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1. Introduction 
 
In the past, research in operations management focused on single-firm analysis. Its goal was to 
provide managers in practice with suitable tools to improve the performance of their firm by 
calculating optimal inventory quantities, among others. Nowadays, business decisions are dominated 
by the globalization of markets and increased competition among firms. Further, more and more 
products reach the customer through supply chains that are composed of independent firms. 
Following these trends, research in operations management has shifted its focus from single-firm 
analysis to multi-firm analysis, in particular to improving the efficiency and performance of supply 
chains under decentralized control. The main characteristics of such chains are that the firms in the 
chain are independent actors who try to optimize their individual objectives, and that the decisions 
taken by a firm do also affect the performance of the other parties in the supply chain. These 
interactions among firms’ decisions ask for alignment and coordination of actions. Therefore, game 
theory, the study of situations of cooperation or conflict among heterogenous actors, is very well 
suited to deal with these interactions. This has been recognized by researchers in the field, since there 
are an ever increasing number of papers that applies tools, methods and models from game theory to 
supply chain problems.  

The field of game theory may be divided roughly in two parts, namely non-cooperative 
game theory and cooperative game theory. Models in non-cooperative game theory assume that each 
player in the game (e.g. a firm in a supply chain) optimizes its own objective and does not care for the 
effect of its decisions on others. The focus is on finding optimal strategies for each player. Binding 
agreements among the players are not allowed. One of the main concerns when applying non-
cooperative game theory to supply chains is whether some proposed coordination mechanism, or 
strategy, coordinates the supply chain, that is, maximizes the total joint profit of the firms in the 
supply chain. In contrast, cooperative game theory assumes that players can make binding 
agreements. Here the focus is on which coalition of players will form and which allocation of the joint 
worth will be used. One of the main questions when applying cooperative game theory to supply 
chains is whether cooperation is stable, that is, whether there exists an allocation of the joint profit 
among all the parties in the supply chain such that no group of them can do better on its own. Up to 
date, many researchers use non-cooperative game theory to analyse supply chain problems. 

This work surveys applications of cooperative game theory to supply chain management.  
The supply chains under consideration are so-called divergent distribution networks, which consist of 
a single supplier and a finite number of retailers. In particular, we focus on two important aspects of 
supply chain collaboration. First, we focus on inventory centralization, also called inventory pooling. 
Retailers may collaborate to benefit from the centralization of their inventories. Such collaboration 
may lead to reduced storage costs, larger ordering power, or lower risks, for example. Models from 
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cooperative game theory may be used to find stable allocations of the joint costs. Such allocations are 
important to obtain and maintain the collaboration among the retailers. There is a steady stream of 
papers on this subject and these are reviewed here. 

Second, we consider retailer-supplier relationships. Besides collaboration among retailers 
only, a further gain in efficiency may be obtained by collaboration between the supplier and the 
retailers. Also here, the question is how to reduce the joint costs. Cooperative game theory may be 
used to find stable allocations of the joint costs. Although a natural field to research, these problems 
are hardly studied by means of cooperative game theory. We review the few papers in the literature 
and indicate possibilities for future research. 

We wish to point out that there are several other areas of cooperative games that lend 
themselves nicely to applications in supply chains, but that we do not review. One may think of 
bargaining models for negotiations among supply chain partners, network models to study multi-
echelon supply chains, or coalition formation among supply chain partners, to name some themes. For 
bargaining models and coalition formation we refer to the review by Nagarajan and Sošić (2006), and 
for theoretical issues and a framework for more general supply chain networks we refer to Slikker and 
Van den Nouweland (2001). 

This work is organized as follows. In section 2 we introduce some basic concepts of 
cooperative game theory. This helps understand how the collaboration between two agents is 
modelled. With this understanding, some well known results from the literature on cooperative game 
theory are surveyed. Thereafter we review applications of cooperative game theory to inventory 
centralization (section 3). Section 4 reviews and discusses retailer-supplier relationships. Finally, 
section 5 concludes and highlights areas for future research. 
 
2. Cooperative game theory 
Game theory provides tools, methods and models to investigate supply chain collaboration, 
coordination and competition. The game theory literature can roughly be divided into cooperative and 
non-cooperative game theory. There are some differences between analyses using non-cooperative 
game theory and those using cooperative game theory. When applying non-cooperative game theory, 
it is assumed that each player acts individually according to its objective, and usually the mechanisms 
to get it are investigated. One of the main points of concern is whether the proposed mechanism 
provides a solution that maximizes the total supply chain profit under Nash equilibrium. 

