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Abstract

Ambient Intelligence imposes many challenges in protecting people’s
privacy. Storing privacy-sensitive data during for permanently will in-
evitably result in privacy violations. Limited retention techniques might
prove useful in order to limit the risks of unwanted and irreversible disclo-
sure of privacy-sensitive data. To overcome the rigidness of simple limited
retention policies, Life-Cycle policies more precisely describe when and
how data could be first degraded and finally be destroyed. This allows
users themselves to determine an adequate compromise between privacy
and data retention. However, implementing and enforcing these policies
is a difficult problem. Traditional databases are not designed or optimized
for deleting data. In this report, we recall the formerly introduced life cycle
policy model and the already developed techniques for handling a single
collective policy for all data in a relational database management system.
We identify the problems raised by loosening this single policy constraint
and propose preliminary techniques for concurrently handling multiple
policies in one data store. The main technical consequence for the storage
structure is, that when allowing multiple policies, the degradation order of
tuples will not always be equal to the insert order anymore. Apart from the
technical aspects, we show that personalizing the policies introduces some
inference breaches which have to be further investigated. To make such an
investigation possible, we introduce a metric for privacy, which enables the
possibility to compare the provided amount of privacy with the amount of
privacy required by the policy.

1 Introduction

In many application domains, but with Ambient Intelligence and ubiquitous
computing in particular, privacy sensitive data are collected and stored for
future use, typically to fulfill one or more purposes, or to improve a certain
service. A straightforward example is a web shop collecting address and credit
card information in order to process the payments and the dispatch of the
ordered goods. It is clear that without collecting these data, the service cannot
be provided. However, a customer exposes himself or herself to a possible
privacy threat since the data will be out of sight and control, stored ‘somewhere
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on the Internet’. The customer has to trust the web shop (including its database
administrators) not to sell the information to third parties, and has to rely on
the web shop’s protection against hackers or other forms of abuse. Moreover, in
cases where the privacy protection is breached, the customer might not notice it
soon enough, so that it might no longer be traceable once the violation comes to
light. This principle is know as information asymmetry, where the data owners
(the customers) have less knowledge about the use of their data than the data
collectors and data users [15].

What is already a problem with data collection on the Internet, will eventu-
ally become an even larger problem with ubiquitous computing. In an ambient
intelligence environment, sensors are predicted tol continuously monitor peo-
ple everywhere during their daily lives. Without developing adequate privacy
improving techniques, it will not be clear for the donor—we call the subject
being monitored the donor of his or her data—which data is stored where for
how long and who has access to it. Moreover, after the data has been collected,
the donor no longer has control over it. Those observations have lead to two
particular proposals to enhance privacy, deduced from privacy laws [11] and
the work on Hippocratic databases [2]:

Openness: make data collection and retention fully transparent to the donor;
where will the donor be monitored, and which data is currently retained
by the collector in what form?

Control: give the donor the ability to control his data; which data can be
retained and who has access to it?

Without the guarantee of having openness and control of his or her data, the
privacy aware donor might stop donating data at all, eventually resulting in
futile services. A donor who has insight in his or her own data, controlling that
only not too privacy sensitive data is kept, might present just enough data for
a service to be sufficiently effective for that donor.

Both openness and control are good tools to at least give the donors the
opportunity to protect their own privacy (see Example 1 for a practical exam-
ple). Still, by only offering openness and control, donors have to act themselves,
shifting the responsibility of good privacy protection back to the donor. A
straightforwarded first step to simplify the control over which data must be
removed from the history is to automatically remove the data after a prede-
fined retention period. This can be specified in a user-defined policy, or by
organization-wide policies. The data collector is then responsible for putting
such policies into effect and enforcing them [2].

However, simply removing data after a certain retention period may be too
rigorous to achieve an optimum balance between smartness and privacy, so an
intermediate solution may be desirable. In previous works [4], we presented
a model for life-cycle policies (LCP) which specify a step-wise per-attribute de-
struction of data and investigated how our model could be enforced using
traditional databases. For example, a life cycle policy can define that a location
will be stored accurately as a set of coordinates for only 10 minutes. After this
period, a transition takes place, degrading the accuracy of the location to build-
ing. Again, after a week, the location is degraded to city until final removal of
the value altogether (see Figure 1 for a graphical representation).



Google has acknowledged that it stores users’ search terms for
a undefined period, even when users haven’t given explicitly
consent [14] to do so. Ordinary users are not aware of being
monitored, and even if they are aware, they don’t know
exactly what their search history exactly contains. A search
history might even be polluted with search terms which aren’t
semantically or logically related to the user. Hence, there is a
total lack of openness, and as a direct consequence, control.

Google introduced a new service which explicitly stores a
user’s search history, and only when the user has subscribed
to this service. Through a web interface users have full insight
into their search history. Moreover, they can delete items
from their history. Hence, openness and control give users the
ability to influence which data will be retained, being aware
of the risk that at least only this data can be subject to privacy
violation. In this way, Google lets the users themselves decide
to which extent they want to provide data in order to improve
the quality of service that Google can provide them.

Example 1: Google Web History [24], a new service introduced to personalize
search results and to give the user the ability to browse through his search
history.

building

Figure 1: Graphical representation of a simple life cycle policy for a location attribute.
Edges denote transitions between states of accuracy after a retention period \V, from
coordinates to building until final destruction of the data denoted by (.

1.1 Contribution

The techniques developed for managing the degradation of data [4] are based
on the simplifying assumption that the stored data is subject to only one life-
cycle policy. Although such a policy can represent the mutual privacy wishes
of a certain group of donors, this approach is too limited in terms of matching
the privacy preferences of all kind of donors, ranging from the paranoid to the
trustful donor. In this report, we extend the model such that each donor can
specify his or her own policy, in order to give the donor more control about
his or her own data. We term these policies personalized life cycle policies. In
this report we explore the following research questions, which we will discuss
in more detail throughout the document. Note however that the target of this
technical report is to open up a research agenda, not to provide final solutions
to the stated problems.:

o Can the storage structure used for one policy easily be adopted to support



multiple policies and what might be the impact on performance?
e What kind of inference breaches arise when managing multiple policies?

e Can the level of required and provided privacy be captured using a metric,
and can such a metric point out how effective a chosen policy is compared
to the policies of other donors?

