

Manfred Reichert, Stefan Strecker, Klaus Turowski (Eds.)

EMISA 2007

Enterprise Modelling
and Information Systems Architectures

- Concepts and Applications -

Proceedings of the 2nd International Workshop on Enter-
prise Modelling and Information Systems Architectures

St. Goar, Germany
October 8-9, 2007

Gesellschaft für Informatik 2007

Lecture Notes in Informatics (LNI) - Proceedings
Series of the Gesellschaft für Informatik (GI)

Volume P-119

ISBN 978-3-88579-213-0
ISSN 1617-5468

Volume Editors
Prof. Dr. Manfred Reichert
 University of Twente
 Faculty of Electrical Engineering, Mathematics & Computer Science
 P.O. Box 217, 7500 AE Enschede, The Netherlands
 Email: m.u.reichert@cs.utwente.nl
Dr. Stefan Strecker
 Universität Duisburg-Essen
 Institut für Informatik und Wirtschaftsinformatik
 Universitätsstr. 9, 45141 Essen, Germany
 Email: stefan.strecker@uni-duisburg-essen.de
Prof. Dr. Klaus Turowski
 Universität Augsburg
 Wirtschaftsinformatik und Systems Engineering
 Universitätsstr. 16, 86159 Augsburg, Germany
 Email: klaus.turowski@wiwi.uni-augsburg.de

Series Editorial Board
Heinrich C. Mayr, Universität Klagenfurt, Austria (Chairman, mayr@ifit.uni-klu.ac.at)
Jörg Becker, Universität Münster, Germany
Ulrich Furbach, Universität Koblenz, Germany
Axel Lehmann, Universität der Bundeswehr München, Germany
Peter Liggesmeyer, TU Kaiserslautern und Fraunhofer IESE, Germany
Ernst W. Mayr, Technische Universität München, Germany
Heinrich Müller, Universität Dortmund, Germany
Heinrich Reinermann, Hochschule für Verwaltungswissenschaften Speyer, Germany
Karl-Heinz Rödiger, Universität Bremen, Germany
Sigrid Schubert, Universität Siegen, Germany

Dissertations
Dorothea Wagner, Universität Karlsruhe, Germany
Seminars
Reinhard Wilhelm, Universität des Saarlandes, Germany

© Gesellschaft für Informatik, Bonn 2007
printed by Köllen Druck+Verlag GmbH, Bonn

Preface
Modern organizations recognize the need for a close alignment of their business and IT.
Achieving such an alignment recommends the co-design of the organization and its
information systems considering in particular the corporate strategy, business processes,
and the information systems that support them. In this respect, two essential challenges
pertain to reducing the inherent complexity of co-design, and to overcoming the
notorious cultural chasm between business people and IT professionals.

Conceptual models of the enterprise as well as information systems architectures
represent important means to deal with these challenges. Enterprise models integrate
conceptual models of information systems and models of the surrounding action systems
such as business process models and, hence, take into account technical, organisational,
as well as economic aspects of the organization. Information systems architectures
provide ‘blueprints’ for the design and implementation of software systems and
complement enterprise models in the co-design of the organization and its information
systems. Both serve as a medium to foster communication and cooperation between
various stakeholders in the firm. At the same time, research on enterprise models and
information systems architectures recommends the cooperation of fields such as
Information Systems, Business Informatics, and Computer Science.

The 2nd International Workshop on “Enterprise Modelling and Information Systems
Architectures – Concepts and Applications” (EMISA’07) addresses all aspects relevant
for enterprise modelling as well as for designing enterprise architectures in general and
information systems architectures in particular. It is jointly organized by the GI Special
Interest Group on Modelling Business Information Systems (GI-SIG MoBIS) and the GI
Special Interest Group on Design Methods for Information Systems (GI-SIG EMISA).

These proceedings feature a selection of 15 high quality contributions from academia
and practice on enterprise architecture models, business processes management,
information systems engineering, and other important issues in enterprise modelling and
information systems architectures. We received 39 submissions which were all
thoroughly reviewed by at least two selected experts of the program committee. Fifteen
contributions were selected for presentation at the workshop and for publication in these
proceedings.

We would like to thank the members of the program committee and the reviewers for
their efforts in selecting the papers. They helped us to compile a high-quality technical
program. We would like to acknowledge the splendid support of the local organization.
We also thank Mathias Weske as keynote speaker. Special thanks go to Ulrich Frank and
Peter Rittgen for their assistance with organizing EMISA’07. We hope you will find the
papers in this volume interesting and stimulating.

October 2007

Manfred Reichert, Stefan Strecker, and Klaus Turowski (Eds.)

3

Organisation
Dr. Peter Rittgen
Senior Lecturer
School of Business and Informatics
University College of Borås
S-501 90 Borås, Sweden

Dr. Stefan Strecker
Assistant Professor
Information Systems and Enterprise
Modelling Research Group
University Duisburg-Essen
Universitaetsstr. 9,
45141 Essen, Germany

The workshop is jointly organized by the GI Special Interest Group on Modelling
Business Information Systems (GI-SIG MobIS) and the GI Special Interest Group on
Design Methods for Information Systems (GI-SIG EMISA):

GI-SIG MobIS Conceptual Modelling is pivotal for
analysing and designing information systems
that are in line with a company's long term
strategy and that efficiently support its core
business processes. The Special Interest
Group on Modelling Business Information
Systems (SIG MobIS) within the German
Informatics Society (GI) aims at providing a
forum for exchanging ideas and solutions on
modelling research within Information
Systems - both for researchers at universities
and for experts in industry.

GI-SIG EMISA The GI Special Interest Group on Design
Methods for Information Systems provides a
forum for researchers from various
disciplines who develop and apply methods
to support the analysis and design of
information systems.

5

Program Committee

Manfred Reichert (University of Twente)
Co-Chair
m.u.reichert [at] utwente.nl

Klaus Turowski (University of Augsburg)
Co-Chair
klaus.turowski [at] wiwi.uni-augsburg.de

W. Abramowicz (Poznan University)
P. Ågerfalk (University of Limerick)
A. Albani (University of Augsburg)
C. Atkinson (University of Mannheim)
P. Bøgh Andersen (Aarhus University)
L. Bækgaard (Aarhus School of Business)
J. Becker (University of Münster)
M. Bertram (Commerzbank Frankfurt)
J. Desel (KU Eichstätt)
W. Esswein (TU Dresden)
M. Favier (Université PMF Grenoble)
F. Feltz (CREDI Luxembourg)
U. Frank (University of Duisburg-Essen)
A. Gadatsch (FH Siegburg-Bonn)
C. Godart (Université Nancy)
U. Greiner (SAP Research, Karlsruhe)
W. Hasselbring (University Oldenburg)
B. Henderson-Sellers (University of
Technology Sydney)
W.J. van den Heuvel (Tilburg University)
H. Jasper (TU Freiberg)
F. Karlsson (Örebro University)
D. Karagiannis (University of Vienna)
R. Kaschek (Massey University)
R. Klischewski (German University Kairo)
J. Krogstie (University of Trondheim)
D. Kuropka (HPI Potsdam)

S. Leist (University of Regensburg)
S.W. Liddle (Brigham Young University)
M. Lind (University College of Borås)
K.-W. Müller (MSG Systems, München)
M. Nüttgens (University of Hamburg)
A. Oberweis (University of Karlsruhe)
E. Ortner (TU Darmstadt)
S. Overhage (University of Augsburg)
H.J. Paul (Institut Arbeit und Technik)
E. Proper (Radboud University, Nijmegen)
M. Rebstock (University of Applied Sciences
Darmstadt)
S. Rinderle (University of Ulm)
P. Rittgen (University College of Borås)
M. Rosemann (QUT, Brisbane)
M. Rossi (Helsinki Business School)
G. Saake (University of Magdeburg)
G. Sindre (University of Trondheim)
E. J. Sinz (University of Bamberg)
S. Strecker (University of Duisburg-Essen)
J.-P. Tolvanen (University of Jyväskylä)
G. Vossen (Universität Münster)
B. Weber (Universität Innsbruck)
H. Weigand (Tilburg University)
M. Weske (HPI Potsdam)
R. Wieringa (University of Twente)
R. Winter (University of St. Gallen)

6

Table of Contents

Enterprise Architecture Models

A Federated Approach to Enterprise Architecture Model Maintenance
Ronny Fischer, Stephan Aier, Robert Winter

9

EA Model as Central Part of the Transfomation Into a More Flexible and Powerful
Organisation
Stefan Gerber, Uwe Meyer, Claus Richert

23

Generating Visualizations of Enterprise Architectures using Model Transformations
Sabine Buckl, Alexander M. Ernst, Josef Lankes, Christian M. Schweda,
André Wittenburg

33

Architecture Principles

Architecture Principles - A Regulative Perspective on Enterprise Architecture
Patrick van Bommel, Pieter Buitenhuis, Stijn Hoppenbrouwers, Erik Proper

47

Service Oriented Security Architecture
Cristian Opincaru, Gabriela Gheorghe

61

An Approach to use Executable Models for Testing
Michael Soden, Hajo Eichler

75

Business Process Management

Modelling of Cross-Organizational Business Processes
Jörg Ziemann, Thomas Matheis, Jörn Freiheit

87

Using BPEL as a Workflow Engine for Local Enterprise Applications
Nicolas Biri, Pascal Bauler, Fernand Feltz, Nicolas Médoc, Céline Thomase

101

BPMN-Q: A Language to Query Business Processes
Ahmed Awad

115

7

Information Systems Engineering

A Practical Approach to Ontology-based Software Engineering
Andrej Bachmann, Wolfgang Hesse, Aaron Ruß, Christian Kop, Heinrich C. Mayr,
Jürgen Vöhringer

129

Viewpoint-based Meta Model Engineering
Stephan Kurpjuweit, Robert Winter

143

Design and Usage of an IT-System for Workplace Management with Ergonomic
Analysis Under Health Protection Aspects
Clemens Dubian, Wolfgang May

163

Issues in Modelling

On Industrial Use of Requirements Engineering Techniques
Lars Bækgaard, Jens Bæk Jørgensen, Kristian Bisgaard Lassen

177

UML 2 Profiles for Ontology Charts and Diplans - Issues on Metamodelling
Jose Cordeiro, Kecheng Liu

191

Service Modelling: A Hybrid Approach In Decomposed Financial Value Chains
Falk Kohlmann

205

8

A Federated Approach to
Enterprise Architecture Model Maintenance

Ronny Fischer, Stephan Aier, Robert Winter

Institute of Information Management
University of St. Gallen

Müller-Friedberg-Strasse 8
CH-9000 St. Gallen

{ronny.fischer ¦ stephan.aier ¦ robert.winter}@unisg.ch

Abstract: Enterprise architecture is gaining acceptance as an approach to manage
change and foster IT/business alignment by (1) propagating strategy and process
changes to the software and infrastructure level, by (2) supporting consistent busi-
ness transformation enabled by technology innovations, and by (3) decoupling
business-oriented and technology-oriented architectures. Due to constant change in
business as well as in technology, enterprise architecture management is a perma-
nent process rather than a one-time effort. To keep enterprise architecture models
up-to-date, a well-engineered maintenance concept including processes, roles and
schedules is needed. This paper discusses the shortcomings of existing approaches
to enterprise architecture model maintenance, proposes a federated approach, and
reports on its implementation at a large financial service provider.

1 Introduction

In recent years, companies are exposed to frequent changes in their social and economic
environment. In particular, companies are faced with major challenges such as:

1. An increasing complexity of business transactions due to customization of products
and services as well as growing globalization with respect to service development,
service creation, and service distribution [RWR06; Wa05].

2. An accelerated rate of change in business models due to fierce, international compe-
tition [RWR06; Sc05a; Wa05].

3. A growing regulatory framework, which forces companies to prove that they have a
firm understanding of their operations and that they comply with applicable regula-
tions [La05; Sc05a] such as Sarbanes-Oxley Act (SOX), Basel II or Solvency II.

4. A growing dependency on information technology which enables completely new
products and business processes [Da93; Ve91]. As a consequence thereof, compa-
nies are increasingly threatened by technology-related risks.

9

Companies have to adapt their corporate strategies continuously and have to align corpo-
rate structures with strategic goals. Corporate structures comprise organizational struc-
tures and processes as well as supporting information systems and technologies. Enter-
prise architecture (EA) describes the fundamental structure of an enterprise [Og03;
Ro94; Sc04; WF06] and supports transformation by offering a holistic perspective of as-
is as well as to-be structures and processes [La05].

EA is gaining acceptance as an approach to manage change and foster IT/business
alignment by (a) propagating strategy and process changes to the software and infra-
structure level, by (b) supporting consistent business transformation enabled by technol-
ogy innovations, and by (c) decoupling business-oriented and technology-oriented archi-
tectures [BS02; RWR06; Ve01; Wa05]. Empirical studies confirm the strategic impor-
tance of EA. According to a study conducted in 2005 by the Institute for Enterprise Ar-
chitecture Developments (IFEAD), 66% of the respondents consider EA as an important
element of their strategic governance processes [Sc05b]. Another study conducted in
2006 among Swiss and German companies reveals that 38 from 51 interviewed compa-
nies are either currently implementing EA models, or are already using EA models
[Bu06]. Besides supporting strategy execution, a large number of other EA application
scenarios exist, e. g. business continuity planning, security management, compliance
management and sourcing management [Bu06; RB06]. EA is the primary tool for impact
assessment and tradeoff analysis in these scenarios.

In summary it can be stated that the main goals of EA are

1. documentation and communication of as-is corporate structures/processes,

2. support for the design of to-be structure/processes, and

3. support for projects that transform as-is into to-be structures/processes.

EA models support these goals by creating more transparency, measurability, and con-
sistency. Consequently, EA models must remain up-to-date and reflect the current state
of corporate structures and processes [Ci01]. Hence, EA models need regular mainte-
nance [La05]. This necessitates processes for EA management and communication in
general, and in particular a specific organizational design that ensures the completeness
and consistency of EA models over time.

Various approaches for managing EA have been developed by academia as well as by
practitioners. Documentation of these approaches differs substantially with respect to
quantity and formalization. A common problem is a lack of completeness and/or insuffi-
cient level of detail. In particular, existing approaches to EA management pay little at-
tention to specifying maintenance procedures for EA models in detail. Given the short-
comings of existing approaches, this paper focuses on the maintenance process and re-
ports on a federated approach to maintain a current-state EA model.

The remainder of this paper is organized as follows: In section 2 we analyze several
existing approaches to EA management. Based on this analysis, we specify the research
gap. Possible basic strategies for EA maintenance are discussed in section 3. In section 4

10

we propose a federated approach to EA maintenance. The implementation of this ap-
proach at a large financial service provider is presented in section 5. In section 6, conclu-
sions regarding success factors and obstacles for federated EA maintenance are drawn,
and an outlook to further research is given.

2 State-of-the-Art of Enterprise Architecture Maintenance

A multitude of methods for enterprise architecture management has been developed by
academia and practitioners (e. g. [Az05; Az06; BK05; Ci01; Dv01; If99; Og03; SH93;
Wa05]. These methods usually distinguish between the following EA management proc-
esses: (a) strategic dialogue/architecture visioning, (b) development and maintenance of
current-state EA models, (c) development and maintenance of future-state EA models,
(d) migration planning, and (e) EA implementation.

Documentation of the aforementioned approaches differs substantially with respect to
quantity, level of detail, and formality. Even worse, almost all of these approaches to EA
management pay little attention to specifying maintenance procedures for EA model data
in detail. In order to substantiate this assessment, we provide an analysis of three popu-
lar, comprehensive approaches to EA management on how much they incorporate main-
tenance aspects. These approaches include the Chief Information Officer Council’s “A
Practical Guide to Federal Enterprise Architecture” [Ci01], the Open Group’s “TOGAF”
(The Open Group Architecture Framework Version 8.1 "Enterprise Edition") [Og03],
and Wagter’s et al. “Dynamic Enterprise Architecture: How to Make It Work” [Wa05].

While [Ci01] and [Wa05] mention an EA maintenance process, EA maintenance activi-
ties are not specified in detail, and specific roles/responsibilities are not defined. Al-
though it has to be mentioned, that the Chief Information Officer Council defines a
maintenance process for their own reference model [Ci05]. This process may be adapted
for maintaining EA models, too. TOGAF [Og03], one of the most widely-used ap-
proaches, does not even mention a maintenance process. Other researchers come to the
same conclusion. As Jonkers et al. state: “The instruments needed for creating and using
enterprise architecture are still in their infancy” [Jo06]. Given the lack of existing ap-
proaches, the following research question is addressed in this paper:

How should an EA maintenance concept be designed to ensure the sustainable and effi-
cient usage of EA as an instrument for strategic change and alignment?

In a design research approach [He04], this contribution pursues the following design
goals:

- Design of operational structures for EA maintenance: Detailed, formal description
of a process necessary to maintain EA content.

- Design of organizational structures for EA management: Specification of roles to
execute, manage and control all maintenance process activities.

11

- Integration of operational and organizational structures: Mapping of roles to process
activities by means of responsibility charting (i.e. by specification of responsibility,
accountability, etc. for each process activity).

3 The Challenge of Enterprise Architecture Maintenance

EA is comprised of a large number of business related and IT related artifacts. Popular
framework approaches to EA including [Ci99; Og03; Sc99; WF06] propose the follow-
ing set of EA core artifacts:

- Strategy specification (“what” questions): Hierarchy of organizational goals and
success factors, product/service model (including partners in value networks), tar-
geted market segments, core competencies, strategic projects, business principles,
and dependencies between these artifacts.

- Organization/process specification (“how” questions): Specification of structure
(organizational unit hierarchy, business location hierarchy, business role hierarchy,
dependencies between these artifacts), specification of behavior (business function
hierarchy, business process hierarchy including in-puts/outputs, internal and external
business services including service levels, performance indicators, service flows),
specification of information logistics (business information objects, aggregate in-
formation flows), and dependencies between these artifacts (e.g. responsibilities, in-
formation requirements).

- Integration/Application specification (IT/business alignment questions): Specifica-
tion of applications and application components, enterprise services, service compo-
nents and dependencies between these artifacts.

- Software specification: Specification of software components (functionality hierar-
chy, event/message hierarchy), data resources (conceptual, logical and physical data
models), and dependencies between these artifacts (e.g. data usage by software
components CRUD).

- Technical infrastructure specification: Specification of IT components (hardware
units, network nodes, etc.) and dependencies between these artifacts.

- Specification of dependencies between layers, e.g. organizational goals/success
factors vs. process metrics, products/services vs. process deliverables, organizational
units vs. applications (“ownership”), activities vs. applications, activities/business
processes/information requirements vs. enterprise services (“orchestration”), appli-
cations/enterprise services vs. conceptual data entity types, and applica-
tions/enterprise services vs. software components (“composition”).

Most of the EA artifact classes can be modeled as aggregation hierarchies, i.e. can be
represented on various levels of aggregation. It is obvious that the complexity of a me-
dium or large corporation (or government agency) cannot be covered by one single EA

12

model. In real life, several models for different parts of the enterprise might be main-
tained, and/or EA will co-exist with other, more specialized architectures that cover a
subset of those artifacts [Be05; WF06]. EA comprises only aggregate artifacts and their
relationships within and across all layers (cf. Fig. 1).

Business
Architecture

Process
Architecture

Integration
Architecture

Software
Architecture

Enterprise
Architecture

Technology
Architecture

Fig. 1: Enterprise architecture as cross-layer view of aggregate artifacts [WF06]

We agree with other researchers, that EA modeling should focus on consolidating mod-
els, modeling techniques and tools already existing in a company and integrating these at
an appropriate level of abstraction [DL04]. Hence useful interfaces between EA and
specialized architectures have to be specified and maintenance processes have to be
established. According to [WF06], appropriate interfaces to at least the following spe-
cialized architectures are needed:

− product/service architecture (managed e.g. using a product management tool),

− metrics architecture (managed e.g. using a performance management tool),

− process architecture (managed e.g. using a process modeling tool and workflow
management systems),

− information/data architecture (managed e.g. using a data modeling tool and database
management systems),

− software architecture (managed e.g. using a software design tool and a configuration
management tool), and

− technology architecture (managed e.g. using a computer system management tool).

Basically, two strategies for maintaining architectural data exist [Mü06]:

13

1. establishing a holistic EA model, or

2. implementing a federated EA model.

A holistic EA model means that there is only a single model comprising all artifact
classes necessary to describe EA. Models from specialized architectures are submitted to
the EA team. The EA team interprets these models and remodels them using the compo-
nents specified in the EA meta-model.

A federated EA model means that existing models (that originate from specialized archi-
tectures) are used. These models are linked to the EA model by meta-model integration.
Two possibilities for model data management exist in this context: (a) Either retrieving
model data on the fly when generating EA reports or (b) storing a copy (of the relevant
subset) of model data from specialized architectures in the EA repository and periodi-
cally updating these data.

The latter strategy was chosen for the approach we propose in the next section. A feder-
ated bottom-up approach supported by a common set of rules requires less management
effort (especially if specialized models change), provides up-to-date data, yields a higher
acceptance of the resulting EA models, and avoids misinterpretation of specialized mod-
els during remodeling [Br03; Mi79; PL77].

