¢ 2+ % (an_‘_l),ugl /An
and hence (4.10) holds for n > n(e). This completes the proof of the first inequality in (4.5)
for L > 1. In case L = 0, the only difference is that the term P <E%L s; < An) is not there; the

(see also (3.4)) and limy,—,0o nA,w

remaining term P (E%LH Spa1 2 An) is covered by the proof for L > 1. The second inequality

in (4.5) directly follows from v, < || f||y wn, cf. (3.4).
By (4.6) we have

. ni\,
im = 00
n—oo (logmy,)?
and thus, using Lemma 3.1,
. nl,
. log 2 ni,
lim 1 — + 2 = —
ntoe Ogm”{logmn LRSS ||f||2wn10gmn} =
and hence A
n
lim 2m? —— " )=0
nmsoo P ( @+e) Hszwn) |
implying

lim P(S=1L)=1.

n—oo

Next assume moreover that nA,, > logn(logmy,)?. In view of (4.5) to prove (4.7) it remains
to show that for every ¢ > 0

nA,
2+¢) [ f]ly wn

as n — oo. Noting that w,, = O(logm,,), cf. Lemma 3.1, it follows that

2m?2 exp (—

) = 0(n~°)

ni, S log n(log my,)?
2+e)lfllywn = calogmy

= ¢; 'logn(logmy,)

for some ¢y > 0. Therefore, for every ¢ > 0,

nA,

2m2 exp (——
! 2+e)[1fllywn

) < exp (—02_1 log n(logmy,) +log 2 + 2logm,) = O(n™°)

as n — oo.
If fo € Loy for some § > 0 and hence also f € Lo, then (3.5) together with Lemma 3.1
give v, = O(1) as n — oo and hence (4.4) yields

nA
lim 2mZL exp <——n> =0,
n—o0 (2+2e) [/l vn

which in combination with the first inequality in (4.5) results in lim,,_,o, P(S = L) = 1.
Assuming moreover that nA,, > logn(log m,) now gives, cf. (4.5), for some c3 > 0,

An lOg n(log mn)
< 2 _ni < 2 2 N 7
P(S 7é L) 2mn exp < ( )U > an exXp ( .

= exp (—c5 ' logn(logmy,) +log2 + 2logmy,) = O(n™°) as n — oo

13



and hence, for every ¢ > 0,
P(S# L)=0(n"° asn — oo,

thus completing the proof. m

Conditions (4.4) are e.g. fulfilled if we take

n—oo n—oo n

lim m, = oo, lim % logn =0 and A, =n"! (logn) (logmy,), (4.11)

while conditions (4.6) are satisfied, when replacing lim,, o7~ /?(logn)m, = 0 in (4.11) by
lim, o0 (logn)~!logm, = 0. In both cases we may take e.g. m, = O(logn) as n — co.

Remark 4.1 Obviously, the uniform copula density fy" satisfies fo € Loys for every 6 > 0.
For the Gaussian copula density f§ (u,v;p) we have f§ € Ly, s for every 0 < < (1 — |p|)/|pl
and hence for every —1 < p < 1 we obtain f§' € Ly, s for some 6 > 0.

4.2 Selecting the right Fourier coefficients

In this subsection we will show that the sets {(R1,51),..., (Rr,Sr)} and {(r7,s7),..., (77,57)}
coincide with probability tending to one. Let

~
Cp*g*
JJ

> max
L+1<j<m2

A= { min ‘E}*_S»f

1<g<Ll 77

} . (4.12)

On the set A the L largest |¢,s| among |¢s|,1 < 7,5 < m,, are {‘/C\rfs’l‘ ey ETZSZ‘} and hence

on the set A we have {(R1,51),...,(Rr,S)} = {(r],s}),...,(r},s7)}. The following lemma

gives an upper bound for P(A).

Theorem 4.4 Let f be given by (4.1) and L by (4.2). Then, for L > 1 and m,, = o(n/logn)

as n — oo,

2

NC-x
. -~ -~ Ty S
P ( min (G| < max |G > < 2m2exp{ — . L L (4.13)
1<5<L L+1<j<m2 8un + 3 ¢ sx | (2m, + 1)
N |Cpx o
L°L
=0 | exp ,

dmy,

where vy, = Maxi<y s<m, var(b,(U)bs(V)). Hence, for every c > 0,
P({(R1,51) .., (R, Sp)} = {(r],81) .-, (rL,s1)}) 2 1 = O(n™)
as n — oo.