In Section 2 we will first recall the necessary definitions of the Life-Cycle
Policy model. Than we continue in Section 3 with describing the storage struc-
ture techniques used to manage only one collective policy, we will investigate
the consequences of managing multiple policies in terms of technical challenges
and propose preliminary solutions. When the technical problems are resolved,
we show inference breaches which are introduced with personalized policies
in Section 4 . Finally, we propose a metric to capture the amount of privacy
required and provided by a policy. We start however with some background
of related work on privacy techniques.

1.2 Related work

A first attempt to express privacy policies based on regulations, has been con-
ducted by the Platform for Privacy Preferences, known as p3p policies [25].
These policies let users know which data will be collected for what purpose,
and how long the data will be retained. Although r3p is supported by several
modern web browsers, and many web sites already specify policies, the poli-
cies are quite concealed and few users actually read them or are able to fully
understand them [8]. Indeed, there are tools available nowadays to express
user preferences which can be matched against the collectors’ policies [3]. Still,
P3P only describes policies and does not enforce them, making p3p little more than
a standardized complement to the privacy laws of most countries [12]. Nev-
ertheless, P3P has been a first step in making the handling of privacy sensitive
data more transparent, increasing the information symmetry and putting users
back in control.

Building on r3p, techniques such as the privacy aware database (PawS) have
been developed, letting the system automatically interpret and apply the poli-
cies to the data [16]. Other frameworks also exist which enable users to specify
personal location privacy policies [21], letting users decide on the accuracy of
the data disclosed to service providers. Furthermore, the work on Hippocratic
databases [2] has been inspired by the principle that databases should be re-
sponsible for the privacy preservation of the data they manage. Hippocratic
databases are founded on some key principles which have their roots in privacy
laws. One of the principles is the limited disclosure principle, which states that
data may not be disclosed unless this complies with the specified purposes
for which consent has been given by the donor. Implementation frameworks
behind such a system, based on access control mechanisms, already exist [2, 5].
However, such systems are still based on trust [1]; trust which cannot be put
forever on a system. Even when secure access control techniques are used, a
database administrator can be or become malicious. Even if the chosen security
regime can be proven successful now, it might be not in the future [9].

Limited retention techniques have been proposed to ensure that data can
no longer be subject to occasional disclosure. The limited retention principle is



a key principle behind many privacy laws and p3p, and has also been adopted
in the work on Hippocratic databases. Still, the “all-or-nothing” behavior
of limited data retention leads to overstatement of the retention limit. The
retention period is often based on a different purpose from that for which the
data has been collected and stored in the database. This implies that the data
will be retained as long as needed for the longest lasting purpose, whereas for
the shorter-term purposes could have been fulfilled with less data. Moreover,
regarding databases storing this data, even ensuring that data is irreversibly
removed from the system is not a straightforward task [4, 19, 22].

In addition to access control, security measures for protecting a database
server, such as data encryption, firewalls, and intrusion detection systems can
be used. Those techniques make attacks more difficult without completely
preventing them. Recent studies have shown concerns about weaknesses in
widely used encryption mechanisms and even suspect governmental organi-
zations for deliberately inserting flaws in algorithms they propagate to use
in security systems [20]. Intrusion detection systems [7] are especially useful
against repetitive attacks such as spying on a database, although it is still hard
to find a good balance between false negative and false positive detections.
However, used in addition to data degradation, IDS would make it very hard
for even a determined attacker to obtain a large consecutive history of accurate
data.

While limiting the risks of attacks is good practice, data can still be subpoe-
naed by a Court and may then be subjected to forensic analysis. New business
alliances might increase the sensitivity of the data by merging the data with
newly obtained datasets for which the old privacy policies are no longer ad-
equate. For these reasons, proposals have been made to make the donor him
or herself responsible for protecting his or her own data, not just relying on
the philosophy of trusting organisations to protect his privacy. In their vision
paper, Aggarwal et al proposed the p4p framework [1], in which the donor
keeps control about which information to release to service providers. They
consider the ‘paranoid” user who doesn’t trust the collecting organizations, in
contrast to the users of p3r frameworks. Related to this are client-based en-
cryption techniques, in which the service provider is unable to decrypt the
data at the server [13]. Here the user is needed in order to obtain access to
the data, placing the user in a privacy protection role. Although these solu-
tions are robust against server attacks, the accessibility for service providers
is much lower, leading to high communication costs when data needs to be
queried or updated and placing constraints on how applications are developed
and deployed. However, data degradation doesn’t place these restrictions on
applications, data can still be stored at the server side and by enforcing data
degradation, donors are in control of the level of privacy risk they want to take
in terms of retention periods.

1.2.1 Anonymization techniques

Anonymization of data might be a solution to prevent disclosure of privacy
sensitive-data. In fact, major companies such as Google already state they
will adopt anonymization as a measure to improve privacy protection [10]. k-
Anonymity [23] is based on the idea of masking (parts of) the (quasi) identifier
of a partly privacy-sensitive tuple, such that the sensitive part of the tuple will



be hidden between k — 1 potential identifier candidates within the same dataset.
For example, the zip-code, date of birth and gender may uniquely identify an
individual and reveal the corresponding sensitive data. By masking the date
of birth, the dataset should contain at least k occurrences of the same zip-code,
gender combination. The work on I-diversity [17] goes a step further by taking
background knowledge into account, enforcing enough diversity between the
privacy sensitive attributes.