In contrast, cooperative game theory does not investigate the individual behaviour of the 
players explicitly and assume that once the players form a coalition, the coordination between them is 
achieved one way or another (i.e., either by making binding agreements and commitments or by a 
suitable coordination mechanism).  Although cooperative games abstract from the details of 
mechanism that lead to cooperation, they are very powerful to investigate the problem of allocation of 
worth in detail. Here, the main question is whether the cooperation is stable, i.e. there are stable 
allocations of the total worth or cost among the players such that no group of them would like to leave 
the consortium. Cooperative game theory offers the concept of the core (Gillies, 1953) as a direct 
answer to that question. Non-emptiness of the core means that there exists at least one stable 
allocation of the total worth such that no group of players has an incentive to leave. In this chapter, 
we concentrate ourselves mainly on the analysis of coordination induced by cooperation 
(collaboration). In this approach cooperative game theory will be instrumental. 
 Roughly speaking, a transferable utility game (henceforth TU game) is a pair consisting of a 
finite set of players and a characteristic function, which measures the worth  (benefit or cost) of every 
coalition of players, i.e. subset of the finite initial set (grand coalition), through a real valued 
mapping.   The sub-game related to a particular coalition is the restriction of the mapping to the sub-
coalitions of this coalition. A worth-sharing vector will be a real vector with as many components as 
the number of players in the game. The core of the TU game consists of those worth-sharing vectors 
which allocate the worth (cost) of the grand coalition in such a way that every other coalition receives 
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at least (or pays at most) its worth, given by the characteristic function. In the following, worth-
sharing vectors belonging to the core will be called core-allocations. A TU game has a non-empty 
core if and only if it is balanced (see Bondareva 1963 or Shapley 1967). It is a totally balanced game 
if the core of every subgame is non-empty. Totally balanced games were introduced by Shapley and 
Shubik in the study of market games (see Shapley and Shubik, 1969). 

A population monotonic allocation scheme (see Sprumont 1990), or pmas, for a TU game 
guarantees that once a coalition has decided upon an allocation of its worth, no player will ever be 
tempted to induce the formation of a smaller coalition by using his bargaining skills or by any others 
means. It is a collection of worth-sharing vectors for every sub-game satisfying efficiency property 
and requiring that the worth to every player increases (or decreases) as the coalition to which it 
belongs grows larger. Note that the set of worth-sharing vectors that can be reached through a pmas 
can be seen as a refinement of the core. Every TU game with pmas is totally balanced.     

A game is said to be super-additive (or sub-additive) if it is always beneficial for two 
disjoint coalitions to cooperate and form a larger coalition. Balanced TU games might not be super-
additive (sub-additive), but they always satisfy super-additive (sub-additive) inequalities involving 
the grand coalition. However, totally balanced TU games are super-additive (sub-additive). A well-
known class of balanced and super-additive (sub-additive) games is the class of convex (concave) 
games. A TU game is said to be convex if the incentives for joining a coalition increase as the 
coalition grows, so that one might expect a “snowballing” effect when the game is played 
cooperatively (Shapley, 1971). 

  Another class of balanced and super-additive (sub-additive) games is the class of 
permutationally convex (concave) games (Granot and Huberman, 1982). A game is permutationally 
convex (concave) if and only if there exists an ordering of the players for the grand coalition such that 
the game is permutationally convex (concave) with respect to this ordering. Granot and Huberman 
(1982) showed that every permutationally concave TU game is balanced. 

A worth allocation rule for TU games, is a map which assigns to every TU game a worth-
sharing vector. One example of such a worth allocation rule is the proportional rule. This proportional 
division mechanism allocates the worth of the grand coalition in a proportional way according to a 
fixed proportionality factor (e.g., the individual worth for each player).   
 
3. Inventory Centralization 
 
Generally speaking, shops or retailers trade various types of goods, and to keep their service to their 
customers at a high level they aim at meeting the demand for all goods on time. To attain this goal, 
retailers may keep inventories in a private warehouse. These inventories bring costs along with them. 
To keep these costs low, a good management of the inventories is needed. The management of 
inventory, or inventory management, started at the beginning of this century when manufacturing 
industries and engineering grew rapidly. To the best of our knowledge, a starting paper on 
mathematical models of inventory management was Harris (1913). Since thens, many books on this 
subject have been published. For example, Hadley and Whitin (1963), Hax and Candea (1984), 
Tersine (1994), and Zipkin (2000). Most often, the objective of inventory management is to minimize 
the average cost per time unit (in the long run) incurred by the inventory system, while guaranteeing a 
pre-specified minimal level of service. 

In this section, we review the literature and study the applications of cooperative game 
theory to inventory centralization in supply chains. The supply chains that we focus on along this 
work are divergent distribution networks that consist of a supplier and a finite number of retailers. 
The main motivation behind using a cooperative game is that it allows us to establish a framework to 
examine the effect of coordinated ordering/holding by the retailers, which generates some joint worth 
(benefit or cost), using cooperative game theory solutions across several structurally different 
inventory centralization models. The main focus of concern is how to allocate the worth among the 



Supply Chains. Theory and Application 

 

4 

retailers. In doing so, we try to find stable allocations of worth, which is important for the existence 
and stability of the cooperation.  

In this study, we primarily focus on coordination in continuous review inventory situations. 
In this framework, the class of inventory games arises when considering the possibility of joint 
ordering, and holding, in n-person Economic Order Quantity (or Economic Production Quantity) 
inventory situations in order to reduce the total inventory costs.  The underlying Operation Research 
problems are the well-known EOQ (EPQ) situations, which were already introduced by Harris (1915). 
In these continuous time models with infinite horizon it is assumed that a single retailer faces a 
constant demand rate with the objective of minimizing its inventory costs.  