Proof. Let 0 < e < Crx st |- Noting that E’c};s; = Crrsr for 1 < j < m2 and in particular,

EE}; s = 0 for L +1 < j < m2, elementary inequalities yield

< max
L+1<j<m2

<el|+P max
L41<j<m3

P | min "c\ «
1<j<r |9’

. ) (4.14)

/C\r’.‘ *
> €>

*
J J

¢,

* ok
rrs*
Js]

< P| min |[Guxer
1<<L1 7

14



IN
N\
o
<x
w
SL¥
|
o
<y
o
SOk

j=L+1
m;,
— 5) + Z P(

>

>c).

~ Ee
Cr 5% Crrgx — LuCprgx
L°L 7% 77

L
S § P(CT;‘S;‘ _E/C\r;-‘s;
i=1

Take ¢ = 1 crr st |- In view of (4.8), cf. also(4.9), Bernstein’s inequality gives
Crist
P Cprg*x — E/C\r’fs"f 2 (415)
Ji%J 2
2
NCH
<2expl — . Lo
8un + 3 |Cre st | (2my + 1)
Combination of (4.14) and (4.15) leads to
P( min ‘aﬂf «| < max  |Cergr )
1<G<Ll 7Y LH1<j<m2 | 977
L CT’* s* mi CT* s*
o~ o~ L°L o~ L°L
< P Crest — Ecr;.‘s;.‘ > 5 + Z P |crrsr — ECT*.‘S;T > 5
j=1 j=L+1
2
NCH
< 2m2exp{ — Lo ,
8vy, + % Cryst (2m, + 1)

thus proving the first inequality of (4.13).

Noting that v, = O(w,) = O(logm,,), cf. (3.4) and Lemma 3.1, it follows that for sufficiently
large n,

4
v, + 3 Cri st (2m, +1) <3 Cra st | M
and hence, for sufficiently large n,
2
nc * *
2 TrS
2m;, exp { — 5 7 L L2 ;
U + 3 |Crr st | (2m, + 1)
ncZ* s* 2 n CTZSi
<exp — —=F— +log(2m;) p <exp i
3 Crz st | My M

where we have used that m,, = o(n/logn) as n — oo and hence n~'m,, logm,, — 0 as n — oo.
Using again m,, = o(n/logn) as n — oo, it follows immediately that for every ¢ > 0,

N | Cr* o*
TLSL

exp — T = O(TL_C)

as n — 00, thus completing the proof. m
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4.3 Model error, stochastic error

In the general case of a parametric start we can distinguish three type of errors: (a) errors due
to estimation of the parameter 7 in the part concerning the parametric start; obviously, when
starting with a given density fo, as for instance the uniform density on the unit square f§j",
such an error is not present; (b) the model error due to an error in selecting the model; (c) the
stochastic error due to estimation of the Fourier coefficients within the selected model. Since
m, — oo and K is fixed, we have for sufficiently large n that m, > K. Therefore, without
essential loss of generality we assume m,, > K. We use the following notation

o) = F0) — folwvim) = 353 ety

r=1 s=1

s
gs(u,v) :Z CR;s;br; (w)bs; (v),

S
9s(u,v;7) = Crys; (T)br, (u)bs; (v).

With this notation we can write

f(u,v) - f(u,v) = {fO(uvv;?) - fo(u,U;T) +§S(uvv;?) - /g\s(u,'l};T)}
+{gs(u,v;7) — gs(u,v)} + {gs(u,v) — g(u,v)}.

Here, we clearly see the various type of error terms. The first one, fo(u,v;7) — fo(u,v;7) +
9s(u,v;T) — gs(u,v; ), concerns the estimation of 7, that is estimation in the basic parametric
model (if present). The second term, gs(u,v;7) — gs(u,v) gives the error due to estimation
within the selected parametric model. The third term, gg(u,v) — g(u,v) gives the model error
due to restriction to dimension S in the orthonormal system. As stated before we will mainly
concentrate on the second and third term.

As to the first term we have

1/0(T) = fo(r) +95(T) = gs(T)ll2 < [1fo(T) = fo(r)ll2 + 195(T) — gs(7)]l2

and
g 2
19s(7) = Gs(m)3 = | {Cr;s,(7) — Cr;s; (1) }or, bs;
=1
; 2
= {r,s;(7) = Crys,(7)}
=1
]S )
Z[ J [ bt @)Ut v:7) = fotsvi7) e
S
br.(u)b 2dudv folu,v;7) — folu,v; 7 2 dudv
Zl//{R s (0)dudo [ {1 o, v57))
= S[l/oF) = fo(Ml3,
implying

1fo(7) = fo(r) +s(7) = s (Tl < (L + V) 1fo(7) = fo(7)lly.-

Since S = L with probability tending (often at a very fast rate) to 1 (see Theorem 4.1), the
order of the error due to the first term is indeed || fo(7) — fo(7)]|5, the estimation error in the
basic parametric model (if present).