4 A Federated Approach to Enterprise Architecture Maintenance

To address the challenge of keeping EA models up-to-date, we propose a federated ap-
proach. In this approach, the EA repository is designated to store a copy of model data
from specialized architectures relevant for EA purposes. Formerly independent models
from specialized architectures are linked to the EA repository.

4.1 Maintenance Concept

We suggest that an EA model should – wherever possible – use data from existing spe-
cialized architectures to keep modeling efforts low. This necessitates the implementation
of interfaces to source systems storing model data of specialized architectures into the
EA repository and the establishment of a formal data maintenance process (ref. section
4.2) for each data source. To ensure data quality, we propose the concept of data delivery
contracts. A data delivery contract includes a definition of the interface to the source
system, descriptions of model data from the specialized architecture to be stored in the
EA repository, transformation rules and a maintenance schedule. Data maintenance
processes are executed in regular intervals. Special events however, may trigger addi-
tional maintenance cycles. Before model data from specialized architectures are stored in
the EA repository, consistency checks are performed.

14

4.2 Maintenance Process

To derive the maintenance process, we followed the process design method Promet BPR
[Ba96; Im97; Ös95]. In this context, the respective specialized architecture model to be
updated defines the core business object around which the processes are built [Ös95]. In
order to promote a comprehensive specification of maintenance process tasks, we used
the generic activities proposed in [Ma03; Ma99].

We distinguish between a periodic and a non-periodic maintenance cycle. A periodic
maintenance-cycle is initiated by the EA team based on the maintenance schedule de-
fined in the data delivery contract. The EA team informs the respective data owner to
provide the model data defined in the data delivery contract.

Non-periodic maintenance cycles may be triggered by the EA team as well as the respec-
tive data owner. These cycles are initiated e.g. if models of specialized architectures
have changed significantly due to project work. At the end of the project the respective
data owner informs the EA team about the changes. The EA team then decides whether
or not a non-periodic maintenance cycle for this data source is necessary.

Apart from the triggering event of the maintenance cycle (activity 1), further operational
sequences are identical for periodic and non-periodic maintenance cycles. Fig. 2 depicts
the complete process sequence. Process activities are numbered. Swim lanes denote
accountabilities of the roles involved in process execution (for details cf. section 3.3).

E
A

 R
ep

os
ito

ry

M
an

ag
er

E
A

S

ta
ke

ho
ld

er
D

at
a

O
w

ne
r

E
A

C

oo
rd

in
at

or

Fig. 2: EA Maintenance Process

First, on request by the EA team, the respective data owner delivers updated model data
of its specialized architecture as specified in the data delivery contract (activity 2). The
data owner is responsible for providing model data in the correct data format. In most
cases data will be delivered as an XML or CSV file, as most EA tool vendors provide

15

technically mature concepts for fully automated data transfer. The EA team subsequently
performs consistency checks with the model data from specialized architectures (activity
3). In case of inconsistencies the data owner gets informed and is requested to revise the
data set (activity 4)). After the revision, the data owner resubmits the data set to the EA
team. The EA team again checks the revised data set and decides whether another revi-
sion cycle is necessary or not.

If the data set has eventually passed the consistency check, the EA team prepares a re-
port which contains all intended changes to EA models (activity 5). The report is derived
through a comparison between data currently stored in the EA repository and the up-
dated dataset from the respective specialized architecture model. This report is sent to all
affected EA stakeholders (i.e. to all departments which have subscribed to EA reports
using those data intended to change). The affected EA stakeholders evaluate the intended
changes (activity 6). If a stakeholder enters an objection, the EA team must initiate a
process of coordination involving the stakeholder who vetoed, the data owner, and – if
necessary – other EA stakeholders who might be affected (activity 7).

If all issues are resolved (i.e. if all stakeholders have finally approved the intended
changes), the EA coordinator authorizes the EA repository manager to load the updated
data into the EA repository and built a new version of the current-state EA (activity 8).
Finally, after loading the updated data into the EA repository (activity 9), the availability
of a new release of the current-state EA is communicated to all EA stakeholders (e.g. via
e-mail, activity 10).

4.3 Roles

In this section we describe the roles involved in EA maintenance activities. These roles
are derived from the organizational units involved in the model update process. Regard-
ing the activities which have to be performed by the EA team, we differentiate between a
technology orientated management role (EA repository manager) and a business orien-
tated management role (EA coordinator) because the required qualification profiles are
widely different. In addition, we define the roles of EA stakeholders and data owners of
specialized architectures.

Being not involved in maintenance activities, the chief enterprise architect is informed
about repository updates on a regular basis. The maintenance process is managed by the
EA coordinator. The EA coordinator is a member of the EA team. He or she reports to
the chief architect. His or her main responsibilities include EA meta-model enhance-
ment, specification of interfaces to specialized architectures, maintenance of EA reposi-
tory data, and design of EA reports.

The EA repository manager is responsible for all technical issues related to the EA re-
pository. These include user administration, software updates, data backup, and particu-
larly loading updated model data from specialized architectures into the repository. He
or she is a member of the EA team.

16

EA stakeholders are business and IT units using EA to facilitate the understanding of
multi-layer dependencies within different application scenarios (e. g. strategy execution,
business continuity planning, and security management). Each business or IT unit repre-
senting an EA stakeholder names a contact person. The contact person ensures fast and
effective communication between the EA team and the respective organizational unit.

For every specialized architecture, a data owner should be defined. On request by the EA
team, the data owner provides model data to keep the EA repository up-to-date. Fur-
thermore he or she assists the EA team in specifying and maintaining the interface be-
tween the EA repository and the specialized architecture repository or modeling tool.

Table 1: RACI matrix for EA maintenance process

 Roles

Activities C

hi
ef

E

nt
er

pr
is

e

A
rc

hi
te

ct

E
A

 C
oo

rd
in

a-
to

r

E
A

 R
ep

os
ito

ry

M
an

ag
er

E
A

St

ak
eh

ol
de

r

D
at

a
O

w
ne

r

(1) Initiate maintenance cycle A, R I R

(2) Deliver model data from
specialized architecture I A, R

(3) Check data consistency A R I

(4) Revise inconsistencies C I A, R

(5) Prepare change report & notify
affected stakeholders I A, R I

(6) Check intended changes I A, R

(7) Coordinate vetoes A, R I C C

(8) Authorize repository update A, R I

(9) Perform repository update I A, R

(10) Communicate repository update I A, R I I I

Responsible Position working on the activity

Accountable Position with yes/no authority

Consult Position involved prior to decision or action

Inform Position that needs to know of the decision or action

17

Table 1 presents the RACI matrix [SE07] used to describe the responsibilities of the
roles involved in the EA maintenance process in detail. It is especially useful in clarify-
ing roles and responsibilities in cross functional/cross departmental processes such as the
one at hand. The RACI matrix breaks maintenance tasks down to four responsibility
types that are then assigned to the different roles involved in the maintenance of the
current-state EA.

5 Implementation at a Large Financial Service Provider

This section reports on the evaluation of our federated approach to EA maintenance. We
use the case of a large financial service provider which implemented our approach. Un-
like many other organizations, IT/business alignment has not been the major driver for
EA efforts in this company. Instead, EA aims at supporting strategy implementation, in
particular at supporting the project selection/project portfolio planning process. In addi-
tion, EA is regarded as foundation of business continuity planning, service management
and security management.

The financial service provider’s EA program was initiated in 2005 because an aggregate,
enterprise-wide view of important entities and dependencies did not exist. The program
is ongoing and aims at establishing EA as a service to business and IT units. The project
we report on has been carried out in 2006 and belongs to a comprehensive EA program.
It was started because past approaches to solve the problem of managing the intertwined
dependencies of EA artifacts were expensive, since they required scarce experienced
architects, time consuming, since the required data were not at hand, frequently incom-
plete, since the effort to document every aspect was not justifiable, and often out of date
since the ongoing expense of maintaining this information was too high [see also
GKC06].

In order to address the challenge of keeping EA data up-to-date, the financial service
provider decided to pursue a federated approach. In this approach the responsibility for
maintaining artifact descriptions is delegated to the team that is responsible for this arti-
fact class. A self-developed EA repository (based on a relational database) has been
implemented to store a copy of model data from those specialized architectures (Fig. 3)
which are relevant for EA purposes.

If needed for analyses, formerly independent models from different specialized architec-
tures have been linked. Interrelating models was accomplished by the EA team together
with the respective data owners of the underlying models. Relationship ownership was
eventually assigned to one of the participating data owners for further maintenance. For
each data source, a maintenance process similar to the one described in section 4 has
been established and the necessary roles have been implemented in the organizational
structure.

Model data transfer from specialized architectures to the EA repository is primarily ac-
complished by means of CSV files. A fully automated data transfer is considered as a
future option. While efforts for an automation of repository updates will keep within

18

reasonable limits for clearly structured data with well defined intersubjectively compre-
hensible semantics like, e.g. hardware inventory data, automation will be more complex
for e.g. business process models exported from process modeling tools. Therefore the
implementation of automated repository updates has to be decided on a case by case
basis.

EA Repository

Application
Repository

Process
Modelling

Tool

Hardware
Inventory

ERP System
(Products &

Services)

List of
Strategic

Goals

Metadata
Repository

Fig. 3: Primary data sources for EA content

After the first domain-specific repository has been connected to the EA repository in
February 2006, more than 40 maintenance cycles have been carried out. In this relatively
short time, the EA repository has already provided important insights into the company’s
enterprise architecture that were unavailable so far. First, it has provided a holistic view
which not existed before. Secondly, it has provided a means of centrally storing relevant
information about enterprise architecture artifacts and their relationships so that various
inconsistencies could be identified. Up to now, more than 100 inconsistencies have been
identified and addressed by respective change requests. Third, and definitely most im-
portant, the EA repository has enabled a number of analyses that were either unavailable
or were difficult and costly to perform before. More than 40 analyses related to 10 dif-
ferent application scenarios have been performed since the first release of the repository.
These architectural and risk analyses helped to highlight a number of significant risks
and issues relating to strategic options, redundancy and business continuity.

6 Conclusions and Future Work

One major finding from implementing a federated approach to maintain EA models is
that the integration of existing models from specialized architectures strongly influenced
the acceptance of EA as a management tool. For the EA stakeholders it became a very
powerful tool since it provides valuable insights in the current and future architecture
that were not available before. Due to the organizational fragmentation which most large

19

service companies show, particularly the different relationships between the specialized
architectures were not available for analysis before. The acceptance of this solution a-
mong the providers of the specialized architectures is very high because they remain the
owners of the respective architecture models.

Another insight gained from the implementation is worth mentioning: The integration of
model data from specialized architectures into the EA repository is an ongoing process
rather than a one-time effort. It is necessary to monitor the quality of model data from
source systems continuously – particularly regarding their consistency.

From our experience, further research is needed for integrating the maintenance process
into a holistic EA management and usage process. Furthermore, tool support needs to be
extended. In particular, the process of loading specialized architecture model data needs
more automation. However, the automation of model data updates may not be reasonable
for every specialized architecture model. Especially in the case of rarely changing mod-
els there may not be a business case for an automation of updates. Criteria influencing
the cost-benefit ratio of an automated approach need to be elaborated.

References

[Az05] Aziz, S. et al.: Enterprise Architecture: A Governance Framework - Part I: Embedding
Architecture into the Organization. Infosys Technologies Ltd., 2005.

[Az06] Aziz, S. et al.: Enterprise Architecture: A Governance Framework - Part II: Making
Enterprise Architecture Work within the Organization. Infosys Technologies Ltd., 2006.

[Ba96] Bach, V. et al.: Enabling systematic business change integrated methods and software
tools for business process redesign. Vieweg, Braunschweig 1996.

[Be05] Bernard, S. A.: An Introduction to Enterprise Architecture: Second Edition. Au-
thorhouse, Bloomington, IN 2005.

[BK05] Bittler, R. S.; Kreizmann, G.: Gartner Enterprise Architecture Process: Evolution 2005.
Gartner Inc., Stamford, CT 2005.

[Br03] vom Brocke, J.: Referenzmodellierung - Gestaltung und Verteilung von Konstruktion-
sprozessen. Logos Verlag, Berlin 2003.

[BS02] Buchanan, R. D.; Soley, R. M.: Aligning Enterprise Architecture and IT Investments
with Corporate Goals. OMG Whitepaper, Object Management Group, Needham 2002.

[Bu06] Bucher, T. et al.: Analysis and Application Scenarios of Enterprise Architecture - An
Exploratory Study. In: Proceedings, EDOC Workshop on Trends in Enterprise Archi-
tecture Research (TEAR 2006) within The Tenth IEEE International EDOC Conference
(EDOC 2006), Hong Kong 2006.

[Ci01] Chief Information Officer Council: A Practical Guide to Federal Enterprise Architec-
ture, Version 1.0. 2001.

[Ci05] Chief Information Officer Council: Federal Enterprise Architecture Reference Model
Maintenance Process. 2005.

[Ci99] Chief Information Officer Council: Federal Enterprise Architecture Framework, Ver-
sion 1.1. 1999.

[Da93] Davenport, T. H.: Process Innovation - Reengineering Work through Information Tech-
nology. Harvard Business School Press, Boston 1993.

[DL04] ter Doest, H.; Lankhorst, M.: Tool Support for Enterprise Architecture - A Vision.
Telematica Instituut, Enschede 2004.

20

[Dv01] Department of Veterans Affairs: Enterprise Architecture: Strategy, Governance, &
Implementation. 2001.

[GKC06] Garg, A.; Kazman, R.; Chen, H.-M.: Interface descriptions for enterprise architecture.
In: Science of Computer Programming 61 (2006) 1, pp. 4-15.

[He04] Hevner, A. R. et al.: Design Science in Information Systems Research. In: MIS Quar-
terly 28 (2004) 1, pp. 75-105.

[If99] IFIP–IFAC: GERAM: Generalised Enterprise Reference Architecture and Methodol-
ogy, Version 1.6.3. IFIP–IFAC Task Force 1999.

[Im97] The Information Management Group (Ed.): PROMET BPR: Methodenhandbuch für
den Entwurf von Geschäftsprozessen, Version 2.0, St. Gallen 1997.

[Jo06] Jonkers, H. et al.: Enterprise Architecture: Management tool and blueprint for the or-
ganisation. In: Information Systems Frontier (2006) 8, pp. 63-66.

[La05] Lankhorst, M.: Enterprise Architecture at Work: Modelling, Communication and
Analysis. Springer, Berlin et al. 2005.

[Ma03] Malone, T. W. et al.: Tools for Inventing Organizations: Toward a Handbook of Organ-
izational Processes. In: Malone, T. W.; Crowston, K.; Herman, G. A. (Eds.): Organizing
Business Knowledge - MIT Process Handbook. The MIT Press, Cambridge Massachu-
setts, London England 2003, pp. 13-38.

[Ma99] Malone, T. W. et al.: Tools for Inventing Organizations: Toward a Handbook of Organ-
izational Processes. In: Management Science 45 (1999) 3, pp. 425-443.

[Mi79] Mintzberg, H.: The Structuring of Organizations: A Synthesis of the Research. Prentice-
Hall, Englewood Cliffs, NJ 1979.

[Mü06] Müller, S. et al.: Integratives IT-Architekturmanagement. In: Hasselbring, W.; Reuss-
ner, R. (Eds.): Handbuch der Software-Architektur. dpunkt, Heidelberg 2006, pp. 187-
210.

[Og03] The Open Group (Ed.): TOGAF (The Open Group Architecture Framework) Version
8.1 "Enterprise Edition". San Francisco, CA 2003.

[Ös95] Österle, H.: Business Engineering: Prozess- und Systementwicklung, Volume 1:
Entwurfstechniken. 2nd edition, Springer, Berlin et al. 1995.

[PL77] Pfeffer, J.; Leblebici, H.: Information Technology and Organizational Structure. In:
Pacific Sociological Review 20 (1977) 2, pp. 241–261.

[RB06] Ross, J. W.; Beath, C. M.: Sustainable IT Outsourcing Success: Let Enterprise Architec-
ture Be Your Guide. In: MIS Quarterly Executive 5 (2006) 4, pp. 181-192.

[Ro94] Rood, M. A.: Enterprise Architecture: Definition, Content, and Utility. In: Proceedings,
Third Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises
1994, pp. 106-111.

[RWR06] Ross, J. W.; Weill, P.; Robertson, D. C.: Enterprise Architecture as Strategy: Creating a
Foundation for Business Execution. Harvard Business School Press, Boston 2006.

[Sc04] Schekkerman, J.: How to Survive in the Jungle of Enterprise Architecture Frameworks:
Creating or Choosing an Enterprise Architecture Framework. 2nd edition, Trafford Pub-
lishing, Victoria, British Columbia 2004.

[Sc05a] Schekkerman, J.: The Economic Benefits of Enterprise Architecture: How to Quantify
and Manage the Economic Value of Enterprise Architecture. Trafford Publishing, Vic-
toria, British Columbia 2005.

[Sc05b] Schekkerman, J.: Trends in Enterprise Architecture 2005: How are Organizations Pro-
gressing? , Institute for Enterprise Architecture Developments, Amersfoort 2005.

[Sc99] Scheer, A.-W.: ARIS - Business Process Frameworks. 3rd edition, Springer, Berlin
1999.

[SE07] Smith, M. L.; Erwin, J.: Role & Responsibility Charting (RACI).
http://www.pmforum.org/library/tips/pdf_files/RACI_R_Web3_1.pdf, last access
29.03.2007.

21

http://www.pmforum.org/library/tips/pdf_files/RACI_R_Web3_1.pdf

[SH93] Spewak, S. H.; Hill, S. C.: Enterprise Architecture Planning - Developing a Blueprint
for Data, Applications and Technology. John Wiley & Sons, New York 1993.

[Ve01] Veasey, P. W.: Use of enterprise architectures in managing strategic change. In: Busi-
ness Process Management Journal 7 (2001) 5, pp. 420-436.

[Ve91] Venkatraman, N.: IT-Induced Business Reconfiguration. In: Scott Morton, M. S. (Ed.):
The Corporation of the 1990s. Information Technology and Organizational Transforma-
tion. Oxford University Press, New York 1991, pp. 122–158.

[Wa05] Wagter, R. et al.: Dynamic Enterprise Architecture: How to Make It Work. John Wiley
& Sons, Hoboken, New Jersey 2005.

[WF06] Winter, R.; Fischer, R.: Essential Layers, Artifacts, and Dependencies of Enterprise
Architecture. In: Proceedings, EDOC Workshop on Trends in Enterprise Architecture
Research (TEAR 2006) within The Tenth IEEE International EDOC Conference
(EDOC 2006), Hong Kong 2006.

22

EA Model as central part of the transformation into a more
flexible and powerful organisation

Stefan Gerber, Uwe Meyer and Claus Richert

Personal & Corporate Banking IT and Operations
Deutsche Bank AG

Alfred-Herrhausen Allee 16-24
65760 Eschborn

Abstract This report introduces an approach how Enterprise Architecture (EA)
design can be deployed in a large financial organisation for strategic
transformation. Our EA design embraces all main components of the business
organisations, its information systems and the way they work to achieve business
objectives. In order to tackle such EA design and its deployment, governance,
design and measurement principles are required to keep EA consistent and avoid
misunderstandings among stakeholders. Since EA focuses on a holistic view of the
organisation, full EA deployment is risky due to cost and organisational impact.
Therefore we use an iterative approach within EA deployment that will be
considered as an assessment process evaluating the whole IT-landscape of a certain
CIO area. There are metrics used which allow the identification of transformation
objects and these will be reworked in different structures by using architectural
principles and then integrated into EA. Finally the existing EA will be evaluated
(together with transformation object) by EA design principles and either the
transformation will be rejected or design principles will be adopted. In order to
make this model operative it is embedded in an architecture organizational
structure which is independent from the organizational structure of the enterprise.

23

1 Introduction – EA governs IT towards better business alignment

To become a business enabler and provide faster time to market within a strong resilient
banking environment, is the key focus of EA introduction [WG004]. EA is a discipline
which synchronizes the business strategy with the IT strategy. Hence, EA can not be a
one-time effort, but is subject to the same change as the enterprise itself.
Mergers/Acquisitions, growth strategies or consolidation efforts will heavily impact the
way EA is conducted in an enterprise. EA should be a major driver in adapting the IT
landscape, which mostly consists of applications and infrastructure, supporting the
business processes. Unfortunately, the lifetime of applications in most cases is much
longer than the average time between business and IT strategies change. Thus, a flexible
approach to EA is needed to drive these changes towards the implementation of the
strategies.

Our approach is to establish a hierarchy of business-aligned Enterprise Architects and
functional and non-functional domains. The functional domains (e.g. Cash Management,
Loans Management) cover the IT landscape from a business point of view, whereas the
non-functional domains deal with overlapping concerns such as security or integration.
On the next level, projects build new business solutions. This approach yields a strong
business alignment through business involvement.

In addition, the division of the architecture into domains helps to reduce the complexity
and assigns responsibilities based on knowledge. It is not an option to deploy EA in one
big bang due to the complexity, therefore an iterative approach is required – and this will
be described in this report.

2 EA design delivery structure and development approach

2.1 Delivery structure of the target architecture and design principle

Architectural design structures as they are suggested by the Zachman Framework
[Z1987] or The OPEN ARCHITECTURE GROUP (TOGAF) [TO002] follows a fix
structure of multiple layers. As most studies from industrial practise show, adaptations
on these models are made to bring case related design into generic design. A full
implementation of such a model will often be rejected because of time and costs.

