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Abstract

This paper gives an overview of recent research on the performance evaluation and design
of carousel systems. We discuss picking strategies for problems involving one carousel, consider
the throughput of the system for problems involving two carousels, give an overview of related
problems in this area, and present an extensive literature review. Emphasis has been given on
future research directions in this area.
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1 Introduction

A carousel is an automated storage and retrieval system, widely used in modern warehouses. It
consists of a number of shelves or drawers, which are linked together and are rotating in a closed
loop. It is operated by a picker (human or robotic) that has a fixed position in front of the carousel.
A typical vertical carousel is given in Figure 1.

Carousels are widely used for storage and retrieval of small and medium-sized items, such as
health and beauty products, repair parts of boilers for space heating, parts of vacuum cleaners and
sewing machines, books, shoes and many other goods. In e-commerce companies use carousel to
store small items and manage small individual orders. An order is defined as a set of items that
must be picked together (for instance, for a single customer).

Carousels are highly versatile, and come in a huge variety of configurations, sizes, and types.
They can be horizontal or vertical and rotate in either one or both directions. Although both
unidirectional (one-way rotating) or bidirectional (two-way rotating) carousels are encountered in
practice, the bidirectional types are the most common (as well as being the most efficient) [26].
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One of the main advantages of carousels is that, rather than having the picker travel to an item
(as is the case in a warehouse where items are stored on shelves), the carousel rotates the items to
the picker. While the carousel is travelling, the picker has the time to perform other tasks, such as
pack or label the retrieved items, or serve another carousel. This practice enhances the operational
efficiency of the warehouse.

Carousel models have received much attention in the literature and continue to pose interesting
problems. There is a rich literature on carousels that dates back to 1980 [73]. In Section 5 we
shall review some of the main research topics that have been of interest to the research community
so far. To name a few, one may wish to study various ways of storing the items on a carousel so
as to minimise the total time needed until an order is completed (response time), or the strategy
that should be followed in rotating the carousel so as the total time the carousel travels between
items of one order is minimised (travel time for a single order), or pre-positioning the carousel in
anticipation of storage or retrieval requests (choosing a dwell point) in order to improve the average
response time of the system (design issues). The list of references presented here is by no means
exhaustive; it rather serves the purpose of indicating the continuing interest in carousels.

In this review paper we focus on the modelling and
the performance of carousel systems. Usually a carousel
is modelled as a circle, either as a discrete model [5, 32,
59, 77], where the circle consists of a fixed number of
locations, or as a continuous one [19, 41, 60, 70], where
the circle has unit length and the locations of the re-
quired items are represented as arbitrary points on the
circle. Throughout this paper we shall view the carousel
as a continuous loop of unit length. Beyond this initial
assumption, we shall examine modelling issues such as
how to model travel times or picking times of items in
a carousel network so as to be able to derive approxi-
mations of various performance characteristics. Under
“performance” one may understand a variety of notions.
For example, in single-carousel single-order problems (cf.
Section 2), the performance measure under consideration
is the travel time of the carousel until all items in an order
are picked. On the other hand, in Section 3, performance
may be measured by the time the picker is idle between

picking items from various carousels, i.e. by the picker’s
Figure 1: A typical vertical carousel. utilisation.

In this paper we consider two research topics in detail.
In Section 2, we discuss the problem of choosing a reasonable picking strategy for one order and
a single carousel, where the order is represented as a list of items, and by order pick strategy we
mean an algorithm that prescribes in which sequence the items are to be retrieved. We present a
generalised probabilistic approach developed by Litvak et al. [41, 44, 45, 46] to analytically derive
the probability distribution of the travel time in case when items locations are independent and
uniformly distributed. This line of research seems to be the only example in the literature when
exact statistical characteristics of the travel time have been obtained by means of a systematic
mathematical approach. The presented technique is based on the properties of uniform spacings



and their relations to exponential distributions. We demonstrate the effectiveness of this method
by considering several relevant order-picking strategies, such as the greedy nearest-time strategies
and so-called m-step strategies that provide a good approximation for the optimal (shortest) route.

In Section 3 we consider the second topic that relates to multiple-carousel settings and the
modelling challenges that appear in such problems. Having optimised the travel time of a single
carousel for a single order, one wonders if optimising locally every time each order on each carousel
leads to the best solution (fastest, cheapest, or with the largest picker utilisation) for a complicated
system. As is mentioned later on, multiple-carousel problems become too complicated too quickly,
and often exact analysis is not possible. Therefore, we discuss which concessions have to be made
in order to be able to obtain estimates of the performance measures we are interested in, and we
give in detail the impact that these concessions have on our estimations. There exist a few exact
results for two-carousel models and related models in healthcare logistics; see Boxma and Vlasiou
[11] and Vlasiou et al. [65]-[71]. However, to the best of our knowledge, no exact results exist for
systems involving more than two carousels.

Preferably, these two research topics that we consider in this paper should be studied in parallel.
However, establishing any exact results, say on determining the optimal retrieval and travelling
strategy for a multiple-carousel model, without any restrictions to the sequence the items in an
order are picked or the sequence the carousels are served, seems to be intractable. Nonetheless,
quite a few research opportunities related to the optimal design and control of carousel systems are
still available. We elaborate on further research topics in Section 4. We conclude with Section 5,
which outlines the problems examined so far on carousels and related storage and retrieval systems.

2 Picking a single order on a single carousel

Performance analysis of single units is a necessary step in structural design of order pick systems [78].
In a setting of a single order on a single carousel, the major performance characteristic is the
response time, that is, the total time it takes to retrieve an order. The response time consists of pick
times needed to collect the items from their locations by an operator, and the travel (rotation) time
of the carousel. While pick times can hardly be improved, the travel time depends on the location
of each item and the order picking sequence, and thus, it is subject to analysis and optimization.
Therefore, in this section, we discuss the properties on the travel time needed to collect an order of
n items. In this section, our focus is on the case when the items locations are randomly distributed
on a carousel circumference. This model allows to compute statistical characteristics of the travel
time such as the average travel time or the travel time distribution. Below in Section 5.2 we discuss
some results from the literature on evaluating the travel times under different assumptions on the
items locations, in particular, the case when the pick positions are fixed.

We note that in case of a single carousel, it is natural to assume that the pick times and the
travel time are independent. The situation, however, is quite different in the systems of two or
more carousels, where pick times on one carousel affect the travel times on other carousels. This
issue will be discussed in detail in Section 3.

The model addressed in this section is as follows. We model a carousel as a circle of length 1.
The order is represented by the list of n items whose positions are independent and uniformly
distributed on [0,1). For ease of presentation, we act as if the picker travels to the pick positions
instead of the other way around. Also, we assume that the acceleration/deceleration time of the
carousel is negligible or that it is assigned to the pick time, and therefore the travel distance can



be identified with the travel time (see also Section 5.4).

Obviously, the travel time depends heavily on the pick strategy. Here by order pick strategy we
mean an algorithm that prescribes the sequence in which the items are collected. For example, if the
picker just proceeds in the same arbitrarily chosen direction (say, clockwise), then the distribution
function ]P’(Tnc W< t) of the corresponding travel time 7, T? W simply equals ", 0 < t < 1. However,
we would like to study strategies that provide smaller travel times. In this sense, a better algorithm
that one can think of is the ‘greedy’ strategy, also called the nearest-item heuristic: always travel
to the nearest item to be picked (as in Figure 2). The nearest-item strategy indeed performs very

Figure 2: A route under the nearest-item heuristic.

well and is often used in practice, but the question is: “what is the distribution of the travel time
under the nearest-item heuristic?”. This problem is not at all trivial. For example, straightforward
methods, such as conditioning on possible items locations, do not lead to feasible calculations. The
same applies to the optimal strategy. Bartholdi and Platzman [5] showed that the shortest route
admits at most one turn. Intuitively, this follows even by observing Figure 2, where the displayed
route can be shortened by skipping the first two steps. Thus, the shortest route is merely the
minimum among the 2n candidate routes than have at most one turn. However, in spite of this
simple structure of the shortest route, its distribution function is hard to derive.