For the second and third term we obtain the following result.

16



Theorem 4.5 We have

[Gs(7) = gll3 = [gs(r) — gsll3 + lgs — gll3 (4.16)
s m3,
= Z(/C\stj (1) — Cstj)2 + Z C%%ij'
j=1 j=S+1
If
1 VA
lim A, =0, lim m, = oo, lim Mn 0BT _ 0, lim MV 20 _ 0,n4, > logn(logmy,)?,
n—o0o n—0o0 n—oo n n—oo Un
(4.17)
we get
E|gs(r) = gsll; = O(n™") as n — oo, (4.18)
and for every ¢ > 0,
E|lgs — gll3 = O(n™¢) as n — oco. (4.19)

If fo € Lays for some & > 0, then replacing nA, > logn(logm,)? by nA, > logn(logm,) in
(4.17) suffices for getting (4.18) and (4.19). So, if fo € Lais for some § > 0 and
my logn

hmAn—Ohmmn—ool 7:0,1imM

n—00 n—00 n n—oo Un

=0,nA, > logn(logm,),

then
E|gs(t) — g3 =0(n™") as n — .

Proof. Orthonormality of the system b, (u)bs(v) gives (4.16). By (4.8) we have for all 1 <r,s <

i %jzlbr(vi> - [ [ btwpsto)ar o)

Write 14 for the indicator function of the set A. Take A as in (4.12). Then,

|/C\rs - Crs| = < 2(2mn -+ 1)

S
E{ > (@rs;(1) = crys,)?
j=1
S S
= ESY (@rys, (1) = crys;) langs=ry ¢ + EQ D _(Crys, (1) — crys;) 1augssry
=1 j=1
L Mn
S B QD (o (1) = o) Langs=ry ¢ + B § D_@ris, () = erys)1augsr)
=1 j=1

L
<EQY (@rsi(r) —cme) b+ E {4(2mn + 1)2mn12u{s#}}

< Zvar (cT ) +4(2my, +1)?m, {P(A) + P(S # L)}.
Using var(¢,s(7)) = n~tvar(b.(U)bs(V)), we get, since L is fixed,
L
Zvar (@;‘5; (7’)) = O(n Y)as n — oco.
=1

17



Assume that (4.17) holds. Using lim,, ..o n~'m, logn = 0, it follows from Theorem 4.4 and
(4.7) that for every ¢ > 0,

4(2my, +1)*mp{P(A) + P(S # L)} = O(n™°) (4.20)

as n — 00, which completes the proof of (4.18).
Further we obtain

2 2 2 2
Elgs—gls=E| > chs, | =E| D chslangs=13 | TE| D ks, lavgssn
j=S+1 J=5+1 J=5+1

On the set A we have {(R1,51),...,(Rr,S)} ={(r],s7), ..., (r], s} )} and hence

m2 m2

B Z C%?jsleﬂ{S:L} =k Z C%;s;flAﬁ{S:L} = 0.
j=5+1 j=L+1
Moreover,
m2 2
2 9 )
E( > chslanseny | SE | Do e lassn :”f_fOHQE(lZU{S#L})
j=S+1 j=1

< |If = foll3 {P(A) + P(S # L)},

and thus, cf (4.20), (4.19) easily follows. If fo € Lo, s for some § > 0, the (logm,,)?term in
(4.17) may be replaced by a logmy,-term in view of Theorem 4.1. Combination of (4.16), (4.18)
and (4.19) gives the last statement of the theorem. m

Remark 4.2 It is seen from Theorems 3.2 and 4.5 that the selection rule S reduces the expected
quadratic error with a factor m2 and brings it back to the classical O(n™!).

Remark 4.3 From a pure theoretical point of view, the "optimal" choice of A, and m,, for
densities f of the form (4.1) is simply: take A, as large as possible and m,, as small as possible.

and m, = K

In fact, if we would know K and Cry s , taking A,, as a constant smaller than Crx st

gives that both P(A) and P(S # L) are exponentially small. However, we do not know K and
crs 52 and therefore the "optimal" choice is to take A, — 0 and m,, — oo as slow as possible. On
the other hand, the error given by (4.18) is O(n~!) and from this perspective, other choices for
A, and m,, are already good enough. Therefore, it is interesting to cover in the theory also more
classical choices of A, coming from model selection theory with some adaptation for the fact
that we go through the dimensions in a data driven way, taking the largest Fourier coefficients
first. This leads to the choice A, = n~! (logn) (logm,,). For m, we may take m,, = logn, thus
tending to infinity not too fast. With this choice we get for densities f of the form (4.1) with

fo € Loy s for some 0 > 0 that P(A) and P(S # L) are smaller than n~¢ for every ¢ > 0, when
n is sufficiently large.