Our design uses a simple 4-layered architecture that has been suitable for architectural
design in the literature [BFK06], [KAV05], [WG004], [JH007].

 Business architecture: Value networks, relationships to customer and supplier,
target market segments, offered services, organizational & strategic business
goals and strategic projects

 Process architecture: Business processes, organizational units, responsibilities,
performance indicators and information flows

24

 Integration architecture: Enterprise services, application clusters, integration
systems and data flows

 Software architecture: Fundamental software organization artefacts, software
services and data structure

Practical experiences shows, architectures structured in 4 layers spoil detail and are too
granular or generic [MP006],[BSV07]. This causes problems in communication and
planning due to various audiences involved. Therefore to avoid misunderstanding
between the different viewpoints, architectural layers will be considered with different
levels of abstraction.

 Enterprise level: The enterprise level is the highest abstraction level where all
strategic decisions regarding business, operations and IT will be described for a
particular closed section of the enterprise. Instead of seeing the whole entity as
an enterprise we believe that major business lines as e.g. Private and Corporate
Business, Wealth Management or Investment Banking are the appropriate level
of abstraction. Therefore the number of enterprise areas should be limited to 3
to 5 in maximum.

 Domain level: On domain level the strategic goals from the enterprise will be
detailed and deployed on domain specific operating models, processes,
applications and/ or infrastructure. On this level all guidelines and principles
will be defined. Therefore between enterprise and domain level there is a 1:n
relationship to achieve a higher granularity in architecture design. For example,
the business line Private and Corporate Business will consist of domains as
Financing, Investments, Payments, and Current Accounts etc. At minimum 4
domains up to a maximum of 8 domains should belong to one enterprise area.

 Solution level: The scope of the solution level embraces all applications and
their related technical systems. Projects will be performed and delivered out of
this level. At this level the detailed technical and business design, software
artefacts behave as user interfaces, storage components, computation functions,
connectivity components, security components or process components are
developed, maintained, tested etc

Our architecture design seems feasible for enterprise architecture design. We are able to
identify how our architecture may/will be affected by changes or new requirements from
either business or technology. However, we need the alignment of the different model
dimensions with respect to specific techniques or methods that we have to keep unique
in our architectural design; our model may have some drawbacks because of its strict
hierarchical structure (i.e. Enterprise services on each layer will be implemented
differently).

25

Therefore our architectural design structure will be extended by an additional dimension,
so called interdisciplinary dimension. Through this dimension we provide design
principles which have an impact on all different architecture levels according to specific
scopes. This dimension is required to cover technological aspects; therefore we have
defined following scopes:

Figure 1: Enterprise Architecture Delivery Structure

SOA: All aspects of Service-Oriented Architecture from service discovery to
deployment including methodology, training, coaching, governance and technology.

Workflow: Methodology/framework (including governance) and platform definitions to
achieve consolidated automation and monitoring of document-centric workflows to
become the workflow competency partner to business.

Security: Implementation of application security in a cost-efficient, consistent and
interoperable manner meeting requirements out of IS Policy

Infrastructure: Provides a framework on how to architect applications and services to
make best use of infrastructure. This covers infrastructure on various tiers such as
Operating System, Persistence and Application Services.

The complete delivery structure of our enterprise architectural design model finally
considers architecture artefacts in three dimensions: abstraction level (3), architectural
layers (4) and interdisciplinary layers (3-n) by following this structure, our EA design
implements various relationships between architectural objects e.g. processes or
application such that multidimensional behaviour analysis can be performed. Functional
or process relationships towards applied technology or applications can be obtained and
reasoned with the help of such analysis.

SO
A

W
orkflow

(B
PM

)

Security
Infrastructure

Enterprise
Domain

Solution

Business Architecure

Business Process Archietcure

Integration Architecure

Solution Architecure

SO
A

W
orkflow

(B
PM

)

Security
Infrastructure

Enterprise
Domain

Solution

Business Architecture

Business Process Architecture

Integration Architecture

Software Architecture

SO
A

W
orkflow

(B
PM

)

Security
Infrastructure

Enterprise
Domain

Solution

Business Architecure

Business Process Archietcure

Integration Architecure

Solution Architecure

SO
A

W
orkflow

(B
PM

)

Security
Infrastructure

Enterprise
Domain

Solution

Business Architecture

Business Process Architecture

Integration Architecture

Software Architecture

26

2.2 EA design development approach using assessments

Architecture thinking is now well established in many organisations. However, efforts
estimates and costs of full EA design are often underestimated and consequently prevent
firms to succeed in their architectural objectives [RSV07], [KAV05], and [ABB07]. It is
important to achieve objectives that were put for the architectural program in the
beginning despite the constraints of budget etc. Many firms try to run independent
projects with different scope and topics in order keep efforts feasible. However, due to
differences in scope and level some overheads are necessary to align different projects.
Although these projects use a predefined structure for the delivered architectural design,
it may not be possible to get comparable results, which are interpreted the right way and
easily integrated into the general EA model without additional effort. In the literature
[RSV07] some investigations are made on how to justify maturity and alignment
capability of a given architectural design. Based on such assessment it may become
possible to integrate architectural designs at different levels into a single enterprise
architecture model at feasible costs.

Contrary to previous approaches, in our approach EA design will be deployed in so-
called transformation objects with the need to transform the architectural structure in
order to improve business enablement or IT quality. Such transformation objects may be
identified on different architecture layers or abstraction levels by using an assessment
model. The assessment model aims to evaluate the strategic potential of the
transformation objects for both business and IT before spending any effort on EA design.
Thus architecture design processes for different transformation objects will always be
aligned firstly with each other and secondly with strategic and architectural principles
striving for the architecture program. As assessment is the central part of our approach,
the full process contains some further steps needed to prepare the assessment and finally
implementing the transformation objects as well as keeping them in accordance with EA
principles. The entire EA development process will be implemented by a V- model as
shown in the figure 2:

Figure 2: V-Model of Enterprise Architecture Development

Transformation
Objects

Strategy
and

Guidance

Identification of
Transformation

Objects
(Assessment)

Implemented
Transformation

Objects

Updated
EA PrinciplesConverged

Domain
Architecture

Converged
Enteprise

Architecture

Enterprise

Domain

Enterprise

Domain

Transformation
Objects

Strategy
and

Guidance

Identification of
Transformation

Objects
(Assessment)

Implemented
Transformation

Objects

Updated
EA PrinciplesConverged

Domain
Architecture

Converged
Enteprise

Architecture

Enterprise

Domain

Enterprise

Domain

27

The assessment uses multi-dimensional evaluation approach, based on this approach the
IT landscape will be measured according to their Business contribution, Technical
Quality and Costs. Each of the measurement dimensions (e.g. Business contribution)
have a certain metrics applied to identify opportunities, bundle them into transformation
objects for improvements, quantify their rank and finally define the high level master
plan for architectural integration. Assessment of market packages or components-off-
the-shelf sometimes is feasible too, as very often adoption and integration into the
existing environment needs architecture as well.

An assessment can be viewed as snapshot at a certain time. Repetition of the assessment
with the same candidate at a later stage is foreseen in this model to prove the impact of
architectural changes. It has to be considered that due to changes in markets, technical
or organisational realignments etc., not only change transformation objects but will
determine the future results.

Major advantage of this approach is the involvement of the business units in EA design
and the alignment of the business strategies with the IT strategy.

3 Organizational structure making EA work

With EA design we identify the areas where we need to transform the architecture of our
solutions and better manage the governance of our portfolio. Therefore to achieve this
and to better support businesses in their growth targets introduction of EA organisation
is a major step towards transformation into a more flexible and service oriented
organization. One of the core pillars of this structure will be dedicated Enterprise
Architects for each business line. Enterprise architects will work closely with business
partners to set the strategic direction of the overall architectural business landscape on
the basis of the inputs from the underlying domain. The basic architectural work will be
done within domains. Therefore for each domain a domain architect is in charge
managing the work of several solution architects. The entire organizational structure of
EA with all responsibilities and deliverables is defined in the following table:

Level Task Deliverables

Enterprise
Architect

Business
Strategy

Business Vision/Strategy consisting of goals and objectives for
Client and portfolio of investments, roadmap of initiatives for the
next 3-5 years, Competitive analysis reports, Business capability
roadmaps and initiatives for next 3-5 years

 IT Strategy IT strategy consisting of goals and objectives for the IT
organization over the next 3 to 5 years, given current
organization performance and business support needs,
technology initiatives proposal (EA input to business strategy),
updated IT strategy/vision

28

Level Task Deliverables

 Governance,
Portfolio
Definition,
Organization &
Management

Architecture governance model, rules of engagement, roles and
responsibilities, escalation process, business portfolio model,
portfolio definitions (scope of portfolio in functional or business
process terms), assets assigned to each portfolio and classified
(e.g. core, strategic, mission critical, legacy), portfolio strategy,
roadmap of programs & projects.

 Architecture
Metrics and
Performance
Management

Architecture marketing and education materials, EA
communications plan, balanced scorecard framework,
architecture measurement system, balanced scorecard report,
performance action plan

Domain
Architect

Domain
Architecture
Planning

IT Strategy consisting of goals and objectives for technology
over the next 3 to 5 years given technology and industry trends,
Current state architecture, relevant business & technology
imperatives, guiding principles develop/refresh, gap analysis,
future state architecture vision, implementation roadmaps

 Principles and
Requirements

Guiding principles for IT, EA, design, deployment, policies, data,
security, etc.

 Domain
Governance
and Demand
Management

Process for reviewing solution architectures for compliance with
standards, roadmaps and goals for reusability; includes approval
criteria, list of required/optional artifacts at each phase/gate

 Business
Architecture
Development

Business value chain model, business capabilities model,
business process maps, business information model

 Vendor
Relationship
Management

List of strategic IT vendors, Vendor evaluation criteria and
metrics, List of vendor relationship managers; Manage Non-
strategic vendors

Solution
Architect

Solution
Architecture
Design

Solution requirements, solutions architecture plan with potential
projects, solution architecture plan considering portfolio
architecture roadmap, technical architecture roadmaps and
standards, business case or value case, solution architecture
design document

 Architecture
Requirements
and Design

Technical reference model, engineered patterns (i.e. web-user-
interface design, single sign on, rules engine topology, static web
content delivery, web personalization, etc) document
management patterns, design patters, naming conventions, code
frameworks, etc., populated patterns from actual
projects/solutions

29

This organizational structure will be embedded in a governance framework to guide the
work and ensure the quality of deliverables of all involved parties. The following
characteristics are positioned here to highlight both the value and necessity for
governance:

Discipline: All involved parties will have a commitment to adhere to procedures,
processes and authority structures established by the organization

Transparency: All actions implemented and their decision support will be available for
inspection by authorized organization and provider parties

Independence: All processes, decision-making, and mechanisms used will be
established to minimize or avoid potential conflicts of interest

Accountability: Identify groups within the organization, e.g. Governance Boards, who
take actions or make decisions, are authorized and accountable for their actions

Responsibility: Each contracted party is required to act responsibly to the organization
and its stakeholders

4 EA’s evolution over time declares the roadmap for IT convergence

The five architecture views described in the previous chapter are usually all affected
during the change of a transformation object. This way, the change of the transformation
object contributes to IT Convergence on multiple levels.

1. Infrastructure Architecture: Deutsche Bank’s Technology Roadmap classifies all
infrastructure components into different lifecycle states (Invest, Maintain, Disinvest, and
Unsupported) according to the strategic fit and the maturity respective state of support
offered by the vendor and the internal Engineering and Operations. Close monitoring of
the implemented technology allows stringent management of the infrastructural
components and minimizes the risk of malfunction due to the use of unsupported
technology. Most importantly, infrastructural standardization is the key element towards
reduction of heterogeneity and leading to simplification which in-turn reduces cost.

2. Software Architecture: Software artefacts are governed through above mentioned
standardization and by the respective Domain Architects who works with the solution
project teams to achieve convergence to the transformation objectives. This model
ensures that architectural compliance is not an ex-post event; rather it is the result of a
pro-active engagement.

3. Integration Architecture: How to integrate applications with each other is governed
by a Domain Architect for Service-oriented Architecture and Integration. Guidance is
provided through related documentation and reference architectures. Through
standardization in the Integration Architecture interoperability will be increased and
future integration becomes easier.

30

4. Process Architecture: Process Architecture is as well a major focus area: A Domain
Architect for Business Process Management provides the guidance and governance
around Business Process Management and Modelling. Standard tools and methodologies
have been defined. This approach drives, together with the process owners in business,
the modelling (and automation) practice, standardisation and convergence of the process
landscape itself. This is an important step towards a service-oriented enterprise.

5. Business Architecture: Alignment between business and IT is achieved through
collaboration in Business Enterprise Architecture Forums and as well on the next level
(Domain Forums). This dialogue between decision-makers in the Business ensures the
convergence on a strategic level and transformation objects and their implementation can
be discussed here.

In case, the transformation candidate has been rejected, EA principles should be
reviewed and modified if required. This ensures that EA principles can be adapted to
strategic or environmental changes. This feedback cycle is a critical element in EA
evolution driving the IT convergence.

5 Conclusion

The approach shown for enterprise architecture in a large financial organisation consists
of elements that all need to fit together to realize the envisioned strategic transformation
towards a service-oriented enterprise.

The division of IT into domains is the pre-requisite for a divide-and-conquer strategy
that allows for effective architecture governance. We have explained how governance,
identification and analysis of transformation candidates are performed and jointly
contribute to the application and evolution of EA.

Overall, our approach is a suitable way to iteratively evolve Enterprise Architecture and
the IT landscape towards with more convergence to achieve a service oriented
enterprise.

31

References

[ABB07] F. Arbab, F. de Boer, M. Bonsangue, M. Lankhorst, E. Proper, L. Van der Torre:
Integratings Architectural Models Symbolic, Semantic and Subjective Models in
Enterprise Architecture, Enterprise Modelling and Information Systems Architectures,
Volume 2 No.1, May 2007.

[BFK06] T. Bucher, R. Fischer, S. Kurpjuweit, R. Winter: Analysis and Application Scenarios of
Enterprise Architecture: An Exploratory Study: Proceedings of the 10th IEE International
Distributed Object Computing Conference Workshop (EDOCW), 2006.

 [JH007] Marijn Janssen, Kristian Hjort-Madsen: Analyzing Enterprise Architecture in National
Governments: The cases of Denmark and the Netherlands, Proceedings of the 39th
Hawaii International Conference on Systems Sciences, Jan. 2007.

[KAV05] Stephen H. Kaisler, Frank Amour, Michael Valivullah: Enterprise Architecting: Critical
Problems, Proceedings of the 39th Hawaii International Conference on Systems Sciences,
2005.

[MP006] Mirja Pulikkinen: Systematic Management of Architectural Decisions in Enterprise
Architecture Planning, four Dimensions and three abstraction Levels, Proceedings of the
39th Hawaii International Conference on Systems Sciences, 2006.

[RSV07] Bas van der Raadt, Raymond Slot, Hans van Vliet: Experience Report: Assessing a
Global Financial Services Company on its Enterprise Architecture Effectiveness using
NAOMI, Proceedings of the 39th Hawaii International Conference on Systems Sciences,
Jan. 2007.

[TO002] The Open Group: The Open Group Architecture Framework (TOGAF) Version 7
“Technical Edition”, Version 8 “Enterprise Edition”. Document Nr. 1911 December
2002. http//www.opengroup.org/togaf/

[WG004] Wolfgang Gaertner, Ansatz für erfolgreiche Enterprise Architecture im Bereich Global
Banking Division/Global Transaction Banking IT and Operations der Deutschen Bank,
Wirtschaftsinformatik, 4/2004.

[Z1987] Zachman, J.A, A framework for information systems architecture. IBM Systems Journal,
Vol. 26, No 3, 1987, IBM Corporation, pp. 276-292

32

Generating Visualizations of Enterprise Architectures using
Model Transformations

Sabine Buckl, Alexander M. Ernst, Josef Lankes,
Christian M. Schweda, André Wittenburg

{buckls, ernst, lankes, schweda, wittenbu}@in.tum.de

Abstract: Giving account to the importance of enterprise architecture (EA) modeling,
this article sketches common issues in visualization handling that we came across dur-
ing an extensive survey of the existing tool support for EA management in 2005. We
introduce the research project software cartography, in which we develop an approach
for EA modeling including a method for the automatic creation of EA models and vi-
sualizations. This approach is based on model transformations, which we use to link
the data to be visualized and their graphical representation, thereby circumventing the
error prone and time consuming task of manual creation of the visual models. A brief
overview of a prototypic implementation of this approach complements the theoretic
findings and illustrates applicability for visual modeling and documenting the EA.

1 Motivation

With the growing importance of enterprise architecture (EA) management currently expe-
rienced in research [LW04] and in practice [Jam05], methods for documenting, evaluating,
and planning the application landscape as part of the EA gain increasing attention. This is
reflected by various approaches, which try to establish and standardize languages for mod-
eling the EA, furthermore complemented by a number of vendors claiming the emerging
market of EA management tools. Nevertheless, many of these tools show common weak-
nesses, especially regarding the approach used for creating visualizations of the EA or the
application landscape, as we found out during an extensive survey [seb05] conducted by
sebis. Such visualizations, used for documenting, evaluating, and planning the application
landscape make up the focus of the research project Software Cartography, which this
paper originates from.

In this project, we discovered a large number of different visualizations for application
landscapes, which we refer to as software maps. An exemplary software map used at
one of our project partners is given in Figure 1. The figure is made illegible due to the
fact that it contains confidential information. Nevertheless, the figure shows the inherent
complexity an approach for generating visualizations of enterprise architectures has to
cope with. The software map originates from an insurance company and visualizes about
160 application systems hosted at the headquarter, which are used worldwide. The original
map is commonly used as printout in DIN A0, within presentations, and is available at the
corporate intranet.

33

Figure 1: Exemplary software map of an insurance company

In order to discuss the requirements an approach for the generation of visualizations of EAs
must satisfy, an anonymized software map similar to the one of the insurance company is
shown in Figure 2. This visualization shows organizational units of a fictitious department
store as rectangles, nesting the business applications hosted at the specific organizational
unit represented by smaller rectangles. No established method for the creation and main-
tenance of such visualizations yet exists. Furthermore, most of the EA management tools
show only basic capabilities in the context of automated positioning [seb05]. Within the
development of such a method the following issues have to be considered:

• The manual creation of the visualizations of the EA is an error prone and time con-
suming task, that leads to software maps containing aged data. Caused by the miss-
ing link between the present data and the visualization, no automated creation pro-
cess for the visualization is available to ensure the timeliness of the visualized data.

• The EA management tools commonly provide the user with the possibility to intro-
duce visual elements without defined semantics in the context of the visualization,
thereby effectively disconnecting the visualization from the respective data.

We subsequently detail on the topic of EA modeling, presenting an approach, comple-
mented by a prototypic tool implementation, which we regard to be suitable for addressing
these issues. Thereby, the apporach is based on a technology originating from the field of
model driven development (MDD): model transformation. This article especially focuses
on the method for creating visualizations of the EA by model transformation and provides
information, how a tool could actually implement this method. Thereby, the error prone
and labor intensive task of manual creation of these visualizations is eliminated.

The remainder of the article is structured as follows. As a starting point, software cartog-
raphy as an way to support EA modeling with visual models is presented in Section 2 as
well as an approach using model transformation to create the necessary visual models. The
following Section 3 shows the application of our approach by providing information on a
prototypic tool implementation. Section 4 emphasizes on different approaches taken in the
context of EA modeling as well as on aspects of visualization consistency. Finally, sec-

34

Munich Hamburg LondonGarching

Online Shop (100) Inventory Control
System (200)

Monetary
Transactions

System (Germany)
(300)

Monetary
Transactions

System (Great
Britain) (350)

Product Shipment
System (Germany)

(400)

Accounting
System (500)

Costing System
(600)

Human Resources
System (700)

Data Warehouse
(800)

Fleet Management
System (900)

Business Traveling
System (1000)

Document
Management

System (1100)

Supplier
Relationship
Management

System (1200)
MIS (1300)

Financial
Planning System

(1400)

POS System
(Germany/Munich)

(1600)

Campaign
Management

System (1500)

POS System
(Germany/

Hamburg) (1620)

POS System
(Great Britain)

(1650)

Price Tag Printing
System (Germany/

Munich) (1700)

Price Tag Printing
System (Germany/
Hamburg) (1720)

Price Tag Printing
System (Great
Britain) (1750)

Worktime
Management

(Germany/Munich)
(1800)

Worktime
Management
(Germany/

Hamburg) (1820)

Worktime
Management
(Great Britain)

(1850)

Customer
Relationship
Management

System (2100)

Customer
Complaint System

(1900)

Customer
Satisfaction

Analysis System
(2000)

Map Symbols Visualization Rules

Legend

A Location A

B (1) Business Application B with Id 1

A

B (1)

C (2)

„A“ hosts „B (1)“ and „C (2)“

nesting

Figure 2: Exemplary software map

tion 5 provides some conclusions resulting from the taken approach and sketches aspects
of further research in this field.