Below we discuss in detail a generalised methodology developed by Litvak et al. [41, 45, 46, 44]
to obtain the distribution of the travel time under various order pick strategies. The proposed
technique is based on properties of uniform spacings and their connection with exponential random
variables. We show how this approach allows us to derive exact and often counterintuitive results
on several relevant order pick strategies. Some other methods from the literature are described in
Section 5.2.

We start with introducing the notation and presenting some background results. Let the random
variable Uy = 0 be the picker’s starting point and the random variable U;, where : = 1,2,...,n,
be the position of the i¢th item. We suppose that the U;’s, i = 1,2,...,n, are independent and
uniformly distributed on [0,1). Let Uiy, Uswp, ... Uy denote the order statistics of Uy, Us, ... Uy,
and set Up., =0, Upt1.n = 1. Then the uniform spacings are defined as

Di,n =Upn—Ui—1n, 1<i<n+1 (21)

If we consider n items randomly located on a circle, then the spacings Da,,, D3y, ..., Dy, are the
distances between two neighbouring items, and the spacings D;, and D,y 1, are the distances
between the starting point and the two items adjacent to it. Whatever strategy the picker takes, he



always has to cover one or more uniform spacings on his way from one location to another. Hence,
in general, the travel time can be expressed as a function of the uniform spacings.

Uniform spacings have received an extensive analysis in a classical review paper of Pyke [55].
The author gives four useful constructions that establish a connection between uniform spacings
and exponential random variables. Let X, X5,... be independent exponential random variables
with mean 1. Denote

So =0, Si=X1+Xo+--+X;, i>1

Then, according to Pyke [55], uniform spacings can be represented as follows:

d
(DLn, Dg’n, e ,Dn+1’n) == (X1/5n+1, X2/5n+1, P ,Xn+1/Sn+1) . (22)

Here and throughout this paper a 2 b means that a and b have the same probability distribution.
Linear combinations of uniform spacing have nice properties. In particular, the moments of linear
combinations with non-negative coefficients can be easily computed, and their distribution function
has been derived by Ali [2], Ali and Obaidullah [3].

Now, let X and Y be independent exponential random variables with parameters A\ and pu,
respectively. Then, given the event [X < Y|, we obtain the following useful statements: (i) the
distribution of X = min{X, Y} is exponential with parameter A + p (property of the minimum of
two exponentials); (ii) the random variable Y transforms into a sum of min{X,Y} and another
independent exponential with parameter y (memory-less property), (iii) the distribution of AX +puY
remains unaltered (see Chapter 2 of [41]).

Based on the above mentioned properties of the exponential random variables, and their connec-
tions to uniform spacings and travel times, one may adopt the following generalised methodology
for analysing the travel times under various strategies [41, 44, 45, 46]:

1. Express the travel time under a given strategy as a function of uniform spacings.

2. By conditioning on linear inequalities between the spacings and employing the above men-
tioned properties of exponential random variables, rewrite the travel time as a linear combi-
nation of uniform spacings or as a probabilistic mixture of such linear combinations.

3. Use the results from [2, 3] to obtain the moments and the distribution of the travel time.

Below we show how this approach works in case of the nearest-item heuristic [44, 46] and so-called
m-step strategies [45].

2.1 The nearest-item heuristic

Under the nearest-item heuristic, the pickers always moves towards the nearest item to be retrieved.
The positions of the items partition the circle in n + 1 uniform spacings D1y, Dap, ..., Dntin
defined by (2.1). Under the nearest-item heuristic, the picker first considers the two spacings
adjacent to his starting position and then travels to the nearest item. Next he also looks at the
other spacing adjacent to that item and compares the distance to the item located at the endpoint
of that spacing and the distance to the first item in the other direction, which is the sum of the
spacings previously considered. Then he travels again to the nearest item, and so on. Furthermore,
by employing (2.2), we may act as if the picker faces non-normalised exponential spacings, and
afterwards divide the travel time by the sum of all spacings. Then it is clear that each new spacing



faced by the picker is independent of the ones already observed. Now let X;, ¢ = 1,...,n + 1,
denote the i-th non-normalised exponential spacing faced by the picker. That is, the spacings are
numbered as observed by the picker operating under the nearest-item heuristic (see Figure 3). Then

__ s NI heuristic

Figure 3: The nearest-item route of the picker facing 5 exponential spacings.

the travel time T/ can be expressed as
n+l .
Xi, Si—1}
= 3 it Sict ) 2.3
oy 23)

We first provide an informal explanation of how the proposed methodology can be applied to
(2.3). To start with, note that first term in the right-hand side of (2.3) is min{ X1, X2}/Sn+1, which
is distributed simply as (1/2)X;/Sp+1. Moreover, under the event [X; < Xs] the rest of the sum
remains unaltered. Further, consider the term

(1/2)X1 + min{Xg, SQ} = (1/2)X1 + min{Xg,X1 + XQ} (24)

Let X1, X}, X} be auxiliary independent exponential random variables with mean 1. Given [X3 <
X], the random variable X3 is distributed as (1/2)X], X; is distributed as (1/2)X] + X} and X5
is distributed as Xj. Then the term in (2.4) is distributed as (3/4)X] + (1/2)X}%. Furthermore,
given the event [X3 > X;, X3 < X + X3|, we obtain that X is distributed as (1/2)X], X3 is
distributed as (1/2)X7] + (1/2)X% and X» is distributed as (1/2)X) + X4. Substituting the above
n (2.4), we obtain again (3/4) X1 + (1/2)X}! Remarkably, under the event [X3 > X7 + X, (2.4)
again transforms into (3/4)X7 + (1/2)X/. We may now rename (X], X}, X%) back to (X1, X2, X3)
since the two 3-dimensional vectors are identically distributed. Then the term (2.4) becomes
(3/4) X1+ (1/2) X2, and the rest of the terms in the right-hand side of (2.3) remain unaltered in all
three cases. Proceeding further, we obtain the next statement which is proved rigorously in [44].

Theorem 1 (Litvak and Adan [44]). For alln=1,2,...,

n
d 1
YEEEN (1 — 2) Din (2.5)

i=1
and
n 2J

NI
P(TY <t)=> (2 +H2]_2Z, 0<t<l, (2.6)

=0
J#l



where x4 = x if © > 0 and x4 = 0 otherwise.

Here (2.6) follows directly from (2.5) and the result by Ali [2], which we applied in the form
given by Theorem 2 in [3].

The above theorem is surprising because it provides an elegant solution for a problem that looks
intractable at first. An interesting by-product is the distribution of the number of turns under the
nearest-item heuristics and the counterintuitive result that the travel time and the number of turns
are independent [41]! The latter can be seen directly from (2.3). Indeed, a turn after step i is
equivalent to the event [X;11 > S;]. However, as we saw earlier, the form of the distribution of the
travel time is given by (2.5) and it is independent of this sort of events.

2.2 The m-step strategy

Under the m-step strategies, the picker chooses the shortest route among the 2(m + 1) routes
that change direction at most once, and only do so after collecting no more than m items. Note
that the optimal strategy is in fact an (n — 1)-step strategy since it is never optimal to turn more
than once, and maximal possible number of items collected before a turn is n — 1. The m-step
strategies give a good approximation for the shortest travel time. In fact, they often provide the
optimal route even for moderate values of m, as in Figure 4. Rouwenhorst et al. [57] were the
first to propose these strategies as an upper bound for the optimal route. In case of independent
uniformly distributed pick positions, they obtained the distribution of the travel time under the
m-step strategy for m < 2 using analytical methods. Later on, Litvak and Adan [45] applied
the described methodology based on the properties of uniform spacings to completely analyse the
travel time under the m-step strategies, provided 2m < n. The travel time T,(Lm) under the m-step
strategy can be expressed as follows

j—1 Jj—1
T — 1 — max max D, — D max Dytoin — Dyio_ .
n 1<i<ma1 J,n lz; Iln (> 1<jemt1 n+2—j,n Z n+2—I,n

=1

Indeed, the term D; , —Zf:_ll Dy, is the gain in travel time (compared to one full rotation) obtained
by skipping the spacing D;, and going back instead, ending in a clockwise direction. On the
other hand, Dy, 12, — E{:—ll Dy 2, is the gain obtained by skipping the spacing D, 12—, and
going back ending counterclockwise. Under the m-step strategy the picker skips the spacing that
provides the largest possible gain (see Figure 4). Using the property (2.2), and after appropriate
manipulations of exponential random variables, one can prove the following result.