A natural extension of this model is to consider now coordination in the classical Wagner-
Whitin problem (see Wagner and Whitin 1958). It can be seen as a periodic version of the above 
model with finite horizon and time varying demand. Here new types of production/ inventory games 
arise when a collection of retailers tries to minimize their total inventory costs by joint 
ordering/holding. All of them make up the class of dynamic inventory games.  

Finally, we pay attention to coordination in a multiple newsvendor setting. The newsvendor 
model is first introduced by Arrow et al. (1951) and it was originated by the story of a newsboy who 
faces random demand and has to decide everyday how many newspapers to buy to maximize his 
expected profit. The newsvendor models are often used to support decision making in several 
situations with highly perishable products or products with short life cycle. The focus of this study is 
the inventory centralization in newsvendor environments. Newsvendor games arise when a finite 
number of stores (newsvendors) respond to a periodic random demand (of newspapers) by ordering 
jointly at the start of every period. Their main objective is to minimize the resulting expected cost. 

This section is organized as follows. We first provide an overview of inventory games in 
subsection 3.1. Thereafter the class of dynamic inventory games arises as a natural extension of the 
former (subsection 3.2). Finally, newsvendor games are analyzed and surveyed in subsection 3.3.  
 
3.1 Inventory Games  
Inventory situations, introduced in Meca et al. (2004), study how a collective of retailers can reduce 
its joint inventory costs by means of cooperative behaviour. Depending on the information revealed 
by each individual retailer, the authors analyze two related cooperative games: inventory cost games 
and holding cost games.  For both classes of games, they focus on proportional division mechanisms 
to share the joint cost. 

In an inventory cost game, a group of retailers dealing with the ordering and holding of a 
certain commodity (every individual agent's problem being an EOQ problem), decide to cooperate 
and jointly make their orders. To coordinate the ordering policy of the retailers, some revelation of 
information is needed: the amount of revealed information between the retailers is kept as low as 
possible since they may be competitors on the consumer market. However, in a holding cost game 
coordination with regard to holding cost is considered. In this case full disclosure of information is 
needed. These kinds of cooperation are not unusual in the economic world: for instance, pharmacies 
usually form groups that order and share storage space. Meca et al. (2004) introduce and characterize 
the SOC-rule (Share the Ordering Costs) as a core-allocation for inventory cost games, and Meca et 
al. (2003) revisit inventory cost games and the SOC-rule. There it is shown that the wider class of n-
person EPQ inventory situations with shortages leads to exactly the same class of cost games. 
Moreover, an alternative characterization of the SOC-rule is provided there. Mosquera et al. (2007) 
introduce the property of immunity to coalition manipulation and demonstrate that the SOC-rule is the 
unique solution for inventory cost games that satisfies this property. In addition, Meca et al. (2004) 
shows that holding cost games are permutationally concave. Moreover, the demand proportional rule 
leads to a core-allocation of the corresponding game that can even be sustained as a pmas. 

Later, Meca (2007) completes the study of holding cost games. A more general class of 
inventory games, inspired by the aforementioned ones, is presented in that paper, namely the so-
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called generalized holding cost games. It is shown that generalized holding cost games and all their 
subgames are permutationally concave; hence generalized holding cost games are totally balanced.  
Thereafter the author focuses on the study of a core-allocation family which is called N-rational 
solution family. It is shown that a particular relation of inclusion exists between the above family and 
the core. Finally a new proportional rule called minimum square proportional rule is studied, which is 
an N-rational solution.  
 On the other hand, Toledo (2002) analyzes the class of inventory games that arises from 
inventory problems with special sale prices. A collective of retailers trying to minimize its joint 
inventory cost by means of cooperation may receive a special discount on set-up cost just in ordering. 
Reasons for such a price reduction range from competitive price wars to attempted inventory 
reduction by the supplier. Each retailer has its own set-up cost which is invariant to the order size. 
Meca et al. (2007) assume that when an order is being placed, it is revealed that the supplier makes a 
special offer for the next order. Notice that the above condition makes sense from an economic point 
of view since if one retailer is a very good client then the supplier himself would benefit by giving the 
client preferential treatment. Cooperation among retailers is given by sharing the order process and 
warehouse facilities: retailers in a coalition make their orders jointly and store their inventory in the 
cheapest warehouse. This cooperative situation generates the class of inventory games with non 
discriminatory temporary discounts. This new class of games motivates the study of a more general 
class of TU games, namely p-additive games. It contains the class of inventory games with non 
discriminatory temporary discounts as well as the class of inventory cost games (Meca et al. 2003). 
Meca et al. (2007) shows that p-additive games are totally balanced.  They also focus on studying the 
character concave or convex and monotone of p-additive games. In addition, the modified SOC-rule 
is proposed as a solution for p-additive games. This solution is suitable for p-additive games since it is 
a core-allocation, which can be reached through a pmas. Moreover, two characterizations of the 
modified SOC-rule are provided. 

Tijs et al. (2005) study a situation where one agent has an amount of storage space available 
and the other agents have some goods, part of which can be stored generating benefits. The problem 
of sharing the benefits produced by full cooperation between agents is tackled in this paper, by 
introducing a related cooperative game. This game turns out to be a big boss game with interesting 
theoretical properties. A solution concept, relying on optimal storage plans and associated holding 
prices, is also introduced, and its relationship with the core of the above holding game is explored in 
detail. The family of monotonic decreasing bijective mappings, defined on the set of non-negative 
real numbers, plays an important role in their approach. 