2 A model transformation approach

Our approach to EA modeling uses concepts and notions originating from the field of
cartography. Maps in the context of cartography can be categorized into two different
map types: topographic maps and thematic maps [KO96]. Topographic maps mainly
deal with geographic information, whereas thematic maps show spatial information on a
topographic map, as e.g. the results of a political election. In the context of EA modeling,
visualizations resembling the buildup of thematic maps can be considered to be important,
as they can be used to visualize different aspects of the enterprise. These visualizations,
called software maps, are subject of research in our project software cartography. Aspects
in the context of EA modeling that can be used to support the documentation, planning,
and evaluating of the application landscape can be found in [MW04]. Thereby, metrics
that point out aspects can be visualized on software maps to address specific concerns. In
our research project, we gathered different visualizations of the EA and categorized them
into three different types [Wit07]:

• A cluster map is a type of software map that uses positioning to show how objects
(e.g. applications) are grouped into larger logical units (e.g. organizational units).
Thereby, the graphical representation of the object is clustered into the the repre-
sentation of the logical unit. An example for a software map of type cluster map is
shown in Figure 2.

• A cartesian map is characterized by elements that are aligned along an x- and an
y-axis. Two prominent examples of a cartesian map exist. Firstly, the process sup-
port map, which utilizes positioning to show which business processes (y-axis) are

35

supported by which application and used at which location (x-axis). Secondly, the
time interval map, which is closely related to Gantt-like diagrams, as it uses bars
for representing the life cycle on the x-axis (representing periods of time) of objects
(e.g. applications) on the y-axis.

• A graph layout map is a map using a typical nodes-and-edges buildup, not exerting
additional restrictions on positioning to convey information. Therefore, the posi-
tioning is for example used for minimizing the numbers of lines crossing.

To support the visualization of different aspects, as e.g. technical aspects or economical
aspects on a software map [LMW05], the layering principle as shown in Figure 3 can be
utilized.

Figure 3: Layered architecture of a software map

The exemplary software map consists of a base map including organizational units, and
multiple layers, which are used to visualize relationships between different objects. In
Figure 3, the layers contain applications on the first layer, interconnections representing
a technical aspect on the second layer as well as measures on the third layer, visualizing
operational or economical aspects. Thereby, each layer has a reference layer to which the
elements correspond.

As described above, we pursue an approach for EA modeling based on model transforma-
tion in order to ensure the consistency between models (e.g. data in an EA management
repository) and visualizations of the EA. Therefore, a strict separation of the content to be
visualized - the semantic model - and its representation - the symbolic model - is required.
Additionally, a well-defined link between these models - the transformation - is needed.
Figure 4 shows the basic idea of the model transformation approach. Subsequently, the
individual concepts are explained in detail.

2.1 Semantic model and information model - the left side

The semantic model and the information model deal with the information describing the
EA and its structure, thereby, the different models represent different levels of abstraction,
similar to the notion of MOF (e.g. class and instance). The focal point of the semantic
model lies on the actual information objects, which describe the application landscape

36

Models and Transformations

T f ti
Symbolic ModelSemantic Model

Transformation

is instance of
based on

Information Model
BusinessApplicationVersion

id : Integer
versionId : Integer
status : String
plannedFrom : Date

Busine ssApplication
id : Integer h i

OrganizationalUnit
id : Integer
nameEnglish : String
nameGerman String hosted at

Visualization Model

based on
is instance of

is instance of

0..*1

BusinessProcess
id : Integer
nameEnglisch : String
nameGerman : String
description : String
isPrimary : Boolean
lev el : Integer

0..1

0..*

paren t
0..1superprocess

child

0..*

0..10..1

previous

0..1

predecessornext
0..1

Project
id : Integer
nameEnglish : String
nameGerman : String
startDate : Date
endDate : Date
selected : Boolean

p
plannedTo : Date
inDevelopmentFrom : Date
inDevelopmentTo : Date
inProductionFrom : Date
inProductionTo : Date
inRetirementFrom : Date
inRetirementTo : Date

id : Integer
nameEnglish : String
nameGerman : String
status : Enumeration

0..*

0..*

0..*

0..*

supports

0..*

0..*

0..*

0..*

modifies

1 0..*1 0..*has version

SupportRelationship

nameGerman : String
plzPoBoX : String
city : String
country : String
address : String

0..*1

hosted at

0..*

1..*

0..*

1..*

used at

is instance of

based on

ABC

based on

Metamodel

based on

e.g. Meta Object Facility (MOF) 2.0

© sebis 1##

Figure 4: Basic principle of the software cartography method

irrespective of its representation. These information objects are instances - in terms of
object orientation - of the classes of the information model, thus the information model is
the metamodel on which the semantic model is based.

To exemplify the two tiered structure of the left side, we refer to the cluster map introduced
in Section 1, i.e. the respective information about the EA contained therein. This informa-
tion can be summarized as ”which location hosts which business application”. ”Munich”,
for example, which is an instance of Location, hosts among others ”Online Shop (100)”,
an instance of BusinessApplication. Figure 5 shows some of the information ob-
jects, which are instances of the classes from the information model in Figure 6.

OnlineShop : BusinessApplication

Monetary Transaction System (Germany) : BusinessApplication

Accounting System : BusinessApplication

Costing System : BusinessApplication

Product Shipment System (Germany) : BusinessApplication

Fleet Management System : BusinessApplication

Munich : Location

Hamburg : Location

 : hostedAt

 : hostedAt

 : hostedAt

 : hostedAt

 : hostedAt

 : hostedAt

Figure 5: The semantic model containing some information objects presented in the cluster map

BusinessApplication

name : String

id : Integer

Location

name : String
hosted at

1 *

Figure 6: The corresponding information model

37

The respective information model thus contains the classes BusinessApplication
and Location, related by the association hostedAt. The attributes of the classes in
the information model are not described in detail here, as only three of them are shown
exemplarily. A more detailed description of information models and their related visual-
izations for EA management can be found in [BEL+07].

2.2 Symbolic model and visualization model - the right side

In order to provide means for describing visualizations, as the cluster map shown in Fig-
ure 2, we introduce a visualization model containing elements representing graphical con-
cepts. These graphical concepts may on the one hand be map symbols, as e.g. the rectangle
and on the other hand be visualization rules. These rules exert certain demands on the po-
sitioning, size, or overall appearance of the map symbol instances, as e.g. the Nesting
rule, used in the exemplary visualization, demands that a symbol representing a business
application is fully contained in the outer symbol. Utilizing these concepts, the visualiza-
tion can be described by a symbolic model (see Figure 7), that consists of instances from
the exemplary visualization model (see Figure 8). Nevertheless, it must be noted, that
there exist more visualization rules, even in this simple example. An example is the rule
demanding the different symbols representing business applications not to intersect each
other. A complete model, able to describe visualizations as introduced above, is contained
in [ELSW06].

Online Shop : Rectangle

Monetary Transaction System (Germany) : Rectangle

Accounting System : Rectangle

Costing System : Rectangle

Product Shipment System (Germany) : Rectangle

Fleet Management System : Rectangle

Munich : Rectangle

Hamburg : Rectangle

 : Nesting

 : Nesting

 : Nesting

 : Nesting

 : Nesting

 : Nesting

 : intersecting

 : intersecting

 : intersecting

 : intersecting

 : intersecting

 : intersecting

 : intersected

 : intersected

 : intersected

 : intersected

 : intersected

 : intersected

Figure 7: The symbolic model containing some visualization objects of cluster map

Rectangle

x : Real

y : Real

width : Real

height : Real

backgorundColor : Color

borderColor : Color

text : String

Nesting

inner

1 *

outer

*1

Figure 8: The corresponding visualization model

38

The object-oriented visualization model, alluded to above, greatly leverages the model
transformation approach, but nevertheless is not capable of giving a strict definition for the
visualization specific semantics of the map symbols and visualization rules. Therefore, we
complement each class of the model with an expression in predicate calculus, describing
the graphical implications in an unambiguous way. These definitions, further detailed
in [ELSW06], can be used for computing the actual visualization from a symbolic model.
Such a system might pursue different approaches for the computation. An exemplary one
is outlined in section 3.

2.3 Model transformation and metamodel - the middle

To allow an automated creation of visual models of the application landscape and to en-
sure the consistency between these models and the underlying data, a link between the
left side, representing the information and the right side, the representation, is required.
This link is created by a transformation, which translates the information objects of the
semantic model into visualization objects of the symbolic model. Selecting a transforma-
tion language specification, the concepts used in information models for EA management
and the bidirectionality of the transformation, to allow changes in the semantic model by
interacting with the visualization, should be considered. Figure 9 gives a short example of
a transformation, resembling a notation as proposed by MOF Query, View, Transformation
(QVT) [OMG05a].

r u l e O r g U n i t 2 R e c t a n g l e {
from

i n f o O b j e c t : Seman t i c . O r g a n i z a t i o n a l U n i t
t o

symbol : Symbol ic . R e c t a n g l e (
t e x t = i n f o O b j e c t . name ,
backg roun dCo lo r = #CCCCCC

)
)
r u l e B u s i n e s s A p p 2 R e c t a n g l e {

from
i n f o O b j e c t : Seman t i c . B u s i n e s s A p p l i c a t i o n

t o
symbol : Symbol ic . R e c t a n g l e (

t e x t = i n f o O b j e c t . name + ” (” + i n f o O b j e c t . i d + ”) ”
) ,
r u l e : Symbol ic . N e s t i n g (

i n n e r = symbol ,
o u t e r = t r a n s f o r m i n g (i n f o O b j e c t . h o s t e d A t)

)
)

Figure 9: Exemplary transformation rule set

Due to the fact that a common metamodel for the information model and the visualization
model greatly simplifies the transformation specification, such a model is subsequently in-
troduced. We extensively analyzed different EA management information models devel-
oped by industry partners in [Buc05], which pointed to the OMG’s Meta Object Facility

39

(MOF) [OMG06] as a suitable metamodel. The MOF model contains two core packages,
Essential MOF (EMOF) and Complete MOF (CMOF), the former providing the core capa-
bilities usually associated with object orientation, the latter extending them with advanced
constructs, as e.g. constraints. However, EA management information models at our in-
dustry partners did not turn out to heavily rely on CMOF concepts, but more showed that
these advanced concepts where used inconsistently. A common sense of usage only exists
concerning the core concepts as contained in EMOF.

Based on the results of the analysis alluded to above, we regard EMOF to be sufficient
for information modeling in the field of EA, as well as a good choice in terms of an easy
mapping of models to implementation. Verifying this choice, the following section details
aspects of our prototypic tool realizing the approach outlined above.

3 SoCaTool: a tool for enterprise architecture modeling

Subsequently, we show the applicability of the model transformation approach for gen-
erating visual models of the enterprise architecture. Therefore, we provide information
on a prototypic tool, which has been developed by sebis - giving an implementation of
the approach. Prior to describing the core components of the tool and their interaction in
generating visualizations, we provide a summary of our basic assumptions, which greatly
influenced the software architecture of the tool.

With an approach strongly centered around the usage of object-oriented models and rep-
resentations thereof, a main factor is the metamodel, all these models are based on. Con-
siderations as in Section 2.2 advocate the usage of EMOF as a common metamodel for the
information model and the visualization model. An implementation of the metamodel
has therefore to be incorporated in the tool. With different implementations at hand,
we decided to rely on the implementation provided in the Eclipse Modeling Framework
(EMF) [MDG+04]. This framework was chosen, as its metamodel, the ECore-metamodel,
can be considered to be very similar to the EMOF-metamodel1. Additionally, the EMF
provides serialization and editing related functionalities at ”no cost”, as well as an active
user and developer community. From this community various extensions to the core EMF
have arisen, as e.g. a support for OCL queries. With this initial choice made, the Eclipse
Rich Client Platform further deemed to be suitable for implementing our approach, espe-
cially with the Graphical Editor Framework (GEF) [MDG+04] providing an easy to use
system for managing and interacting with visualizations.

Based on the eclipse rich client platform, a component architecture containing four core
components has been realized - complementing the approach outlined in section 2 with an
implementation. Subsequently, these components are detailed.

Repository
The repository component is used for storing and managing object-oriented models, as
e.g. the semantic model. This component also maintains the relation between a model

1Only minor differences concerning naming and the usage of references exist.

40

and its corresponding metamodel, as e.g. the information model. Concerning the set of
functionalities offered by a repository, different types of repositories can be considered.
Whereas the simplest type only enables reading access to the models as well as creating
a completely new model from a set of objects, a more sophisticated repository would e.g.
support editing operations on the objects contained. The support for multiple users acting
on object-oriented models raises additional demands on a repository, especially concerning
transaction related issues as well as issues concerning notification about model changes.
More detailed considerations on the functionalities supported by a repository can be found
in [OMG04].

As the prototypic implementation neither needs transaction support nor notifaction ca-
pabilities, a simple file-based repository has been chosen, thereby, every object-oriented
model is serialized as a single xml-file. Nevertheless, this repository is used via the eclipse
emf Resource-interface, which is also supported by repository projects providing more
functionalities, as e.g. the elver persistency project [Gro07].

Transformer
The transformer component is capable of interpreting visualization definitions as rules
describing the transformation from an object-oriented model to another. When analyz-
ing the transformation rules between the semantic and the symbolic model, as outlined
in section 2.3, we identified basic functional requirements, as e.g. a support for queries
on the semantic model data as well as a support for parametrizing rules. Additionally,
a framework for bidirectional transformations would greatly leverage the approach from
section 2, as it would provide means for editing semantic model data via changes to the
symbolic model. These requirements mainly focus on the expressiveness of the transfor-
mation language. Nevertheless, further requirements regarding the usage context have to
be considered. This is especially important, as the transformation rules should be easily
definable for users without ”full-scale” programming knowledge, allowing users, as far
as possible, to define auto generated custom visualizations. We deem it best, to have a
graphical notation for defining these rules.

Taking into consideration languages for defining model-to-model (M2M) transformations,
especially prominent in the field of MDA, the Atlas Transformation Language (ATL), as
described in [gaLI06], is at first sight an interesting candidate. Pursuing a strongly declar-
ative approach in notating the rules, and not providing a graphical notation for defining the
transformation, some of the functional requirements stated above are met by ATL. Never-
theless, ATL has only a limited support for querying concepts and, as with version 0.7, did
not provide support for parametrized rules2.

The Bidirectional Object Transformation Language (BOTL) [BM03], pursuing a strongly
declarative approach, provides an UML-based graphical notation for defining transfor-
mation rules. Furthermore, it leverages bidirectionality regarding the rules, as far as the
operations performed during transformation do support this. Nevertheless, BOTL uses an
independent metamodel, faintly ”inspired” by the EMOF metamodel, leaving out concepts
that are of importance in information modeling, as e.g. inheritance. Furthermore, querying
and external parametrization are not directly supported.

2The current version of ATL does support external parametrization.

41

Having thus ruled out two promising transformation languages from the field of MDA, we
decided to use ECore reflection and java code to realize a first prototypic implementation
of the transformer based on ”hard coded” transformation implementations. While this ap-
proach comprises obvious drawbacks concerning the simplicity of visualization definition
by the user, it greatly leverages the definition of closely related visualization variants by
inheritance and the utilization of object-oriented design patterns. Additionally, the max-
imum expressiveness of java helped us to gain further insights, which language concepts
are necessary in constructing model transformation rules for defining EA management
visualizations.

Layouter
The layouter component, providing the capability to actually layout visualizations de-
scribed as symbolic models, can be considered the core component of the prototypic tool.
This component leverages the utilization of object-oriented visualization specifications
and thus enables the realization of visual modeling facilities without burdening the model
creator with the implementation of layouting algorithms. When relying on the concepts
provided by the visualization model as outlined in section 2, the layouter is capable of
calculating the positions, dimensions, and other visual parameters of symbol instances in
accordance to the visualization rule instances in the symbolic model. In performing this
calculation many different approaches can be pursued. Two of them have been explored
in-depth in the prototypic tool implementation, which are subsequently detailed.

The first approach relies on the fact, that for every symbolic model a representation as an
optimization problem can be found. This optimization problem uses the positions, dimen-
sions, and other visual parameters of the symbol instances as variables, while constraints
and target functions are derived from the visualization rule instances [ELSW06]. Solving
the corresponding optimization problem is therefore equivalent to finding a valid layout for
the visualization. Nevertheless, as these optimization problems are often high-dimensional
as well as non-convex, specialized algorithms for solving do not commonly exist. For this
reason, the first approach employed a genetic algorithm for searching an optimal solution.
Due to the high genericity of such an algorithm, this approach is of limited performance.

The second approach takes advantage of the fact, that there exist recurring elements in
the object-oriented symbolic models, called patterns. One of these patterns could e.g. be
a clustering pattern, in which a variable number of symbol instances is demanded to be
nested into a surrounding symbol instance, with the nested instances demanded to be sep-
arated from each other. This pattern is prominently used in the visualization in Figure 2.
For such patterns specialized layouting algorithms can be found, which incorporate the
specifics of the pattern to provide superior layouting performance. A layouter pursuing
this approach has been implemented as component in the tool (see [Lau07]), performing
significantly better as the genetic algorithm. Nevertheless, the layouter is limited concern-
ing the variety of symbolic models, which can be addressed, although the most prominent
types of visualizations as outlined in section 2 can be layouted.

Renderer
The renderer component is used to present a layouted symbolic model in a specific output
format. Concerning the format especially the PDF and the scalable vector graphics (SVG)
format are of interest due to the inherent or potential support for layering and their vector

42

graphic nature. Supplementary, a renderer for direct screen output in the tool can be im-
plemented, with additional functionalities of interest, as the option to support interactions
with the rendered visualizations, e.g. via moving symbols.

In the prototypic implementation a renderer for static visualizations on screen has been
implemented using the eclipse Graphical Editor Framework (GEF). The output of this
renderer in the graphical user interfaces of the tool is shown in Figure 10, displaying an
exemplary software map of type cartesian map as outlined in section 2.

Figure 10: The GUI of the prototypic tool implementation

4 Related Work

With an approach for visual modeling presented above, the following section links to re-
lated work from the area of software engineering and EA modeling as well as issues re-
garding consistency of visual models.

In the field of software engineering, the unified modeling language (UML) [OMG05c,
OMG05b] provides the common sense for modeling single software systems, which is
lacking in the field of enterprise architecture modeling. Therefore, the attempt of trans-
ferring the concepts and notations of UML to EA modeling could be undertaken. Never-
theless, the specific concerns of this area of modeling are not well supported by UML, as
e.g. concepts like business applications or business processes are not known. While these
concepts could be introduced via UML profiles, specific diagramming semantics are not
easily realizable using the concepts of UML, effectively ruling out the unified modeling
language as a language for EA modeling. This fact is also reflected by the variety of dif-
ferent approaches for enterprise architecture modeling regarding languages, methods, and
tools, which can be found in the academic community.

One approach is outlined in [vdTLtD+04] and specially focuses on a formal way of defin-

43

ing visualizations of the application landscape. This approach relies on the concept of
signatures to establish a well-defined relation between the visualization and the underly-
ing model of the enterprise architecture. While this approach also considers aspects of
interest in the context of visualizations, e.g. relative positioning, no simple to use nota-
tion for a model describing the visualizations is provided. Further the approach does not
provide an executable way for creating visualizations from the information.

Regarding the absence of a state of the art, [Fra02] suggests another approach to enter-
prise architecture modeling, emphasizing the necessity to support different views on the
enterprise. These views use different special purpose modeling languages to meet the
concerns of the different stakeholders. These languages are defined in metamodels, which
correspond to a common meta-metamodel to support integration. Nevertheless, as the ap-
proach is more focused on the provision of an integrated meta-metamodel for the different
languages, it does not provide a method for generating the required views of the EA. The
approach presented in section 2 can been seen as supportive in this context, for realiz-
ing tool support for the special purpose modeling languages and their visual models, as
outlined above.

An approach centered around an EA metamodel (information model in our terms) can be
found in [BW05]. The models contains over 50 classes and thus spanns various aspects of
interest in EA modeling. Additionally, this information model is complemented by means
for structuring, which can be considered very helpful in reducing the inherent complexity
of the modeling subject. Nevertheless, with the emphasis of the approach on the infor-
mation model, aspects of visual models and their creation are not addressed in the article.
Again, we see the approache presented in section 2 as a valuable contribution in the con-
text, actually providing a way for supporting visual modeling based on the EA metamodel
provided in [BW05].

Regarding the inconsistency issue between visualizations and the underlying data, an ap-
proach to ensure visualization consistency is pursued in [DV02] and especially focuses on
aspects of executability. In order to provide an ”open visualization framework applica-
ble to metamodel based modeling languages” the issue is approached from the direction
of visual languages (visualization models). Pointing out, that many domain specific vi-
sualization environments exist, the approach quickly calls to XML as a lingua franca for
representing the concepts of these languages. Furthermore, information to be visualized
is also serialized as XML, such that concepts of transforming between XML document,
as e.g. XSLT can be used for visualizing the information. Nevertheless, the article does
not encompass a visual language suitable for expressing the aspects of relative position-
ing, as the application presented in therein concerns petri-nets and their representation as
nodes-and-edges.