Theorem 2 (Litvak and Adan [45]). For any m =0,1,..., with 2m < n,

J 1 m+1 1 m~+1 1

(m) 4 1 _ . . N _

Tim) 4 q g max Z; 51X > o1 Xnt2j ¢ - (2.7)
J:

Jj=1

The maximum in the right-hand side of (2.7) implies that T, ,ﬁm) is distributed as a complicated
probabilistic mixture of linear combinations of uniform spacings [45]. The number of terms in this
mixture is the well-known Catalan number

1 2m + 2
m+2\m+1)’

7
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Figure 4: A route under the m-step strategy.

which grows extremely fast with m. Computing the expectations, we conclude that on average, the
m-step strategy performs better than the nearest-item heuristic already for m = 2 provided n > 5.

Again, as a by-product, we can obtain the distribution of the number of steps before the turn.
Moreover, the latter random variable turns out to be independent of the travel time. This surprising
statement follows from a similar reasoning as the independence of the travel time and the number
of turns under the nearest-item heuristic. Furthermore, when n goes to infinity, the number of
steps before the turn converges to a shifted geometric distribution with parameter 1/2. That is, in
the limit, with probability 1/2 there will be no turn, with probability 1/4 there will be one step
before a turn, etc. Also, in the limit, the m-step strategy with 2m < n coincides with the optimal
strategy since the probability of achieving the minimal travel time by making more than n/2 steps
before a turn will converge to zero. Thus, for large enough n, the probability that a 2-step strategy
provides an optimal route is about 7/8. This explains the remarkably good performance of the
m-step strategies.

As a side remark, we would like to note that [42] provides slightly more general results than
those presented in (2.5) and (2.7).

2.3 Optimal route

Since the optimal strategy simply coincides with the (n — 1)-step strategy (at most one turn after
collecting at most n — 1 items) it can be analysed by methods from Section 2.2. However, the
condition 2m < n is violated for m = n — 1, and hence, (2.7) does not hold. In fact, the proposed
methodology applied to the optimal travel time o7 very soon results in analytically infeasible
calculations. Litvak and van Zwet [47] analysed the optimal route. They employed the results on
the m-step strategy to derive a recursive expression for the distribution of the minimal travel time.

We would like to also note that the process of comparing the lengths of the spacings and
deriving corresponding linear combinations of normalised exponentials can be easily translated into
a computer program. Then, for moderate values of n the exact distribution of the optimal travel
time can be obtained numerically. The result will be a complicated mixture of linear combinations
of uniform spacings. For large values of n such exact calculations will require too much computer
capacity. However, in this case, the knowledge of the exact distribution is not very important since
one can apply approximations based on asymptotic results discussed in the next section.



2.4 Asymptotic results

When the order is large, we can model this situation by letting n — oco. Then the expressions in
(2.5) and (2.7) for the travel time allow us to obtain asymptotic results that are of independent
mathematical interest. Obviously, if n — oo then the travel time under any strategy goes to one
with probability 1. However, with linear scaling, we obtain non-trivial distributions that we present
below for the nearest-item heuristic and for the optimal travel time.

Theorem 3. Let X1, Xo, ..., X, X}, ..., be independent exponentials with mean 1. Then
=1
(n+1)(1-TN) 4 2 571X (Litvak and Adan [15]), (2.8)
j =1 =1
(n+1) (1 — T2%) -4 max Zl T Zl 5—7X; ¢ (Litvak and van Zwet [47]) (2.9)
Jj= j=

as n — 0O0.

Result (2.9) is also generalised to the case when items positions are independent and have some
positive density f [43].

Remark 1. The expression in the right-hand side of (2.8) is a well-known functional of the Poisson
process (see e.g. [7]). Remarkably, the analysis of the travel time in carousel systems has led to
an interesting contribution in theoretical studies of such functionals [47]. Specifically, [47] provides
exact asymptotics for the distribution function of such functionals in a small positive neighbourhood
of zero.

3 Multiple carousels: modelling challenges

The problems examined so far relate to one-carousel models. In industry though, one rarely meets
a facility where only one carousel is used. Multiple-carousel systems tend to have a higher level
of throughput; however, they increase the investment cost due to the extra driving and control
mechanisms [27, 29]. A natural question is how much the throughput of a standard carousel can
be improved by the corresponding multiple-carousel system that has the same number of shelves as
the standard carousel. Thus, the question we would like to examine in this section is the following:
given a setup, i.e. a specific storage scheme of the items stored on the carousel and a specific
travelling strategy, such as those described in the previous section, how much can we increase the
utilisation of the picker (by assigning to him more carousels to handle) without decreasing the
response time of an order below some chosen level? In other words, how do we reach a quality and
efficiency regime in a real situation?

To illustrate things better, consider the following simple example. A facility assigns n carousels
to a single picker. Each carousel is related to an order of a single customer, and each order consists
of exactly one item. Moreover, each carousel rotates independently until the desired item reaches
the origin. Once this position is reached, the carousel stops until the item is picked. Only then will
the next order be given to the carousel, which will start rotating the new order to the origin. The
picker serves the carousels in a fixed order, visiting each carousel only once in every cycle. Clearly,
as n goes to infinity, the utilisation of the picker in steady state tends to one, since almost surely he



will never have to wait. The carousels will have brought each of their respective items to the origin
by the time the picker is ready to serve them. On the other hand, the time until the picker returns
to the first carousel tends to infinity; i.e. each individual customer suffers long waiting times.

Multiple carousel problems differ intrinsically from single-carousel problems in a number of
ways. Such systems tend to be more complicated. The system cannot be viewed as a number of
independently operating carousels (cf. [49] and Section 5.4), since there may be some interaction
between two separate carousels by means of the picker that is assigned to them. Namely, if the
number of pickers is less than the number of carousels, then the picking strategy that is chosen
for an isolated carousel may affect significantly the waiting time and/or the travel time of another
carousel. Thus, one cannot guarantee that minimising the travel time of a single carousel minimises
the total travel time of all carousels (and consequently the throughput); the outcome may be quite
the contrary because of the system’s interdependency. Another point is that in multiple-carousel
problems, the i.i.d. assumption is in principle invalid. Characteristics such as the time needed to
reach the optimal point or the travel time for each carousel depend on one another through the
picker’s movements. For all these reasons, multiple-carousel systems merit a special reference.

Ideally, the problems of minimising the travel time of all carousels and maximising the picker’s
utilisation without surpassing certain levels of each order’s response time should be studied to-
gether. However, the interdependence that appears in multiple carousel problems usually leads to
complicated mathematical structures that can hardly be analysed exactly. One will have to resort
to simplifications.

One technique that can help overcome some of these difficulties is the setting proposed in
Vlasiou et al. [70]. The system we consider below consists of two carousels operated by a single
picker. Given a setting, i.e. a storage scheme and a travel strategy, one first needs to obtain an
estimate of the travel time needed in order to collect all items under this setting. For example, if the
items are stored in random positions on the carousel, then the distribution of the travel time under
the nearest-item heuristic is given by (2.6). In most settings, though this distribution cannot be
computed analytically, in which cases the empirical distribution or simulation may provide a partial
answer. Subsequently, one needs to approximate this distribution by a phase-type distribution; see
e.g. [51]. Then, the following modelling assumption is made. We aggregate all items in one. That
is, we consider an order that consists of exactly one item. It is assumed that the travel time of the
carousel until that single item is reached is uniformly distributed (i.e. it is assumed that the item
is located randomly on the carousel), while the distribution of the pick time for that item is taken
to be equal to the phase-type distribution computed previously. Under these assumptions, one can
compute the utilisation of the picker by applying the results developed in Vlasiou et al. [70]. This
procedure can be repeated until the desired quality and efficiency regime is reached.