Finally, an interesting addition to Inventory Games (as its authors claim) is the paper 
Hartman and Dror (2007). Its point of departure is the inventory cost game described in Meca et al. 
(2004).  The former paper examines a collaborative procurement for the EOQ model with multiple 
items (items are considered as good types or types of commodities). The authors consider an 
inventory model with joint ordering in which the cost of ordering an item has two separable 
components- a fixed cost independent of the item type, and an item specific cost. They address two 
questions: what items should be ordered together, and how should the inventory be prior to demand 
realizations.  After demands are realized, the retailers can gain additional profits by shipping residual 
supplies to retailers with residual demands. In the first stage, the retailers unilaterally determine their 
order sizes (their decisions are based on previously selected allocation rules for distribution of the 
profit from inventory sharing). In the second, cooperative, stage the retailers share their inventories 
and allocate the corresponding additional profit. The allocation rule used here is based on a dual 
solution for the transhipment problem. Such an allocation rule is always stable, and therefore 
encourages the retailers not to form sub-coalitions during the transhipment stage. 
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3.2 Dynamic Inventory Games 
As mentioned before, one of the main objectives of the retailers is cost reduction. In order to achieve 
this goal, groups of retailers tend to form coalitions to decrease operation costs by making dynamic 
decisions throughout a finite planning horizon. In tactical planning of enterprises that produce 
indivisible goods, operation costs mainly consist of production, inventory-holding, and backlogging 
costs. These coalitions should induce individual and collective cost reductions; thus, stability is 
achieved in the process of enterprise cooperation. 

In our framework a coalition allows each of its members to have access to the technologies 
owned by the other members of the coalition. Thus, members of a coalition can use the lowest-cost 
technology of the retailers in the coalition. Planning is done throughout a finite time horizon; at the 
beginning of each period, the costs to the members of a coalition, which depend on the best 
technology at that point, may change. 

The model that represents such a situation is the dynamic, discrete, finite planning horizon 
production-inventory problem with backlogging. The objective of any group of retailers is to satisfy 
the demand for indivisible goods in each period at a minimum cost. This is a well-known 
combinatorial optimization problem for which the algorithm by Wagner & Whitin provides optimal 
solutions by dynamic programming techniques. The optimal solutions of this problem lead to the best 
production-inventory policy for the group of retailers. These policies generate an optimal operation 
cost for the entire group. The question is what portion of this cost is to be supported by each retailer. 
Cooperative game theory provides the natural tools for answering this question. 

The study of cooperative combinatorial optimization games, which are defined through 
characteristic functions given as optimal values of combinatorial optimization problems, is a fruitful 
topic (see for instance Shapley and Shubik, 1972, Dubey and Shapley, 1984, Granot, 1986, Tamir, 
1992, Deng et al. 1999 and 2000, and Faigle and Kern, 2000). There are characterizations of the total 
balancedness of several classes of these games. Inventory games and combinatorial optimization 
games are, up to date, disjoint classes of games. While in the former class there is always an explicit 
form for the characteristic function of each game, the characteristic function of the games in the latter 
class it is defined implicitly as the optimal value of an optimization problem in integer variables. 

Guardiola et al. (2007a) introduce a class of production-inventory games that combines the 
characteristics of inventory and combinatorial optimization games: this class models cooperation on 
production and storage of indivisible goods and its characteristic function is defined implicitly as the 
optimal value of a combinatorial optimization problem. It turns out to be a new class of totally 
balanced combinatorial optimization games.  

Further, the authors consider a group of agents, each one facing a PI-problem, that decide to 
cooperate to reduce costs, and then a production-inventory situation (henceforth, PI-situation) arises. 
Then, for each PI-situation, the corresponding cooperative game structure, namely production-
inventory game (henceforth, PI-game), is defined. The main results are total balancedness and an 
explicit form for the characteristic function. The study of PI-games is completed by showing that the 
Owen set of a PI-situation (the set of allocations that are achievable through dual solutions, see Owen 
1975 and Gellekom et al. 2000) shrinks to a singleton: the Owen point. This fact motivates the name 
Owen point rather than Owen set within this class of games. Guardiola et al. (2007a) propose the 
Owen point as a core-allocation for a PI-game which is easy to calculate and satisfies good properties. 
Its explicit form is also provided, and moreover, it is proved that the Owen point can be reached 
through a pmas. Hence, every PI-game is a non-negative cost game allowing for pmases (henceforth, 
PMAS-game). In addition, a necessary and sufficient condition for the core of a PI-game to be a 
singleton: the Owen point is presented. Finally, the authors point out the relationship of the Owen 
point with some well-known worth allocation rules in cooperative game theory. 

