A Taxonomy of Self-configuring
Service Discovery Systems

Vasughi Sundramoorthy!, Pieter Hartel?, and Hans Scholten?

! Lancaster University
Lancaster, Lancashire, LA1 4WA, UK
v.sundramoorthy@lancaster.ac.uk
2 University of Twente
Enschede, 7500AE, The Netherlands

(pieter.hartel, hans.scholten)@utwente.nl

Abstract. We analyze the fundamental concepts and issues in service
discovery. This analysis places service discovery in the context of dis-
tributed systems by describing service discovery as a third generation
naming system. We also describe the essential architectures and the
functionalities in service discovery. We then proceed to show how ser-
vice discovery fits into a system, by characterizing operational aspects.
Subsequently, we describe how existing state of the art performs service
discovery, in relation to the operational aspects and functionalities, and
identify areas for improvement.

1 Introduction

Computer scientists can learn much from how the human body manages itself
autonomously, and apply the same techniques to building distributed systems.
This is how autonomous computing, an initiative of IBM [1] sees the future of
computer systems. An autonomous system has at least one of the following four
properties [2]:

1. Self-configuring. Systems that adapt automatically to dynamically changing
environments. The systems can dynamically add (“on-the-fly”) new hard-
ware and software to the system infrastructure with no disruption of ser-
vices.

2. Self-healing. Systems discover, diagnose and react to disruptions. The objec-
tive of self-healing is to minimize outages to keep applications available at
all times.

3. Self-optimizing. Systems monitor and tune resources automatically. Self-
optimization requires hardware and software systems to maximize resource
utilization to meet end-user needs without human intervention. Resource
allocation and workload management must allow dynamic redistribution of
workloads to systems that have the necessary resources to meet workload
requirements.

2 A Taxonomy of Self-configuring Service Discovery Systems

4. Self-protecting. Systems anticipate, detect, identify and protect themselves
from attacks. Self-protecting systems must have the ability to define and
manage access to computing resources, to protect against unauthorized ac-
cess, to detect intrusions and report and prevent these activities as they
occur.bu

Autonomy of distributed systems is also one of the fundamental character-
istics of the more ambitious pervasive (or ubiquitous) computing. The vision of
pervasive computing is elegantly articulated in Mark Weiser’s acclaimed seminal
paper published in 1991 by Scientific American [3]:

“The most profound technologies are those that disappear. They weave them-
selves into the fabric of everyday life until they are indistinguishable from it.”

To realize the Weiser vision of pervasive computing, Satyanarayanan [4] pose
system inwvisibility as an important research challenge. Invisibility in the context
of pervasive systems means human intervention is so minimal, that technology
disappears into the background of everyday life. Therefore, a pervasive system
continuously meets user expectations and rarely presents unpleasant surprises.

Invisibility is achieved when the system applies autonomous behaviors; self-
configuration, self-healing, self-optimization and self-protection. One of the most
widely used techniques contributing to self-configuration is service discovery.
Service discovery is a fundamental step for intelligent applications, before they
can collaborate to perform a certain function; entities are able to self-configure
themselves by detecting other entities (hence, services), and are able to self-heal
from failures, without the necessity for a professional system administrator.

An example of an application that uses service discovery is an ambience con-
troller that uses time, temperature and location as inputs, to satisfy a particular
condition: “in the eveming, when the outdoor temperature is hot and Alice is
home, set the mood of the home to cool’. As a result of this condition, the
ambience controller discovers a number of services (e.g. clock, location of Alice,
temperature, lighting, audio, window) to receive inputs and to produce the out-
put. Subsequently, when the time and temperature is appropriate, and Alice is
home, the indoor temperature is reduced, lights are dimmed, windows are shut,
curtains drawn and chamber music is played. Therefore, a service discovery sys-
tem is necessary for autonomous, collaborating applications to arrive to the right
inference, and produce the expected results.

Contributions: This work diverges from existing surveys [5—7] which categorize
functional features of service discovery protocols, based on architectural and
programming platform differences. We aim to:

1. Clarify the fundamental concepts of service discovery

2. Specify the operational aspects that impact the design of a service discovery
system, and the resulting design solutions.

3. Provide a taxonomy that first analyzes state of the art solutions with respect
to the operational aspects, before comparing functional behaviors.

A Taxonomy of Self-configuring Service Discovery Systems 3

This work focuses on the communication aspect of service discovery systems, such
as the type of architecture, topology, functional behaviors of the entities in the
system, functional principles for service discovery and the operational aspects
that impacts the design of the system. How services are described and accessed
are issues outside the scope of this paper. More information on service descrip-
tions can be found by studying existing schemes such as WSDL [8], OWL [9],
SSDL [10] and RDF [11]. Meanwhile, RPC [12] and service interface invocation
as done in Java [13] are methods to access services once they are discovered. The
description and access techniques can be integrated into the service discovery
systems described in our work.

The paper is organized as follows. In Section 2, we provide a new under-
standing of service discovery as a third generation name discovery system. In
Section 3, we describe the service discovery system in terms of the participating
entities, architecture and topology. We define the service discovery objectives
and functions in Section 4. In Section 5, we analyze the operational aspects for a
service discovery system. We proceed to summarize a selection of widely known
service discovery systems in Section 6. In Section 7, we give a taxonomy of
state of the art solutions to the operational aspects, and compare the functional
implementations. Finally we conclude and identify areas for improvement.

2 Service Discovery: Third Generation Name Discovery

Service discovery allows applications in a distributed system to discover and
share network entities. This goal is shared by a class of distributed systems that
we refer to as name discovery systems. A name is a string of bits that is used
to identify a variety of entities, such as computers, peripherals, applications,
remote objects, files, etc. In the context of name discovery systems, a name is
not the address of an entity (addresses are uninterpreted bit patterns such as
Ethernet addresses [14]), but a name is the persistent identifier for the entity,
or human understandable textual description [15]. Consistently named entities
enable computers to communicate with one another via a distributed system,
and share (access to) the entities [16]. A name has a list of attributes associated
with it. An attribute is a name-value pair that describes a property of the entity

We classify name services, such as Grapevine [17], GNS [18] and DNS [19],
developed in the 1980s as first generation name discovery systems. A name server
stores a set of bindings between the name and the attribute list of an entity, and
resolves queries for the entity. A query based on the name simply returns the
list of attributes that describes the entity.

Directory services such as Profile [20], Univers [21], X.500 [22], LDAP [23]
and CORBA'’s Interface Repository [24] developed in the 1990s are classified as
second generation name discovery systems. Directory services provide a more
powerful mechanism for querying entities. Directory services perform attribute-
based queries that return the names associated with the attribute. An example

4 A Taxonomy of Self-configuring Service Discovery Systems

is a query that on the basis of a given telephone number, returns the name of
the associated employee.

The first two generations of name discovery systems share the following con-
text and limitations:

— Context: Computer-based environment with predominantly wired connec-
tivity, where nodes are mostly static, names and attributes rarely change,
and the system is reliable

— Limitation: Static infrastructure of servers and directories, that requires con-
figuration and maintenance by privileged system administrators.

Service discovery inherits the fundamental concepts of traditional name dis-
covery systems, where entities are named according to a naming standard, and
attribute-based queries return the names of the matching entities. A service is
defined as the following:

A service is a distinct part of a computer system that manages a collection of
related entities and presents their functionality to users and applications [16].

We classify service discovery as a third generation name discovery system
because service discovery satisfies the requirements of pervasive computing [3], by
enlarging the context and relaxing the limitations of traditional name discovery
systems.

— Context: An environment consisting of a variety of embedded devices (not
just PCs and servers), with wired and wireless connectivity, static and mo-
bile nodes, which undergoes frequent changes of resource availability and
attribute values, and is vulnerable to failures.

— Solution: Service discovery provides self-configuring and self-healing ca-
pabilities for a spontaneous network of devices. A service discovery
system allows entities to enter and leave the system automatically, with
minimum supervision and maintenance.

Therefore, service discovery is a solution for naming and discovering resources
in a versatile, and spontaneous network of devices. Examples can be found in the
relatively new areas of home entertainment networking and ambient intelligence.

3 Service Discovery Architecture

This section describes the entities and the different architectures of service
discovery.