Usually, anonymization is applied to large datasets at once, making sure that
for each tuple, the tuple shares the same identifier with k — 1 others. In practice
this could result in a strictly k-anonymous database at the cost of losing much
usability. Although Byun et al provided a technique to update anonymized
databases [6], each time new data arrives, the database has to be sanitized
into a k-anonymous state again, making it hard to obtain a clear view of the
database from an application perspective, since old tuples might be sanitized
at unpredictable times. Moreover, given the additional values of the newly
inserted data, old data might be too strictly anonymized in terms of loss of
usability given the new dataset. The latter can only be solved by maintaining
information about previous states, which in terms of privacy requirements is
undesirable. Besides, correctly anonymizing the data is a hard problem [18].
To illustrate, a good example of incorrect and insufficient use of anonymization
has been given when American Online decided to put a large set of search
queries online [14]. AOL anonymized the IP addresses of the computers from
which the queries were issued, which was not enough to prevent attackers from
inferring many privacy sensitive facts.

1.2.2 Data degradation

Data degradation, as in our life cycle policy model, can be complementary
to all discussed techniques. Firstly, by limiting the impact of inevitable pri-
vacy breaches, data degradation is complementary to access control, since data
which has been subject to degradation either has a lower level of accuracy
and thus sensitivity, or has already been removed from the system. Moreover,
although only on temporary basis, accurate data can still be protected against
regular attacks with the use of access control techniques. Secondly, anonymiza-
tion is good practice when datasets have to be made public without revealing
too much sensitive data; for example, when used for disclosing datasets for
research purposes, and therefore it can be a complementary technique to data
degradation. Data degradation is particularly useful when data needs to be ac-
curate for some time to make well-defined services possible, requiring a certain
amount of (uniform) data accuracy. Moreover, a degradation model can keep
the identifier of the donor intact; hence, user-oriented services can still exploit
the information to the benefit of the donor.

2 The Life-Cycle Policy model

In our data degradation model, termed the life cycle policy model, data is subject to
a progressive degradation from the accurate state to less detailed intermediate
states, up to disappearance from the database. The degradation of each piece of
information (typically an attribute) is captured by a Generalization Tree. Given



a domain generalization hierarchy for an attribute, a generalization tree (GT) for
that attribute gives, at various levels of accuracy, the values that the attribute
can take during its lifetime. Hence, a path from a particular node to the root
of the GT expresses all degraded forms the value of that node can take in its
domain. Furthermore, for simplicity we assume that for each domain there is
only one GT.
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Figure 2: Example of a generalization tree for the location attribute. The leafs
of the tree denote the most accurate values (addresses).
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A life cycle policy (LCP) governs the degradation process by fixing how
attribute values navigate from the GT leaf up to the root. While we may
consider complex life cycle policies where state transitions are triggered by
events, we make the simplification that policies express degradation triggered
by time. A LCP for an attribute is modeled by a deterministic finite automaton
as a set of degradable attribute states {dy, . . ., d,} denoting the levels of accuracy
of the corresponding attribute d, a set of transitions between those states and
the associated time delays (\W;) after which these transitions are triggered. The

time between transitions is denoted by Ay, hence Wy = Z;(:o Ag.
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Figure 3: Representation of the life cycle of a tuple. The tuple will be first inserted
into STy. After a period Ao, it will be member of STy. After Ay since Ag (at V1 after
insertion time), it will be member of ST, et cetera.

We redefine a fuple as a composition of stable attributes—which do not
participate in the degradation process—and degradable attributes. The com-
bination of LCPs of all degradable attributes makes that, at each independent
attribute transition, the tuple as a whole reaches a new tuple state t;, until all
degradable attributes have reached their final state. A tuple LCP is thus derived
from the combination of each individual attributes” LCP.



Due to degradation, the dataset DS is divided into subsets STy of tuples
within the same tuple state f;, having a strong impact on the selection and
projection operators of queries. These operators have to take accuracy into
account, and have to return a coherent and well-defined result. To achieve this
goal, data subject to a predicate P expressed on a demanded accuracy level k,
will be degraded before evaluating P, using a degradation function f; (based
on the generalization tree(s)). Given f,P and k, we define the select and project
operators opy and 7.k as:

k
Ok = Op {fk [U ST{D Tl = Tl (fk (Uf:o STi))

The accuracy level k is chosen such that it reflects the declared purpose for
querying the data. Then, queries can be expressed with no change on the SQL
syntax in the example below:

DECLARE PURPOSE Stat
SET ACCURACY LEVEL Country for location, Rangel®00 for salary

SELECT * FROM Person
WHERE location like ’'France’ and salary = ’'2000-3000’

The semantics of update queries is as follows. Firstly, the delete query seman-
tics is unchanged compared to a traditional database, except for the selection
predicates which are evaluated as explained above. Hence, the delete semantics
is similar to the deletion through SQL views. When a tuple must be deleted,
both stable and degradable attributes will be deleted. Secondly, insertions of
new elements are granted only in the most accurate state. Finally, we make the
assumption that updates of degradable attributes are not granted after the tuple
creation has been committed. On the other hand, updates of stable attributes
are managed as in a traditional database.

2.1 Personalized policies

In comparison to our previous work [4], we release the constraint on the model
of having only one single LCP. Hence, within this model, multiple life cycle
policies can be defined handling the same set of attributes. Still, we make the
simplification that a user can only define one new policy, or it can share a policy
with other users. Moreover, we apply the following simplifying restriction:

o All policies follow the same degradation pattern, thatis, all policies have the
same set of tuple states (although all policies can have distinct retention

periods A).
We define the maximum retention period of all n policies Wk, as max(W¥, ..., Wk).

See for an example Figure 4.

3 Storage structure

An important question is whether data degradation can be implemented in
a database management system. Traditional databases are not optimized or
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Figure 4: Multiple policies where ST¥ denotes tuples in state k subject to policy i.

designed to physically remove data. A regular delete operation doesn’t guar-
antee that data is physically removed from the disk, such that it cannot be
accessed anymore [19, 22]. New techniques for storage structures, indexes and
log management must be designed in order to guarantee irreversible destruc-
tion of the data, while keeping reasonable performance. In this section, we
recall some of the storage techniques we proposed earlier [4]. As mentioned
before, those techniques are based on the assumption that only one single policy
has to be managed for all data. We will show where those techniques rely on
this assumption, we identify what the consequences are of handling multiple
personalized policies, and propose possible extensions to the storage structure.