To describe things concretely, we consider a system consisting of two identical carousels and
one picker. At each carousel there is an infinite supply of pick orders that need to be processed.
The picker alternates between the two carousels, picking one order at a time. There are two ways
one can view this. Either, as mentioned above, one aggregates all items in an order in one super-
item (i.e. we consider an order that consists of exactly one item) or under the term “picking time”
we understand the total time needed for the actual picking and travelling from the moment the
picker is about to pick the first item in an order until the time the last item is picked. For ease of
presentation, we will opt for the first solution, considering orders consisting of exactly one item.

As in Section 2, we model a carousel as a circle of length 1 and we assume that it rotates in
one direction at unit speed. The picking process may be visualised as follows. When the picker is
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about to pick an item at one of the carousels, he may have to wait until the item is rotated in front
of him. In the meantime, the other carousel rotates towards the position of the next item. After
completion of the first pick the carousel is instantaneously replenished and the picker turns to the
other carousel, where he may have to wait again, and so on. Let the random variables A,, B, and
Wy, n > 1, denote the pick time, rotation time and waiting time for the n-th item. Clearly, the
waiting times W,, satisfy the recursion

W41 = max{0, By+1 — 4, — Wy}, n=0,1,... (3.1)
where Ay = W) % 0. We assume that both {A,} and {B,}, n > 1, are sequences of independent
identically distributed random variables, also independent of each other. The pick times A,, follow a
phase-type distribution and the rotation times B,, are uniformly distributed on [0, 1) (which means
that the items are randomly located on the carousels). Then {W,} is a Markov chain, with state
space [0,1). Moreover, it can be shown that {W,} is an aperiodic, recurrent Harris chain, which
possesses a unique equilibrium distribution. In equilibrium, equation (3.1) becomes

W <L max{0,B — A—W?}. (3.2)

Once the distribution of W is computed from (3.2), we can compute E[W] and thus also the

throughput of the system 7 from
1

T= . 3.3
E[W] + E[4] (33)
Equation (3.2) with a plus sign instead of minus sign in front of W at the right hand side, is
precisely Lindley’s equation for the stationary waiting time in a PH/U/1 queue. The equation for
the standard PH/U/1 queue has no simple solution, but in Vlasiou et al. [70] we show that the
waiting time of the picker in our problem can be solved for explicitly.
For example, assume that the service times follow an Erlang distribution with scale parameter
A and n stages; that is,
“ (A\z)i
Fy(x) = 1—e*MZT, x>0
i=0
and define mp = P[W = 0]. Then, for the Laplace transform w(s) of W, the following theorem
holds.

Theorem 4 (Vlasiou, Adan and Wessels [70]). For all s, the transform w(s) satisfies
w(s)R(s) = —e *s(A+ 8)"T(—s) — A"T(s), (3.4)

where

n—1 ¢ n—i—1+j
()—7ro<)\"+e ’\+5)ZZS/\ )\+S )—e_s()\+s)"+

=0 j=0
‘ )\+S)n i—1+7
—(A+ {4
s)ZZZ() i w®(=N).
=0 j=0 ¢=0
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In (3.4) we still need to determine the n 4 1 unknowns my and w®(=\) for £ =0,...,n — 1.
Note that for any zero of the polynomial R, the left-hand side of (3.4) vanishes (since w is analytic
everywhere). This implies that the right-hand side should also vanish. Hence, the zeros of R provide
the equations necessary to determine the unknowns. In [70] it is explained how to determine these
unknown parameters (which incidentally form the unique solution to a linear system of equations)
and how to invert the transform. Qualitatively, the result is as follows.

Theorem 5 (Vlasiou, Adan and Wessels [70]). The density of W on [0,1] is given by

2n+2
fw(@) =Y @™, 0<z<l, (3.5)
=1
and
2n+2 .
=PW=0]=1-— 2" —1 3.6
mo=FW=0]=1-3 J(" -1, (3.6)

where 1; 1 a zero of the polynomial R appearing in the previous theorem, and where the coefficients
c; can be computed explicitly.

As a by-product, we have that

Corollary 1. The throughput T satisfies

2n+2

+ 3 S (- 1)),

71 =E[A] +E[W] = -
i=1 1

>3

Remark 2. The same qualitative result holds in case the pick times follow a mixed-Erlang distribu-
tion. In this case, the waiting time density is again a mixture of exponentials, where all parameters
can be computed explicitly; cf. [70].

In a series of papers, Vlasiou et al. [11, 65, 66, 68, 67, 69, 70, 71] have relaxed several of the
assumptions made above for the two-carousel setting. For example, if the items are not stored at
random positions on the carousels, then the travel times of the carousels do not follow a uniform
distribution. In such cases, one can compute the distribution of the waiting time of the picker
by approximating the distribution of the travel times by an appropriate phase-type distribution.
Phase-type distributions may be used to approximate any given distribution on [0, 1) for the travel
times arbitrarily close; see for example Asmussen [4]. As an illustrative example, we give below
the steady-state distribution of the waiting time of the picker in case the pick times follow some
general distribution with Laplace transform «, and the travel times follow an Erlang distribution
with parameter p and N stages. Recall that w denotes the (unknown) Laplace transform of the
waiting time of the picker. In this case we have the following:

Theorem 6 (Vlasiou and Adan [66]). The waiting-time distribution has a mass 7y at the origin,

which is given by
N—

m=PB<W+A=1->"

=

(_ﬁ S 50
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and has a density fy, on [0,00) that is given by

N-1 ( 1)2‘ xN_l_Z
= yNe e 5 . 3.7
In the above expression, we have that
; ~ (i i
690 = 3= ()0 a0
k=0
and that the parameters w(i)(u) fori =0,...,N — 1 are the unique solution to the system of
equations
NSy 1 v w® () a0 ()
wip =1=2_(=n) <1_ zNﬂ:)Z k(i — k)l
=0 k=0
and for=1,...,N —1 (3.8)

wO(p) = szluz‘é(—l)prﬁ (N—i+/{—1) : w® (1) a=F) (1)

N—i+e i1 (i — k)
paar 2 (N—i—1)! — E!'(i — k)!

We refrain from giving all results derived for the waiting time distribution in this setting, as they
can be found in the papers mentioned so far. One point needs to be stressed though. This technique
makes usage of several simplifications (e.g. aggregating orders in one item) and approximations (e.g.
modelling various distributions as a phase-type distribution). Some of them are almost unavoidable.
For example, deriving the steady-state distribution of the travel time of one carousel under the organ
pipe storage arrangement (see Section 5.1) is a non-trivial task. This distribution is not known to
date. Therefore, one may have to resort to the empirical distribution. However, the effect that
some of these assumptions have to the final result is marginal, or at least fully controlled. As was
shown in Vlasiou and Adan [67], the error made in computing the distribution of the time the
picker has to wait (is not utilised) is bounded. Error bounds have been studied widely. The main
question is to define an upper bound of the distance between the distribution in question and its
approximation, that depends on the distance between the governing distributions.

For our model, recall that A, B, and W denote respectively the pick time needed for an item,
the travel time of the carousel until this item is reached, and the waiting time of the picker until the
carousel stops for the pick. Moreover, Fj; represents the distribution of B (and similarly also for
W) and F 3 is its approximation (such as the phase-type approximation mentioned above). Using
this approximation, F '3, one can derive analytically an exact solution that is obtained for this case
for the distribution of W. Denote this solution by ﬁW. Then the following error bound holds.

Theorem 7 (Vlasiou and Adan [67]). Let HFB—ﬁBH =c¢. Then HFW—fWH <e/(1-P[B > A)]).

In the theorem above, the norm under consideration is the uniform norm. An almost identical
result can be derived in case one approximates the pick time, rather than the travel time. Thus, as
this theorem indicates, resorting to approximations yields results of validity that can be controlled,
provided that one has an estimation of the error that is being made by the original approximation.