Targeting EA modeling, an approach using object-oriented models for describing the EA
and the visualizations is given in [SAtDL04]. These models are, similar to the approach
presented in section 2 connected via transformations. Nevertheless, these transformations
are limited to object-to-object transformations, while the links (instances of associations)
are not taken into consideration - again leaving out an aspect crucial for modeling the
EA. Furthermore, a language for describing the visualizations as outlined in section 2.2,
especially concerning relative positioning, is not provided.

44

5 Outlook

In this article, we emphasized on the importance of models of the enterprise architecture.
As we outlined, various approaches and information models for this modeling task ex-
ist, with no model or approach being prominent and all-embracing. Complementarily, we
outlined the importance of visual models of the enterprise architecture to make the infor-
mation about the EA perceivable. With the absence of the one information model for the
EA and the need for visual models obviously existing, the approach presented in Section 2
targets to bridge this gap. Utilizing model transformation concepts and providing a flex-
ible model for describing visualizations, our approach can be seen as an extension to the
information modeling approaches as presented in Section 4.

The applicability of the model transformation approach is shown in Section 3 by providing
details of a prototypic tool implementation, which is able to ensure consistency between
the data modeled according to an arbitrary information model and the visualization repre-
senting this data. Nevertheless, the prototypic implementation can be seen as a first step
towards a visual modeling tool supporting a variety of information models. Concerning
the modeling capabilities further extension for the e.g. for semantic-preserving editing
of the visualizations as well as for propagating semantic changes in the visualization to
the underlying semantic model have to be explored and currently subjected to research at
sebis.

References

[BEL+07] S. Buckl, A.M. Ernst, J. Lankes, K. Schneider, and C.M. Schweda. A Pattern based
Approach for constructing Enterprise Architecture Management Information Mod-
els. In A. Oberweis, C. Weinhardt, H. Gimpel, A. Koschmider, V. Pankratius, and
Schnizler, editors, Wirtschaftsinformatik 2007, pages 145–162, Karlsruhe, Germany,
2007. universitätsverlag karlsruhe.

[BM03] P. Braun and F. Marschall. BOTL - The Bidirectional Object Oriented Transforma-
tion Language. http://wwwbib.informatik.tu-muenchen.de/infberichte/2003/TUM-
I0307.pdf (cited 2007-01-26), 2003.

[Buc05] S. Buckl. Modell-basierte Transformationen von Informationsmodellen zum Man-
agement von Anwendungslandschaften. Diploma thesis, Fakultät für Informatik,
Technische Universität München, 2005.

[BW05] C. Braun and R. Winter. MA Comprehensive Enterprise Architecture Metamodel
and Its Implementation Using a Metamodeling Platform. In Enterprise Modelling
and Information System Architectures (EMISA), pages 64–79, 2005.

[DV02] P. Domokos and D. Varró. An Open Visualization Framework for Metamodel-Based
Modeling Languages. Electronic Notes in Theoretical Computer Science, 72(2),
2002.

[ELSW06] A. Ernst, J. Lankes, C.M. Schweda, and A. Wittenburg. Using Model Transfor-
mation for Generating Visualizations from Repository Contents - An Application to
Software Cartography. Technical report, Technische Universität München, Chair for
Informatics 19 (sebis), Munich, 2006.
45

[Fra02] U. Frank. Multi-Perspective Enterprise Modeling (MEMO) - Conceptual Framework
and Modeling Languages. In Proceedings of the 35th Annual Hawaii International
Conference on System Sciences 35, pages 1258–1267, 2002.

[gaLI06] ATLAS group at LINA & INRIA. ATL: Atlas Transformation Language, 2006.

[Gro07] The Elver Group. Elver Pesistency, 2007.

[Jam05] G. James. Magic Quadrant for Enterprise Architecture Tools, 4Q04, 2005.

[KO96] M. J. Kraak and F. Ormeling. Cartography: Visualization of Spatial Data. Addison
Wesley Longman, 1996.

[Lau07] S. Lauschke. Automatische Generierung von Softwarekarten: Entwicklung eines
Ansatzes zum Layout deklarativ beschriebener Visualisierungen. Master’s thesis,
Fakultät für Informatik, Technische Universität München, 2007.

[LMW05] J. Lankes, M. Matthes, and A. Wittenburg. Softwarekartographie: Systematische
Darstellung von Anwendungslandschaften. In Wirtschaftsinformatik 2005, Bamberg,
Germany, 2005.

[LW04] K. Langenberg and A. Wegmann. Enterprise Architecture: What Aspects is Current
Research Targeting? Technical report, Ecole Polytechnique Fédérale de Lausanne,
Laboratory of Systemic Modeling, 2004.

[MDG+04] B. Moore, D. Dean, A. Gerber, G. Wagenknecht, and P. Vanderheyden. Eclipse De-
velopment using the Graphical Editing Framework and the Eclipse Modeling Frame-
work. http://www.redbooks.ibm.com/redbooks/pdfs/sg246302.pdf (cited 2007-07-
04), 2004.

[MW04] F. Matthes and A. Wittenburg. Softwarekarten zur Visualisierung von Anwendungs-
landschaften und ihrer Aspekte. Technical report, Technische Universität München,
Chair for Informatics 19 (sebis), Munich, 2004.

[OMG04] OMG. MOF 2.0 Facility and Object Lifecycle Specification, ad/2004-04-02, 2004.

[OMG05a] OMG. Revised Submission for MOF 2.0 Query/View/Transformation (ptc/05-11-
01), 2005.

[OMG05b] OMG. UML 2.0 Infrastructure Specification (formal/05-07-05), 2005.

[OMG05c] OMG. Unified Modeling Language: Superstructure, version 2.0 (formal/05-07-04),
2005.

[OMG06] OMG. Meta Object Facility (MOF) Core Specification, version 2.0 (formal/06-01-
01), 2006.

[SAtDL04] M.W.A. Steen, D.H. Akehurst, H. ter Doest, and M.M. Lankhorst. Supporting
Viewpoint-Oriented Enterprise Architecture. Technical report, Information Centre
of Telematica Instituut AND University of Kent, Enschede, Netherlands & Canter-
bury, United Kingdom, 2004.

[seb05] sebis. Enterprise Architecture Management Tool Survey 2005, 2005.

[vdTLtD+04] L. van der Torre, M.M. Lankhorst, H. ter Doest, J. Campschroer, and F. Arbab. Land-
scape Maps for Enterprise Architectures. Technical report, Information Centre of
Telematica Instituut, Enschede, Netherlands, 2004.

[Wit07] A. Wittenburg. Softwarekartographie: Modelle und Methoden zur systematischen
Visualisierung von Anwendungslandschaften. Phd thesis (in publication), Fakultät
für Informatik, Technische Universität München, 2007.

46

Architecture principles –
A regulative perspective on enterprise architecture

P. (Patrick) van Bommel1, P.G. (Pieter) Buitenhuis2,
S.J.B.A. (Stijn) Hoppenbrouwers1 and H.A. (Erik) Proper1

1Institute for Computing and Information Sciences, Radboud University Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

{P.vanBommel,S.Hoppenbrouwers,E.Proper}@cs.ru.nl

2Ordina
Ringwade 1, 3439 LM Nieuwegein, The Netherlands

Pieter.Buitenhuis@ordina.nl

Abstract: Increasingly, organizations make use of enterprise architectures to direct
the development of the enterprise as a whole and its IT portfolio in particular. In
this paper we investigate the regulative nature of enterprise architecture. We aim to
develop a fundamental understanding of the regulative needs that underly an enterprise
architecture, and then take these needs as a starting point to arrive at requirements
on the language (architecture principles) used to denote enterprise architectures. We
furthermore discuss the process of formulating principles as well as their semantics.

1 Introduction

Increasingly, organizations make use of enterprise architectures to direct the development
of the enterprise as a whole and its IT portfolio in particular [Lo05]. These developments
are fuelled by requirements such as the Clinger-Cohan Act in the USA1, which force gov-
ernment bodies to provide an IT architecture.

The term architecture has been used in the field of IT since the 1960’s. In the early days
it was used to refer to the principles underlying the design of computer hardware and
operating systems. This led to the use of the term computer architecture. Later, when
software applications became larger and larger, Mary Shaw and David Garlan coined the
term software architecture [SG96]. This notion of architecture deals with the key design
principles underlying software artefacts. In the 1980’s and 1990’s people became aware
that the development of IT (information technology) should be done in tandem with the
development of the context in which it was to be used. This led to the identification of the
so-called Business/IT alignment problem [PB89, TC93, HV93]. Solving the Business/IT
alignment problem requires organisations to align human, organisational, informational
and technological aspects of systems. Quite early on, architecture was also introduced

1http://www.cio.gov/Documents/it management reform act Feb 1996.html

47

as a means to further alignment, and thus analyse and solve Business/IT alignment prob-
lems [Zac87, TC93, Boa99b]. The Business/IT alignment problem requires the alignment
of information technology, consisting of software and hardware, to the other ‘technolo-
gies’ used in a business. This has led to the use of the term architecture at the enterprise
level [BL96, Boa99a, Lo05]. Enterprise architectures typically bring together a business,
information, application and technology perspective on (parts of) an enterprise.

Ultimately, enterprise architectures are a means to an end. The Software Engineering
Institute from Carnegy Mellon University identifies the following potential uses [BCK98]
for architectural desriptions:

• It is a vehicle for communication among stakeholders.

• It captures early design decisions, both functional aspects as well as quality aspects.

• It describes the global structure decided upon in the architecture, also structures
further development.

• It is a transferable abstraction of a system.

Many different perspectives exist on what architecture, in an IT context, actually is. Even
though some consensus exists, the field of enterprise architecture is still in its infancy.
However, the widespread use of enterprise architecture illustrates that organizations feel a
profound need to steer their development (including their IT portfolio) and that they look
towards enterprise architecture as a means to fulfill this need. When studying the many
existing definitions on architecture [BL96, SG96, BCK98, Boa99a, IEE00, TOG04, Lo05,
xAF06], one can discern two important perspectives on architecture:

Regulative perspective – Architecture is regarded as a prescriptive notion limiting the
design freedom with regards to the design of a system. When taking this perspective
one will focus on principles, leading to rules/principles limiting designers in their
design freedom.

Designing perspective – Architectures are actual specifications of high level system de-
signs focussing on ‘architecturally relevant’ design decisions. When taking this
perspective, one typically produces architectural models that describe the design of
actual system artefacts.

These two perspectives are complementary in that the regulative perspective accommo-
dates for the need to steer and direct developments, whereas the second perspective sup-
ports the need to gain insight into an enterprise’s design while also providing guidance to
designers of enterprise systems [Lo05].

In this paper, we focus on the regulative perspective. In taking a regulative perspective on
enterprise architecture, we are primarily concerned with its ability to steer the over-all en-
terprise/system development within a large organization (enterprise). A more specific way
of expressing this is to state that “Architecture serves the purpose of constraining design
space” [xAF06]. In most (enterprise) architecture approaches, this constraining/regulating

48

is done by means of so-called architecture principles [IEE00, TOG04]. The aforemen-
tioned Clinger-Cohen act also requires the architecture to be specified in terms of a set of
principles. Such architecture principles usually take the form of informal statements such
as (taken from [TOG04]):

Users have access to the data necessary to perform their duties; therefore,
data is shared across enterprise functions and organizations.

According to the TOGAF architecture framework [TOG04], “Principles are general rules
and guidelines, intended to be enduring and seldom amended, that inform and support the
way in which an organization sets about fulfilling its mission.” Such principles typically
address concerns of the key stakeholders within an organization. In the example case, a
stakeholder may be highly concerned about the organization’s ability to flexibly deploy
their workforce over different work locations.

While several sources attribute a pivotal role to principles, a precise definition of the con-
cept of principles as well as the mechanisms and procedures needed to turn them into an
effective regulatory means still lacks. Both IEEE [IEE00] and TOGAF [TOG04] position
principles as a means to guide the design and evolution of systems, while xAF [xAF06]
essentially equates (enterprise) architecture to a set of principles. In any case, no clear
definition of principles and associated mechanisms and procedures are given.

When considering the definitions reported in literature [TC93, IEE00, TOG04, xAF06],
and the definitions used by several practitioners, three key perspectives on principles can
be discerned:

Inherent laws – These are essentially properties of (classes of) a system that can be ob-
served and validated.

Conceptual parallels are the laws of nature, law of requisite variety, laws of social
behavior, etc.

Imposed laws – Like inherent laws, they are properties of (classes of) a system that can
be validated. However, imposed laws also require mechanisms to enforce them.

Imposed laws typically address concerns of stakeholders. Some of these concerns
may be raised by emergent laws having a negative impact on the system being de-
signed.

Examples are: societal laws, policies and regulations within organizations, etc.

Guidelines – Desired properties that are so concrete that they offer guidelines to make
operational behavior fit imposed laws.

For example: “use your car’s cruise control” is an advisable property to abide by
that provides guidance in obeying the law concerning maximum speeds on roads.

In this paper we mainly focus on the last two perspectives on principles.

The remainder of this paper is structured as follows. In section 2 we aim to build up a
better understanding of the regulative role of enterprise architectures. This is followed

49

in section 3 by a discussion of requirements on the language of architecture principles,
as a means to operatonalize the regulative ability of enterprise architectures. Section 4
then continues by discussing the semantics of principles, in other words, their regulative
impact. Before concluding, section 5 discusses an approach to the formulation of archi-
tecture principles based on practical experiences and some experiments.

2 Enterprise architecture as a regulative mechanism

As mentioned in the introduction, this paper takes a regulative perspective on enterprise
architecture. This role comes primarily to the fore in the role of architecture princi-
ples [IEE00, TOG04, xAF06]. In [xAF06], enterprise architecture is equated to a set of
architecture principles, which are to “limit design freedom”, thus regulating the freedom
of an enterprise’s designers.

The aim of this section is to briefly investigate the regulative needs that underly an enter-
prise architecture. When indeed taking the perspective that an enterprise architecture is a
regulative means, one must also agree (at least from a rational perspective) that there is
some regulative need motivating the use of the means.

Enterprises have stakeholders. For example: owners, sponsors, people working in the
enterprise, clients, etc. Let S be a stakeholder of an enterprise E, then it is fair to assume
that S has some goals Goals(S) which are potentially impacted on by the behaviour of
E. From the perspective of these goals, the enterprise E has an ideal behaviour. This
behaviour can refer to all aspects of an enterprise, be it the operational processes, financial
aspects, labour issues, adaptability, etc.

The actual attainment of E’s ideal behaviour from the perspective of Goals(S) may be
influenced by both internal and external factors [BMM06]. These potential ‘impacts’ may
spark stakeholder S into (trying to) regulate enterprise E and/or its influencers. Needless
to say that S will not be the only stakeholder, and the desires of S to regulate E may
indeed conflict with the regulatory desires of other stakeholders.

Given some influencer F , a risk assessment (see also [BMM06]) may show that F has a
potential undesired impact on Goals(S), in other words there is a set of risks Risks(F, S)
influencer F poses to the goals of stakeholder S by potentially influencing E. Each of
these risks can be quantified in terms of its possible impact Impact(R) and probability of
occurrence Probability(R), with expected impact: Impact(R) × Probability(R). Note:
the impact might be approximated using an amount of money, but ultimately relates to the
impact of a stakeholder’s goals.

If the expexted impact is high enough, stakeholder S will be motivated to introduce regu-
lations to prevent R from occurring. If M is some (set of) regulation(s) aimed at R, then
its benefit can be assessed by determining:

Benefit(R,M) ,(Impact(R)× Probability(R))− (Impact(R|M)× Probability(R|M))

where Impact(R|M) and Probability(R|M) represents the possible impact and proba-
bility of occuring of risk R with regulation M in place. If Costs(M) are the costs of

50

deploying regulation M , then the actual effectiveness of M can be thought of as being the
ratio:

Benefit(R,M)/Costs(M)

The costs can, again, be expressed in terms of money, but should yet again be regarded as
a negative impact on the (satisfaction of) goals a stakeholder is striving for.

Admittedly, this cost/benefit framework is as yet far from practical. This is in line with
the observation that the regulative role of enterprise architecture is also still in its infancy.
At the same time, however, the desire to use enterprise architecture for such purposes is
paramount.

In making this kind of risk assessment more explicit, the field of enterprise architecting
may borrow from the field of security [RF07], where security risks are assessed and the
effectivness of security regulations are evaluated against these risks. The aim of this paper
is not to develop such a risk assessment, although we subscribe to its necessity, but rather
to explore requirements on a principles language. In further research, however, we will
indeed invest in a more elaborate cost/benefit analysis approach providing rationalization
of principles. In doing so, we will start by evaluating principles (and their enforcement
mechanisms) in the context of the scenario’s underlying the risks identified by the stake-
holders, with the aim of assessing the contribution of these principles in terms of reduced
impact and/or reduced chances of the risks occurring.

3 Requirements on principles

In this section we focus on the goals of, and requirements on, a modelling language for
architecture principles. When taking the position that architecture principles embody the
regulative role of enterprise architecture, then we can this as a starting point to inden-
tify requirements on a language to express architecture principles. In order to arrive at
such requirements, it is important to first make explicit what the goals of the language
are [HPW05b]. Without these goals it is difficult to pinpoint the requirements for the lan-
guage in total. On their turn, these requirements are a mandatory input to formulation of
modelling concepts in the language and their requirements [HPW05b, PVH05].

In a survey, in terms of a number of in-depth interviews conducted among a number of
experienced enterprise architects [Bui07], the following goals where expressed:

Regulative architecture – The language should be designed in such a way that it enables
an architect formulate a prescriptive/regulative architecture.

Supportive; not restrictive – The language should not act as a straitjacket but should
rather should architects in formulating the regulative architecture. It is important
that the modelling language does not hinder the (creative!) architecting process
itself.

Architect independent – Since architecture principles need to be communicated among
architects, to stakeholders, and system designers, the language as such should not

51

be specific to one architect. Even though this may sound obvious, it is still common
practice among enterprise architects to come up with one’s own language. There is,
as yet, not much consensus about such a language.

Approach independent – A good modelling language can be used in different develop-
ment approaches. For example, like UML, ER and ORM can be used in system
development methods such as SDM, DSDM, RAD and XP. This should also be the
case for this an architecture principles language; it should be independent of the
architecting approach used.

A means of communicating and steering – Architecture is positioned as a communica-
tion and a steering device. This must be taken in consideration when designing this
modelling language. The steering and communication goals may lead to conflicts.
For example, a nice marketing line (such as Nokia’s ‘Connecting People’) may be
suitable to communicate a basic idea, while not being specific enough to give enough
steering.

Based on the above goals, and also as part of the survey, the following requirements were
deduced [Bui07]:

Facilitating role – The architecting process and not the modelling language should have
the most impact on the architecture itself. The architect should not be (too) restricted
by the language in formulating the architecture. This is why the modelling language
should give the architect some tools and means (in the form of formulation guide-
lines) to formulate an architecture better. It is then the choice of the architect to
use those guidelines. Because an architecture is subject to evolution, it is necessary
for the language to be able to support the different stages (from sketch to definitive
formulation) of the architecting process.

Syntactically complete – The modelling language needs to contain all the different con-
cepts that are used by architects when formulating a regulative architecture. This
implies that it must be clear which concepts are used by architects and how they
relate to each other. Because each architecture should always be considered in its
context, those concepts should be used in the language as well. It is clear that an
incomplete modelling language can not produce a complete architecture. The com-
pleteness of concepts in the language should be resolved on syntactical level.

Contains reference architecture Some architects have pleaded for a modelling language
involving numerous examples. This has two advantages:

• it gives the architect possible means to formulate a better architecture and

• it will be possible to create a reference architecture.

Reference architectures play a role of importance in giving the field of enterprise
architecting a more mature status. It is still common practice for architects to start
from scratch for each new project. This implies that architectures are very often not
proven in practice which does not give the client the guarantee that the architecture
will work in practise.

52

Contains also (semi-)formalised language – Regulative architectures are currently pri-
marily based on natural language. Interviewed architects do see the advantages of a
(semi-)formalised architecture, but claim as well that the architecture should also be
communicated to the ‘normal’ stakeholders. The modelling language should there-
fore not only facilitate (semi-)formalised language, but also the ‘normal’ natural
language. The architect should not be forced to write formalised statements.

The formalised concepts can be used by the architect to make a check on complete-
ness and (formalised) linguistic aspects. Because formalised statements are less
ambiguous, it’s very advisable to use them with project members who can handle
those statements.

When using natural language, there is also a distinction to be made in the degree of
abstractness in the formulation. A statement for higher management will normally
be different (more concise, more simple, more catchy) then for a project member.

The language is then capable of making different visualizations of the same architec-
ture, focused on the type of stakeholder. Formulating an architecture on a formalised
and non formalised level is also consistent with the two mail goals of architecture.
A (semi-)formalised language supports primarily the steering function, the natural
language the communication aspect.

Terminological framework; improving the communication – To improve the commu-
nication and decrease the ambiguity of the architecture, it’s very important to have
a shared term framework between all stakeholders. Such a framework should be
based and focused on the stakeholders. However, it is now impossible to insert a
fixed term framework in this modelling language because of the architect indepen-
dence goal. This is also consistent with the requirement that the modelling language
should not be to prescriptive.

In addition to these requiremens voiced by practitioners, additional requirements can be
found in literature. In their Architecture Framework (TOGAF), the Open Group [TOG04]
lists five criteria (which are also based on practical experiences) that distinguish a good set
of principles:

Understandable – The underlying tenets can be quickly grasped and understood by in-
dividuals throughout the organization. The intention of the principle is clear and
unambiguous, so that violations, whether intentional or not, are minimized.