3.1 Single policy management

Suppose that for each attribute there is only one single life-cycle policy. Then
the following important property holds for tuples x stored in a relation R: since
there is only one policy for each attribute, the order of degradation is perfectly
determined by the order of insertion, or more precisely:

Vx: R, X" : R % Tinsers < X' Tinsert = x-Tdegmde < x,-Tdegmde 1)

Tuples d are subject to degradation, where T, is the time a tuple is inserted
into R and Tiegrage = Tinsert + W the time the tuple must be degraded, where
W is the retention period for that attribute as specified in the policy. The 6-
timeliness assumption states that degradation can take place within the interval
[T.degrade — O, T.degrade] (where 0 can be defined as a small fraction p of the
retention period W). Together those properties imply that groups of tuples
which are inserted within a certain interval of length 6 can also be degraded
together.

To store (and remove) data efficiently, the cost of a random I/O operation
must be shared with as many tuples as possible. An obvious solution is to
buffer inserts in RAM until the buffer is full and the tuples are flushed to the
disk, consuming only one random I/O operation (and perhaps some cheap
sequential I/O operations depending on the size of the buffer). In this way, full



pages can be written to disk at once. Because of the natural ordering of tuples
on degradation time, tuples which have been inserted within the same time
interval of size 6 can also be degraded together using only one single random
I/O operation. Those tuples are fetched together into a degradation buffer in
which the actual degradation takes place. This is shown in Figure 5.

RAM Disk RAM

inserts — —— | degrades

— Y —

Figure 5: Tuples are ‘sorted” on both insert and degradation time, making both sequen-
tial inserts and updates possible.

A degradation schedule gives the times when the data has to be degraded.
This can simply be implemented by maintaining a table in which pointers to
the pages to be degraded are stored with the corresponding degradation time.
Since tuples are grouped by intervals of size 6, time can be measured in units
of , so that t = n gives the time of the n* degradation step.

Figure 6 shows the logical representation of a file containing the pages with
tuples. With each new insert the offset of a page in the file increases (where the
offset represents the address of the page on disk, although this might not be
physically true due to fragmentation), offsets of tuples within a page start with
the oldest tuple in the page (hence there are gaps within the offsets).

0x017 0x016 0x015 0x014 0x013 0x012 0x011 0x010 0x012 0x011 0x010

/////////// 7

/////////// 77
2

—

|
|
|
1

insert buffer file degradation buffer

0x1756

0x1302] 1 +2
0x1292] n+1
\0x1078; 71!

Figure 6: Degradation schedule responsible for degradation. The blocks represent full
pages, the shaded area represents tuples which can be degraded together. The page with
offset 0x10 has already been moved to the degradation buffer at degradation step n,
since a part of the tuples had to be degraded in that step. For degradation stepn+ 1, a
part of the tuples of page 0x10 are thus already in the buffer (and therefor not on disk
anymore). To complete the degradation, pages 0x11 and 0x12 will also be placed in the
buffer. Offsets in the buffer correspond to addresses of the pages when they were still
on the disk.

In traditional data structures, tuples are stored as a single data item on disk. In
this way, a fixed sized page consists of a set of full tuples. When an attribute’s
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policy dictates that a particular attribute value of a set of tuples needs to be
degraded (replaced by a less accurate value) or destroyed, the page containing
the tuple needs to be accessed such that the single attribute of the tuples can be
overwritten. As a result, full tuples are fetched while only a part of each tuple
will be affected. Although this storage model is efficient for queries where
full tuples need to be fetched to construct the result, this is not efficient for
degradation. To speed up degradation, tuples can be fragmented such that
all the attributes of a tuple are stored in separated pages. Therefore, more
attributes can be stored in one page, making accessing a page fully efficient
since only data which need to be degraded will be fetched.

Degrading an attribute to a less accurate value can be achieved by updating
the tuple, and replacing the old accurate value with the new less accurate value.
During an update operation, the page containing the data item needs to be read
into RAM to know with which value the old value needs to be replaced, and be
written back to disk. This makes the operation inherently more expensive than
delete operations, where a page only needs to be overwritten. By precomputing
all attribute states and storing the attributes with all different states of accuracy
in separate files, degradation can be achieved by only delete operations (see
Figure 7). Indeed, degradation performance can be increased with the cost of
introducing redundancy, making insert operations less efficient.

d; — 0
dy — 0

a3 — 0

dy — 0

a9 — 0

Figure 7: Sequential writes and deletes using the fragmented/eager storage strategy.

3.2 Multiple policies management

In this section we discuss the implementation and performance problems which
may arise when introducing multiple policies. For the restrictions on this new
model we refer to section 2.1.

When we introduce multiple policies in one data store, we lose the property
that the degradation order is determined by the insertion order. Indeed, if
x-Tinsert > x,-Tinsert AW —x W > x-Tinsert - x,'Tinsert then x/-Tdegmde > x-Tdegrade- It
is clear that sequential degradation is not possible when the tuples/attributes
stored in one page have different degradation times. Moreover, the degradation
schedule has to keep track of each individual tuple and the time it has to de-
grade. Also, in terms of storage space (and therefore also of query performance
where sequential scans are involved) the cost is higher, since a page will only
be partially used after some part of it has been degraded. It will take longer
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until space is free for new pages !.

One solution is to create a one-page-buffer dedicated to tuples belonging
to the same policy, waiting to be populated by tuples which can be degraded
within the same interval. Thus, tuples sharing the same retention period W;
inserted within the interval [n, (n+1)6], will be read into the same insert buffer.
However, effectivness mainly depends on 0, the insertion rate and the numer of
policies. If 6 is small, pages will not be filled before they must be appended to
the file; if the insertion rate is too low and if there are many different policies (for
example: if 200 tuples fit into one page, ¥ = 10 minutes, 6 = pW = 0.01¥ = 6
seconds, and there are 10 distinct policies, then the insertion rate must at least
be 2 x 10 = 333 inserts per second).