Other results derived for the two-carousel setting include the study of the conditions under which
there exists a steady-state distribution [65], the study of the tail behaviour of this distribution under
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general assumptions for the pick and travel times [65], the derivation of the steady-state distribution
for various cases for the distributions of the pick and travel times [65, 66, 70], as well as the time-
dependent distribution of the waiting times of the picker for a specific setting for the distributions
of the pick and travel times [71]. Moreover, certain types of dependencies between the pick and
travel times have also been studied, and the steady-state distribution has been derived for these
cases as well [68].

It is worth a mention that such multiple-carousel systems, their mathematical peculiarities,
their results and the way those are derived are not limited only to carousel, warehousing, or manu-
facturing problems. The same equation describing the dynamics of a two-carousel setting describes
also the dynamics of a queuing model with two nodes that is applied to situations varying from a
university canteen to a surgeon’s operating room. For a description of such systems and detailed
analysis see Vlasiou et al. [12, 66, 65, 71].

What we have discussed so far on multiple-carousel problems is summarised as follows. Multiple-
carousel problems are intrinsically different from their single-carousel counterparts. What is of
interest in such problems is to strike a balance between the utilisation of the picker and the response
time of an order. To date, not much is known about such systems; see Section 5.5 for an exhaustive
literature review. A few of these results are simulation studies. However, it is almost inevitable to
make use of some simulation or approximations in these problems. The results developed in Vlasiou
et al. [67, 70] help predict the performance of two-carousel systems and ultimately, combined with
the results on e.g nearest-item heuristic or m-step strategies discussed in Section 2, they help design
a facility having a specific quality and efficiency target. However, such results are still far from
accurate. More research is needed on the subject; specific directions are provided in the next
section.

4 Further research

As mentioned in Section 2, the case of independent uniformly distributed items locations is the
only known scenario where the travel time can be evaluated analytically by applying a systematic
mathematical approach. It is important to develop methods to obtain statistical characteristics
of the travel time under more realistic assumptions on the items locations. As we discuss below
in Section 5.2, there are not many results in this direction in the literature. The non-uniform
distributions of pick positions and especially the correlations between the items in an order lead
to challenging mathematical problems. We believe that no feasible analytical solutions can be
obtained in most of realistic models. Thus, the problem calls for well justified heuristics and
efficient numerical methods.

The model we have considered in Section 3 applies to a two-carousel system that is operated by
a single picker. Two-carousel systems have received some attention in the literature (cf. Section 5.5)
but many questions remain open. A line of research is directed towards studying the performance
of two-carousel systems under various storage-assignment policies (randomised or not), for vari-
ous pick/travel time strategies and heuristics (sequential picking, nearest-item heuristic, m-step
strategies, etc.), for single- or dual-command cycles, and for open- and closed-loop strategies. Here
a single command cycle assumes a single operation, such as only storage or only retrieval. In a
dual-command cycle, a storage and retrieval are combined to efficiently use the time of the opera-
tor. Furthermore, an open-loop strategy implies that the carousel remains stationary at the point
where the last item was retrieved (awaiting the next order to be fed), while under the closed-loop
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strategy the carousel returns to a predefined point after the retrieval of an order is completed. As
explained in Section 3, two-carousel systems differ in nature and in analysis from the corresponding
one-carousel problems even when studied under the same assumptions on the various storage, pick,
cycle, and starting-point strategies that are followed. Since two-carousel systems perform in broad
terms better than single-carousel systems [29], studying the expected increase of the throughput
of the system can help answer questions of financial nature, such as whether the benefits from the
increased throughput justify the increased cost of building and operating a two-carousel system.

The model discussed in Section 3 can be extended to the case of multiple carousels as follows.
For instance, consider the situation where a single picker operates three carousels. Apart from the
number of carousels, all other characteristics of the model remain the same as in Section 3. That is,
we consider again an infinite queue of orders that need to be picked, we have again a rotation stage
and a picking stage for each item. Moreover, as before, the picker serves all carousels cyclically.
For three carousels, this leads to the recursion

Wn+2 = maX{O, Bn+2 — Wn+1 — An+1 — Wn — An},

where now the variables appearing at the right-hand side are not independent of one another, as was
the case for all variables appearing at the right-hand side of Recursion (3.1). We may assume for
convenience that the sequences {4, } and {B,} are independent among them and between them.
Moreover, we may attempt to plug in the relevant rotation time distributions from Section 2.
Further, we note that the waiting times W,, and W,,41 are not independent. The state of the
system can be modelled e.g. as a two-dimensional Markov chain, where apart from the waiting
time of the picker for the n-th item that will be picked we also need to incorporate the remaining
rotation time of the next carousel to be served. Evidently, if the rotation times are assumed to be
exponentially distributed, the system (for three or more carousels) can be analysed explicitly by
similar techniques as the ones applied in Chapter 4 of [64].

Naturally, if one considers a system with multiple carousels or stations, one can think about
optimisation questions. Namely, as the number of carousels increases, the waiting time of the picker
is expected to decrease. After serving a long series of carousels cyclically, when you return to the
beginning of the cycle, with high probability the item to be picked will have reached the origin.
This implies that an item will have to wait for the picker at the origin more frequently than in
the two-carousel system, which means that the throughput of the system decreases. Intuitively, as
the number of carousels increases to infinity, the utilisation of the picker increases to one, while
the throughput of each individual carousel decreases to zero. Given a setting, one might wonder
how many carousels a single picker can operate so that we maximise both the throughput of the
carousels and the utilisation of the picker simultaneously.

The ultimate goal of the analysis of carousel systems is to provide a mathematical model that
adequately describes the reality and, at the same time, can be efficiently evaluated either ana-
lytically or numerically. At the moment, the literature on a single carousel has advanced enough
to characterise the travel time with great precision, at least for independent uniform items loca-
tions. However, as mentioned above, single carousel systems are rarely used in modern warehouses.
Clearly, multiple carousel models are more relevant from a practical point of view. The drawback
is that such models tend to become extremely complex. Until now the studies of multiple carousel
systems were either solely based on simulations or employed analytical models that involved unre-
alistic assumption on the order picking time. For instance, in Section 3 we assumed that each order
is collected within a random time that has the same distribution for each order. This is definitely
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is a simplifying assumption, because, for instance, the orders may differ in size, and as we saw
in Section 2, the distribution of the travel time depends on the number of items to be collected.
Further literature on multiple carousels discussed in detail in Section 5.5 also involves significant
simplifications of the real-life situation.

In this respect, a major challenge for future studies is to develop a unified approach for rigorous
studies of real-life automated storage and retrieval systems. Such an approach is expected to involve
the methods proposed so far for single and multiple carousels. In Sections 2 and 3 we presented well-
developed methodologies for analytical studies of order picking in one and two carousel units. Thus,
an important topic for further research is to combine these two problems in one integrated study of
multiple carousel systems. One may hope to obtain interesting analytical results in this direction
because of the analytical nature of both methodologies. However, the problems of combining
these two settings are so challenging that eventually one will have to resort to the development
of reasonable algorithms rather than the derivation of exact distributions. In this respect, we
emphasise again that algorithmic studies of realistic carousel models constitute an important part
of further research.

It is also interesting to study if single or multiple carousel systems can be analysed in case there
is an arrival process according to which the orders arrive. If orders arrive according to a Poisson
process in front of the carousel, what can be said for the waiting time of the picker? This question
can also be combined with a non-alternating system, where the picker serves the first carousel that
has completed the rotation to the next item on that carousel that needs to be picked, or with
Bernoulli-type requests, where the picker has to serve with a certain probability the “first” carousel
and with the complementary probability the “other” carousel (potentially waiting for an item if
none is present at the designated carousel). For each case, one should also consider the stability of
the system in case the arrival rate of the orders is less than the throughput of the system with an
infinite queue of orders.