5 Application

In this section the method is illustrated on a real life example concerning 1500 U.S. insurance
claim data. Each pair of variables consists of an indemnity payment (LOSS) and an allocated
loss adjustment expense (ALAE), see e.g. Frees and Valdez (1998), Klugman and Parsa (1999)
for more explanation about these data. A picture of log(LOSS) against log(ALAFE) is given in
Figure 1.
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Figure 1. log(LOSS) against log(ALAE).

To obtain (approximately) uniform marginals we apply on both variables their fitted mar-
ginal distribution function. As mentioned in the Introduction the topic of the present paper is
estimating the copula and not fitting the marginals. Therefore we simply apply the (nonpara-
metric) empirical distribution functions on the marginals. This gives our "observations" U; and
V; on which we want to illustrate the new method of estimating a copula.

When considering the Gaussian copula we have to estimate the correlation coefficient p, see
(2.1). Because p = p(®~1(U),® 1(V)), the natural estimator of p is the sample correlation
coefficient based on (®~1(U;), ®~1(V;)). To avoid problems with U; = 1 or V; = 1, we take as
empirical distribution function for X: FX(z) = (n41)"* > 1(X; < ) and similarly for Y.
Hence, we get as basic observations

Ui = FiSoo(X3), Vi = Fieo(Y3),i =1, ..., 1500.

A picture of the U; and V; is given in Figure 2.
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Figure 2. LOSS against ALAE with (estimated) uniform marginals.

The estimated copula is given by, cf. (3.9),
R S
Fw,v) = folu,v;7) + Y Cr;s; (7)br, (w)bs; (v).
j=1

Firstly, we consider the uniform start with fo(u,v;7) = 1 for all w,v. In that case there is no
additional parameter 7 and ¢,5(7) = G5 = n 1> b.(U;)bs(V;). We take mys00 = 10 and,
cf. (3.8), A1s00 = 150071 (log 1500) (log 10) = 0.0112. To get the number of terms S in our
approximation and the coefficients /C\Rj s;» we have to calculate Crs for r,s =1, ..., 10, order their
squares and take those for which ¢, > Ajs0, cf. (3.7), or, equivalently, for which |¢.5| >
VAis00 = 0.1060. Direct calculation gives that |¢.s] > v/Aiseo for (r,s) = (1,1),(2,2),(1,2)
and (2,3) with corresponding values:

c11 = 0.4624, cho = 0.2185, ¢12 = 0.1250 and ¢co3 = 0.1215.

Hence, we get S =5, (Rl,Sl) = (L 1)7 (R27 52) = (2¢ 2)7 (R3a§3) = (172)¢ (R4>S4) = (273) and
(Rs5,S5) = (4,2). The resulting approximation, denoted by f“* because of the uniform start,
therefore is

f“”(u,v) = 140.4624b1 (u)b1 (v) +0.2185b2 (u)ba(v) +0.1250b1 (u) b2 (v) +0.1215b2 (uw)bg(v). (5.1)

A picture of the estimated copula J?is presented in Figure 3.
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Figure 3. Estimated copula with uniform start.

For the start with the Gaussian copula we estimate p by the sample correlation coefficient
A ety - T et ) 2TV}
p= ;
N N
\/ e - @) S {e v -}

where 1500 ~ 1
(I)_l(U) _ Zi:l e (UZ)
1500
This results in p = 0.4756. Now we have
| 1500
oo = 8l7) = T D VBV = [ [ b (@0l 030.4756) dud.
i=1

Direct calculation gives that [¢.s| > v/Ais00 for (r,s) = (1,2) and (2,3) with corresponding
values:
/0\12 = 0.1250 and /0\23 =0.1215.