Robust – Enable good quality decisions about architectures and plans to be made, and en-
forceable policies and standards to be created. Each principle should be sufficiently
definitive and precise to support consistent decision making in complex, potentially
controversial, situations.

Complete – Every potentially important principle governing the management of infor-
mation and technology for the organization is defined. The principles cover every
situation perceived.

53

Consistent – Strict adherence to one principle may require a loose interpretation of an-
other principle. The set of principles must be expressed in a way that allows a bal-
ance of interpretations. Principles should not be contradictory to the point where ad-
hering to one principle would violate the spirit of another. Every word in a principle
statement should be carefully chosen to allow consistent yet flexible interpretation.

Stable – Principles should be enduring, yet able to accommodate changes. An amend-
ment process should be established for adding, removing, or altering principles after
they are ratified initially.

The above requirements are requirements on a set of principles and are not requirements
on the modelling language. However, these requirements on good principles do underline
the need for:

1. a clear semantics of principles, enabling a.o. consistency checks of sets of principles,

2. have a syntax which is understandable by domain experts and not just architects and
engineers.

The TOGAF requirements also imply requirements on the process of formulating and
maintaining sets of architecture principles.

A further source of requirements on architecture principles and/or a language for mod-
elling architecture principles can be found in the business rules manifesto [Ros03]. Busi-
ness rules are also forms of regulations that should both have a precise meaning while
also be understandable to domain experts/stakeholders. The business rules manifesto lists
a set of requirements / principles that should be met by business rules and their applica-
tion. Most of these requirements also apply to architecture principles. Some key (from an
architecture principle perspective) requirements from the business rules manifesto are:

3.2 Terms express business concepts; facts make assertions about these concepts; rules
constrain and support these facts.

3.3 Rules must be explicit. No rule is ever assumed about any concept or fact.

4.1 Rules should be expressed declaratively in natural-language sentences for the business
audience.

5.1 Business rules should be expressed in such a way that they can be validated for cor-
rectness by business people.

5.2 Business rules should be expressed in such a way that they can be verified against
each other for consistency.

5.3 Formal logics, such as predicate logic, are fundamental to well-formed expression of
rules in business terms, as well as to the technologies that implement business rules.

7.1 Rules define the boundary between acceptable and unacceptable business activity.

8.4 “More rules” is not better. Usually fewer “good rules” is better.

Most of these requirements are in line with the requirements put forward by TOGAF.

54

4 Semantics of principles

The TOGAF (as well as business rules manifesto) requirement of rules being consistent
and at the same time being understandable by domain experts and stakeholders, provides
an interesting challenge in the construction of a principles modelling language.

In [BHPW06, CJN+07], we have studied the use of a semi-formal language to represent
principles. The language used stems from the field of information modelling, where lan-
guages such as ConQuer, Lisa-D and RIDL [Mee82, HPW93, Pro94, BH96, HPW05a]
have been used to formulate constraints, rules and queries and reason about these.

Consider as an example the following TOGAF principle:

Common use applications – “Development of applications used across the enterprise is
preferred over the development of duplicate applications which are only provided to
a particular organization.”

A domain analysis and formalization leads to:
If an Application A [that is used in an Organization O] results from some Development,

and this Application A is not a duplicate of another Application
[that is used in another Organization than O], then that Development
is preferred by the Enterprise that includes both Organizations and both Applications.

The boldface words are the keywords of the language, while the non-boldface are domain
specific words.

An important question in this example is the way one would have to measure when one ap-
plication is a duplicate of another application. In making such principles SMART2, proper
mechanisms should be defined to determine whether one application is a duplicate of an-
other one, or more appropriately, whether one set of applications is a duplicate of another
set. And more generally, in the aspect system Business one would like to measure when
one process is a duplicate of another process, in order to detect process and organizational
redundancy.

5 Formulating principles

In [NBP07] we have reported on research efforts into the collaborative formulation of
policies/regulations such as architecture principles. This work mainly focussed on the
collaborative aspects of such processes. Note that the TOGAF requirements of robust-
ness, completeness and stability of architecture principles have not yet been taken into
account in this work. The experience report given in [OP07] did take such requirements
into consideration. In [BHPW06, CJN+07] the possible effect of using a semi-formal
formal modelling language in the formulation of principles was studied.

2Specific, Measurable, Achievable, Relevant, Time-bound; a common mnemonic used in project manage-
ment.

55

Based on these experiments and experiences, we suggest adhering to the following process-
structure in formulating architecture principles:

Assess needs – An assessments of the regulative needs, which can be used as motivations
for the principles to be formulated and their enforcement.

1. (Collaborative) In a collaborative session involving stakeholders, sponsors,
domain experts and architects, potential regulative needs (issues/concerns/risks)
should be gathered. In addition, goals should be formulated upon these regu-
lative needs are to be assessed, and criteria should be formulated regarding the
desired longevity of any measures (architecture principles) formulated that are
to address these needs.

2. (Expert-driven) Risk assessment experts should then assess/judge the identi-
fied regulative needs. This assessment should take the form of a risk analysis
as suggested in section 2.

3. (Collaborative) The stakeholders and the sponsors (of the regulative measures
to be taken) should then decide which of these regulative needs they want to
see addressed.

Formulate principles – The definition of a set of principles that are to be deployed.

1. (Collaborative) Based on the (seleced) regulative needs, a mix of stakehold-
ers, domain experts and architects should, collaboratively, formulate a set of
architecture principles which would address these needs.

2. (Expert-driven) The resulting candidate principles should then be pinned down
more precisely by a small number of domain experts together with the archi-
tects. This group should also assess the longevity of the principles in terms of
the criteria produced during the needs assessment, as well as determine more
specific consequences of the principle, and clearly identify/quantify the possi-
ble contribution of the principle towards the regulative needs.

3. (Collaborative) The list of refined principles should then be put to the vote.
The domain experts, stakeholders and sponsors should select which principles
are to be deployed.

Prepare deployment – For each principle a deployment scenario should be formulated.

1. (Collaborative) Given the list of selected architecture principles, more refined
criteria for the assessment of possible strategies to deploy/enforce these prin-
ciples should be formulated.

2. (Expert-driven) Domain experts and architects should define a number of pos-
sible strategies for the deployment/enforcement of the select architecture prin-
ciples. Each of these strategies should also be evaluated in terms of their
costs/benefits.

3. (Collaborative) From the list of available scenario’s for the deployment of
principles, the stakeholders, domain experts and sponsors should select the
ones they see as most effective and beneficial.

56

The above procedure iterates between a collabarative and expert-driven mode. Some tasks
should be done collaboratively so as to warrant committment from, and understanding
by, all relevant parties involved. Some other tasks require a focussed effort by a limited
number of experts.

Note that the above sketched process structure by no means intends to imply a specific
length/duration/size of a specific formulation process. Depending on the requirements of
specific situation, such a process may/should require only a single day or even weeks to
complete.

6 Conclusions and further research

In this paper we have investigated the regulative nature of enterprise architecture. The
work reported is part of an ongoing effort to develop a fundamental understanding of
the regulative needs that underly an enterprise architecture, and use this understanding in
the development of a language for architecture principles as well as a situational proce-
dure/strategy for the formulation of such principles.

In our remaining research activities regarding architecture principles, we identify the fol-
lowing key challenges:

Language – How are principles to be expressed, i.e. in what type of language? Are there
any hard syntactic or semantic restrictions that are to be imposed, or would this be
too restrictive? What could be reasons to (not) impose particular such restrictions?
How can understandability be optimally safeguarded at a linguistic level, and how
much investment in this is justified in view of quality demands on principle formu-
lations? (How) can SMARTness be increased based on language restrictions?

Regulative needs – How can the regulative needs underlying principles be better quan-
tified? How can one predict the possitive contributions of enforcing a principle
towards these needs?

Formulation strategies – Given requirements on the product of the principles creation
process, what does such a process look like? Are situational adjustments of the
process required or is it possible to define a truly generic process? Apart from
the question what semantic and syntactic requirements can be posed for princi-
ples, there are pragmatic matters to be addressed. Principles are required to be
understood, agreed upon, and committed to by appropriate (groups of) stakehold-
ers. These should be viewed as results of the process, alongside the actual principle
formulations [BHP07].

Deployment strategies – Enforcement and guidance during the design and development
of new systems (and new versions), but also strategies for dealing with legacy sys-
tems. How to translate principles and their measuring mechanisms to guidelines?
Can the impact of principles be estimated reliably beforehand?

57

References

[BCK98] L. Bass, P.C. Clements, and R. Kazman. Software Architecture in Practice. Addison
Wesley, Reading, Massachusetts, USA, 1998.

[BH96] A.C. Bloesch and T.A. Halpin. ConQuer: A Conceptual Query Language. In B. Thal-
heim, editor, Proceedings of the 15th International Conference on Conceptual Modeling
(ER‘96), Cottbus, Germany, EU, volume 1157 of Lecture Notes in Computer Science,
pages 121–133, Berlin, Germany, EU, October 1996. Springer.

[BHP07] P. van Bommel, S.J.B.A. Hoppenbrouwers, and H.A. (Erik) Proper. QoMo: A Modelling
Process Quality Framework based on SEQUAL. In H.A. (Erik) Proper, T.A. Halpin,
and J. Krogstie, editors, Proceedings of the Workshop on Exploring Modeling Meth-
ods for Systems Analysis and Design (EMMSAD’07), held in conjunctiun with the 19th
Conference on Advanced Information Systems (CAiSE’07), Trondheim, Norway, pages
118–127. Tapir Academic Press, Trondheim, Norway, 2007.

[BHPW06] P. van Bommel, S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper, and Th.P. van der
Weide. Giving Meaning to Enterprise Architectures – Architecture Principles with ORM
and ORC. In R. Meersman, Z. Tari, and P. Herrero, editors, On the Move to Meaningful
Internet Systems 2006: OTM Workshops – OTM Confederated International Workshops
and Posters, AWeSOMe, CAMS, GADA, MIOS+INTEROP, ORM, PhDS, SeBGIS, SWWS,
and WOSE 2006, Lecture Notes in Computer Science, Montpellier, France, EU, Octo-
ber/November 2006. Springer, Berlin, Germany, EU.

[BL96] M. Blechar and M. Light. Enterprise Information Architectures. Technical Report R–
450–131, GartnerGroup – ADM, February 1996.

[BMM06] BMM Team. Business Motivation Model (BMM) Specification. Technical Report
dtc/06–08–03, Object Management Group, Needham, Massachusetts, USA, August
2006.

[Boa99a] B.H. Boar. Constructing Blueprints for Enterprise IT architectures. Wiley, New York,
New York, USA, 1999.

[Boa99b] B.H. Boar. Practical steps for aligning information technology with business strategies.
Wiley, New York, New York, USA, 1999.

[Bui07] P.G. Buitenhuis. Fundamenten van het principle (Foundations of principles). Master’s
thesis, Institute for Computing and Information Sciences, Radboud University Nijmegen,
Nijmegen, The Netherlands, EU, March 2007. In Dutch.

[CJN+07] G.J.N.M. Chorus, Y.H.C. Janse, C.J.P. Nellen, S.J.B.A. Hoppenbrouwers, and
H.A. (Erik) Proper. Formalizing Architecture Principles using Object–Role Modelling.
Technical Report ICIS–R07006, Radboud University Nijmegen, February 2007.

[HPW93] A.H.M. ter Hofstede, H.A. (Erik) Proper, and Th.P. van der Weide. Formal definition
of a conceptual language for the description and manipulation of information models.
Information Systems, 18(7):489–523, October 1993.

[HPW05a] S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper, and Th.P. van der Weide. Fact Calcu-
lus: Using ORM and Lisa–D to Reason About Domains. In R. Meersman, Z. Tari,
and P. Herrero, editors, On the Move to Meaningful Internet Systems 2005: OTM Work-
shops – OTM Confederated International Workshops and Posters, AWeSOMe, CAMS,
GADA, MIOS+INTEROP, ORM, PhDS, SeBGIS, SWWS, and WOSE 2005, volume 3762
of Lecture Notes in Computer Science, pages 720–729, Agia Napa, Cyprus, EU, Octo-
ber/November 2005. Springer, Berlin, Germany, EU.

58

[HPW05b] S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper, and Th.P. van der Weide. Understanding
the Requirements on Modelling Techniques. In O. Pastor and J. Falcao e Cunha, editors,
17th International Conference on Advanced Information Systems Engineering, CAiSE
2005, Porto, Portugal, EU, volume 3520 of Lecture Notes in Computer Science, pages
262–276, Berlin, Germany, EU, June 2005. Springer–Verlag.

[HV93] J.C. Henderson and N. Venkatraman. Strategic alignment: Leveraging information tech-
nology for transforming organizations. IBM Systems Journal, 32(1):4–16, 1993.

[IEE00] Recommended Practice for Architectural Description of Software Intensive Systems.
Technical Report IEEE P1471–2000, The Architecture Working Group of the Software
Engineering Committee, Standards Department, IEEE, Piscataway, New Jersey, USA,
September 2000.

[Lo05] M.M. Lankhorst and others. Enterprise Architecture at Work: Modelling, Communica-
tion and Analysis. Springer, Berlin, Germany, EU, 2005.

[Mee82] R. Meersman. The RIDL Conceptual Language. Technical report, International Centre
for Information Analysis Services, Control Data Belgium, Inc., Brussels, Belgium, EU,
1982.

[NBP07] J. Nabukenya, P. van Bommel, and H.A. (Erik) Proper. Collaborative IT Policy-making
as a means of achieving Business-IT Alignment. In B. Pernici and J.A. Gulla, edi-
tors, Proceedings of the Workshop on Business/IT Alignment and Interoperability (BUSI-
TAL’07), held in conjunctiun with the 19th Conference on Advanced Information Systems
(CAiSE’07), Trondheim, Norway, pages 461–468. Tapir Academic Press, Trondheim,
Norway, 2007.

[OP07] M. Op ‘t Land and H.A. (Erik) Proper. Impact of Principles on Enterprise Engineering.
In H. Österle, J. Schelp, and R Winter, editors, Proceedings of the 15th European Con-
ference on Information Systems, pages 1965–1976. University of St. Gallen, St. Gallen,
Switzerland, June 2007.

[PB89] M.M. Parker and R.J. Benson. Enterprisewide Information Management: State–of–the–
art Strategic Planning. Journal of Information Systems Management, (Summer):14–23,
1989.

[Pro94] H.A. (Erik) Proper. ConQuer–92 – The revised report on the conceptual query language
LISA–D. Technical report, Asymetrix Research Laboratory, University of Queensland,
Brisbane, Queensland, Australia, 1994.

[PVH05] H.A. (Erik) Proper, A.A. Verrijn–Stuart, and S.J.B.A. Hoppenbrouwers. Towards
Utility–based Selection of Architecture–Modelling Concepts. In S. Hartmann and
M. Stumptner, editors, Proceedings of the Second Asia–Pacific Conference on Concep-
tual Modelling (APCCM2005), Newcastle, New South Wales, Australia, volume 42 of
Conferences in Research and Practice in Information Technology Series, pages 25–36,
Sydney, New South Wales, Australia, January 2005. Australian Computer Society.

[RF07] S. Raval and A. Fichadia. Risks, Controls and Security – Concepts and Applications.
Wiley, New York, New York, USA, 2007.

[Ros03] R.G. Ross, editor. Business Rules Manifesto. Business Rules Group, November 2003.
Version 2.0.

[SG96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice–Hall, Englewood Cliffs, New Jersey, USA, 1996.

59

[TC93] D. Tapscott and A. Caston. Paradigm Shift – The New Promise of Information Technol-
ogy. McGraw–Hill, New York, New York, USA, 1993.

[TOG04] The Open Group. TOGAF – The Open Group Architectural Framework, 2004.

[xAF06] xAF working group. Extensible Architecture Framework version 1.1 (formal edition).
Technical report, 2006.

[Zac87] J.A. Zachman. A framework for information systems architecture. IBM Systems Journal,
26(3), 1987.

60

Service Oriented Security Architecture

Cristian Opincaru
University of the German Armed Forces, Munich

cristian.opincaru@unibw.de

Gabriela Gheorghe
Politehnica University of Bucharest

gabrielagh@gmail.com

Abstract: As Service Oriented Architectures (SOA) and Web services are becoming
widely deployed, the problematic of security is far from being solved. In an attempt
to address this issue, the industry proposed several extensions to the SOAP protocol
that currently reached different levels of standardization. However, no architectural
guidelines have yet been proposed. In this paper we first outline the security chal-
lenges and the specifications that address these challenges and then present our con-
cept - the Service Oriented Security Architecture, SOSA . We argue that the different
security functions (authentication, authorization, audit, etc.) should be realized as dif-
ferent stand-alone Web services - security services. These security services can then
be chained together by means of Enterprise Application Integration (EAI) techniques
such as message routing on Enterprise Services Buses (ESB). Next, we will present
a prototypical implementation of this framework and describe our experiences so far.
We show that by distributing the security functions, a more flexible architecture can be
designed that would lower the costs associated with implementation, administration
and maintenance.

1 Introduction

While Web services were designed to lower integration costs and to open new ways of
doing business, many organizations are still reluctant to opening their businesses to Web
services although standards like SOAP and WSDL are in place for almost a decade. One
of the major factors for this is the inadequate understanding of the security risks involved
and the false belief that they will have to make costly reinvestments in their security in-
frastructures [GFMP04].
In an attempt to make Web services a secure ground, OASIS1 has standardized a number of
extensions to SOAP messaging which address different security issues related to Web ser-
vices. These extensions are WS-Security, WS-Trust, WS-Federation, WS-SecureConversation
and WS-Policy (this last one has been submitted for standardization at W3C). In addition
to the SOAP extensions, other security specifications can be used in combination with
Web services - XACML [OAS05a], SAML [OAS05b] or the Digital Signatures Services
[OAS07a] are some examples.

1Organization for the Advancement of Structured Information Standards - http://www.oasis-open.org

61

These specifications define how security techniques and mechanisms should be applied for
individual SOAP messages (encodings, message exchanges, etc), but they do not define ar-
chitectural guidelines for possible implementations. In this paper we address this issue by
proposing an architecture for the realization of Web services security systems: the Service
Oriented Security Architecture, SOSA . This architecture is based on the now popular En-
terprise Services Bus (ESB) architecture. The idea behind it is to build modular security
services that address well defined security functions (i.e. authentication, authorization,
etc.). Message routing techniques can be then used to combine these security services and
to develop complex security solutions.
SOSA builds on the idea that rather than creating a ”fat” security component which is
integrated in the application or in the messaging middleware (and therefore not portable
and hard to reuse), it is more appropriate to build security into modular services that are
platform independent, easier to test and document, and have a high degree of reusability.
The remainder of this paper is structured as follows: Section 2 describes the main security
issues that must be addressed in the context of Web services (references to the specifi-
cations that address these issues are made where appropriate), Section 3 presents archi-
tectural approaches for the implementation of security systems, Section 4 introduces the
proposed architecture and describes its most relevant elements - communication between
security services, service composition and possible security services, and in Section 5 we
comment on some similar approaches. After this we present our prototype implemen-
tation, the SOS!e framework, in Section 6, make a functional as well as a performance
analysis in Section 7 and finally present our conclusions.

2 Security Requirements for Web Services

The main security issues to be addressed by Web services, as also discussed in [GFMP04,
WSF+03, (W304], are enumerated below. Because Web services are all about interoper-
ability, we provide references to the specifications that address these security issues, where
appropriate.
Please remark that, relative to the OSI network stack, Web services are located at the ap-
plication layer. Therefore, in this paper we are only addressing application layer security;
security at the lower layers is out of scope.

Authentication The requester might be asked to provide credentials prior to accessing a
Web service. Authentication is a key issue, since without knowing the requester’s
identity, other security functions can not be accomplished - i.e. you cannot charge
someone for using a service without knowing who he is. Authentication is addressed
by various specifications, most importantly by WS-Security and SAML [OAS05b]
(single sign on).

Authorization Access to Web services should be restricted based on authorization poli-
cies, that is, clear conditions should be stated under which an entity is allowed to
access certain Web services. Authorization is addressed in XACML.

Confidentiality The information flow between services must be protected. Special thought

62

should be given to the fact that SOAP messages often pass through multiple servers
before reaching their destination. Confidentiality is addressed in XML-Encryption
and WS-Security.

Integrity The information received by a Web service must be the same with the one sent
by the requester. Messages must not be altered along the path. Integrity is addressed
in XML-Signature and WS-Security.

Non-repudiation The service provider should be able to prove that a requester used a
certain Web service (requester non-repudiation) and the requester should be able to
prove that the information he has originates from a certain service provider (provider
non-repudiation). Non-repudiation is addressed in XML Digital Signature.

Privacy Both service requester and service provider should be able to define privacy poli-
cies. Both of them should agree on these policies prior to the actual delivery of the
service. Privacy is addressed in WS-Policy and WS-SecurityPolicy.

Audit User access and behavior should be traced in order to ensure that the established
obligations are respected. Audit is enforced by audit guards, that can be both active
and passive [(W304].