In the literature on polling systems, the polling system with two queues where at each queue
the server serves exactly one customer before switching to the other queue is often referred to
as the 1-limited alternating-service model. The model described in Section 3 is closely related to
such polling systems. The two main differences are the existence of an extra stage, the rotation
time of the carousel, and the absence of an arrival process for the orders. In polling systems one
deals only with one stage, which in the terminology of Section 3 is represented by the picking stage.
Extending the model of Section 3 by introducing an arrival process of the orders as suggested above,
is equivalent to studying an 1-limited alternating-service model with switch-over times between the
stations (which can be seen as being equivalent to the rotation time for an item). The model with
two queues, Poisson arrivals, and no switch-over times has first been studied by Eisenberg [16],
where the main question studied (as is often the case in the literature on polling systems) is the
queue-length distribution. Eisenberg [16] gives the generating function for the stationary joint
distribution of the two queue sizes. Cohen and Boxma [14] study the single server queue with two
Poissonian arrival streams and no switch-over times. The server handles alternatingly a customer
of each queue if the queues are not empty and it is assumed that customers of the same arrival
stream have the same service time distribution. It is shown that the determination of the joint
queue-length distribution at the departure epoch can be formulated as a Riemann-Hilbert boundary
problem that can be completely solved for general service time distributions. Introducing switch-
over times increases the complexity of the problem. In Boxma [9] the analysis is extended to
include switch-over times of the server between queues, under the restriction that both queues have
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identical characteristics. This work is further extended in Boxma and Groenendijk [10], where the
authors no longer request that both queues have identical characteristics. It is assumed that service
times and switch-over times are generally distributed.

The literature on polling systems with alternating service is not limited to the references above
but is rather extensive; see [21, 31, 52] for some references. It seems though, that the question
regarding the waiting time of the picker for the 1-limited polling system with two carousels has not
been considered outside the scope of [64]. Thus, introducing an arrival process for the orders in the
model of Section 3 complements the existing literature on polling systems and forms a challenging
problem. The interesting feature then is that the switch-over time between two queues depends on
the current picking time. Again, the results from Section 2 can be incorporated into the model for
adequate description of order picking times.

An extension considered in polling systems is the k-limited service policy, where the server
switches queues after having served at most k customers in one queue. For an extensive list of
references on k-limited polling systems see Van Vuuren and Winands [62]. The main focus of the
existing literature is again on the queue-length distribution of all stations. As the authors note
in [62], “to this very day, not only hardly any exact results for polling systems with the k-limited
service policy have been obtained, but also their derivations give little hope for extensions to more
realistic systems”. It is worth considering the k-limited service discipline under the exact setting
we have established in Section 3, where now the focus is on the distribution of the waiting time of
the server.

5 Literature overview

In the following, we classify the literature on carousels according to the main theme handled. This
taxonomy allows for a better overview of the variety of the subjects examined. A crucial distinction
is made between systems that involve a single carousel and systems with multiple carousels. The first
four categories presented relate to single-carousel systems, while systems with multiple carousels
are examined later on.

5.1 Storage

The performance of a carousel system depends greatly upon the way it is loaded and the demand
frequency of the items placed on it. An effective storage scheme may reduce significantly the travel
time of the carousel. Several strategies have been followed in practice to store items on a carousel.
The simplest strategy is to place the items randomly on the carousel. Randomised policies have
been examined extensively [27, 41], and various performance characteristics have been derived under
the assumption that the items are uniformly distributed on the carousel.

One way to improve the throughput of a carousel system is to adopt a storage policy other
than the randomised assignment policy. Ha and Hwang [23] have studied what they call the “two-
class-based storage”, which is a storage scheme that divides the items in two classes based on their
demand frequency. The items with a higher turnover are randomly assigned to one continuous
region of the carousel, while the less frequently asked items occupy the complementary region. The
authors show by simulation that the two-class-based storage can reduce significantly the expected
cycle time, both in the case where a cycle is a single pick or storage of an item (single-command
cycle), and in the case where a cycle consists of the paired operations of storing and retrieving
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(dual-command cycle). The same authors in [28] examine the effects of the two-class-based storage
policy on the throughput of the system, and present a case where there is a 16.29% improvement
of this policy over the randomised policy.

Another storage scheme is suggested by Stern [59]. Assignments are made using a mazimal
adjacency principle, that is, two items are placed closely if their probability of appearing in the
same order is high. The author evaluates this storage assignment analytically by using a Markov
chain model he develops.

The organ pipe arrangement for a carousel system is introduced in Lim et al. [40] and is proven
to be optimal in Bengii [6] and in Vickson and Fujimoto [63] under a wide variety of settings.
The organ pipe arrangement has been widely used in storage units, such as magnetic tapes [8]
and warehouses [48]. This arrangement is based on the classical mathematical work of Hardy,
Littlewood and Polya [24]. Their concept is used [8] to minimise the expected distance travelled
by an access head as it travels from one record to another. Various optimality properties of this
arrangement have been proven; see for example Keane et al. [33] and references therein.

1 In carousel systems, the organ pipe arrangement places
the item with the highest demand in an arbitrary bin, the
items with the second and third highest demands in the
3 bin next to the first one but from opposite sides, and se-
4 quentially all other items next to the previous ones, where
the odd-numbered items according to their frequency are
grouped together and placed next to one another in a de-
6 creasing order from the one side of the most frequent item
7 (and similarly the even-numbered items are grouped to-
9 8 gether and placed to the other side). Figure 5 illustrates
) | the organ pipe arrangement. The numbers at the top
indicate the ranking of an item in a decreasing order of
i _ ) frequency.
Figure 5: Illustration of the organ pipe Park and Rhee [53] study the system throughput and
farrz.mgement, where the upper numbers ¢, o job sojourn times under the organ pipe arrangement,
}nd1cate the frequency ranking of an jere independent one-item orders arrive according to a
ltem. Poisson process. They explicitly quantified the gain of
the organ pipe arrangement compared to random assignment and showed that this gain grows with
the ‘skewness’ in demand distribution.

Abdel-Malek and Tang [1] study the travel times in carousels with organ pipe arrangement
under the assumption that each order consists of one item and a sequence of orders forms a Markov
chain. Their extensive numerical experiments show that although the organ-pipe arrangement is not
optimal in this setting, it performs very close to optimality in a wide range of system parameters.
The optimal solution in [1] is determined by solving a quadratic assignment problem. The quadratic
assignment problem is a well-known optimization problem on choosing an optimal permutation of n
coordinates of a vector x = (21, ..., ;) in order to minimise xCx?, where C is a cost matrix. Such
problems have a long history started with the work of Koopmans and Beckmann [36]. Litvak [43]
shows by experimental studies and by providing asymptotic results for large orders that in general
the optimal storage depends on the order size. Moreover, the organ-pipe storage is disadvantageous
when an order is large.

Another question related to storage is about the number of items of each type that should be

Bin 1 2 3 4 5 6 7 8 9
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stored on the carousel in order to maximise the number of orders that can be retrieved without
having to reload. This question is examined in Jacobs et al. [32], where the authors propose a
heuristic that yields a reasonable solution, the error of which can be bounded. This method has
been improved by Yeh [77], where a more accurate solution is obtained, and further on by Kim [34],
where it is observed that the heuristic described in [77] does not always lead to the optimal solution.
The author constructs an algorithm that yields the optimal solution. This algorithm is further
improved in Li and Wan [39]. This line of research has been continued in the recent paper by
Hassini [25]. In the formulation used in Jacobs et al. [32], the author determines the optimal
allocation. Along with exact optimal solutions for deterministic and stochastic demand, [25] also
provides heuristics that perform close to optimal.

5.2 Picking a single order

One of the most important performance characteristics of a carousel system is the total time to pick
an order. The total time to retrieve all items of an order may be expressed as a sum of the total
time that the carousel is travelling plus the total time that the carousel is stopped for picking. The
latter is effectively the total pick time, and it is not affected by the sequence in which we choose to
retrieve the objects. However, the total travelling time greatly depends upon the retrieval sequence.
The analysis of the travel time under various strategies is, in general, a non-trivial problem. This
problem, however, has been resolved for independent and uniformly distributed item locations [41],
as we discussed in detail in Section 2.

Various picking strategies have been proposed. Bartholdi and Platzman [5] assume a discrete
model and study the performance of an algorithm and three heuristics that determine an efficient,
but not necessarily optimal, sequence of retrieving all items. A heuristic is a simpler, non-optimal
procedure that is based on a specific strategy. The heuristic methods proposed are the nearest-item
heuristic, where the next item to be picked is always the one that is closer to the picker at any
given moment, the shorter-direction heuristic, where the carousel chooses the shortest direction
between the route that simply rotates clockwise and the route that rotates counterclockwise, and
the monomaniacal heuristic, that always chooses to rotate to the right and pick items sequentially.
The optimal retrieval algorithm that is presented enumerates all possible paths; therefore, it is
guaranteed to find the quickest sequence in which to retrieve a single order.