A service is specified by a Service Description (SD), which typically describes
the service in terms of: (1) device type (e.g. printer), (2) service type (e.g. color
printing) and/or (3) attributes (e.g. location, paper size). There are three types
of entities in a service discovery system; a Manager owns the SDs, a User has

A Taxonomy of Self-configuring Service Discovery Systems 5

E—
‘@
-~
@

(a) non-Registry based (b) Registry based
architecture architecture

Fig. 1. (a) The non-Registry architecture consists of Users and Managers that multi-
cast queries and service advertisements. (b) The Registry architecture uses unicast for
registering services and sending queries.

a set of requirements for the services it needs, and a Registry caches available
services so that Users can discover the services through queries to the Registry.
A node can behave as a User, Manager, Registry or a combination of these roles.

Service discovery architectures are mostly formed based on how Users dis-
cover services; (1) Users can use a Registry (or a cluster of Registries) as the
intermediate entity to discover services, therefore requiring a Registry based ar-
chitecture. (2) Users can directly query Managers, and/or Managers can send
multicast advertisement messages, therefore establishing a non-Registry based
architecture. Figure 1 illustrates the two types of basic architectures. In the
Registry-based architecture, Registries can be deployed by a system adminis-
trator, or automatically elected by the nodes in the system. Once the Registry
is available, the rest of the nodes in the system will have to discover the Reg-
istry before services can be registered and queried. Unicast communication in the
Registry-based architecture reduces network traffic, thus increasing scalability. In
the non-Registry-based architecture, Users and Managers can perform multicast
queries and service advertisements. Therefore, unlike the Registry-based archi-
tecture, the system is not vulnerable to single point of failure issues. However,
since extensive multicast is used, network traffic increases, causing scalability
issues. A combination of both these architecture can also be implemented, so
that the system is more scalable and robust.

Service discovery entities habitually communicate with each other through
logical topologies. A logical topology is typically used to optimize the way the
system propagates and processes messages (such as queries and advertisements),
thus optimizing one or more of the following: communication cost, energy effi-
ciency, scalability, resource consumption, robustness, responsiveness and effec-
tiveness (of the queries), etc. We identify four basic logical topologies, based on
message propagation; (1) Meshed topology, where messages are sent to all lis-
tening entities, (2) Clustered topology, where messages are sent to a cluster of
listening entities (Registries or Users), based on the type of service they provide,
or the proximity to the source, (3) Tree topology, where messages are propagated

6 A Taxonomy of Self-configuring Service Discovery Systems

along a hierarchy of Registries, (4) Unconnected Registries topology, where mes-
sages are sent to any discovered Registry. We describe how the non-Registry and
Registry-based architectures use these topologies, and their advantageous and
disadvantageous in the next few paragraphs.

O ONOR oS
o &0 e

(a) Meshed topology (b) Clustered topology

Fig. 2. Logical non-Registry topologies. (a) In the meshed topology, Users, U and
Managers, M can listen to each other’s queries and service advertisements. (b) In the
cluster-based topology, Users, U and Managers, M may form a logical cluster according
to some criteria. A and B denotes two different clusters, where Ua,p belongs to both
clusters, and is able to discover services of both clusters.

The non-Registry architecture is commonly based on two types of logical
topologies: (1) Meshed topology, as shown in Figure 2(a), where all entities
receive each other’s multicast queries and service advertisements. (2) Clustered
topology, where entities form clusters based on some criteria (e.g. service type or
location). Members of a cluster communicate only with each other, thus service
advertisements and queries are limited within the cluster. Figure 2(b) gives an
example of the cluster-based topology.

The meshed topology improves the chances of discovering a service (queries
are more effective), and the continued availability of the service, because it is
not vulnerable to single point of failure issues [25]. However, it increases com-
munication cost, and is less scalable because of the extensive use of multicast
(queries and advertisements). On the other hand, the clustered topology makes
the system more scalable, but increases the complexity of the system, because
Managers and Users will have to establish clusters, and dynamically add and
remove their membership. Furthermore, by limiting a query and advertisement
to the members of a cluster, the effectiveness of the query is reduced. The scope
of discovering a service can be widen by allowing the User to belong to a com-
bination of clusters.

The Registry architecture has four types of logical topologies: (1) An uncon-
nected Registry topology, as shown in Figure 3(a). In this topology, Registries
do not communicate with each other, but Managers and Users may associate
themselves with multiple Registries. (2) A meshed Registry topology, as shown
in Figure 3(c), where Registries communicate with each other as peers. A Reg-
istry forwards queries and replicas of its cache to all its peers. (3) A tree-based
Registry topology, where Registries form a parent-child relationship, based on

A Taxonomy of Self-configuring Service Discovery Systems 7

(a) Unconnected (b) Meshed Registry
Registries topology topology
Rh @ N\ 1
(c) Tree-based Registry (d) Clustered Registry
topology topology

Fig. 3. Logical Registry topologies. (a) In the unconnected Registry topology, Reg-
istries, R1 and R2 do not communicate with each other, but User, U1 and Manager,
M2 may register and discover services from both R1 and R2. (b) In the meshed Reg-
istry topology, Registries are peers to each other, and forward messages to all their
peers. (c¢) In the tree-based Registry topology, Registries R1 and R2 are child Reg-
istries of R3. Child Registries may forward messages to parent Registries. (d) In the
clustered Registry topology, Registries optimize the tree or mesh topology by limiting
query processing to a select few Registries. A and B are two clusters, where Registries,
R4 and Rp can only communicate with the members of their own cluster. R4, is able
to communicate within both clusters.

8 A Taxonomy of Self-configuring Service Discovery Systems

some criteria (such as location or resource-constraints). A child Registry, such as
shown in Figure 3(b) forwards queries to its parent when it does not find match-
ing services within its own cache. The query may traverse all or parts of the
hierarchy, depending on some query processing optimization criteria. (4) A clus-
tered Registry topology, as shown in Figure 3(d), where Registries form clusters
based on service type or location. This topology optimizes the tree-based and
meshed topology, where query processing is done only by a select few Registries.

The unconnected Registry topology does not require Registries to synchro-
nize registration data among each other. Therefore, adding a new Registry is
not a complicated task. Redundant Registries also provide increased robustness
against communication and Registry failures. However, when Users and Man-
agers redundantly communicate with each discovered Registry, communication
cost is increased, and scalability is reduced. The other three topologies allow the
Manager and the User to communicate with a single Registry only, keeping the
service discovery task simple on the side of the Managers and Users (especially
suitable for resource constrained nodes). The meshed Registry topology allows
all the Registries in the system to communicate with each other, so that the
scope of service discovery is system-wide. However this topology is not practical
for large systems that span long distances. The tree-based Registry and clustered
Registry topology would be more suited for large systems. The tree-based Reg-
istry topology allows each Registry to store only a part of the available services,
therefore allowing load balancing for systems with high density of nodes (such
as by spawning child Registries to share the load). However, the system becomes
more vulnerable to single points of failure issues when Registries fail. Registries
will have to check continuously on the availability of the parent or child Reg-
istry. The clustered Registry topology is more robust against Registry failures,
and has better query effectiveness because multiple Registries can respond to
the query, from different areas of the system. However, Registries will have to be
able to establish and dynamically add and remove memberships to the clusters,
causing additional protocol overhead and complexity.

A service discovery system may implement one or a combination of several
logical topologies. Therefore, it is necessary to define and prioritize the optimiza-
tion parameters early in the system design stage, to satisfy the requirements of
the system. We will discuss some of these parameters in Section 5

4 Service Discovery Functions

We state the main objectives of service discovery as:

1. Discover services that match requirements
2. Detect changes in service availability and attributes

Toward accomplishing these objectives, we classify service discovery tasks
into four main functions; Configuration Discovery, Service Registration, SD Dis-
covery and Configuration Update. The term “configuration” refers to the entities

A Taxonomy of Self-configuring Service Discovery Systems 9

in the system: Manager, User and Registry. The Configuration Discovery and
Service Registration (for Registry based architectures) functions are required for
entities in the system to gather knowledge on the availability of nodes and ser-
vices. The first objective is accomplished by the SD Discovery function, while the
second objective is accomplished by the Configuration Update function. Each of
the four functions can be accomplished using several different methods. We use
italics to indicate the methods:

1. Configuration Discovery - This function allows Registries to be setup,
and identities of entities (e.g. Registries or cluster members) in the system
to be discovered. There are two sub-functions of Configuration Discovery:

(a) Registry auto-configuration - Allows the system to configure one or more
Registries automatically through (a) Registry election algorithms, or (b)
Registry reproduction, where a parent Registry spawns a child Registry.
The Registry election or reproduction is done based on some criteria such
as resource superiority, load threshold, service type or location. Registry
auto-configuration is done on the fly, without supervision.