Using insert buffers to group tuples with almost equal times of degradation

(within the interval of ), the degradation phase can still benefit from the fact
that a random I/O operation is shared by all tuples of a page. However, since
there is no longer any ordering on degradation time between pages, fewer pages
(most probably only one) can be moved sequentially to the degradation buffer,
making degradation less efficient. Moreover, because pages are not ordered
according to degradation time, gaps will occur in the file, making querying
using sequential scans less efficient. This is shown in Figure 8.
There are several preliminary options to optimize degradation of data subject
to different policies, which all can be investigated in terms of the additional
amount of RAM needed and the performance loss compared to the structure
without multiple policies. For example:

e Maintain a set of insert buckets in which tuples will be placed. Those
tuples will be degraded at the same time, based on the insert time and
their W. For example, a tuple with W = 10 and Tisrr = 0 will degrade at
the same time (Tegrade) as a tuple with W = 5 and Tiyserr = 5, and can be
placed in the same bucket B. When B .Tdegmde < now() + Wyin, where Wi,
denotes the minimum retention period of all policies, the bucket can be
closed and inserted into the file. In this way the file will be ordered by
degradation time (Figure 9).

e Sequentially fetch a set of pages into a degradation buffer. This buffer will
now contain pages which will not degrade at the same time. Degrade only
those pages that can be degraded given their degradation time, and keep
the others. Replace the degraded pages with pages from the file, and
again degrade the pages that can be degraded given their degradation
time.

How effective this strategy is depends on the number of different policies.
Special care has to be taken in a situation, in which the degradation buffer
is completely filled with undegradable pages due to longer retention
periods. This might ‘block’ other pages with shorter retention periods.

Those proposals are not meant to be exhaustive and must be seen as a
first analysis of the problems which arise when dropping the single policy
constraint. Besides, a performance analysis of these options is planned as
future work. Moreover, an thourough investigation of other import technical

1 Although not discussed yet, when pages can be degraded at once, this means that in some
occasions it is possible to overwrite the page with a new page, making deletion more efficient.
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Figure 8: Pages are not ordered on degradation time, making it not possible anymore
to sequentially degrade multiple pages, leaving gaps in the file. Pages are filled using
insert buffers during a period of length 6, when a page is full, or at the end of the
period, it will be appended to the file. For each distinct WV a degradation schedule
(DA) will be maintained. Each entry in DA; refers to an offset of a page inserted
in [W; +no,W; + (n + 1)6]. Example: the shaded tuples in the only partially filled
page 0x10 will be degraded at degradation step Wy + n. Tuples in pages with offset
0x11, 0x14 and 0x16 already have been degraded using the degradation buffer.

aspects like the indexes, transaction management and log management have to
be performed in order to oversee all technical consequences.

4 Inference breaches

In this section we investigate which privacy breaches will be introduced when
managing multiple policies. Since different data items can be subject to dif-
ferent policies, inference breaches exist due to added knowledge that there are
different policies. We will see that the amount of knowledge about the policies
will determine how much information can be resolved by analyzing the not yet
degraded data. First we introduce some basic concepts defining the amount of
privacy we can expect based on our model.

4.1 Definition of "'upgrade probability” and privacy violation

When an attribute value has been degraded to a less accurate value, we assume
that this degradation was irreversible: we assume it is not possible to traverse
down a generalization tree. However, when degrading an attribute, the new
value will be related to the old value (otherwise the degradation loses all its
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Figure 9: Buckets are used to temporarily store pages which have tuples which will
degrade in the same interval of size 0. At time now + W, — 6, no tuples will arrive
anymore which could be inserted in the bucket corresponding to degradation time
now + WV,yin, so that this bucket can be moved to the file which will remain ordered on
degradation time. Using this strategy, exactly W”‘”gw’”‘“ buckets have to be managed,
of which the size depends on the insertion rate. Note that the buckets can be stored on
disk, and flushed using only one random I/O to the final file.

usability). This relation between old and new value will be shared among a
limited set of values (hence, a limited set of persons will degrade to the same
group value). There is always a possibility to guess the original value, to upgrade
the degraded value to a more accurate state. The probability of guessing the
exact original value will be called the upgrade probability.

Let’s consider k-anonymity [23]: the k stands for “a particular data item
will be hidden between at least k — 1 others”. This means that after degrading a
particular item to a next state with k distinct values, the probability for correctly
upgrading the item to the original value is {. Thus, if we want to hide a
particular name w1th1n a group of 20 persons, an attacker can only retrieve
with a probability of % o that the degraded identity belongs to that person.
Analogously, when tlme in seconds has been degraded to day (a day consists
of 86400 seconds), than the probability of guessing exactly the original time is

1
8640(I)t is obvious that in the case of time degradation the chance of guessing
the time value is only %}Too' but the probability of guessing the original time
value w1th an error variance of 30 seconds (e. g guessing the minute) is much
higher, -1, and for the original hour even ;. Indeed, if you know the hour
you already know much more than if you only know the day, and that ‘only’
with a probability of 5;. The same applies to the id domain.