In [5] the authors prove among other things that the travel time under the nearest-item heuristic
is never greater than one rotation of the carousel. Litvak et al. [46] provide the upper bound of
1 —1/2" full rotations, where n is the number of items in the order, and show that the new upper
bound is tight. Litvak and Adan [44] obtained the distribution and the asymptotic properties
of the travel time under the nearest-item heuristic for uniformly distributed independent items
locations. These results, based on properties of uniform spacings, have been discussed in detail
in Sections 2.1, 2.4. In [46], the first two moments of the travel time and the distribution of the
number of turns are computed recursively by conditioning on the event that there is an empty
space of size x on one side of the picker’s current position. We presume that such methods may
lead to the travel time distribution in some special cases with non-uniform items locations.

Another interesting picking strategy that has been already discussed in Section 2.2 is the so-
called m-step strategy, where the carousel chooses the shortest route among the ones that change
direction at most once, and only do so after collecting at most m items. In case of independent
uniformly distributed items locations the average travel time under the m-step strategy is smaller
than the one under the nearest-item heuristic already for m = 2; see [45]. The results by Litvak
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and Adan [45] on the m-step strategies have been presented in Section 2.2. In the earlier paper,
Rouwenhorst et al. [57] apply analytical methods to study the case when m < 2. This means that
the carousel changes direction after collecting at most two items. They interpret m-step strategies
as stochastic upper bounds for the minimal travel time and present convincing numerical results
on the excellent performance of such strategies.

Wen and Chang [75] model the carousel as a discrete bidirectional loop and assume that the
time to move between the bins of a shelf is not negligible. They propose three heuristic solution
procedures and compare their performance. An earlier version of this work can be found in Wen [74].

Ghosh and Wells [19] model the carousel as a continuum of clusters and gaps, where a cluster
is a segment on the circle that corresponds to a series of locations that have to be visited for the
retrieval of an order, while a gap is the segment of the circle between two clusters. The authors
develop two algorithms to find optimal retrieval strategies. In particular, to find an optimal path,
they avoid a complete enumeration by noticing that a turn can never be made after covering more
than 1/3 length of the carousel.

Stern [59] studies properties of the optimal, i.e. minimal, picking sequence both for the open-
loop strategy, where the carousel remains stationary at the point where the last item was retrieved
(awaiting the next order to be fed), and for the closed-loop strategy, where the carousel returns to
a predefined point after the retrieval of an order is completed. He formally shows that under the
open-loop strategy the carousel will change its direction at most once when following the optimal
picking sequence, while under the closed-loop strategy the carousel will turn at most twice. A
recursive expression for the distribution of the minimal travel time for randomly distributed items
is given explicitly by Litvak and Van Zwet [47].

The case when positions of the items in an order are dependent has not received much studies.
One way to model the dependencies is described by Abdel-Malek and Tang [1] who assume that
the positions of successive items form a Markov chain. In this setting, they study the performance
of the organ-pipe storage rule. Stern [59] introduces correlations between items in an order by
considering several order types, where each type corresponds to a fixed list of items. The work
of Wan and Wolff [72] focuses on minimising the travel time for “clumpy” orders, that is, orders
concentrated on a relatively small segment of the carousel, and introduces the nearest-endpoint
heuristic for which they obtain conditions for it to be optimal. In this setting, one can no longer
assume that the items locations are uniformly distributed. Moreover, there is clearly a strong
dependence between items positions.

The model with non-uniform items locations reflects a relevant situation when some of the items
are required more frequently than others. Most of the papers that assume distinct frequencies
assume the orders of one item (see e.g. [6]). An interesting work on non-uniformly distributed
items is given by Litvak [43], where the focus is on the length of the shortest rotation time needed
to collect a single order when the order size is large and the items locations have a non-uniform
continuous distribution with a positive density f on [0, 1].

5.3 Picking multiple orders

A popular strategy for reducing the mean travel time per order in carousel storage and retrieval
systems is batching together a number of orders and then picking them sequentially. A batch is
a set of orders that is picked in a single tour. Two consecutively picked items do not necessarily
belong to the same order. An excellent literature survey by Van den Berg [61] on planning and
control of warehousing systems addresses this issue and the problems that arise if large batches are
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formed. Apart from the questions mentioned before, Stern [59] also considers the performance of a
carousel for a fixed set of order types (for example, big orders with many items, and small ones).

Bartholdi and Platzman [5] are mainly concerned with sequencing batches of requests in a bidi-
rectional carousel. They specify the number of orders to be retrieved (ignoring any new arrivals)
and propose three heuristic methods to solve this static problem. Orders may be picked in any
sequence (and not necessarily at the order they arrive), but picks within the same order are per-
formed consecutively. They define the minimum spanning interval, which is the shortest interval
containing all the items of an order and, by assuming that the picker always begins and finishes
retrieving an order at one of the endpoints of this interval, they construct the shortest matching
chain by ordering the orders accordingly. This procedure may fail to give an uninterrupted se-
quence in which to pick the orders; therefore, they propose the following heuristics. The first one,
called the hierarchical heuristic, picks any order that happens to have a common endpoint with
another order, and then travels clockwise until an unpicked endpoint is encountered, and repeats
the procedure. The nearest-order heuristic is practically an extension of the nearest-item heuristic
described earlier in the paper, as is the case with the second monomaniacal heuristic they propose.
Under these heuristics, they obtain upper bounds for the travel time.

Ghosh and Wells [19] assume that the orders have to be picked under a FIFO sequencing
restriction, which means that the first order to arrive at the warehouse is the first order that will
be picked, and so on. Since the orders are retrieved in a FIFO fashion, the problem is reduced to
finding how to retrieve each individual order so that the best overall retrieval is achieved. They
develop an algorithm for the optimal retrieval path of n orders via dynamic programming, and
show how to update dynamically the solution when new orders arrive.

Rouwenhorst et al. [57] model the carousel as an M/G/1 queuing system, where the orders are
the “customers” that require service, and the service they get depends on the pick strategy that
is followed. This approach permits the derivation of various queuing characteristics such as the
mean response time and the waiting time when orders arrive randomly. The authors mention that
the tight upper bounds for the mean response time can be further exploited to obtain also good
approximations for excess probabilities of the response time.

Van den Berg [60] assumes either a fixed or an arbitrary sequence of orders. When the sequence
of the orders is given, he presents an efficient dynamic programming algorithm that finds an op-
timum path that visits all orders in the specified sequence. Furthermore, when there is no given
order sequence, he simplifies the problem to a rural postman problem on a circle and solves this
problem to optimality. The rural postman problem is a problem of finding the shortest route in an
undirected graph which includes all edges at least one time. Van den Berg [60] concludes that the
obtained solution requires at most 1.5 revolutions more than a lower bound of an optimal solution
to the original problem. Simulation results suggest that the average rotation time may be reduced
up to 25% when allowing a free order sequence. Lee and Kuo [38] formulate the problem of opti-
mal sequencing of items and orders as a multi-travelling salesman problem. In the multi-travelling
salesman problem, there are several salesmen in a home city, and each of the other cities has to be
visited only by one salesman. Using this formulation, Lee and Kuo [38] provide efficient heuristics
for optimal picking of several orders consisting of multiple items.

5.4 Design issues

All research papers mentioned so far that deal with travel time models of carousel systems assume
average uniform velocity of the carousel. In other words, the main assumption is that the carousel
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travels with constant speed and the acceleration from the stationary position (when a pick is
performed) to its full speed, as well as the deceleration from the maximum speed to zero speed, are
negligible factors when computing the travel time of the carousel. Guenov and Raeside [22] give
some empirical evidence that the error induced when neglecting acceleration and deceleration of
an order picking vehicle is indeed negligible. Thus the problem of minimising retrieval times can
be considered to be equivalent to the problem of minimising the average distance travelled by the
carousel per retrieval.