(b) Entity discovery - Allows entities in the system to discover a Registry
or cluster members through (a) active discovery, where nodes initiate
the discovery by sending announcements, or (b) passive discovery, where
nodes discover the required entities by listening for announcements. In
some systems, discovery via active and passive methods is integrated
with the underlying routing protocol to optimize bandwidth utilization.

2. Service Registration - This function allows Managers to register their ser-
vices at a Registry. Registration methods include (a) unsolicited registration,
where nodes request the Registry to register their services and (b) solicited
registration, where Registries request new nodes to register. The Registry
keeps a cache of available SDs, and updates them according to requests from
the Managers.

3. SD Discovery - This function allows Users to obtain SDs that satisfy their
set of requirements. Users may cache the discovered SDs to reduce access
time to the service, and reduce bandwidth utilization by avoiding multiple
queries. There are two sub-functions in SD Discovery:

(a) Query - This is a pull-based model where Users initiate (a) unicast query
to a Registry, or (b) multicast query. The query specifies the requirements
of the User. The Registry or Manager that holds the matching SD replies
to the query.

(b) Service notification - This is a push-based model, where Users receive
(a) unicast notification of new services by the Registry, or (d) multicast
service advertisements by Managers.

4. Configuration Update - This function monitors the node and service avail-
ability, and changes to the service attributes. There are two sub-functions in
Configuration Update:

(a) Configuration Purge - Allows detection of disconnected entities through
(a) leasing and (b) advertisement time-to-live (TTL). In leasing, the

10

A Taxonomy of Self-configuring Service Discovery Systems

Manager requests and maintains a lease with the Registry, and refreshes
the lease periodically. The Registry assumes that the Manager who fails
to refresh its lease has left the system, and purges its information. With
TTL, the User monitors the TTL on the advertisement of a discovered
Manager. The User assumes the Manager has left the system if the Man-
ager fails to advertise before its TTL expires, and purges its information.

Consistency Maintenance - Allows Users and Registries to detect updates
on cached SDs. Updates can be propagated using (a) push-based update
notification, where Users and Registries receive notifications from the
Manager, or (b) pull-based polling for updates by the User to the Reg-
istry or Manager for a fresher SD. (c¢) In a multiple Registry topology,
push-based update notifications among Registries can be done to achieve
consistency.

Table 1 summarizes service discovery functions and the implementation meth-
ods for each function. Every service discovery system implements the functions
according to its own design rationale. Furthermore, by clearly defining the func-
tionalities for service discovery, applications can rely on the underlying service
discovery protocol to perform without ambiguities.

Table 1. Service discovery functions, methods and related distributed system models

Function Subfunction |Method
Configuration |Registry auto-|(a) Registry election, (b) Registry reproduction
Discovery configuration

Entity discov-|(a) active discovery, (b) passive discovery

ery
Service Regis- (a) solicited registration, (b) unsolicited registration
tration

SD Discovery

Query

(a) unicast query, (b) multicast query

Service notifi-
cation

(a) Registry notification, (b) multicast service adver-
tisement

Configuration
Update

Configuration
Purge

(a) leasing, (b) advertisement TTL

Consistency
Maintenance

(a) pull-based polling for update by Users, (b) push-
based update notification by Registry to Users, (c)
push-based update notification among Registries

A Taxonomy of Self-configuring Service Discovery Systems 11

5 Operational Aspects of Service Discovery

This section analyzes the design aspects related to the operational environment
of service discovery systems, and lists solutions found in the wider distributed
system paradigm, but tailors them to the service discovery context.

The operational environment influences the design rationale of service discov-
ery systems. For example, a stable, wired office environment, with good system
administration may not require too much emphasis on fault-tolerance towards
communication and node failures. However, in the context of a less controlled
environment such as the home, it becomes a necessity, because home owners
are not restricted in how they manage their appliances (unplugging, moving).
In a wireless, mobile environment, the system becomes even more vulnerable to
certain communication and node failures. We identify the following as design
aspects for service discovery in pervasive computing:

1. System size - We define “system size” in terms of two dimensions: distance
and the number of nodes. Small sized systems such as Personal Area Net-
works (PAN) and Local Area Networks (LAN) contain a limited number of
nodes, and do not require a high degree of scalability. Large systems such
as Metropolitan Area Networks (MAN) and Wide Area Networks (WAN) in-
cluding the Internet require a scalable service discovery system. Scalability
measures include setting up multiple Registries, whether in a tree or mesh
topology, and applying query optimization and load balancing techniques to
conserve bandwidth.

2. Lossy environment - Service discovery systems in wireless and mobile
networks must assume that they will operate in a lossy environment with
communication and node failures. Communication failures include message
corruption, message loss and link failures. Message corruption is due to in-
terference, noise or multipath fading. Message loss is due to loss of signal
caused by physical obstacles, collisions, bandwidth limitations, etc. Link fail-
ures, especially in ad-hoc networks, are caused by mobile nodes losing radio
contact with the destination node. Node failures include crash failures and
interface failures. Crash failures are caused when nodes abruptly disappear
from the system due to energy depletion, pulled out without warning, and
overloaded processors (nodes simply stop communicating). Interface failures
mean receiver and transmitter failure. Therefore, service discovery systems
should be fault-tolerant. Some examples of fault-tolerant mechanisms in ser-
vice discovery systems include redundant and replicated Registries, caching
of alternate services, primary-based recovery protocols such as Registry mon-
itoring and Registry backup [15], retransmissions and acknowledgments for
reliable transmission, and containment of unreliable behaviors by blacklisting
suspicious nodes.

3. Resource constraints - Nodes with hardware constraints are resource-
lean (low memory, processing power and energy). Systems with resource-
lean nodes require resource-aware service discovery functions. One solution
is to delegate more tasks to more powerful nodes. In systems with low band-
width availability, cross-layer dependencies such as service discovery with

12

A Taxonomy of Self-configuring Service Discovery Systems

routing knowledge, and efficient query processing among Registries (e.g.
through DHTSs) can help conserve bandwidth. Furthermore, load balanc-
ing techniques help scale Registry-based architectures so that Registries do
not overload.

Security - A secure service discovery system must support confidentiality,
message integrity and availability [26]. Methods to address these concerns
include authentication of communicating entities, access control so only a
select few are able to communicate, protection of sensitive service attributes
(e.g. location) by hiding the value, data integrity, so that communicating
entities can detect when data is tampered during transit, and detection and
blacklisting of malicious nodes (including authorized entities). The challenge
for a secure service discovery system is to maintain self-configuration of the
system, because the owner of the devices will most probably be required to
provide authentication and access control. Security also consumes resource
due to encryption algorithms. Most service discovery systems assume par-
ticipating nodes are secure by delegating security to the application layer.
However, full fledged deployment of a service discovery system will even-
tually require some secure measures integrated into the service discovery
functions [27, 28]

13

A Taxonomy of Self-configuring Service Discovery Systems

‘spoadse Jeuoljeiodo JO J9s JURAS[SI UMO S)T U0 spuadep we)sAs
AIOAODSIP 9OIAISS B I0J O[RUOIJRI USISOP 9], "AISAOISIP 9DIAISS I0] palo[le) ‘suornjos pue sjpoodse ugisep [euorjerado jo Arewwung *§ *Stq