Trust Service requester and service providers should be able to determine if they trust one
another. Both direct and brokered trust relationships should be taken into consider-
ation. Trust is addressed in WS-Trust.

Accounting, Charging These two aspects are not primarily concerned to the security of
the system, but are nevertheless tightly coupled with the other security functions
described above (i.e. charging requires the service to know the identity of the re-
quester). Most eBussiness applications require a complete A4C2 system.

3 Security Implementation Approaches

When it comes to implementing the previously introduced security functions in the con-
text of Web services, several architectural approaches are possible. These are graphically
presented in figure 1 and described in the following.

Embedded in the Application In this case the security implementation is coded in the
application itself (figure 1A). The developer of the Web service is responsible for writing
the code for the security logic. For this task he will probably chose to implement some of
the functionality himself, while reusing some code in the form of 3rd party libraries for
implementing other security aspects. Example of such libraries include the Java Authenti-
cation and Authorization Service (JAAS) and the security features found in Web Services
Enhancements (an extension to the Microsoft .NET platform).
Because the communication between the security system and the application is done by

2A4C is an acronym for Authentication, Authorization, Audit, Accounting and Charging.

63

Middleware System

Web Service

Security Implemenation

Middleware System

Web Service

Security Implemenation

Security Implemenation

Middleware System

Web Service

A. Embedded in the
application

B. Embedded in the
middleware C. External

Figure 1: Approaches for the Implementation of Security Features in Web Services

APIs, the performance is very good in this case. However, this approach lacks scalabil-
ity and results in implementations which are complex, hard to document and have a low
degree of reusability and extensibility. These findings are backed by [Bro03].

Embedded in the Middleware In this case security is provided by the middleware sys-
tem where the Web service is executing (figure 1B). This is the case of most application
servers such as the Systinet Server for Java3 or Apache AXIS4. Here, the security aspects
are handled by the application server. Before and after the Web services hosted by the mid-
dleware are invoked, the messages are inspected and the security policies are enforced.
In comparison with the previous approach, a noticeable improvement here is the fact that
the security implementation is separated from the application logic. This leads to less
complex implementations which are easier to document. Furthermore, it is possible to
define security policies that cover several services which run inside the same instance of
the middleware system. Nevertheless, the security implementation can not be ported on
a different middleware system and it is hard to define and enforce policies for services
distributed on different middleware systems.

External In this case security is implemented outside the middleware system (figure 1C).
The Web service is loosely-connected to the security implementation through a messaging
interface. This approach is taken for example by XML firewalls - these are deployed at
the network perimeter and enforce security policies by processing incoming and outgoing
messages. [DGFRLP04] elaborates on application firewalls.
In comparison with the previous two approaches, here not only that the security is decou-
pled from the application, but the two communicate by means of messages. This makes the
security implementation independent of the middleware system where the protected Web
service runs and results in more understandable implementations (the security aspects are
not mixed with the rest of the application). Furthermore, because the security system is

3http://www.systinet.com/products/ssj/overview
4http://ws.apache.org/axis, http://ws.apache.org/axis2

64

essentially a Web service, it has all the advantages that these ones have: scalability, porta-
bility, higher degree of reusability.
As disadvantages to this approach we see performance as a potential issue, because there
is a significant computational effort associated with message processing, especially if the
messages are XML (as is the case of SOAP).

Mixed Of course it is possible to have mixed approaches where some security aspects
are implemented in the application, some in the middleware, while others are externalized.

4 The proposed architecture

In this paper we build on the external security approach described earlier and propose an
architecture for security systems where the security functions are realized as small modular
services. We call these services security services. In order to have a simple, understand-
able and verifiable design, the principle of separation of concerns is applied. According
to this principle, the security system is functionally divided into services and a taxonomy
of possible security services will be presented. These services can be regarded as infras-
tructure services, as they can be shared by applications living in the same network. This
makes the design highly reusable. Additionally, through the use of standardized messag-
ing interfaces, overall system portability is ensured.
Enterprise Application Integration (EAI) techniques are used to ”glue” the security ser-
vices together with the Web services which are protected. Because of flexibility, the En-
terprise Services Bus model is used. ESBs support both service orchestration and service
choreography and implementations usually come equipped with simple-to-use orchestra-
tion editors and runtime environments which can easily be used to architect a security
solution from security services. Perhaps two of the most important features of an ESB
are message routing and the mediation pattern, which allow functionality to be built in the
system in a totally transparent fashion.
In this paper, we consider that security services are realized as ESB mediations and that
they are chained together by means of message routing. Other possibilities exist (such as
for example BPEL or WS-CDL), however these are out of the scope of this paper. Media-
tions and message routing are enough to design scalable, extensible and easily configurable
security systems.
The realization of such a system is illustrated in figure 2. A message reaching the endpoint
will be routed by the ESB through several security services before reaching the protected
service. Each of these security services implements some security function and will en-
force some portion of the security policy. The response message is also routed through
several security services before being returned to the requester.
In the proposed model, we consider that the security services trust one-another and that
they are located in a trusted network; scenarios such as service hijacking are out of the
paper’s scope. Nevertheless, by using encryption and digital signatures, the model can be
extended to include scenarios where the security services are only partially trusted (they
are trusted to perform their task, but not trusted for anything else). However, this is not

65

Enterprise Services Bus (ESB)

Web Service
Requester

P
ro

te
ct

ed
W

eb
 S

er
vi

ce

E
nd

po
in

t

Security Services

Private Network (Trusted)Public Network

Figure 2: Security system composed of several security services

discussed here.
Because this model is applied to Web services and Service Oriented Architectures (SOA)
and because the core idea is to think of security in terms of reusable services, the model
was named Service Oriented Security Architecture or SOSA . The following subsections
present the main elements of this model, namely how security services communicate, how
they are coupled together and what security functions can be implemented as services.

4.1 Communication between security services

Each of the security services will process incoming messages in order to accomplish its
task. Some tasks may require several services to cooperatively process one message (for
example authorization normally requires the identification of the requester). It is clear that
in this case intermediary processing results (in the previous example, the identity of the
user) need to be exchanged between services.
If we follow the patterns described in [HW03], here are two possibilities for this. The
first approach is to have the two services communicate by means of a shared database:
after processing a message, the first service stores the intermediary results in a database,
while the second one later queries this database. The second approach is through annota-
tions: the first service appends the intermediary processing results to the message before
dispatching it to the next service; we call this an annotated message. For the particular
case of security services, this latter approach is more appropriate because the intermedi-
ary processing results normally refer to the processed message (i.e. identity attributes,
authorization decisions, obligations, accounting information, etc.) and can be therefore
transported together with the message.
To have an idea about how annotations work, think about a document-based work flow in
a corporation: assume that Bob (an employee) wants a new computer. For this makes a
written request and mails it to his boss. The boss will first analyze Bob’s reasons, approve
it, perhaps annotate it, and forward it to the financial department. The financial department
will verify if there are enough funds (perhaps annotate it) and send it to the Infrastructure
department. Here the computer is ordered and a reply is sent to Bob informing him that
his new computer is on its way. The persons involved in this work flow act similar to the
mediation services: first inspect the request they receive, then they approve it (they can

66

also reject it), they may annotate it, and finally forward it along the chain.

4.2 Possible Security Services

In section 2 of this article, the security requirements for Web services were presented. Most
of these requirements can be implemented as standalone Web services. In fact, several
service interfaces for security services have already been standardized by OASIS as part of
the WS-* specifications. Examples for this include WS-Trust [OAS07b], WS-Federation,
XACML [OAS05a] or the newer DSS [OAS07a]. All these services are defined though
WSDL documents and follow a request-reply pattern. In this article, as stated earlier, we
are looking instead at implementing security as ESB mediation services. Considering this,
we argue that the following are candidates for possible security services:

Authentication Two types of authentication services are possible: verification and iden-
tification. The first one will verify the credentials (keys, passwords, etc.) found in
a message, while the second one is responsible for providing identity attributes. An
identification service will annotate messages with these attributes so that the other
services along the chain (i.e. authorization, audit, charging) can use this informa-
tion.

Authorization If we follow the XACML [OAS05a] service model, three types of autho-
rization services are possible: Policy Information Point (PIP) , Policy Decision Point
(PDP) and Policy Enforcement Point (PEP). The task of a PIP is to annotate mes-
sages with additional attributes that the PDP may require in the decision making
process. The task of the PDP is to evaluate the message, produce an authorization
decision and annotate the message with this decision and possibly also obligations.
The task of the PEP is to enforce the decisions of the PDP services and to discharge
the obligations.

Audit Two types of audit services can be envisioned according to [(W304]: services that
perform passive audit such as a logging service and services that perform active
audit such as a notification service.

Cryptographic Services Encryption and digital signing are tasks that require significant
computational power and therefore ideal for distributing on more powerful machines
or machines with specialized hardware.

Accounting If accounting represents a complex task, it makes sense to realize it as a
standalone service. The task of an accounting service is to meter service usage and
to provide input for the charging service (in the form of annotations).

Charging If charging is done immediately (i.e. not on a periodical basis), the task of the
charging service is to charge the requester according to the information provided by
the accounting service.

67

Infrastructure Services In addition to the above mentioned services, other mediation
services might be useful, especially if we think about coupling different security
services together. [Cha04] identifies the following three: orchestration services,
message transformation services and message storage services.

This list of services is not complete: depending on the concrete deployment scenario,
other services may be required. Furthermore, the granularity of the services is also an
issue to be considered: concrete implementations may chose to realize several of the up-
mentioned services as a single service (for example instead of PIP, PDP and PEP one
single authorization service), for performance reasons. Alternatively, in complex systems
consisting of different realms, messages may be routed through several PDP services, each
one enforcing the policy of its realm. A detailed analysis of these issues is not within the
scope of the article. However, in section 7.1 we analyze the performance of our prototype
implementation and comment on the relation between the number of security services and
message delay.

4.3 Putting it all together: Message Routing Patterns

The next design step is to connect the security services with the application Web service.
Because the security services are realized as mediation services on an ESB, message rout-
ing patterns can be applied in architecting the security solution. Some common patterns
applicable here are the following ([HW03] elaborates on message patterns):

Content-Based Routing Messages are routed between services based on their content
(for example, incoming messages are routed to appropriate identification services
depending on the authentication token they contain).

Itinerary Routing A routing slip describing the itinerary is attached to the message. This
one is then forwarded according to the slip (for example a route may be authentica-
tion - authorization - audit - protected Web service).

Splitter / Aggregator The message flow needs not necessarily be linear. One single re-
quest can be split (i.e. forwarded to several services that process it in parallel) and
these parallel flows can be synchronized by means of an aggregator which combines
the results. Imagine a message being sent in parallel to several decision services and
then the authorization decisions being combined by means of AND / OR logic.

In order to illustrate how the proposed architecture fits together, an example is presented
in figure 3: after reaching the endpoint, an itinerary is attached to all incoming messages.
According to this itinerary messages get first authenticated, then authorized, then logged
and only then reach the Protected Web Service. On their way back, response messages
are logged, digitally signed and only then returned to the requester. Please remark how
services are reused: the same instance of the log service is used twice in the itinerary.

68

Enterprise Services Bus (ESB)

Web Service
Requester

P
ro

te
ct

ed
W

eb
 S

er
vi

ce

E
nd

po
in

t

Authentication Authorization

Digital Signing

Lo
g

Itinerary Router

Private Network (Trusted)Public Network

Figure 3: Security Services combined by means of message routing patterns

5 Similar Approaches

There are several similar approaches where security functions are implemented as stand-
alone services. To begin with, the SOAP protocol specification [(W303] describes interme-
diaries which can be either forwarding intermediaries (they forward the inbound message
with minimal modifications) or active intermediary (they modify the outbound message
in ways not described in the inbound message). Examples of intermediaries performing
security tasks are also given in [(W303]: a logging service is an example of forwarding
intermediary while an encryption service is an example of active intermediary.
In [Bro03] an architecture where security functions are implemented into proxies is de-
scribed. A single security proxy acting as a gateway is used to secure several Web services
deployed in a network. The paper compares this approach to library-based approaches.
[AKT+06] enumerates the threats in the context of Web services and describes another ex-
ternal security approach. Here, incoming messages first pass through a perimeter gateway
which secures several services within a network (similar to [Bro03]), then pass through a
service agent which is attached to a particular Web service, and only then reach the pro-
tected Web service. The security functions are divided in this case between the gateway
and the agent: the first one enforces security at a coarser level (for the entire network),
while the latter one does it at a finer level (for individual services).
In all these approaches, even though the security functions are separated from the Web
service to be protected, they are not realized in a modular fashion. In our approach, the
security functions are realized into modular services which are designed according to the
principle of separation of concerns - different security functions should be implemented
as different security services. The advantages of this approach are presented in section 7.
An approach where security functions are realized into different services is presented in
[HHH05]. Here, the services are combined by means of an ESB to form a security gate-
way. However, only authentication, authorization and cryptographic services are taken
into consideration and no communication between security services is designed (in our
approach security services communicate by means of annotated messages). Furthermore,
no architectural analysis is made, no implementation is presented and hence, neither prac-
tical experiences nor performance analysis are described.

69

6 Implementation

In order to show the feasibility to this architecture a prototype implementation was built:
the SOS!e 5 framework. The implementation is open-source and was realized in Java. It
relies on a number of open-source tools, including Apache Tomcat, Apache Axis, Apache
Ant, WSS4J, OpenSAML and the Mule ESB. It was designed for SOAP Web services
and takes advantage of the SOAP processing model (security services are realized as in-
termediaries) and several SOAP extensions (most notably WS-Security). The framework
implements message routing and the annotation-based processing model described above.
On top of SOS!e several common security services have been developed.

Security services are realized as regular Web services based on the popular Apache Axis
platform. The framework provides APIs for the manipulation of annotations. They
allow the creation of new annotations, as well as the retrieval, modification and
deletion of existing annotations from a message.

Annotations have been realized as SAML Attribute Assertions [OAS05b]. These can
store several attribute-value pairs together with information about the author of the
annotation, timestamp and other fields. SAML assertions have the advantage of
being XML encoded, are easy to attach to SOAP message headers (through the
WS-Security SAML Token Profile [OAS06]) and have built-in support for digital
signatures.

Message routing For message routing, the Mule ESB6 was used. This is a 100% Java
based Enterprise Services Bus implementation which supports a variety of transport
mediums, message types and routing patterns. It also provides a very convenient
and simple way to specify orchestration scripts and to expose these orchestrations
as an endpoint. In our implementation (refer to figure 2), a proxy to the protected
Web service is exposed in the public network. The Mule ESB is configured to route
incoming messages through the necessary security services, before finally invoking
the protected Web service. If a request-reply message exchange pattern is used (i.e.
the call is not asynchronous) the same happens to the response message.

On top of the SOS!e framework, several security services have been prototypically built:

• Two authentication services which are able to authenticate users based on username-
password and X509 certificates. If the verification is successful, an LDAP repository
is contacted, user attributes are retrieved and the message is annotated with these
attributes.

• A simple authorization service which performs authorization based on simple rules.

• Two audit services: one logging service and one alert service. The first one per-
sistently stores messages (in whole or only parts of them), while the latter one can

5SOSIE - Service Oriented Security, an Implementation Experiment. The name is inspired from the French
word sosie (look-alike in English), because a proxy of the protected service is exposed through the framework.

6http://mulesource.com

70

be configured to send emails if certain criteria are met (these are specified through
XPath expressions relative to the SOAP envelope).

• Two cryptographic services, one for encryption and one for digital singing. The
parts of the message to be encrypted / digitally signed are also specified through
XPath expressions relative to the SOAP envelope.

• Currently an accounting and a charging service based on PayPal7 are under devel-
opment.

7 Analysis and Evaluation

It is well known that complexity is security’s biggest enemy: as a system becomes more
complex, it is harder to observe the flaws and back door opportunities are opened. SOSA
splits security into small functional components that can be separately developed, thus re-
ducing the complexity and allowing the components to be better tested (unit tests can be
used). Because they are less complex, it is also easier to reuse these components.
Services are combined by means of message routing patterns. This allows for a clear de-
sign which is also easy to document. Because services are running inside an Enterprise
Services Bus, orchestrating the security services is a matter of configuration which does
not require an expert, as most ESBs are equipped with graphical editors and specialized
tools for such purposes.
Additionally, the fact that the security services are independent one from the other makes
the upgrades to the security system faster and less costly. New services can be introduced
without affecting the existing ones, by simply altering the path of messages. It is not
even necessary to stop the system, the modifications can be done at runtime, by simply
temporarily redirecting the message flow (a technique often used when upgrading web
servers).
Since the security services are not bound to the application that they guard and also not
bound among them, they can be developed in any programming language and can run
on any operating system. This will reduce the costs associated with implementation be-
cause programmers will be able to choose the APIs and platforms which are most suitable
for their project. For example, in an application where user information is stored in Mi-
crosoft Active Directory and authorization is based on XACML, the authentication service
might be developed in C# (because C# has better support for Active Directory), while the
authorization service might be implemented in Java (because Sun offers a free XACML
implementation on SourceForge).
Another advantage of this architecture is that the same instance of a service can be used
in several applications, thus making the administration and deployment of new services
simpler. We showed in figure 3 how the same instance of a security service can be invoked
several times in an itinerary. In figure 4 we show how the same security service can be used
in two different deployments: in this example the same authorization service is used for
both services A and B (the other security services, like the authentication, are different).

7http://www.paypal.com

71

Enterprise Services Bus (ESB)

W
eb

 S
er

vi
ce

A

E
nd

po
in

t
A

Authentication

W
eb

 S
er

vi
ce

B

E
nd

po
in

t
B

A
ut

ho
riz

at
io

nAuthentication

Figure 4: Security service being shared by two security system deployments

Furthermore, sharing security services also solves some well known security issues: shar-
ing the authentication service leads to single-sign-on and sharing the authorization service
leads to federated access control.

7.1 Performance Analysis

As a possible disadvantage to SOSA we see a decrease in throughput and higher latencies
due to additional network traffic and overhead resulting from XML parsing (each security
service must process the message content). In order to determine the feasibility of SOSA,
performance testes were carried out against the SOS!e prototype implementation.

Throughput for SOS!e

0

100

200

300

400

0 1 2 3 4 5

Number of Security Services

Th
ro
ug
hp

ut
 [r
eq

ue
st
s/
s]

No Annotations With Annotations

JM
et

er

P
ro

te
ct

ed
W

eb
 S

er
vi

ce

Security Services

1s
t S

ec
ur

ity

S
er

vi
ce

2n
d

S
ec

ur
ity

S

er
vi

ce

3r
d

S
ec

ur
ity

S

er
vi

ce

4t
h

S
ec

ur
ity

S

er
vi

ce

5t
h

S
ec

ur
ity

S

er
vi

ce

Testing Environment

Figure 5: a.Testing environment b.Throughput for the SOS!e framework

For tests, mid-class computers were used (Pentium 4 2.8GHz CPU, 2GB RAM, connected
via 100MBit network). The results of these tests, together with the testing environment
are displayed in figures 5 and 6. We tried to determine the influences of the number of
security services on the most relevant performance parameters - the throughput (TP) and
the round-trip-time (RTT) for one message.
Our testing methodology is similar to the one described in [UT06]. In order to only mea-
sure the overhead introduced by our framework, ”dummy” security services were used -
these are services that implement no security functionality. The protected Web service,
was a very simple one: the purpose was to have this one respond faster than the security

72

Round Trip Time for SOS!e

0

20

40

60

80

100

120

140

0 1 2 3 4 5

Number of Security Services

Ro
un

d
Tr
ip
 T
im

e,
 A
ve
ra
ge

 [m
s]

Configuration A, No Annotations

Configuration B, No Annotations

Configuration A, With Annotations

Configuration B, With Annotations

Figure 6: Round Trip Time for the SOS!e framework

framework (otherwise this one would have influenced the results).
For the measurements we used Apache JMeter8. We considered two different configura-
tions: Configuration A, where all the security services were hosted on the same machine
as the Mule ESB and Configuration B where each security service was hosted on a dif-
ferent machine. For each of these configurations, we tested two use-cases: one where the
services were only forwarding the messages and one where the services were processing
the annotations existing in the message and adding new annotations.

Throughput As seen in figure 5b, the TP decreases significantly when the security frame-
work was introduced between the client and the protected service (almost 60%).
This is due to latencies introduced by the Mule middleware. However, if the num-
ber of security services is increased, the effect on TP is little. Furthermore there is
no difference if annotations are used or not. This shows us that annotations have no
visible influence on throughput.

Round Trip Time As expected (see figure 6), the RTT increases linearly with the number
of security services introduced between the requester and the protected service. The
processing of annotations leads to a slight increase in latency.

In conclusion, we see that the framework has significant influence on the performance
(both TP and RTT). The decrease in performance increases with the number of security
services introduced between the requester and the protected service.
Whether or not the SOS!e framework is appropriate for a given scenario depends on the
particular performance requirements of this scenario. In those cases where the RTT must
be low, the SOS!e framework is inappropriate. However, in those cases where the RTT
may be higher or if the interactions are asynchronous, SOS!e fits well.
Furthermore, we have to take into consideration that SOS!e is only a prototype implemen-
tation, which is not optimized. Better, more optimized implementations for the proposed
architecture can be envisioned.