Later, Guardiola et al. (2007b) prove that the class of PI-games coincides with the class of 
PMAS-games, and they provide an interesting relationship between PI-games and concave games. In 
addition, they present three different axiomatic characterizations of the Owen point. To achieve the 
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two first characterizations they have kept in mind the work by Gellekom et al. (2000) in which the 
Owen set of linear production games is characterized. The third one, which is based on a population 
monotonic property, is very natural due to the fact that the class of PI-games coincides with the class 
of non-negative cost games with a pmas. 

The study of coordination in periodic review inventory situations is completed by Guardiola 
et al. (2006). They consider systems composed by several retailers where each of them has four types 
of costs: ordering, purchasing, inventory holding and backlogging costs. It is assumed that each single 
component in the system is the backlogging extension of the well-known Wagner & Whitin model, 
which Zangwill (1969) solved by dynamic programming techniques. In their approach coordination 
means that retailers share their holding technologies and ordering channels. Therefore, when a 
coalition of retailers is to form (joint venture) each retailer works with the best holding technology 
and ordering channels among the members of the coalition. This means that the members of that 
coalition purchase, hold inventory, pay backlogged demand and make orders at the minimum cost of 
the coalition members. Cooperation in holding and purchasing is usual and has appeared already in 
literature. Their mode of cooperation in backlogging is also standard although new: once a coalition is 
formed, all its members pay compensation to customers for delayed delivering (backlogging cost) of 
their demands according to the cheapest cost among the members in the coalition. In some regard, 
larger coalitions are stronger and can "squeeze" their clients a bit more. It is obvious that the above 
coordination process induces savings and therefore, studying the problem of how to allocate the 
overall saving among the retailers is a meaningful problem. Once again this allocation problem can be 
modelled by a transferable utility cooperative game. In this game the characteristic value of each 
coalition of retailers is obtained solving the combinatorial optimization problem that results from 
Zangwill's model induced by the members of the coalition. 

Closer to Guardiola et al. (2006, 2007a) are papers that focus on cooperation in periodic 
review inventory situations by means of cooperative game theory. One of the papers to do so is Van 
den Heuvel et al. (2007), which studies coordination in economic lot sizing situations (henceforth, 
ELS-situations). In that finite horizon model, players should satisfy the demand in each period by 
producing in that period or carrying inventory from previous periods; backlogging is not allowed. The 
main difference between that model and the one given by Guardiola et al. (2007a) is that the former 
considers setup costs but assumes that costs are the same for all players in every period. Therefore, 
ELS- and PI-situations are pairwise distinct, in general. The main result in Van den Heuvel et al. 
(2007) is that ELS-games (games induced by ELS-situations) have a nonempty core. In another paper, 
Chen and Zhang (2007a) propose an integer programming formulation for the concave minimization 
problem that results from an ELS-situation and show that its linear programming (LP) relaxation 
admits zero integral gaps, which makes it possible to analyze the game by using LP duality. Here the 
dual variables are interpreted as the price of the demand per unit. 

Guardiola et al. (2006) study a new model of coordination in inventory problems where a 
group of retailers place periodical orders of indivisible goods considering setup, purchasing, holding 
and backlogging costs. It leads to a new class of totally balanced combinatorial optimization games 
called setup-inventory games (henceforth, SI-games). SI-games extend PI-games since the latter do 
not include setup costs. Notice that if setup cost were zero in all periods, then a PI-situation would 
arise. SI-games also extend ELS-games since all costs considered can be different for several players 
in every period and backorders are allowed. However, ELS-games with concave ordering cost 
function (see Chen and Zhang, 2007a) do not extend SI-games since, as the former consider a more 
general ordering cost function, the latter assume that all costs can be different. 

All of these characteristics make the model in this paper richer than the previous ones 
although it is harder to analyze. Guardiola et al. (2006) prove that cooperation in periodic review 
inventory situations is always stable, i.e. every SI-game has a nonempty core. In addition, they 
introduce a new family of cost allocations on the class of SI-games: the parametric extended Owen 
points. It is proven that, under certain conditions, a particular core-allocation can be found (within the 
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parametric family of extended Owen points) for the corresponding SI-game. This point also 
introduces an important difference with Van den Heuvel et al. (2007), and Chen and Zhang (2007a), 
who show that ELS-games have a nonempty core, but do not provide any core-allocation.  

 
3.3 Newsvendor Games 
In a newsvendor setting, the retailers might benefit from cooperation through coordinated ordering 
and inventory centralization. The cooperation here can be described as follows: the retailers place 
joint orders for goods to satisfy the total demand they are faced with. In this way, they could get some 
benefit from coordination of the others and perfect allocation of the ordered amount to the demands 
realize.   

There are several papers that focus on cooperation in inventory centralization in 
newsvendor settings. One of the pioneers to do so is Eppen (1979), which studies the effects of 
centralization for inventory models with random demand for each store. He assumes identical storage 
and penalty costs for each store and in the centralized location, and shows that in this case savings 
always occur. However, for general demand distributions and store specific holding and penalty costs 
there might not be any savings from centralization. Conditions on demand distributions are discussed 
in Chen and Lin (1989) and on holding and penalty costs in Hartman and Dror (2005).     