‘ KBojodoy
sapou a|gelaIun Ansibay paisisnid
sipoe|g
ABojodoy
pouad Audxa | AnsiBay payse
Juswadunouue 15i03Y Pausan
—— /oses| uo
- f 1Hous L ABojodoy
sanbiuyoay ERIIVEN KnsiBoy paseq-231]
Buioueyeq peo | oreuldye ’
ayoe)d
| Buisssooud sjoa0j01d Aianooal ABojodoy
Kianb jusiowz —— paseq-Arewid Ansibay
’ papauuooun
abpajmouy| Bunnos seajdai Ansibay
[yum suopouny [uepunpay
bw>oom_w ERVEN SJUBWaSIIoApR Ansifay ajfuis — aoeds
SreJbal | 201A9s olpoUdd —| ubisag
uoIedIUNWWOD
— padfoug yoers [0a0ioud S)usWAdUNOUUE
6 6 Ansiboy — AbBojodoy
ybrsmiyor — Jlpolad
SYoEIS [0JU0D SS32Y | paiaisniy
100030.d BuiApapun salenb ABojodor
uo saluapuadap | suoouny T seannw |
anowWaY uoredRuaLINY K19n09sIp 82IMIBS paysan
) sjuswabpajmouyoe |
s Ul uoirewojul 9IeMe-32In0say L SUOSSILSUBS ainoanyose
SAIISUSS 103101 —| P e 19 AnsiBay-uoN |
Augepeny Aubsw Aurenuspyuod sepou aunrey ANy NYIW/NYM NVINY] —
i i i yipimpueg ues|-82In0say SpoN uoljesiunwiwo) i i
i | i | spadse
7 7 reuonelado
Aysuabosiay Aunoas SJUIRIISUOD JUSWIUOJIAUS azis walshs —
waishs -90IN0Say AssoT

aleuones ubisap
K19A02SIp 9INIBS

14 A Taxonomy of Self-configuring Service Discovery Systems

5. System heterogeneity - Nodes in heterogeneous systems contain differ-
ent types of network connectivity (e.g. Ethernet, 802.11 a/b/g, IRDA), and
a variety of network stacks (e.g. transport, routing, addressing). A service
discovery protocol that abstracts away as much as possible the lower-layer
protocol stacks, and can perform its functions with minimum dependencies
allows easier deployment in a heterogeneous environment.

Figure 4 summarizes the five operational aspects and the respective solutions.
By taking the operational aspects into consideration, it is possible to design a
system that addresses more than one type of operational issue. For example, an
architecture with replicated and redundant Registries supports a large and lossy
system. State of the art systems usually base their design rationale on their own
set of priorities for the design aspects, hence causing tradeoffs.

6 State of the Art

Having described the nature of service discovery in the context of distributed
systems from the point of view of (a) the architecture, (b) the functionality, (c)
the models underlying the implementations, and (d) the operational aspects, we
now investigate how existing service discovery system fit into this mould.

We provide summaries of selected state of the art service discovery systems.
We choose to describe these systems because of their popularity in the type of
network and the size of system that they support. For ease of understanding, we
will maintain the terms Manager, User and Registry to represent the protocol-
dependent entities, even though the original papers use slightly different terms.

We divide the systems into two categories, based on the targeted system size:
(1) small systems, which includes LAN and PAN, with limited number of nodes,
and (2) large systems, which includes WAN and MAN, with a large number
of nodes. The system size has the most influence on the design decisions in
existing state of the art, where they implement similar service discovery functions
and methods, and Registry topology (e.g. in large systems, the Registry-based
architecture is chosen, where Registries are replicated, and arranged in either
tree or mesh topology).

Unless mentioned specifically to support ad-hoc networks, the systems work
in infrastructure-based wireless networks, and by default, also work on wired
networks.

6.1 Small systems

Small systems are not usually concerned with scalability issues. The architecture
type can be Registry, non-Registry or a combination of Registry with multicast
query capability for Users (for resilience against single point of failure problems).
Furthemore, as bandwidth utilization is not a critical issue in small systems, a
strong support for consistency maintenance can be implemented, provided that
the nodes in the system are not frequently moving in and out of the system.

A Taxonomy of Self-configuring Service Discovery Systems 15

1. Jini [29] - Jini was developed by Sun Microsystems, and is implemented us-
ing the Java programming language. Jini is a Registry architecture, where
the Registry is called the Lookup Service. The Manager registers its service
at the Registry, by uploading the service proxy code. The data stored is typ-
ically a part of a structured distributed shared memory, using tuple spaces,
implemented through JavaSpaces [30]. The User queries the Registry for ser-
vices matching its requirements, and receives the proxy code of the service.
The User also requests the Registry to notify it if similar services register in
the future. The Manager maintains a lease with the Registry, where it peri-
odically refreshes the lease to indicate its continuous existence. The Registry
automatically purges the information on the Manager that failed to refresh
its lease. If the Manager updates its service description, it publishes an event
to the Registry. The Registry propagates the event to interested Users. The
use of Java allows code mobility and operating system flexibility for Jini de-
vices. However, Jini uses the Java Virtual Machine (JVM) and Java Remote
Method Invocation (RMI), and depends on TCP/IP for reliable communi-
cation. These technologies cause dependencies on the underlying protocol
stacks.

2. UPnP [31] - Universal Plug and Play (UPnP) was developed by Microsoft,
and is based on the Simple Service Discovery Protocol [32]. UPnP is a
non-Registry based architecture. The User is called the Control Dewvice,
and the Manager is simply called the Dewvice. Service Description is de-
scribed in XML. The Manager sends multiple multicast messages period-
ically to announce its presence and its services. The User also sends mul-
ticast queries to request services matching its requirements. The Manager
sends XML documents to the User. The XML document provides the device
and service descriptions along with URLs to view the user interface of the
Manager. The User controls the remote service through the Simple Object
Protocol (SOAP) [33] and XML parsing of action requests. The Manager
updates its service through General Event Notification Architecture Base
(GENA) [34]. GENA publishes notifications to subscribers. The Manager
periodically sends multicast announcements, which is used by the interested
User to monitor the continued existence of the Manager. The non-Registry
based architecture eliminates single point of failure issues, and supports mo-
bility. However, it increases network traffic due to extensive use of multicast
messaging. Like Jini, dependencies on IP technologies causes network depen-
dencies.

3. SLP [35] - The Service Location Protocol (SLP) was developed by the IETF
SvrLoc working group. It is a combination of Registry and non-Registry
architecture. The User is called the User Agent, the Manager is the Ser-
vice Agent and the Registry is the Directory Agent. When a Registry exists,
the Manager registers its Service Description at the Registry and the User
queries for services matching its requirement. SLP provides filters that al-
lows attribute and predicate string search. When the Manager updates its
Service Description, it re-registers at the Registry. The User has to query the

16 A Taxonomy of Self-configuring Service Discovery Systems

Registry periodically if it wants to discover the update. When the Registry
is unavailable, the User can send multicast queries to discover the Manager.
The Manager also periodically refreshes its registration by re-registering its
data. If the Manager fails to refresh its registration on time, the Registry
removes the data, and assumes that the Manager is no longer available in the
system. A typical implementation of SLP depends on reliable TCP/IP. SLP
provides basic service discovery functions, with limited consistency mainte-
nance support. Unlike Jini, the combination of of Registry and non-Registry
based architecture reduces single point of failure issues.

4. Bluetooth SDP [36] - Bluetooth was developed by the Bluetooth Special In-
terest Group, an industry consortium consisting of companies like Ericsson,
Nokia and IBM. It is meant for low power, short range (within 10m), wireless
(ad-hoc) radio system devices (PAN network) operating in the 2.4GHz ISM
band. The Bluetooth Service Discovery Protocol (SDP) depends on the un-
derlying connectivity, thus we first describe how devices establish their con-
nectivity. Bluetooth devices periodically sniff for nearby Bluetooth devices
and form a personal area network called piconets which has a maximum of
8 members. The member that initiates communication acts as the master
of the piconet. Additional devices are supported by reusing addresses of a
silenced existing member on a new member. Groups of piconets communi-
cating with each other are called scatternets. The Bluetooth SDP [37] is a
non-Registry based architecture. The Manager runs an SDP server, while
the User runs an SDP client. Services are divided into classes. Each service
is represented by a service record. The User sends a query for a particular
service type, and receives a response from the Manager if it offers a match-
ing service. The User detects that the Manager is no longer available when
it does not receive a response to a request. The Bluetooth SDP has simple
basic functions, where there is no leasing, or subscription to receive updates.
The tight dependency on the underlying protocol layers makes the Bluetooth
SDP unsuitable for stand-alone deployment.