Hwang et al. [30], however, develop strategies for picking that take into consideration the vari-
ation in speed of the carousel. For unit-load automated storage and retrieval systems there are
several travel-time models that consider the speed profiles of the storage and retrieval robot. In
[30] some relevant references are given. Unlike the unit-load automated storage and retrieval sys-
tems, almost all the existing travel-time models for carousel systems assume that the effects of the
variation in speed are negligible. In [30] the authors try to bridge this gap in the literature. They
assume that the items are randomly distributed on the carousel and derive the expected travel time
both in the case of a single command cycle and in the case of a dual command cycle. They verify
the accuracy of the proposed models by comparing the results to results directly obtained from
discrete racks.

Egbelu and Wu [15] study the problem of pre-positioning the carousel in anticipation of storage
or retrieval requests in order to improve the average response time of the system. Choosing the
right starting point of a carousel in anticipation of an order is also referred as the dwell point
selection problem. This strategy becomes relevant when the items are stored under the organ pipe
arrangement. In this situation the dwell point should be chosen to be the location of the most
popular item; see, e.g., [6].

Spee [58] is concerned with developing design criteria for carousels. He states the basic condi-
tions for designing an automatic order picking system with carousels and comments on the optimal
storage design. Namely, he is interested in finding the right number of picking robots and the right
number and dimensions of a carousel so that the investment is minimised, provided that the size
of the orders that need to be retrieved is given.

McGinnis [49] studies some of the design and control issues relevant to rotary racks. A rotary
rack is an automated storage and retrieval system that strongly resembles carousels. In fact,
conceptually, a rotary rack is simply a carousel, where the only difference is that each level or shelf
of this carousel can rotate independently of the others. The author concludes that, while rotary
racks appear to be a simple generalisation of conventional carousels, the control strategies that have
been shown effective for carousels do not appear to be as effective for these systems. Rotary racks
can be viewed as a multiple-carousel system (where each level is considered as a sub-carousel) with
a single picker.

5.5 Problems involving multiple carousels

While almost all work mentioned in this section concerns one-carousel models, real applications
have triggered the study of models involving multiple carousels. The study of such models is not as
developed yet as the study of models involving a single carousel. The list of references that follows
seems to be complete.

Perhaps the first academic study that investigates the performance of a system involving sev-
eral carousels is that of Emerson and Schmatz [17]. The authors simulated the operation of the
warehouse of Rockwell’s Collins Telecommunications Products. The system consists of twenty-two
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carousels, where each pair of carousels had a single-operator station (so there are in total eleven
operator stations). The questions they are concerned with are how big the batch size of orders
should be so as to complete the week’s work (which is used as a performance measure) and keep
all operators busy, what happens when a carousel or a station is down, and how is an overload
or an imbalance (for example, unequal operator performance, unequal carousel loading, or large
orders) handled. In order to investigate potential solutions to these three imbalance conditions, the
authors investigate two operating rules.

The first operating rule studies six different storage schemes with seven carousel pairs (and
thus seven operators). It uses simulation models to study simple storage schemes such as random
storage, sequential alternating storage, and storage in the carousel with the largest number of
openings. The aim in [17] is to study the degree of carousel usage. The authors find that there
is no significant difference between the carousel loads among the storage schemes. However, they
do not treat the problem of optimally assigning items to carousel bins, and do not present any
analytical models to help investigate the problem. The second operating rule they investigate is a
floating operator. This is an operator who is trained to work at any station, and who is moving to
different stations according to specific needs (for example, depending on the size of the queue at a
particular station). They conclude that this solution seems advantageous for the purposes of the
warehouse they investigate.

Koenigsberg [35] presents analytic solutions for evaluating the performance of a single carousel,
and discusses the ways in which his approach can be extended to a system involving two unidirec-
tional carousels both served by a single robotic operator. The carousels are related only through
the state of the robot, which means that each carousel is independent of the other except for the
time it waits for an operation to commence (such as pick, storage, or repair) because the robot
is busy at the other carousel. The author concludes that under some conditions, it is often more
advantageous to have two carousels of identical length instead of one carousel of double the length.
Furthermore, going to three carousels of equal length (i.e. one third of the length of the single
carousel) will offer little further improvement.

Hwang and Ha [27] study the throughput performance both of a single and of a double carousel
system. Based on a randomised storage assignment policy, cycle time models are developed for single
and dual commands. Furthermore, they examine the value of the information on the succeeding
jobs in terms of system efficiency, which may lead to better scheduling of the jobs to be processed.

In a later work, Hwang et al. [29] attempt to measure analytically the effects of double shuttles
of the storage and retrieval machine (i.e. the robotic picker) on the throughput both of the standard
and of the double carousel system. Storage and retrieval machines with double shuttles are machines
that have space for two items. Thus, for example, an item can be retrieved from the carousel and
stored on one shuttle, while the other shuttle has an item that needs to be stored to the carousel.
After this item is stored, a second item can be retrieved from the carousel and placed on the
empty shuttle. All these operations occur during a single cycle of the carousel operation. For the
double carousel system, a retrieval sequence rule is proposed which utilises the characteristics of the
two independently rotating carousels. From the test results, double shuttles are shown to have a
substantial improvement over single shuttles. This improvement tends to be more prominent in the
double carousel system. Due to cost concerns, the authors note that an economic evaluation will be
needed to justify the extra cost of double carousel systems and double shuttles before implementing
them in real world situations.

Wen et al. [76] consider a system comprised of two carousels and a single retrieval machine.
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Their main assumption is that every order must be picked in a single tour, i.e., an order cannot be
divided into two or more sub-tours. Batching orders together is also not allowed. They analyse the
retrieval time and propose four heuristic algorithms for the scheduling sequence of retrieving items
from the system to satisfy an order. Their method is an extension of the algorithm presented in
[5] and [59].

Meller and Klote study the throughput of a carousel pod [50]. They use approximations to
evaluate the order pick time in one carousel and then evaluate the throughput of a pod by plugging
in the average response times of each unit and modelling the pod of ¢ carousel as a queuing
system where 1/c¢ picker operates one carousel. Further, they derive approximation for the system’s
throughput using a diffusion approximation by Gelenbe [18] which was earlier applied by Bozer and
White [13] in the analysis of end-of-aisle order-picking systems.

Recently, Hassini and Vickson [26] studied storage locations for items, aiming to minimise the
long-run expected travel time in a two-carousel setting with a single picker. They assume that
the products are available at all times (so as to be able to ignore possible delays due to lack of
stock), and that orders are not batched; that is, the carousel system processes only single-item
orders. This is applicable in situations where individual product orders are processed in a first-
come-first-served policy, or when the next item to be retrieved is known only after the present one
has been picked. The authors compare the performance of three heuristic storage schemes and a
genetic algorithm [20] that for small-sized problems completely enumerates the solution space. They
conclude that none of the heuristic approaches leads to a solution that outperforms the algorithmic
solution they provide.

The same model is also studied by Park et al. [54]. As is the case in [26], in [54] the basic
assumptions are that there is an infinite number of items to be picked and that an order consists
of a single item. The authors, however, are not interested in storage issues. They further assume
that the single operator, the picker, is alternately serving the two carousels. This may cause the
picker to have to wait for an amount of time until the item at the carousel he is currently serving is
rotated in front of him. They derive the distribution of the waiting time of the picker under specific
assumptions for the pick times. This allows them to derive expressions for the system throughput
and the picker utilisation.

The model presented in [54] has been extended further in Vlasiou et al. [64, 67, 68, 69, 70]
by removing all assumptions related to the pick times or rotation times. In related work, Vlasiou
et al. [65, 66, 71] have shown that the two-carousel model studied in [26, 54] is equivalent to an
alternating service queue, if one allows for rotation times with an infinite support. Some of these
results have been presented in Section 3.

Finally, we would like to mention that there is a broad literature on automated storage and
retrieval systems (see e.g. the survey by Le-Duc [37]). An extensive list of references has been also
made available on-line by Roodbergen [56].
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