Gerchak and Gupta (1991) investigate a newsvendor game in which each retailer is a 
newsvendor with identical cost structures and the transportation cost associated with re-allocating 
inventory after observing the demand is ignored. Hartman et al. (2000) study models with identical 
newsvendors, focusing especially on the core of newsvendor games. They prove the non-emptiness of 
the core of these games under some restrictive assumptions on demand distributions: symmetric and 
joint multivariate normal distribution. Müller et al. (2002) and Slikker et al. (2001) independently 
develop a more general result, showing that newsvendor games have a non-empty core regardless of 
the demand distribution. Müller et al. (2002) also provide conditions under which the core is a 
singleton. The above non-emptiness result is still valid even when there are infinitely many retailers, 
as proved by Montrucchio and Scarsini (2007). Slikker et al. (2005) enrich the finite model by 
allowing the retailers to use transhipment (at a positive cost) after demand realization is known. The 
authors show that newsvendor games with transhipments have a non-empty core even if the retailers 
have different retail and wholesale prices. Moreover, newsvendor games are not convex in general. 
Ozen et al (2005) study the convexity of newsvendor games under special assumptions about the 
demand distributions. Their analysis focus on the class of newsvendor games with independent 
symmetric unimodal demand distributions. Several interesting subclasses, which only contain convex 
games, are identified. Additionally, the authors illustrate that these results cannot be extended to all 
games in this class. 

In several papers, Hartman and Dror analyze cooperation through inventory centralization 
in a newsvendor setting. Hartman and Dror (2003) study the cost game among the retailers with 
normally distributed and correlated individual demands. Hartman and Dror (2005) analyze a model of 
inventory centralization for a finite number of retailers facing random correlated demands. They 
consider two different games: one based on expected costs (benefits), and the other based on demand 
realizations. The authors show that, for the first game, the core is non empty when holding and 
shortage costs are identical for all coalitions of retailers, and demand is normally distributed.  
However, the core might be empty when the retailers’ holding and penalty costs differ; they derive 
conditions under which such a game will be subadditive. For the second game, the core can be empty 
even when the retailers are identical. 

There are other papers which examine the existence of stable profit allocations among 
cooperative retailers by means of the so called stochastic cooperative decision situations (see Ozen, 
2007). Ozen et al (2006) analyze the stability of cooperation among several outlets who come 
together to benefit from inventory centralization. The authors focus on newsvendor situations with 
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delivery restrictions. In these situations, the retailers dispose some restrictions on the number of items 
that should be delivered to them if they join a coalition to benefit from joint ordering.  They show that 
the associated cooperative game has a non-empty core. Afterwards, they concentrate on a dynamic 
situation where the retailers change their delivery restrictions. They then investigate how the profit 
allocation might be affected by these changes. Another example of newsvendor situations is 
considered in Ozen et al (2007). They study newsvendor situations with multiple warehouses, where 
the retailers can cooperate to benefit from inventory pooling. The warehouses offer alternative ways 
of supplying the goods to the retailers, which might become more useful when the retailers form 
coalitions. The authors study the corresponding cooperative game and they prove that the core of 
these games is nonempty.  In the previous papers, the cooperation among retailers through the 
coordination of their orders and allocation of these orders after demand realization has been 
considered. Sometimes, however, it may not be possible to allocate the orders after exact demand 
realizations. In such situations, the retailers can only satisfy their customers from the stock at their 
local facilities. However, if the retailers could obtain better information about future demand while 
their orders are on the way, they would still be able to benefit from inventory centralization by 
reallocating their orders when they arrive at the facility where the reallocation can take place after 
demand information update (e.g., port, warehouse, etc.). Ozen and Sosic (2006) consider newsvendor 
situations with updated demand distribution. They investigate the associated cooperatives games 
between the retailers and show that such games are balanced.   

A very recent paper by Chen and Zhang (2007b) presents a unified approach to analyze the 
newsvendor games using the duality theory of stochastic programming developed by Rockafellar and 
Wets (1976). The optimizations problems corresponding to the newsvendor games are formulated as 
stochastic programs. The authors observe that the strong duality of stochastic linear programming not 
only directly leads to the non-emptiness of the cores of such games, but also suggests a way to find a 
core-allocation. The proposed approach is also applied to newsvendor games with concave ordering 
cost. Additionally, they prove that it is NP-hard to determine whether a given allocation is in the core 
of the newsvendor games even in a very simple setting.  

The newsvendor inventory centralization problem examined in the literature is geared 
mainly to the expected value cost analysis. However, minimizing expected centralized inventory cost 
might not be a very convincing argument for centralization. A build-in cost allocation mechanism 
should provide additional incentives for cooperation. That is, in each time period the stores reflect on 
the actual performance of the system in relation to the anticipated long-run expected performance. 
The analysis of an on-line system cost allocation(s) performance versus the performance in 
expectation is the main topic of Dror, et al (2007). They examine a related inventory centralization 
game based on demand realizations that has, in general, an empty core even with identical penalty and 
holding costs (Hartman and Dror, 2005). They then propose a repeated cost allocation scheme for 
dynamic realization games based on allocation processes introduced by Lehrer (2002). It is proven 
that the cost sub-sequences of the dynamic realization game process, based on Lehrer's rules, 
converge almost surely to either a least square value or the core of the expected game. To complete 
this study, they extend the above results to more general dynamic cost games and relax the 
independence hypothesis of the sequence of players' demands at different stages. 
 