Other state of the art that fall in the “small systems” category include
FRODO ([38], Salutation [39], Konark [40] and DEAPspace [41]. FRODO and
Salutation has an architecture similar to SLP, where it is both Registry and
non-Registry-based. FRODO is a single Registry architecture for the home envi-
ronment, where the Registry is elected. FRODO emphasizes on robustness and
resource-awareness, where guarantees of service delivery is offered, and entities
perform service discovery based on their resource limitations. Unlike the Reg-
istries in SLP and Jini, the Registries in Salutation can query each other, forming
a meshed Registry topology. Konark is similar to the non-Registry based UPnP
architecture, but targets ad-hoc networks specifically. Users and Managers send
multicast service advertisements and queries. Konark also uses HT'TP, SOAP
and XML like UPnP for service descriptions. However, Konark reduces multicast
network traffic by using a gossip protocol for advertising services, instead of the
more conventional periodic muticast advertisements used in UPnP. DEAPspace
is targeted for a smaller system than in Konark or UPnP. DEAPspace is built

A Taxonomy of Self-configuring Service Discovery Systems 17

for a single-hop ad-hoc network, similar to Bluetooth SDP. However unlike Blue-
tooth SDP, Users in DEAPspace cache the service descriptions of all Managers
within their vicinity, and periodically send multicast messages containing the
list of cached services. Managers that find their services missing, or nearing
their expiry periods in the advertised lists, readvertise their services sooner than
previously scheduled. We do not explore these protocols further in this paper
because of their architectural and functional similarities to the four state of the
art that we have described in this section.

6.2 Large systems

Service discovery for large systems is designed with multiple Registry architec-
ture because it reduces network traffic, thus increasing scalability. Since large
systems are deployed over long distances, multiple, replicated Registries are avail-
able. To support a large number of nodes, Registries can do load balancing, and
reproduce child Registries to help reduce load. To allow Registries to query and
update each other efficiently, Registries are arranged in a logical mesh or tree
topology.

1. Ninja SDS [42] - The Ninja project by the University of California, Berkeley
developed the Service Discovery Service (SDS). SDS is a Registry architec-
ture, where services are registered by Managers and discovered by Users
through queries. The Registry in SDS is called the SDS server. For the pur-
pose of scalability, Registries are organized into multiple shared tree-like
hierarchies, so that tasks can be shared among several Registries. When a
Registry is overloaded, it spawns a nearby node as a new Registry, which then
becomes a child of the overloaded Registry. The new Registry is allocated
a portion of the network extent, and thus, a portion of the load. Security
is also supported by SDS, where service discovery functions are wrapped
around steps to allow authentication, authorization and data integrity. For
service queries and Service Descriptions, SDS uses an XML-based query and
description language. SDS is implemented in Java and requires the use of
Secure Remote Method Invocation (Secure RMI) to perform secure commu-
nication, hence it requires substantial resources.

2. INS/Twine [43] - INS/Twine was developed at Massachusetts Institute of
Technology. Like SDS, The architecture is based on the Intentional Naming
System [44], where a number of Registries, called resolvers, map queries to
destination addresses, and also distribute service information. Unlike tree-
like Registries structures in SDS, INS/Twine Registries have a mesh-like
topology, where Registries are peers with each other. A Manager is simply
referred to as a resource. The Manager advertises its Service Description to
the nearest Registry. INS/Twine is built on top of a distributed hash table
(DHT), such as Chord [45]. The Registry extracts prefix subsequences of
attributes and values in the Service Description, into strands. The Registry
then computes hash values for each of these strands, which constitutes nu-
meric keys used to map resources to resolvers. To avoid being overwhelmed

18

A Taxonomy of Self-configuring Service Discovery Systems

with registrations, Registries in INS/Twine use keying mechanisms to limit
registrations. The service information is stored redundantly in all Registries
that correspond to the numeric keys. When a User queries the nearest Reg-
istry, the Registry splits the query similar to how the Service Description is
split. The Registry then queries other Registries that are identified by one
of the longest strands. The query is further processed by the Registry, which
returns the matching service information.

Jxta [46] - Jxta was developed by Sun Microsystems. It is a combination of
Registry and non-Registry based architecture. Registries in Jxta are known
as Rendezvous peers. Managers (simply known as peers) send multicast ad-
vertisements to make their presence and services known to the network.
Registries that receive the advertisements cache the service information. A
User can send multicast queries, and Managers and Registries with match-
ing service information respond to the queries. Each Manager periodically
refreshes its service advertisements. Users and Registries purge service infor-
mation when the Manager fails to refresh the advertisements at the expected
time. When a service changes, the Manager sends another advertisement
(either immediately, or at the next periodic refresh time) so that Users and
Registries can detect the change. An additional entity called the relay peer
acts as name resolver to map a service to its destination address. The re-
lay peer stores routing information and relays messages across firewalls. In
Jxta, Users, Managers and Registries can form groups, based on a certain
criteria (such as location, service type, etc). An entity can only communicate
with members of the groups that it has joined. Unlike SDS and INS/Twine,
Jxta does not provide load-balancing techniques to unburden overloaded
Registries. It also provides limited consistency maintenance support.

Ariadne [47]- Ariadne was developed by INRIA Rocquencourt in France. It
targets mobile ad-hoc networks, comprising of at least 100 nodes, and in-
tegrates routing with service discovery. Like FRODO, the protocol uses an
election algorithm to elect Registries. The node with the highest number
of neighbors and the smallest number of Registries within its vicinity is se-
lected as a new Registry. Registries periodically announce their presence to
nodes within their vicinity. Managers register their service descriptions to
Registries within a limited number hops, and Users query known Registries
for services. WSDL is used for service description, and for specifying Qual-
ity of Service parameters such as availability of service within a particular
time, and resource capacity of the Manager (e.g. memory, energy). If the
Registry does not have the service description matching the User’s query,
it selectively forwards the query to other Registries, based on the distance
between the sending and receiving Registries. Registries share each other’s
cached information (called as profiles) by using Bloom filters [48] to reduce
memory and bandwidth utilization. Updates on service descriptions are not
propagated among the Registries. Only when the number of false cache hits
reaches a threshold, the Registry requests for replacements of the profiles.

A Taxonomy of Self-configuring Service Discovery Systems 19

Other state of the art that are categorized as “large systems” include Su-
perstring [49], GloServ [50], and CDS [51]. The Registries in Superstring are
a set of distributed query resolvers, arranged in a tree-based topology, like in
SDS. Also, like in INS/ Twine, the resolvers route amongst themselves using
a distributed hash table routing structure. A variant of Superstring, called Su-
perstringRep [49] uses a Bayesian reputation model to compute the reputation
score of an entity. The reputation score reflects the quality of service, thus the
trustworthiness of the entity. GloServ is a tree-based Registry architecture, that
uses DNS-like hierarchy and RDF [11] for describing services. GloServ requires
administration (services grouping and managed Registries), and assumes a sta-
ble environment, compared to the other systems described in this section. CDS
uses a distributed hash-based Registry (resolver) system. Existing hash algo-
rithms are used to distribute service information and queries to the Registries.
CDS also does dynamic load balancing by clustering the Registries. Each clus-
ter shrinks and expands according to the number of registrations and queries it
supports (cluster size is determined individually by each Registry). Users select
and query a Registry in the cluster. As with miscellaneous small systems, we do
not explore these state of the art further in this paper.

7 Taxonomy of State of the Art

In this section, we analyze (1) how the selected state of the art service dis-
covery systems address the operational aspects and (2) how they implement the
service discovery functions.

7.1 Taxonomy of State of the Art Solutions to Operational Aspects

Figure 5 shows a summary of our analysis on the solutions provided by state
of the art systems for the operational design issues. The shaded columns for
each system expose the issues that the system considers, and the solutions. We
also show which system provides the most support for each design issue by the
number of shades for the issue across the systems.

For small sized, mobile PAN (less than ten nodes) the non-Registry archi-
tecture (UPnP and Bluetooth SDP) is the most suitable. This is because the
number of nodes is small, and service discovery tasks will be accomplished faster,
than if a Registry is required to be setup, and maintained. For LAN (tens to
several hundred nodes), the Registry-based architecture would be more suit-
able, to help conserve bandwidth. The Registry can either be statically deployed
(Jini, SLP), or dynamically elected (Ariadne, Jxta), depending on the degree of
fault-tolerance required. For large systems, scalability is the primary concern.
Registries are scoped according to location or services (Ariadne, SDS, Jxta),
and arranged in a tree (SDS), or mesh (Ariadne, Jxta, INS/Twine) topology to
optimize query processing and conserve bandwidth.