Figure 10 shows the domain generalization hierarchies (DGH) of time and
id. The edges indicate the group size of the underlying accuracy levels. For
example, if you know the exact hour, the total number of possible seconds
within that hour is [min| X |seconds| = 3600 and the number of possible minutes
(Iminl) is 60. If the current state is dept, the number of names within the know
department is approximately 500 (|group|x|name|). Speaking in terms of changes
to upgrade at least something: if the current state is day, the probability for
guessing at least the original hour, and perhaps also the original minute or the
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(a) Time

\\ 500

5000 —

dn—ll X |dn—2|

|
\ S~ | ,

dn—2| X |dn—3|
|dn—1| X |dn—2| X Idn—3|

(c) General
Figure 10: Example (reversed) domain generalization hierarchies of the time and id

domain. The labels at the edges denote the size of the groups (a day consists of 24 hours,
1440 minutes, et cetera). Figure c shows the generalization hierarchy of an attribute d.

original second is (hence, when you don’t know the hour you know nothing):

Upgrade robability(day) 1 — (not even upgrade the original hour)

, _(Ihourl —1)

[hour|
1
|hour|

and in the more general form (X = guess at least one original value given the
degraded value, n is the level of accuracy of the degraded value):

P.(X) = non-trivial upgrade probability from level n
n-1| _
S | L bt
1]
1
a1
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where |d""!| is the group size of the n — 1" generalization step assuming that we
know what the parent value 4" is (hence, P,(X) gives us the probability that
we upgrade a visible value to an already degraded value). By definition, we
cannot decrease this upgrade probability given a certain policy. However, an
attacker may try to increase the upgrade probability, trying to violate privacy.
We speak of privacy violation when:

1
a1

Py(X)

In Section 5 we will try to capture the amount of privacy violation in a
more quantitative metric. For the moment we are only interested in the case
that at least something has been upgraded. Indeed, above definition of the
probability to upgrade something doesn’t say anything about how much the
value has been upgraded. In the next section we will show that an attacker
can violate privacy by simply looking to a snapshot of the database. We only
give examples based on upgrading the identifier attribute. However, inference
breaches based on other attribute (like time) exists. A further investigation on
this topic is required in the future. In this technical report we only show that
there indeed are inference breaches when introducing multiple policies.

4.2 Refining identity

A relation R has two degradable attributes id and time of which the generaliza-
tion hierarchies are pictured in Figure 10. For notational purposes, we extend
the set of attributes {id, time} with al the states both attribute can take, and the
corresponding retention period W: R@dY,...,id", time', ..., time", ¥). When, for
example, the id attribute of a tuple x has been degraded to attribute state n
(notated as x € (id", time')), then all x.id’,i < n have the value null.

Let U be the set of all user names in state id! which all belong to the same
group g in a snapshot of a relation R:

U={x:R|xid = g e x.id')

Given an already degraded tuple xy,, € (id?, time') for which we know the
user name belongs to U, (hence, x.id' = null and xy,.id*> = g), ﬁ is the
probability P for guessing the original value x,,.id'. Our goal is now to upgrade
the target tuple xy,.id" to show that privacy can be violated by using available
knowledge obtained from snapshot R. Let U’ given xy,, be the set of names of

tuples which where acquired before xy,.time' and are not degraded yet:

U’ (xXpar) = {x : R| x.id" # null A x.time' < xyqp.time' o x.id"}

Using this set U’ of user names which can not belong to xi,, the actual proba-
bility P’ of guessing the original name belonging to the already degraded value
Xtar iS

1
e pEp——
() = T =0 G
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Indeed, the number of possibilities for the original values is decreased by the
knowledge of candidates which could not be the original value, and therefor
the probability of guessing the original value is increased. Table 1 contains
a snapshot with random generated data, with 5 different users all belonging
to the same group g. A degraded value is notated with a — followed by the
original value surrounded with brackets. At 20:54:56 (row 10) a tuple x,, with
original ‘name’ 4 and retention period W = 8 has been acquired and has been
degraded at 21.02:56. The ‘standard’ probability of guessing this value P = 1,
buthereitis %l because the set U’ (x¢,,) contains 1 values (0). So, there is a privacy
violation.

When we make the additional assumption that we can use knowledge about
the used policies, than we are able to increase the probability to upgrade a
degraded value even more. Let U” (x4, t) be the set of names of users which
can not belong to x,, because otherwise x;, would not have been degraded yet
given the time ¢t < {d : U |d.name # null ® min(d.time + WV)} the snapshot could
have been taken:

U (Xpar, 1) = {x : R | x. W + x5 time! > t @ x.id"}

Given this set U”, the probability we can guess? the original name value of an
already degraded tuple x,, and the snapshot time ¢ is defined as:

1

P/I ﬂrlt T T Y
(et D) = T 0 G B

If we look again to the example in table 1, we see that for the tuple which
is degraded at 21:02 set U" (x4, t) = {0,2,3} (t = 21:03:33). This means that
|U" (xtar, )] = 3 and the probability of guessing the original value is 1 instead of
1. Hence, again there is a privacy breach.

| id" | time! | W | time'+W | P | P | P”
0 [1 [21:00:00 [5 [21:0500 [1[1 1
1 [0 [20:59:33[14[21:13:33 [1 |1 |1
2 [3 [20:59:32 [ 11 [21:10:32 [1[1 [1
3 [1 205927 [5 [21:0427 [1[1 [1
4 [2 ]20:59:10 [11 [21:10:10 [1[1 |1
5 [1 [20:59:05 |5 [21:0405 [1[1 |1
6 [3 20583511 [21:09:35 [1[1 [1
7 |2 [2057:44 [11[21:0844 [1 |1 |1
8 [2 [20:56:58 [ 11 [21:07:58 [1 [1 [1
9 [0 [20:55:59 [ 14 [21:09:59 [1 [1 [1
104 [205533[8 [21:03:33 [1 |1 |1
11 [-(4) | 20:54:56 | 8 [ 21:02:56 [ [ |2
12 [ -(1) [ 20:54:40 [ 5 [20:59:40 [ 2] 1 [3
13]0 [20:54:00 [ 14 [21:08:00 [1[1 [1

2In stead of saying “guess the original value” we could better say: “knowing with a probability
P that a name belongs to the correct user”.
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14 |0 20:53:20 | 14 | 21:07:20
15 | - (4) | 20:52:59 | 8 | 21:00:59
16 | 0 20:52:19 | 14 | 21:06:19
17 | - (1) | 20:51:47 | 5 | 20:56:47
18 | -(3) | 20:51:27 | 11 | 21:02:27
19 | -(3) | 20:50:40 | 11 | 21:01:40 | 3
Table 1: Randomly generated data, with t < 21:03:33), 5 different users,
uniformly distributed policies with an average W of 10 minutes, and an
simulated insert rate of 1 tuple belonging to the group per 2 minutes.