We see that the linear correlation, which was the highest Fourier coefficient when starting with
the uniform, is already taken into account by the Gaussian copula, as may be expected because
of the extra parameter p, which is involved. The coefficients ¢12 and ¢a3 are the same as in
the uniform case, because [[ b.(u)bs(v) fo(u, v; p)dudv = 0 for 7 + s odd, due to the fact that
by(u)bs(v) = =br(1 —u)bs(1 —v) if r + s is odd and fo(u,v;p) = fo(1 —u,1 —v;p), implying
¢rs(p) = 150071 Zili(io by (U;)bs(V;) for r + s odd, as in case of a uniform start. The resulting
approximation, denoted by fG, because of the Gaussian start, therefore is

7% (u,v) = folu,v;0.4756) + 0.1250b1 (u)ba (v) + 0.1215bo (u)bs(v).

A picture of the estimated copula fG is presented in Figure 4.
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Figure 4. Estimated copula with Gaussian start.

To illustrate the performance of the estimated copulas we compare frequencies of the data
with estimated probabilities for the same rectangles as used in Kallenberg (2008), that is sym-
metric ones with smaller and larger frequencies (v = v = 0.25,0.4) and asymmetric ones
(u=0.25,v = 0.5;u = 0.5,v = 0.25) and also the corresponding upper tail rectangles.

Table 1 Frequencies and approrimations on various rectangles.

woctangle | Jrea | J¢/freq | I8/ red | T fred | 7 Ireq
(0,0.25) x (0,0.25) | 0.1087 0.575 1.076 1.027 0.991
(0,04) x (0,04) | 02240 | 0714 | 1.048 | 1.065 | 1.031
(0,0.25) x (0,0.5) 0.1800 0.694 1.036 1.079 1.060
(0,0.5) x (0,0.25) 0.1807 0.692 1.032 0.989 0.970
(0.75,1) x (0.75,1) | 0.1333 0.469 0.877 0.976 0.947
(06,1) x (0.6,1) | 02420 0661 | 0970 | 1018 | 0.987
(075, 1) x (05,1) | 0.1840 | 0679 | 1.014 | 1.010 | 0.991
(05,1) x (0.75,1) | 0.1980 | 0.631 | 0942 | 1.017 | 0.999
mean abs. rel. diff. 36.0% 5.2% 3.1% 2.6%

It is clearly seen from Table 1 that the uniform approximation f§", ignoring the dependence
at all, is very bad. The classical Gaussian approximation fOG gives an enormous improvement.
Although the uniform start is very bad, nevertheless the approximation with the uniform start
J*" gives very good results with often a substantial improvement compared to the classical
Gaussian approximation. The approximation with the Gaussian start f& gives similar results as
the approximation with the uniform start: again a substantial improvement w.r.t. the classical
Gaussian approximation with a slightly further improvement w.r.t. the approximation with the
uniform start. This is also seen in the last line of the table, where the mean of the absolute values
of the relative differences is given. So, for instance 5.2% stands for the mean of ‘ 1§/ freq — 1!
over the 8 cases. There we see the enormous improvement from 36% to 5.2%, when taking the
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classical Gaussian copula (obviously due to the high amount of linear correlation in the data)
and the substantial further improvement reducing the mean with 50% from 5.2 % to 2.6% when
applying the contamination approximation with a Gaussian start.

As an example of an extreme quantile, consider the 99%-quantile, given by the rectangle
(0,u) x (0,u) such that [y* [ fum = 0.99. This gives u = 0.9949. So, the expected number of
data points outside this rectangle equals (1 — 0.99) x 1500 = 15. The actual number of data
points (U;, V;) outside the rectangle (0,0.9949) x (0,0.9949) equals 13, which is very close to
the expected one. If we consider in a similar way the 99%-quantile in the (X,Y)-plane with
X =1log(LOSS) and Y = log(ALAE), that is we approximate the 99%-quantile  satisfying
Fxy(z,z) = 0.99, or, equivalently, P(X < z,Y < 7) = P(F1500(X) < ngoo( ) FEo(Y) <
Fls00(@)) = P(U < Fi§o(2),V < Fls00(%)) = 0.99 by solving [ Fiboo(=) ' tsonl) fun — 0,99
(with F1500 and F1500 the linearized version of Fi%,, and Fi,, respectively), we get z = 13.1155
(and F1500( ) = 0.9907, F1500( ) = 0.9992). So 13.1155 is the estimated 99%-quantile based
on the estimated density f“’” The actual number of data points (X;,Y;) outside the rectangle
(—00,13.1155) x (—00,13.1155) equals 14. Hence, also in the (X,Y)-plane the actual number
of data points is very close to the expected number of data points predicted by using f“’”
Replacing f“" by fG gives the same results. This shows that also the extreme quantiles are
very well estimated by using f“” or fG.

We may conclude that the contamination family both with a uniform start and with a
Gaussian start give very nice results approximating the data with high accuracy.
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