20 A Taxonomy of Self-configuring Service Discovery Systems

State of the art systems provide fault-tolerance for a lossy environment by
implementing on-the-fly Registry setup (Ariadne, SDS), or multiple replicas of
the Registry (as can be done in Jini, SLP, INS/Twine and Ariadne) to pro-
vide redundancy in the face of single point of failure problems caused by mobile
Registries. However, redundancy increases design complexity and consumes ad-
ditional resources. Registries can also be monitored by other nodes for node crash
failures (SDS, Jxta and Ariadne). The non-Registry based architecture of UPnP
is the most robust against crash failure and message loss, because Users and
Managers can hear each others’ multicast queries and announcements directly.
However, the tradeoffs are scalability and conservation of resource consumption.
A Registry-based architecture, with the ability for nodes to multicast queries
when the Registry disappears (SLP, Jxta), increases robustness against message
loss and crash failure, while also increasing scalability and resource consumption.
To provide reliable transmission, TCP is used in Jini, SLP, and UPnP. None of
the state of art protocols address message corruption (assume lower protocol lay-
ers will address this problem), and detect and recover from Byzantine failures.

To support resource-lean nodes, a Registry-based architecture that delegates
heavier tasks to more powerful nodes allows resource-lean nodes to use less mem-
ory, and energy. None of the selected systems here provide explicit resource-
awareness. Service discovery for large systems provide load balancing techniques
so that Registries are not overloaded; SDS and INS/Twine allow overloaded
Registries to spawn another to take over a portion of their tasks. For conserving
bandwidth, some systems use efficient replication and query processing such as
by using DHTs (INS/Twine) and Bloom filters (Ariadne).

To integrate nodes into different types of connectivity (e.g. wired Ethernet
to wireless 802.11b), nodes are assumed to have the necessary interfaces to the
different networks, or have connectivity via access points. SDS and Jxta ab-
stract away underlying protocol stacks (transport layer and beyond), therefore
providing more flexibility for deployment over different types of connectivity and
protocol stacks. Service discovery functions in these systems are self-sufficient,
with minimum network layer assumptions (multicast and unicast capabilities
required). Systems built for the ad-hoc networks (Ariadne and Bluetooth SDP)
integrate routing knowledge with service discovery, and become more dependent
on the network stack. Some systems explicitly require a certain type of technol-
ogy, such as TCP and IP (Jini, UPnP, SLP and INS/Twine). INS/Twine also
uses the integrated INS as the underlying name mapping framework.

Most systems depend on higher layers in the protocol stack to provide au-
thentication, authorization, privacy and data integrity. Additional steps are
required in between service discovery functions. For example, once the Manager
discovers a Registry, it decrypts the message and verifies the signature in the
message to authenticate the Registry (as is possible in SLP, Jxta and SDS).
These are intermediate steps, before service registration. Users who discover the
service can only access the service if they are authorized by a capability manager
(as in SDS), by applying for group membership (possible in Jxta), or if allowed
by the Manager (can be performed by security applications in all systems). The

A Taxonomy of Self-configuring Service Discovery Systems 21

service discovery systems discussed here do not support detection and black-
listing of an authenticated and authorized entity that has turned malicious. As
mentioned earlier, one protocol that does reputation-based service discovery is
SuperstringRep [49]. Security measures consume substantial resources, increase
complexity of the system extensively, and reduce self-configuration of the sys-
tem. Due to these reasons, a full-fledged secure service discovery system is yet
to be deployed successfully.

A Taxonomy of Self-configuring Service Discovery Systems

22

"s[o00301d 3urInoI ooy-pe pue yroolenyg ‘Jdr ‘dO.L Se yons ‘syoels [000301d SurA[repun o)
Aq pepraoad suornjos uo pusdep sue)sAs awog “I19Ae] uoryeosridde ayy Aq pejroddns st joedse [euorjeiedo oY) 09 uoIIN[oOs 9y} surow jddy/
‘suorynjos pasodoxd o1y 310ddns swe)sAs AIOA0DSIP 901ATeS papeyyq ‘sjoadse [euoIjerado 0} SUOIIN[OS 1Ie dY) JO 9IRS JO AWOUOXR], G ‘31

Yaess [09030.d BuiAjiapun pajst| auy uo spuadap wialsAs ay L :di/SNI ‘Bunnoy ‘yroalenig ‘di/doL

d0.L Buisn papiAoad s1 UOILIIUNWILOD B[qRII3Y :dDL/IINY PUB INAC Ut Saintes) A1Lindas au) Aq pauoddns s

WACINY

uondAiaus pue uoreanuayIne sapiaoad xoels [090104d yloalan|g ayy ut JaBeuriy yur BuiApiapun ayL N7

Jafe) uonearjdde auy Aq papiao.d aq uea uonnjos ay :jddy

L'9 L'9'€
§E'C §g7 | 't | 'TT 97 €T €1 €T waysAs aup Aq Ayriorid uanib ase Jey) sanssi [euoijesado
Bunnoy | dI/SNI yloon|g | di/doL | di/ddL | dlidoL Y9815 1020j01d BuiAjiapun Aeme 10e5qy oels j0a0joud snosuabosaleH | L | AwausBousiay waishs
$3POU SNOIAI[eL 1SI{e|g
ddy |ddy A1 1ddy |ddy 1ddy UORRIIUNWLIOD paydAioug
ddy |y A1 1ddy |ddy |ddy 101309 $5320Y/
|ddy (ddy |ddy W1 [ddy | jddy [ddy uonednuBLINY Aunaeyrene
|ddy |ddy | jddy [ddy |ddy |ddy |ddy |ddy S LUOJ} UOITRWI0JUI BAINISUBS BAOUY pue AuBajur ‘Aenuapiuo) | 9 Aundsg
sanbiuyaey Buoueeq peo
Buissaooud Asanb jusiony3
K1ano2sip a21A1as pue Bunno ajeibaju| JureJISU0d yipimpueg | §
0815 100010.d 1yBramiybi
SUOIIUNY BIBME-80IN0SBY S3POU UB3|-001n0S8Y | 77 | SIUIBLISUO9 82In0SaY
S3pOU 3|GeI[a1UN 1SIoRlg
|y ddy | ddy [|ddy ddy ddy 1ddy |ddy pouiad Au1dxa Juawaounouue/asea| oys
ddy |ddy | jddy | (ddy |ddy |ddy ddy |ddy S30IM3S BRULA)[E BYIRD)
5102010.d A180931 paseq-AlewiLlg
seoljdal Asibay 1uepunpay
JUBLUBSIBAD. 8IIAI3S JIPOLIad
sjuaLusaunouue Axsifiay aipotiad
saLanh 1seanniN aIn|1e} apou
doL doL ddL SJuaLUABPaIMOLXO. pUE SUOISSILLISUBJIBY pue uoreaunWwWo) | € JUBWUOJIAU3 ASS0]
KBojodoy Ansifisy pasaisnio
KBojodoy AnsiBiay paseq-aal] 3In93)IYase (NVM / NYIN)
KBojodoy Ansifiay payssi AnsiBay ajdninin swaishs abre | ¢
KBojodoy peyosuuooun
KnsiBay 91buis ainanyore Ansibay
ABojodoy pasaisn|o (NV1/NVd)
KBojodoy paysa|y | aimoanyale Ansibay-uoN swashs fews | T 3215 Walshs
aumy das
aupely ISNI SAS | BXt | yodenig | dudn d1s i sa14103dg anss|
sanss euotzesado o} suonN|os L ay} Jo alelS suonnjos ubisag sanss| [euonelado

23

A Taxonomy of Self-configuring Service Discovery Systems

“uorpdwnsuod 9dIN0SI PUR SSOULAISUOdSII ‘ADUSIOIJO oY) Se YOns ‘suorje
-I9PISU0D 18730 sjordulil poyjew uoljejuswWS[dUWI JO 910UD JY) ‘I8ASMOY] ‘UOoljejustS[dUIl [RUOIJOUN] IR S JO 9)R)S JO AWOUOXR], *9 "SI