—ot=or— == o =

(SN S &1 e N e
W s s = = ROy =

We could make a union between U’ and U"” to try to increase P, which will
succeed if U’ U U"| > max(U’|, {U"]), thatis = (U” € U') A= (U’ € U”). Luckily,
this situation can never occur. The remainder is devoted to the proof of this
fact.

We first look to the case that a certain element x’ is in the set of names which
could not belong to x¢,, because otherwise x;,, would not have been degraded
yet U”, but is not in the set of names of tuples acquired before xi,,, and not have
been degraded yet (U’). Hence, to check if U"” can be a subset of U’, we check
if there are elements in U”” which are not in U’:

(x:R|xid' #null A xV + xy,.time! >t
A -3 (x’ :R|x.id' = x.id' A x'.time! < xm,.timel)}

In table 1, tuples at row 2 and 4 (with id' = 2,3) belong to this set, thus
the statement — (U” € U’) can be true . This situation is likely to occur when
retention periods are relatively short compared to insertion rate. The second
case however states that an element x’ must be acquired before x, and not
have been degraded yet (x'.id' € U’), and the retention period belonging to this
element x’ is so that if it also belongs to Xy, X1 still would have been degraded
(x.id" ¢ U”):

{x: R | x.id" # null A x.time' < xy5p.time' A xygp.time' + x.V > t}
[x: R | x.time + x. ¥ > t A x.time' < xuy.time' A xpy.time' + x. W > t}
[x:R|t—xtime < x.W < t — Xyp.time' A x.time! < xy,,.time')
{x : R |x.time > xy,p.time! A x.time' < xqp.time'} = 0
Hence, this set is empty, meaning that U’ C U" always holds, and = (U” € U") A

- (U’ € U”) is false. The probability P can not be increased by combining the
breaches caused by infering U’ and U”. O
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5 Metric

5.1 Expected value

In Section 4.1 we defined the upgrade probability as the probability to upgrade
something.This probability only says something about the probability of up-
grading the degraded value, but not about how much the refinement is. For
example, if data has been degraded to day, you have the highest probability to
find the hour, whereas the probability to find the original second is very small.
However, only upgrading the hour gives far less information about the actual
time than the time in seconds, hence, the privacy breach is less severe.

To visualize this, we make a comparison with the lotteries: the probability
of winning a million is much smaller than the probability of winning 10 Euro’s,
but with by winning the jackpot you get far more rich than by winning only
€10. Using the probabilities to win the different prices of the lotteries, we can
calculate the expected amount of money we win if we buy a ticket. We use the
price distribution system of the Dutch ‘staatsloterij’; the amount of money you
win depends on how many ending digits of your lucky number are correct.
Thus, if you have three ending digits correct, you win 1.000 + 100+ 10 = €1.110.

n | Lucky number | Price | P

4 6789 | €10,000 ﬁ
3 *789 | €1,000 191%
2 **89 €100 100
1 “*9 | €10 | 15

For example, given above table, the probability of winning exactly €10 is the
probability of having exactly only the last digit correct: 15 X 5. The probability
of winning something is, analogously to our previous examples in Section 4.1:
. The expected value can be calculated as:

10
10 +
10 + 100
E= f—ox(10)+ﬁx{+]+ﬁx 100 |+ x| + |=4321
100 + 1,000
1,000 +
10,000

What applies for this lottery system also applies for our domain generalization
hierarchies: when you know the exact accurate representation of a particular
value, you also know the lesser accurate representations. The following table
shows the probabilities to guess ‘everything’ given a particular value degraded
to day, up to ‘guessing” only the day (and thus upgrading nothing). In this
example, we use the amount of money you would ‘win” if you upgrade the
original value as the usability function f(d"):
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‘ Representation ‘ f(time™) ‘ P=

tzme”
{time*, ..., time'} | {dayhour,minute second} | €10,000 86400| l
{time*, .. ., time?) {day,hour,minute) €1,000 | o5
(time?, ..., time®) {day,hour} €100 | o
{ifime4 ., time*} {day} £€10 1

We use the usability function f(d") to express the amount of usability we expect
from upgrading the value of attribute d in state n. Using this function we can
formulate the expected usability E(d") given a degraded attribute value in state
d" (hence, d" itself is visible):

(7 x fe@)

+...+
1 n 1 1
(|d”|><|d"-1|><...><|d1| X fd) + .o+ g < ))
n

fd)
e
=1

la"|
Y f@iy
j=1

i

i=1 H |dn—j+1|

=

E@d")

The difficulty is to define a realistic and practically usefull usability function f.
For the lotteries we used an amount of money, since this reflects exactly what
you get if you win. The amount of usability of data is very user specific and
could depend on time (how older the data, the more valuable, or just to other
way around). However, we have some options to capture the usability in a
general function. First, we can simply use the precision metric as defined by
Sweeney[23]. For each individual degraded value of a domain 4 this precision
metric is defined as:

i _ _q_ L
f(d') = Prec(d) =1 .

where # is the attribute state of the first not degraded value d". Hence, f is a
linear increasing function only taking the degradation step into account.

Another option to define the usability is to take the group sizes into ac-
count, or more specific: the number of times the group size has been doubled
compared to the group size of the degraded value d" (|d"| is according to the
definition always 1):

fld) = Zlog[H |d">|]
i=j

Analogously to Section 4.1, the group size of the visible but degraded value d"
is one, thus the usability of the most degraded value (d™) is in this definition
Zlog (1) = 0. Semantically this means that although an attacker has access to
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this value with a probability of 1 (the value is visible), it doesn’t gain additional
usability from it. The same applies for Sweeneys metric: f(d") =1- % =0.

The advantage of the 2log approach is that it is more flexible and takes group
sizes into account. Sweeney’s metric is linear in the sense that the usability of
each step in the generalization hierarchy is decreased with one divided by
the length of the generalization hierarchy, even when the provided level of
anonymity increases in a non-linear fashion. Using the ?log approach, f is
also quite linear (see Figure 11), but not necessarily, depending on the group
sizes in the generalization hierarchy which not always exactly double at each
generalization step (see Figure 10 in Section 4.1).