4. Retailer-supplier relationships 
The previous section discussed cooperation among retailers only, or in other words, horizontal 
cooperation within a supply chain. This type of cooperation is concerned with collaboration among 
parties in a chain that are on the same level and perform similar tasks. This section concentrates on 
vertical cooperation, that is, collaboration among parties in a chain that are on adjacent levels, like a 
supplier and retailer. Hence, these parties perform different tasks, which ask for another type of 
cooperation than in case of horizontal cooperation. Important aspects of cooperation include the 
coordination of actions to maximize joint profits. 
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Vertical cooperation within a supply chain may take different forms ranging from the 
coordination of actions to a full merger of the parties involved. In the first case, coordination of 
actions, the parties remain economically independent and act under decentralized control, that is, each 
party takes its own decision. Nevertheless, the coordination that the parties agreed upon makes sure 
that each of them improves upon its profits. Because of decentralized control and the conflicts of 
interests, these situations are often studied with non-cooperative game theory. We refer the reader to 
Cachon and Netessine (2004) for a review on this area of research. A merger of parties is another 
extreme with regard to vertical cooperation. In this case, all parties give up their independence and 
will be under centralized control. The new merger decides upon actions for all (former) parties. Such 
a merger will only be formed if there is a win-win situation for all of the parties. 

In all cases, parties or firms in a chain are only willing to cooperate if none of them can do 
better otherwise. A natural tool to study this is cooperative game theory. In particular TU-games are 
useful to decide whether cooperation is stable and how to maintain it by means of some allocation of 
the joint profits among the parties involved. It is surprising to learn that only a few papers study 
vertical cooperation in a supply chain by means of cooperative game theory, and by TU-games in 
particular. Therefore, we believe that it is a new and exciting area of research on supply chains. 

Within cooperative game theory, bargaining games are the most popular tools to study 
cooperation among supply chain partners. There are two recent reviews that pay attention to 
bargaining models. Sarmah et al. (2006) provide a review on supplier-retailer models in supply chain 
management. The authors focus on coordination models in supply chain management that use 
quantity discounts as a coordination tool in a deterministic environment. The only cooperative 
coordination models mentioned are the cooperative bargaining games. All other coordination models 
are studied with non-cooperative game theory. Another review by Nagarajan and Sošić (2006) also 
considers cooperation among supply chain partners. They focus on two important aspects of 
cooperative games, namely on profit allocation and stability. First, attention is payed to bargaining 
games for profit allocation. Thereafter, coalition formation among parties in a supply chain is 
surveyed. 

As far as we are aware, the only paper that uses TU-games to study vertical cooperation in a 
supply chain is Guardiola et al. (2007). In this paper, distribution supply chains with one supplier and 
multiple retailers under decentralized control are studied. Cooperative TU-games are used to study the 
stability and the gains of cooperation. Cooperating retailers may gain from quantity discounts, while a 
supplier-retailer cooperation results in reduced costs. The authors show that the corresponding TU-
games are balanced, that is, cooperation is stable. They also propose a specific allocation of the joint 
profit that always belongs to the core of the game. This does not hold for the Shapley value, a well-
known solution for TU-games. Another property of the proposed allocation is that properly valuates 
the supplier since it is indispensable to obtain a maximal gain in profits. 

 
5. Conclusion and future research 
 
In this chaper, we have reviewed and surveyed the literature on supply chain collaboration. As 
mentioned above, the game theory models that include cooperative behaviour among retailers seem to 
be a natural framework to model cooperation (collaboration) in supply chains that consist of a 
supplier and a finite number of retailers. Various researchers in this area have already adopted several 
cooperative models dealing with supply chain coordination, and it is expected to see many more in 
the near future since, as you may notice, this is a rather new area of research in supply chain 
management. 

One level of supply chain collaboration is the inventory centralization. The main focus of 
concern here is to examine the effects of horizontal cooperation (cooperation among the retailers 
only). The first step is to study cooperation in continuous review inventory situations through out the 
class of inventory games. We can conclude that any collective of retailers can reduce its joint 
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inventory costs by means of cooperative behaviour. Additionally, they can always find stable (core-
allocations) and consistent (sustained as pmases) allocation rules, which therefore encourages them 
not to form sub-coalitions during the cooperative process. This wide class of games arises when 
considering joint ordeing and holding in the basic inventory situations (EOQ and EPQ). Some nice 
additons to this umbrella of games are the holding games introduced by Tijs et al (2005), and the 
collaborative procurement for the EOQ model with multiple items proposed by Hartmand and Dror 
(2007). There are numerous oportunities to create new inventory centralization models that extend the 
ones already studied and can be included in the class of inventory games. We hope to see and, why 
not, do many more in the future. 