1000304d A1aA02SIP 821ABS 8Y) AQ papinoid sajpuey ayy Buisn Aq ‘1aAe| uoirearjdde ayr Aq panoddns aq ued poyisw ay :[ddy
aInjaalyate AnsiBay-uou ay) o) JUBAB|3I 10U SI PoylaW 8yl /N

1sea1un ybnouayy A1snb ued 11 ey os ‘sapou BuriogqyBiau 19319p 01 40Miau Lloolen|g BulAjiapun ayy uo spuadap das Y10018N|g xx
(uo s1emod) sazijeniur apou ayl uaym AIaN09SIp aA119e S0P AJUO IUIC «

V/IN V/IN saLsibay Buowe arepdn
(Ansibay / 1abeuely ay) Aq) seyepdn Jo UOILIIION douRUBUIRW
1ddy 1ddy |ddy [ddy |ddy 1ddy |ddy | jddy (‘19sn ay3 Aq) serepdn o} |j0d Aouaisisuod
Andxa L1 JUsWasIBAPY arepdn
Audxa Buises | abind uoneinbiyuod uoneinbiyuo)
JUBWASILIBAPE 3DIAIBS 1SN
V/IN V/IN Ansibay Aq uoneaiynou adIAIeS UOIIRIIL1I0U BIINIBS
Aianb 1seaninin
o AJanb 1se21UN A1and A1anodsia as
VIN VIN uonessiBal payoljosun
V/N V/IN uonensifal panaijos uoneisibay
V/N V/N - K19n02SIp aANOY AK1anoasip
V/IN AK1an02sIp aAISSed J1a1snja 1o Ansibay
VIN VIN uononpoideas Ansibey uoie.nbyuod-one Kianoasiq
V/N V/N uonoaje Ansibay Ansibay uoneinbiyuod
suIm | das
dupely | /SNI SAs | et | wyoowrnlgd | dudn d1S e
uoleIuBWadwI [euondUNy 1e 3y} JO 31eIS SpoylsN suonoun A1aA09siQ 92IAIRS

24 A Taxonomy of Self-configuring Service Discovery Systems

7.2 Taxonomy of service discovery functions and methods

Once architectural decisions are made on how to address the operational de-
sign issues, the service discovery functions are designed. Some functions may be
provided by different protocol layers (such as network and application). In such
systems, the dependencies on different protocol layers means they are not easily
portable, and may be less effective [52,25]. For example, Bluetooth SDP can-
not easily replace SLP on a printing device. Meanwhile, SLP expects the User
application to poll for changes in services, and if the application fails to do so
(overlooked by application developer, retransmission limit, etc), the system will
not be effective in conveying changes in service information to interested parties.

We show in our previous work [52, 25] that the functional differences impacts
system performance such as responsiveness, efficiency and resource consumption.
Briefly, these performance outcome depends on the how exhaustive is the imple-
mentation of the function. For example, SLP and Jxta implement both unicast
and multicast queries, therefore when Registry disappears, services can still be
discovered by Users through multicast queries. In Jini, SDS, INS/Twine and
Ariadne, Registries must recover before the service can be discovered, causing
slower responsiveness.

Figure 6 summarizes the functional capabilities of state of the art systems.
We now give a detailed analysis.

For the Configuration Discovery function, the Registry reproduction method
in INS/Twine and SDS requires the first set of Registries in both systems to be
manually deployed by a system administrator, unlike the more dynamic Registry
election method in Ariadne. For discovering Registries and cluster members, sys-
tems that do periodic passive and active discovery (SLP,INS/Twine and SDS)
have higher responsiveness than systems that implement only one of the meth-
ods. Passive and active discovery are especially useful to allow the system to
recover from failures that cause network partitioning.

In the Service Registration function, none of these selected systems allow
the Registry that receives messages from unknown Managers to solicit registra-
tions. This method allows the Registry to speedily recover purged information
of a Manager, after communication failures. The rest of the systems allow only
unsolicited registration, after a Registry is discovered.

For the SD Discovery function, UPnP and Jxta allow both multicast queries
and multicast service advertisements. The combination of these two methods
gives the highest probability for successfully discovering a service, even after
message loss and temporary node failures (e.g. mobile nodes getting temporarily
disconnected). Among Registry systems, the probability of discovering services
is increased if the Registry can notify the Users of newly registered services
matching the requirements of the Users (Jini).

For the Configuration Update function, Jini uses leasing for Configuration
Purge, where the Registry can request Managers to lengthen or shorten their
lease period, according to the Registry’s processing capability. The rest of the
systems require Users and Registries to monitor the advertisement TTL of Man-
agers to detect defunct services. Leasing is more efficient in terms of bandwidth

A Taxonomy of Self-configuring Service Discovery Systems 25

and resource utilization, compared to periodic multicast advertisements. For
Consistency Maintenance, the state of the art systems provide handles to allow
the application on the User to query the Registry or Manager periodically for
updates. Only Jini and UPnP allow the Registry or the Manager to update the
User directly on changes in the SD. In large systems (Jxta, INS/Twine, SDS and
Ariadne), Registries achieve consistency by updating each other on changes in
the cached SDs. Unlike small systems, updates are not propagated each time an
SD changes, but in bulk (when a threshold is reached), thus providing weaker
consistency maintenance (but necessary to conserve bandwidth).

8 Conclusion

We analyze the field of service discovery by first characterizing service dis-
covery as a third generation name discovery system that solves the limitations
of legacy naming systems for pervasive computing. We describe the different
architectures and the main functions of service discovery that allows services to
be discovered, and changes in service availability and attributes to be detected.
We then classify the main operational design aspects for service discovery, and
compare the state of the art solutions to these aspects.

Our analysis reveals which operational aspects, and functionalities are sup-
ported by the state of the art systems. Subsequently, system architects can choose
the service discovery system that satisfies their requirements, and integrate func-
tionalities to enhance service discovery at the application level, to produce a
strong, working system.

There are still several interesting directions in which future research on ser-
vice discovery can be taken.

— The semantics of device, service and attribute names still require much atten-
tion, to improve the context of a discovered service. For a truly unattended
system deployment, different service discovery systems should adhere to a
single, standardized method for describing services. This is important to en-
sure that applications that rely on discovered services can make the correct
inference on the usage of the service.

— Service discovery systems should ensure that a service is discovered and
accessed by authorized entities only. However, authorization should be dy-
namically allocated and revoked, as time progresses, and the requirement
or capability of the entity changes. A service discovery system that assigns,
monitors, revokes and reassigns access to services is necessary for establishing
a truly self-protecting system.

— For a service discovery system in the pervasive environment to mature (as
DNS has done in the Internet), applications that use service discovery need
to be actively developed and promoted. One major hindrance to achieving
this objective is the lack of agreement by manufacturers of devices and appli-
cations on a standard service discovery platform. A service discovery system

26

A Taxonomy of Self-configuring Service Discovery Systems

that unifies well-known service discovery protocols is a step towards this
objective.

Existing service discovery architectures for wide-area networks focus more
on scalability issues (such as bandwidth efficiency, and supporting a large
number of nodes). More work has to be done to produce a large-scale service
discovery design, which is also evaluated against communication and node
failures, such as done in smaller systems [53, 54, 25]. A scalable and robust ar-
chitecture is especially important in mobile ad-hoc networks, because nodes
are easily moved, uncertain wireless connectivity, low bandwidth availability,
and energy constraints.

We conclude by stressing that a service discovery system is the medium for

propelling the power of computing beyond the realm of personal computers, such
that information and services are accessible anywhere, and anytime.

References

10.
11.
12.
13.

14.

15.