20

18

16

14

12

10

*log(ld"))

4

2

(time, id}*

Time ----
Id —

{time, id}? {time, id)? {time, id}"
dn

Figure 11: The usability function using the *log of group sizes is almost linear

5.1.1 Example of usage

A given tuple has been degraded to state (time®,id?), representing the time in
hours and the id as group member. We first calculate the expected usability
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after degrading the time attribute:

(f(time3) . f(time3) + f(time?) . f(time3) + f(time?) +f(timel))

|time3| |time3||time?| |time3||time?||timel|

E(time®)

0 [0+Zoglmin| 0+ %og|min| + 2log|min||sec|
= -+ — + .
1 1 X |min| 1 X |min||sec]
2] 2] 2]
- 04 og60+ og 60 + “log 60 x 60
60 60 x 60
0+ (& 4 591 +11.8
60 3600

) ~0.103

and for the id attribute:

‘ 2og lid?]\  (2log [id?] + 2log |id!]
Eid?) = [—o)+( 2%
|id?| |id?||id"|
20g20 0 0+ 432
= 0“1t Txa0 0216

So, this examples show that given this metric, the expected usability of a time
value degraded to the third degradation step is lower than the the expected
usability of a id value degraded to the second degradation step. Note however
that the usability function used in this example doesn’t take the semantics of
the domains into account, it only uses the group sizes.

5.2 Privacy metric

In the previous section we extended the notion of upgrade probability by ap-
plying a usability function to the individual states of an attribute, and use the
individual probabilities of upgrading a degraded value to each individual state
to calculate the expected value E(d") an attacker can expect given the degradation
hierarchy (and thus given the policy of the user). This expected value expresses
an lowerbound of what will be disclosed when a data store is attacked accord-
ing to the used policies. In this section we use this expected value to create a
metric for the amount of privacy one may expect given a certain generalization
hierarchy.

The expected value as defined in the previous section can be seen as the
remaining value of an item after it has been degraded. Hence, if a item has
not been degraded yet (it is in state d), its value is expressed by the usability
function f(d'). However, analogously to what has been mentioned before:
when knowing the accurate value of an item, one also knows the degraded
version of this item. Given the length of a domain generalization graph |dghl|,
we therefor define the maximum usability V., as:

ldghl

Viay = Z} )

The total usability of a degraded item V(d") can now be defined as the remaining
usability of the degraded part of that item, plus the usability of the non-degraded
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part of that item:
ldgh| ,
V@)= Y @)+ E@")
i=n+1
Given the maximum usability an item had before degrading V,, and the us-
ability it has after degrading V(d"), we propose to define the amount of privacy
P(d") as:

P(dn) = lezx - V(dn)
|dghl ‘ ldghl A
= ). fa)- [ Y f+ E(d”)]
i=1 i=n+1

= Y f@)- E@)
i=1 '

. ) Zf(dn—jﬂ)
Y-y | S
i=1

i=1 H |dn—j+1|

=1

5.2.1 Example of usage

We already calculated the expected (remaining) usability of a tuple which has
been degraded to state (time?,id?). The maximum usability of a time attribute
is:

|dghtimz’|
time  _ |
Vmax - Z f(tlme)
i=1
|dghtime|

Y 2log|time]

i=1
2log |sec| + 2log |minutes| + 2log |hours| + 210g lday|
~ 16,4

The usability after degradation of time® is:
|dghtimf| )
Z F(time') + E(time®)
i=4
f(day) + E(time®)
%log |day| + E(time®) ~ 0 + 0,103

V(time®)

Hence, the amount of privacy, expressed as an percentage of the maximum
usability Vi is:

P(timé® vtime _ v (timed
% x100% = % % 100%
Vmﬂx Vmﬂx
16,4 — 0,103

16,4 X 100% = 99,4%

23



The amount of privacy of the item in id? is much lower:

Vid

max

log |name| + *log |group| + *log |dept| + *log |compant|
~ 12,3

ldghial

Z F(id') + E(id?)
i=3

= f(day) + E(time®)
= Zlog|dept| + *log [company| + E(id*) ~ 4,64 + 0,22

V(time®)

P(id? vid Y (id?

# %< 100% = max—d(l)
;mzx Vilmlx

12,3-48

x TX100/0~60,5/0

X 100%

Those example shows again the amount of relative privacy one might expect
from degrading to different states. Note that given our metric, unless the
domain of the attribute is not bound (such as salary for example), the amount
of privacy can never be 100%.

5.3 Using the privacy metric

The privacy metric as defined in the previous section can be used to show the
effect of the existing inference breaches, and to compare the provided privacy
and the required privacy of a set of policies. To do this, the group sizes given
the domain generalization hierarchy have to be replaced by the actual group
sizes acquired after applying the inference rules as discussed in Section 4.2. In
future work, we will experiment with real data sets and policies to measure the
amount of privacy we can guarantee by applying our retention model, using
this metric.

6 Conclusion

In this technical report we made a beginning with exploring the problems
of extending our life cycle policy model with personalized policies. The main
technical consequence on the storage structure is that the degradation order
of tuples is not equal to the insert order anymore when managing multiple
policies. This has an impact on the buffered deletion strategy. A preliminary
solution to this problem is to buffer inserts, and sort them on degradation
order. Besides some technical problems we showed that personalizing the
policies brings some inference breaches which have to be further investigated.
To make such an investigation possible, we introduced a metric for privacy,
which enables the possibility to compare the provided amount of privacy with
the amount of privacy required by the policy.

This research is important in order to develop tools to give the donor of
data more control over his or her privacy, decreasing the information asymme-
try caused by ubiquitous computing. Degradation of data, with degradation
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patterns defined by the donor himself, make it clear which data in what form
is stored for how long, without having the need to put trust on the service
provider infinitely. This report is a first step towards fully personalized life
cycle policies.
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