The second step is to consider the dynamic extension of inventory games. It is the periodic 
version of the above model with finite horizon and time varying demand. Several papers in the field 
have analyzed cooperation in finite horizon periodic review inventory situations (see Guardiola et al. 
2007a,b, Van Den Heuvel et al. 2007, and Chen and Zhang, 2007a). Nevertheless, those papers only 
consider partial aspects of the general problem. In Guardiola et al. (2006) a new model is introduced 
that incorporates all relevant costs and that, in some sense, includes the models in the above 
references as particular instances. In their model agents share ordering channels and holding and 
backlogging technologies so that the resulting coordination inventory model induces savings. These 
savings can be distributed among any group of agents in a stable way since the corresponding 
cooperative game is totally balanced. Moreover, for this class of games (SI-games), the authors define 
a parametric family of allocations that extends the rationale behind the Owen point (see Guardiola et 
al. 2007a,b) and identify an important subclass of SI-games where an extended Owen point can be 
attained by means of a pmas.  

In some respects Guardiola et al. (2006) unifies the treatment of coordination in periodic 
review inventory situations (all relevant costs are included). In addition, it proves that this type of 
coordination makes sense since induces savings that can be allocated without being blocked by any 
member of the group (the cooperative game induced by the model is totally balanced). This stability 
is rather appealing and invites to pursue new investigations that increase efficiency in coordinated 
models of inventory operation. Some of these additional topics for further research are: (1) 
investigating coordination in dynamic inventory situations with concave cost functions; and (2) 
exploring new models of periodic review inventory problems with shipping costs.  

The third step we centre our attention on presenting cooperation in multiple newsvendor 
settings. In such frameworks, newsvendor games arise and are studied. The main result here is that 
the retailers can always get some benefit from cooperation through coordinated ordering and 
inventory centralization. In addition, there always exist stable profit allocations among cooperative 
retailers. However, the problem of determining whether a given allocation is stable or not is 
sometimes an NP-hard optimization problem even in a very simple newsvendor setting. 

A different type of collaboration is vertical cooperation in supply chains. Most of the 
literature up-to-date studies a supplier-retailer with non-cooperative game theory. For a proper 
analysis of all cooperation possibilities, the application of cooperative game theory is necessary. This 
is a rather new area of research with a limited number of papers. Most of these use bargaining games 
to study negotiations and profit allocation between the supplier and the retailer. As far as we are 
aware, only Guardiola, Meca and Timmer (2007) use TU-games to study collaboration in a 
distribution chain with a single supplier and multiple retailers. This new area of research has lots to 
explore yet. TU-games can be used to analyse stability of collaboration within all sorts of supplier-
retailer relationships. Further, aspects like nonzero leadtime, stochastic demand, and incomplete 
availability of information on costs should be included. Other interesting research includes situations 
in which the retailers provided by the supplier are competitors on the same market, or situations of 
collaboration within a supply chain that involves three or more levels, like a manufacturer, supplier 
and a retailer. 
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Other than the ones already mentioned, some other ongoing and future research topics in 
supply chain collaboration are presented below. 
 
5.1 Cooperation in multi-supplier supply chains with bounded demand 
In this section, we propose to exted the study of retailer-supplier relationships in supply chains with a 
finite number of suppliers and retailers, and random demands. The main focus of concern is to 
analyze the impact of such cooperation on the suppliers, retailers, and supplier-retailer interactions.  

The starting point is the paper Guardiola, Meca and Timmer (2007) that, as we already 
announced, studies the coordination of actions and the allocation of profit in supply chains under 
decentralized control in which a single supplier supplies several retailers with goods for 
replenishment of stocks. In our multi-supplier and bounded demand framework, the main goal of the 
suppliers and the retailers is also to maximize their individual profits. Since the outcome under 
decentralized control is inefficient, cooperation among firms by means of coordination of actions may 
improve the individual profits. Cooperation is studied by means of cooperative game theory. First, we 
examine whether or not the cooperative game corresponding to this multi-supplier and bounded 
demand situation is balanced. Then we will look for an (stable) allocation rule that satisfies good 
properties for these games. 

¶ 
5.2 Cooperation in Assembly Systems: The Role of Knowledge Sharing 
In this section, we analyze a production system similar to that of Toyota. Based on this model, we 
investigate the costs, benefits, and challenges associated with establishing a Knowledge Sharing 
Network (see Dyer and Hatch 2004). 

We consider an assembly system with one assembler (for example, Toyota) purchasing 
components from several suppliers. Demand is deterministic and each supplier faces holding and 
fixed ordering costs (i.e., a stationary model, not necessarily time-dependent). For a given set of costs 
and demand rates, there is no exact solution, but one can construct a solution that is very close to 
optimal (see Zipkin, 2000). This model has some similarities both with Guardiola et al. (2007a) and 
Meca et al. (2004).  

We model process improvement by considering reductions in the fixed costs. In a 
knowledge sharing network, suppliers are placed in groups to share knowledge about best practices. 
In our setting, suppliers within each group achieve, through knowledge transfer, a fixed cost equal to 
that of the supplier with the lowest fixed cost in the group. This idea is similar to that proposed in 
Guardiola et al. (2007a), in which all firms incur the fixed cost of the most efficient company. 

We model knowledge transfer through a cooperative game and focus on reductions in fixed 
costs. In this setting, we explore the feasibility of knowledge sharing, by investigating the existence of 
payment transfers that make all firms better off with cooperation (i.e., the core of the corresponding 
game is non-empty). In addition, if the core is non-empty, we study properties of the core and 
compute core-allocations. 
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