Murch, R.: Autonomic Computing. Prentice Hall (March 2004)

Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM
Systems Journal 42(1) (2003) 5-18

Weiser, M.: The computer for the 21st century. 265(3) (September 1991) 94-104
Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal
Communications 8(4) (August 2001) 10-17

Bettstetter, C., Renner, C.: A comparison of service discovery protocols and imple-
mentation of the service location protocol. In: Proceedings of 6th EUNICE Open
European Summer School: Innovative Internet Applications, University of Twente
(September 2000) 101-108

Vanthournout, K., Deconinck, G., Belmans, R.: A taxonomy for resource discovery.
Personal Ubiquitous Comput. 9(2) (2005) 81-89

Richard, G.G.: Service advertisement and discovery: enabling universal device
cooperation. 4(5) (September-October 2000) 18-26

W3C Working Group Note: Web services architecture.
http://www.w3.org/TR/ws-arch (February 2004)
McGuinness, D.L., van Harmelen, F.: Owl web ontology language.

http://www.w3.org/TR/owl-features (February 2004)

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web service descrip-
tion language. http://www.w3.org/TR/wsdl (March 2001)

RDF Core Working Group. Homepage at http://www.w3.org/RDF/ (2004)
Srinivasan, R.: Rpc: Remote procedure call protocol specification version 2 (1995)
Gosling, J., Joy, B., Steele, G.: The java language specification. Homepage at
http://java.sun.com/java.sun.com/newdocs.html (1996)

Needham, R.: Names. In Mullender, S., ed.: An Advanced Course In Dis-
tributed Systems, Wokingham, England, ACM Press/Addison-Wesley Publishing
Co. (1993) 315-326

Tanenbaum, A.S., Steen, M.V.: Distributed Systems: Principles and Paradigms.
Prentice Hall PTR, Upper Saddle River, NJ, USA (2002)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.
30.
31.
32.
33.
34.
35.
36.

37.

A Taxonomy of Self-configuring Service Discovery Systems 27

Coulouris, G.F., Dollimore, J.: Distributed systems: concepts and design. fourth
edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2005)
Birrell, A.D., Levin, R., Schroeder, M.D., Needham, R.M.: Grapevine: an exercise
in distributed computing. Communications of the ACM 25(4) (1982) 260274
Lampson, B.W.: Designing a global name service. In: Proceedings of the fifth
annual ACM symposium on Principles of distributed computing (PODC ’86), New
York, NY, USA, ACM Press (1986) 1-10

Mockapetris, P., Dunlap, K.J.: Development of the domain name system. In:
SIGCOMM ’88: Symposium proceedings on Communications architectures and
protocols, New York, NY, USA, ACM Press (1988) 123-133

Peterson, L.L.: The profile naming service. ACM Trans. Comput. Syst. 6(4) (1988)
341-364

Bowman, M., Peterson, L.L., Yeatts, A.: Univers: an attribute-based name server.
Software-Practices and Experiences 20(4) (1990) 403-424

Chadwick, D.: Understanding X.500 The Directory. Chapman & Hall, London
(1994)

Howes, T., Smith, M., Good, G.S.: Understanding and Deploying LDAP Directory
Services. Macmillan Technical Publishing, Indianapolis, Indiana (1999)

Object Management Group: OMG. The Common Object Request Broker: Archi-
tecture and Specification, Rev 1.2., OMG Document Number 93-12-43. (December
1993)

Sundramoorthy, V., Hartel, P.H., Scholten, J.: On consistency maintenance in
service discovery. In: 20th IEEE Int. Parallel & Distributed Processing Symp.
(IPDPS 2006), Los Alamitos, California, IEEE Computer Society Press (April
2006) 10pp in CD-ROM

Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. In: IEEE Transactions on Dependable
and Secure Computing. Volume 1., Los Alamitos, California, IEEE Computer So-
ciety Press (Jan-Mar 2004) 11-33

Elkhodary, A., Whittle, J.: A survey of approaches to adaptive application security.
In: SEAMS ’07: Proceedings of the 2007 International Workshop on Software En-
gineering for Adaptive and Self-Managing Systems, Washington, DC, USA, IEEE
Computer Society (2007) 16

Merwe, J.V.D., Dawoud, D., McDonald, S.: A survey on peer-to-peer key manage-
ment for mobile ad hoc networks. ACM Comput. Surv. 39(1) (2007) 1

Sun Microsystems: The Jini Architecture Specification, version 2.0. (June 2003)
Sun Microsystems: JavaSpaces Service Specification , version 2.0. (June 2003)
Microsoft: Universal Plug and Play Architecture, V1.0. (Jun 2000)

Goland, Y., Cai, T., Leach, P., Y.Gu: Simple service discovery protocol, version
1.0. (2000)

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Nielsen, H.: Simple Object
Access Protocol (SOAP) V.1.2, Part 1: Messaging Framework. (June 2003)
Cohen, J., Aggarwal, S., Goland, Y.: General Event Notification Architecture Base:
Client to Arbiter. (June 1994)

Guttman, E., Perkins, C., Veizades, J.C., Day, M.: Service Location Protocol, V.2,
RFC-2608. Internet Engineering Task Force (IETF) (December 2003)

Bray, J., Sturman, C.F., Mandolia, J.: Bluetooth 1.1 Connect Without Cables,
2nd Edition. Prentice Hall (December 2001)

Bluetooth SIG: Specification of the Bluetooth System, Core, Vol. 1. (Feb 2001)

28

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

A Taxonomy of Self-configuring Service Discovery Systems

Sundramoorthy, V., Speelziek, M.D., van de Glind, G.J., Scholten, J.: Service
discovery with FRODO. In: 12th IEEE Int. Conf. on Network Protocols (ICNP),
Berlin, Germany, Computer Science Reports, BTU Cottbus (Oct 2004) 24-27
The Salutation Consortium Inc: Salutation Architecture Specification (Part 1),
version 2.1. (1999)

Helal, S., Desai, N., Verma, V., Lee, C.: Konark-service discovery and delivery
protocol for ad hoc networks. In: Proc. IEEE Wireless Communications Networking
Conf. (2003)

Nidd, M.: Service discovery in deapspace. 8(4) (2001) 39-45

Czerwinski, S., Zhao, B., Hodes, T., Joseph, A., Katz, R.: An architecture for a
secure service discovery service. In: Proceedings of ACM/IEEE International Con-
ference on Mobile Computing and Networking (MobiCom’99), Kluwer Academic
Publishers (1999) 24-35

Stoica, I., R.Morris, D.Karger, M.F.Kaashoek, H.Balakrishnan: A scalable peer-
to-peer lookup service for internet applications. In: Proceedings of the 2001 ACM
SIGCOMM Conference. (2001)

Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., Lilley, J.: The design and
implementation of an intentional naming system. In: Proceedings of the 17th
ACM Symposium on Operating Systems Principles (SOSP), ACM Press (Decem-
ber 1999) 186-201

Stoica, 1., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking (TON) 11(1) (2003) 17-32
Gong, L.: Jxta: A network programming environment. IEEE Internet Computing
5(3) (May-June 2001) 88-95

Sailhan, F., Issarny:, V.: Scalable service discovery for manet. In: 3rd IEEE
International Conference on Pervasive Computing and Communications (PerCom
2005), IEEE Computer Society (March 2005) 235-244

Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Com-
munication of the ACM 13(7) (1970) 422-426

Wishart, R., Robinson, R., Indulska, J., Josang, A.: Superstringrep: Reputation-
enhanced service discovery. In Estivill-Castro, V., ed.: 28th Australasian Computer
Science Conference (ACSC2005). Volume 38 of CRPIT., Newcastle, Australia, ACS
(2005) 49-58

Arabshian, K., Schulzrinne, H.: Gloserv: Global service discovery architecture. In:
First Annual International Conference on Mobile and Ubiquitous Systems: Net-
working and Services (Mobiquitous), Los Alamitos, CA, USA, IEEE Computer
Society (August 2004) 319-325

Gao, J., Steenkiste, P.: Rendezvous points-based scalable content discovery with
load balancing. In: Networked Group Communication, New York, NY, USA, ACM
Press (October 2002) 7178

Sundramoorthy, V., van de Glind, G.J., Hartel, P.H., Scholten, J.: The performance
of a second generation service discovery protocol in response to message loss. In:
1st Int. Conf. on Communication System Software and Middleware, New Delhi,
India, IEEE Computer Society Press (Jan 2006)

Dabrowski, C., Mills, K., Elder, J.: Understanding consistency maintenance in
service discovery architectures during communication failure. In: Proceedings of
the Third International Workshop on Software and Performance, ACM Press (July
2002) 168-178

A Taxonomy of Self-configuring Service Discovery Systems 29

54. Dabrowski, C., Mills, K., Elder, J.: Understanding consistency maintenance in
service discovery architectures in response to message loss. In: Proceedings of
the 4th International Workshop on Active Middleware Services, IEEE Computer
Society (July 2002) 51-60