8http://jakarta.apache.org/jmeter/

73

8 Conclusions

In this paper we presented an architecture for security systems protecting Web services -
the Service Oriented Security Architecture. We showed that realizing the security func-
tions into modular, stand-alone security services results in less complex and more flexible
designs for security systems. In addition to this, the presented approach has several other
advantages (see section 7).
We also presented a prototype, open-source implementation to SOSA , the SOS!e frame-
work, and showed our experiences with this framework so far. In section 7.1 we presented
the results of performance tests that were run on our implementation, and showed that
even though both RTT and throughput are affected by the fact that messages are routed
through several security services, there are numerous application scenarios in which such
an architecture fits well.

References

[AKT+06] Mohamad Afshar, Nickolaos Kavantzas, Ramana Turlapati, Roger Goudarzi, Barmak
Meftah, and Prakash Yamuna. Best Practices for Securing Your SOA: A Holistic
Approach. Java Developer’s Journal, June 2006.

[Bro03] G. Brose. Securing Web Services with SOAP Security Proxies. Proc. Int’l Conf. Web
Services (ICWS’03), pages 231–234, 2003.

[Cha04] David A. Chappell. Enterprise Service Bus. O’Reilly, 2004.
[DGFRLP04] N. Delessy-Gassant, E.B. Fernandez, S. Rajput, and M.M. Larrondo-Petrie. Pat-

terns for application firewalls. In Proceedings of the Pattern Languages of Programs
(PLoP) Conference, 2004.

[GFMP04] C. Gutiérrez, E. Fernández-Medina, and M. Piattini. Web Services Security: is the
problem solved? Information Systems Security, 13:22–31, 2004.

[HHH05] Heather Hinton, Maryann Hondo, and Dr. Beth Hutchison. Security patterns within
a service-oriented architecture. IBM white paper, November 2005.

[HW03] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley, 2003.

[OAS05a] OASIS. eXtensible Access Control Markup Language v2.0, February 2005.
[OAS05b] OASIS. Security Assertions Markup Language (SAML) V2.0 - Core, March 2005.
[OAS06] OASIS. Web Services Security: SAML Token Profile 1.1, February 2006.
[OAS07a] OASIS. Digital Signature Service Core Protocols, Elements, and Bindings Version

1.0, February 2007.
[OAS07b] OASIS. WS-Trust 1.3, March 2007.
[UT06] K. Ueno and M. Tatsubori. Early Capacity Testing of an Enterprise Service Bus. Pro-

ceedings of the IEEE International Conference on Web Services (ICWS’06)-Volume
00, pages 709–716, 2006.

[(W303] World Wide Web Consortium (W3C). SOAP Version 1.2 Part 1: Messaging Frame-
work, June 2003.

[(W304] World Wide Web Consortium (W3C). Web Services Architecture, February 2004.
[WSF+03] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kessel-

man, S. Meder, L. Pearlman, and S. Tuecke. Security for Grid services. High Perfor-
mance Distributed Computing, 2003. Proceedings. 12th IEEE International Sympo-
sium on, pages 48–57, 2003.

74

An Approach to use Executable Models for
Testing

Michael Soden and Hajo Eichler

Department of Computer Science, Humboldt Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany

[soden,eichler]@ikv.de

Abstract. This paper outlines an approach to test programs by trans-
forming them into executable models. Based on OMG’s metamodelling
framework MOF in combination with an action language extension for
the definition of operational semantics, we use QVT to transform ab-
stract syntax trees as code representations into executable models. We
argue that these models provide an adequate abstraction for simulation
and testing, since platform dependencies can be resolved in a controlled
way during transformation to detach the program logic from its environ-
ment. A prototypic implementation based on eclipse EMF underpins the
approach.

1 Introduction

Execution and simulation of models are well established techniques in soft-
ware engineering for decades now. While the idea of model-driven architectures
(MDA) as proposed by the OMG has been successfully applied to various do-
mains and especially embedded systems, the major part of today’s enterprise
software systems are still not developed in a model-driven way by means of
transformations, integrated tool landscapes, rich traceability and 100% code gen-
eration. We identified two main reasons for this:

1. Most development languages provide similar abstraction mechanisms than
models and come with considerable tool support at the code level

2. Strong execution platform dependencies of the developed code such as library
or framework functionality

Worse than this is that the meaning of models is typically defined through the
mapping into the target environment by code generators. Hence, code generators
must be considered to be part of the specification when it comes to (automated)
testing between the specification model and the code.

To address these problems, we have created a MOF [1] based framework
that supports the definition of operational semantics in metamodels to precisely
specify the execution semantics of models [2]. Based on the assumption that these
metamodels reflect the correct platform behaviour, simulations and tests of the
developed code can be executed in the model environment instead of testing it

75

directly on the target platform. Execution model building is achieved through a
transformation defined as QVT relations [3] of a syntax oriented tree metamodel
which is close to a language’s EBNF grammar (similar to [4]) to an appropriate
metamodel for the behaviour definition. Thereby, this import mechanism ensures
to reach the proposed abstraction between model and code, which is one of the
key ideas of MDA.

2 Execution of behavioural models

In order to execute models a (meta-)modelling framework is required that sup-
ports the definition and execution of models. For this purpose we use OMG’s
metamodelling framework MOF [1] in conjunction with OCL [5] and QVT [3]
to precisely define and manipulate models in an object oriented way.

Even though MOF defines an overall framework for the definition and man-
agement of (meta-)models, it lacks support for the definition of concrete syntax
and computational semantics [1]. To fill this gap, we extend the MOF with an ac-
tion language to support the specification of operational semantics[2]. Through
the addition of a subset of UML Actions in combination with OCL expressions,
the metamodel definitions become machine interpretable and hence models ex-
ecutable. To clearly separate the non-changing model from its runtime config-
urations which evolve over time, an explicit instanceOf relation is introduced
at M3. This explicit instanceOf modelling reduces any overhead in managing
relations between (logical) classifiers and their instances. For this purpose, the
instanceOf concept is aligned with a create operation which takes care of han-
dling the creation of corresponding links to specified meta-objects.

2.1 MOF Actions

We briefly outline the action language in the following along with the sample
metamodel of C# used throughout this paper. For a small and complete exam-
ple refer to [6]. Figure 1 shows a small excerpt of the C# metamodel. The main
structural part is conceptually aligned with the UML2 infrastructure library [7],
although some minor modifications and simplifications have been applied (e.g.
generalization is restricted to single inheritance, some associations are bidirec-
tional, etc.) Rather noteworthy is the addition of language specific concepts such
as expressions or delegates. Those parts which are only syntax variations or ”syn-
tactic suger” like property accessors, different kind of loops, etc. are represented
by unified concepts in the metamodel.

The operational semantics of the runtime model is described with an action
language that is syntactically borrowed from UML Actions/Activities [8]. Figure
2 shows the operational specification of the CSAssign meta-class as a sequence of
three actions: (1) a OCL query retrieving the right hand side of the assignment
in the context of the object self (which is an instance of CSAssign), (2) an
invocation action that is capable of evaluating the expression and (3) a primitive,
single-valued set action for the result. Each action is guaranteed to be atomic,

76

Fig. 1. Excerpt of the C# metamodel: structural parts and expressions

77

especially queries collecting elements will not be interrupted or interfere with
parallel changes applied to the model1. Note that self in the query and assign
actions refers to the owning CSAssign object while self at the input pin of the
invocation action defines the (nested) context for the execution of the Evaluate
behaviour.

Fig. 2. Behaviour of class CSAssign

Beside the abstract syntax part of the metamodel, the C# runtime model
is defined by specific runtime classes (cp. Figure 3). We argue that the runtime
model can be regarded as an instance of a language’s structural part. For this
purpose, the instanceOf relationship is introduced at the M3 level to adequately
provide support for ”logical” multi-metalayer modelling. As consequence, each
meta-object has an additional metaObject property that points to the speci-
fied meta-class. Existing OCL reflection capabilities such as allInstances or
oclIsOfType remain valid and are still bound to the ”physical” meta-layering.

Runtime objects can be instantiated with a create action. For example, figure
4 (”Create Method Parameter”) shows a behaviour defined in the context of the
CSMethodInvoke class. It handles allocation and binding of values for all param-
eters. Note that the type of the input pin of the create action is CSParameter

1 Hence, there is a global order of all actions executed. Nevertheless, mutual references
and modifications to shared objects are allowed

78

Fig. 3. C# Runtime Model

79

Fig. 4. Actions to specify method invocation

80

while the output pin is Place. Invoking this behaviour causes an object of type
Place being created as logical instance of class CSParameter with a metaObject
reference set to the CSParameter object passed to the input pin.

3 Execution of code as model

The techniques described above for designing metamodel behaviour are the basis
for executing models. Figure 5 outlines the approach to analyse existing imple-
mentations in its model representation. The left side of figure 5 outlines the stan-
dard MDA approach of model to model transformation. At a certain stage the
model is enriched with enough behavioural information to support model execu-
tion. The code is transformed into the abstract syntax tree using the generated

Fig. 5. Mappings between code, grammar and models

parser of ANTLR [9]. This grammar-based representative of the implementation
will be mapped to an instance of the syntax oriented metamodel; a one to one
mapping to connect the grammar with the modelling elements (compare [4]).
The main difference of both representation is the data structure used. Whereas
ASTs are defined by a set of independent token types with simple parent/child
relation, metamodels offer in addition the advantages of object orientation like
inheritance and other modelling techniques like containment. This conversion
from grammar to model enables one to apply model transformations on the
code representative, but it does not have any effect on the detail degree of the
implementation information.

A second mapping transforms the implementation’s model into the actual
domain specific metamodel. One example of such a metamodel can be found in
chapter 2. With this step the goal of abstraction will be achieved by two kind
of mechanism. The program itself is abstracted by the mapping to its simplified
model. For instance, in the model only one iterate definition is defined, whereas

81

the syntax of the language supports for, while, do etc. loops. The second aspect
of abstraction happens by focusing on the program logic itself and extract it
from it’s surrounding environment. The mapping between the language and the
domain specific metamodel is built using QVT relations. The following two ex-
amples show a structural and behavioural mapping between the two metamodels.
One major reason to use QVT relations here is the possibility for bidirectional
transformation that could ensure the re-generation of code from the model in
case the model is changed. Class2Class as shown in figure 6 defines the map-
ping of the AST representation of classes to their counterpart in the domain
specific metamodel. The patterns of the rule are very elementary to match all
occurrences, whereas the classes content is covered by separate rules, which rely
to this relation via their when clauses as precondition. Large part of the model

Fig. 6. QVT rule to map grammar class elements to their model correspondent

transformation forms the behavioural part. One excerpt is the rule While2Loop,
which expresses the mapping between a while control flow statement and the
general loop model.

4 Related Work

There are many frameworks for model- or language-driven development, de-
velopment of DSLs, or simulation frameworks with quite different terminology.
Metamodelling frameworks or tools include GME[10], XMF[11], Kermeta[12],
AToM3[13], MetaEdit+[14], AMMA[15] or MPS[16]. As classification of the dif-
ferent approaches by means of support for the definition of structure, static con-
straints, representation (syntax) and behaviour (execution semantics) as done
by Nytun et.al in [17], we can further distinguish two different approaches to
semantics. On the one hand semantics are defined by mappings of models onto

82

Fig. 7. QVT rule for mapping a while statement to the loop model element

different languages or mathematical formalisms (semantic domains) as in GME
and AToM3. On the other hand XMF, Kermeta, AMMA and MPS use specific
action languages to define operational semantics. The approaches taken in XMF
with XOCL (eXtensible Object Command Language), Kermeta’s textual action
language with OCL and QVT all have in common that querying is achieved by
OCL’s navigation capabilities. This idea is reused in our approach. Addition-
ally, the work of [18] inspired us to express the operational semantics with a
reduced set of UML actions. However, controlling atomicity of composed actions
is rather comparable to the ”step” keyword of the Abstract State Machine Lan-
guage (AsmL[19]). In the same way as such ASMs define the formal semantics
of e.g. the SDL specification[20], our actions follow a similar approach but re-
place evolving algebras with manipulations of runtime configurations that are
instances of MOF metamodels.

Although instantiation is at the core of any metamodelling facility, the ap-
proaches differ in their realisation in the frameworks. We argue that while the
abstract syntax model is logically at M1, the runtime configurations are lo-
cated at M0. Atkinson et al.[21] analysed the shallow/deep-instantiation and
strict/non-strict metamodelling approaches and pointed out the ambiguous clas-
sification problem and the replication of concepts problem. However, we argue
that explicit (shallow) instanceOf modelling helps to distinguish multiple logical
meta-layers within the concept space defined by a metamodel.

5 Discussion

Our approach addresses the problem of decoupled working on model and code
level, whereby models do also have a behavioural description of the underlying
platform. To execute code as model for testing purposes a couple of advantages
against traditional techniques can be found. First, within the abstraction also a
major aspect for simplifying testing is found. On the one hand, concentrating
on the logic of the program is also a key for writing tests/execute models on the
problem scope. On the other hand, it is possible to derive the counterparts of

83

so called mock objects, which emulate a part of the system which is irrelevant
for the actual component under test, on importing the code to the model. For
example, typical three tier architectures based on the Model View Controller
paradigm often requires a lot of code for test-drivers and mock- objects on the
GUI and database level. Even though we succeded only in small replacements of
console based input/output, bigger replacements of library functionality could
be applied easily. Another important aspect is that execution in the model will
lead to scenarios containing model data: the actual testing data. Those scenarios
could be recorded and reused for testing.

6 Conclusion

The paper outlines an approach to translate existing implementations into their
corresponding domain models in order to execute and test their behaviour. The
behaviour is defined through an action language extension of MOF that supports
the definition of operational semantics. Utilising this approach helps testing the
actual implementation by abstracting from the language’s concrete environment.
Thus, it supports testing and simulation of the implementation decoupled from
the platform and other specific library or framework functionality. Our current
results are promising that often faced overhead of building test-stubs, simulating
network capabilities in test-drivers or omitting GUI references can be solved all
at once.

A prototypic implementation has been carried out based on eclipse EMF [22]
and a QVT engine [23]. Further directions for the implementation are towards
recording of test-runs and comparison against previously executed simulation
runs to really test the developed application against its specification.

References

1. OMG: Meta Object Facility (MOF) 2.0 Core Specification. Object Management
Group (2003) ptc/03-10-04.

2. Plotkin, G.: A structural approach to operational semantics. Technical report,
University of Aarhus, Denmark (1981)

3. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
Draft adopted Specification, ptc/05-10-02. Object Management Group (2005)

4. Alanen, M., Porres, I.: A relation between context-free grammars and meta object
facility metamodels. Tucs technical report no 606, Turku Centre for Computer
Science (2003)

5. OMG: OCL 2.0 Specification. Object Management Group (2005) ptc/2005-06-06.

6. Scheidgen, M., Fischer, J.: Human comprehensible and machine processable spec-
ifications of operational semantics. (2007)

7. OMG: UML 2.0 Infrastructure Specification. Object Management Group (2003)
ptc/03-09-15.

8. OMG: UML 2.0 Superstructure Specification. Object Management Group (2004)
ptc/04-10-02.

84

9. Parr, T.: (ANTLR – Another tool for language recognition) Last checked: February
8, 2006.

10. Agrawal, A., Karsai, G., Ledeczi, A.: An end-to-end domain-driven software de-
velopment framework. In: OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, New York, NY, USA, ACM Press (2003) 8–15

11. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodeling, A Founda-
tion for Language Driven Development. Xactium (2004)

12. Team, T.: (Triskell Meta-Modelling Kernel. IRISA, INRIA. www.kermeta.org.)
13. : (The Modelling, Simulation and Design lab (MSDL), School of Computer Sci-

ence of McGill University Montreal, Quebec, Canada: AToM3 A Tool for Multi-
Formalism Meta-Modelling. http://atom3.cs.mcgill.ca/index.html.)

14. MetaCase: (MetaEdit+. http://www.metacase.com.)
15. Davide Di Ruscio, Frric Jouault, I.K.J.B.A.P.: Extending amma for supporting

dynamic semantics specifications of dsls. Technical report, Universitegli Studi
dell’Aquila (2006)

16. Dmitriev, S.: Language oriented programming: The next programming paradigm.
onBoard (1) (2004)

17. Fischer, J., Holz, E., Prinz, A., Scheidgen, M.: Tool-based language development.
In: Workshop on Integrated-reliability with Telecommunications and UML Lan-
guages. (2004)

18. Sunyé, G., Guennec, A.L., Jézéquel, J.M.: Using uml action semantics for model
execution and transformation. Inf. Syst. 27(6) (2002) 445–457

19. Yuri Gurevich, Benjamin Rossman, W.S.: Semantic essence of asml. Technical
report, Microsoft Research (2004)

20. ITU-T: SDL formal definition: Dynamic semantics. In: Specification and Descrip-
tion Language (SDL). International Telecommunication Union (2000) Z.100 Annex
F3.

21. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: UML’01:
Proceedings of the 4th International Conference on The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools. LNCS, London, UK, Springer-
Verlag (2001) 19–33

22. Eclipse Project: Eclipse Modeling Framework. (2006) Last checked: January 1,
1970.

23. : medini QVT Engine. (www.ikv.de)

85

Modelling of Cross-Organizational Business Processes -
Current Methods and Standards

Jörg Ziemann1, Thomas Matheis1, Jörn Freiheit2

1 Institut für Wirtschaftsinformatik im Deutschen Forschungszentrum für Künstliche
Intelligenz, Saarbrücken

2 Max Planck Institut für Informatik, Saarbrücken

Abstract: Not only since the upcoming of Service-oriented Architectures the
modelling of cross-organizational business processes is a heavily investigated field
comprising dozens of standards based on different concepts. New techniques on
the implementation site, e.g. Web Service orchestration and choreography, further
extended the possibilities and requirements on such standards. To systematically
order and present a comprehensive state of the art of relevant methods and
standards this paper first describes requirements that occur in cross-organizational
business processes both for concepts and modelling languages. Then the most
important state of the art concepts for modelling cross-organizational processes are
described, followed by a list of selected modelling languages. Based on the
requirements defined before, a selection of languages is analysed in greater detail.

1. Introduction

Enterprises as well as public administrations today are confronted with a highly
competitive global and fast changing business environment resulting in an increasing
level of cooperation between organizations. This leads to the necessity of implementing
interoperable software systems and an efficient modelling of cross-organizational
business processes. In the past years research presented various new concepts, standards
and tools to support cross-organizational business processes (CBP). The aim of this
paper is to provide stakeholders with a comprehensive overview of requirements as well
as current concepts and standards for CBP modelling.

A business process is a continuous series of organizational tasks, undertaken for the
purpose of creating output. While intra-organizational processes comprise activities
executed inside one organization only, the activities comprised in a cross-organizational
business process are executed by different organizations that are working together to
reach a common objective. Business process models are developed for the purpose of
documentation, optimization and automation of business processes. Though models for
representing CBPs share these objectives, CBP models differ in various aspects from
those for intra-organization processes, e.g. need for information hiding, (higher) need for
unambiguous descriptions, need for model usability focused on the collaboration partner
and support of flexible relationships.

87

To explain specifics of CBP modelling and to provide a basis for judging the
subsequently described concepts and languages for CBP modelling, section 2 discusses
the requirements on collaborative business processes. Besides general requirements,
specific requirements on modelling languages are discussed that apply particularly for
collaborative business process modelling. Section 3 describes existing concepts that are
applicable for CBP modelling. The concepts presented there are also taken from recent
literature and research projects as well as tools applied already in industry. In section 4, a
selection of currently prominent modelling languages is evaluated both regarding their
compliance with the previously described requirements and concepts for modelling of
CBPs.

2. Requirements for modelling of CBP

In general, modelling languages have to fulfil a set of requirements like flexibility,
learnability, good visualization, extensibility, display hierarchy/different levels of
granularity, high expressability, executability and analyzability. For an exhaustive list of
such generic requirements cp. also Frank und van Laak [FL03]. Based on a literature
review (cp. e.g. [WB04]) as well as the results of national and international research
projects1 in the field of cross-organizational business process modelling we deduce the
following specific requirements for CBP modelling languages. The requirements will be
used later to compare the selected modelling languages.

Requirement 1: Keep private information private. Since it can not be expected that
each partner publishes its entire workflow and all contained information, this
requirement is essential. To allow for publishing the relevant information only, the
boundary of the collaboration sphere has to be defined. Various concepts support this,
including the specification of static and dynamic system interfaces and the distinction
between various levels of privacy/visibility of information.

Requirement 2: Specify the interfaces of the partners formally. It is important that
the information demand to the partner has to be comprehensive, i.e. that all required
information on the interface are sent to the partner. This may comprise the causal
relationship at which point in time or after which event information is required, the type
of the required information (e.g. document, message) or the number or amount of
required information items.

Requirement 3: Mapping the CBP to executable processes. The distributed execution
of a CBP starts with a common process model that all partners share and that is business
oriented. From this model every partner extracts those parts that he has to execute and
augments them with arbitrary information he needs for execution, e.g., refinements of
process sub-parts or execution context parameters [Gr06]. Thus the used modelling

1 E.g. ATHENA IP (http://www.athena-ip.org/), ArKos (http://www.arkos.info/), R4eGov IP
(http://www.r4egov.eu/), Interop NOE (http://www.interop-noe.org/).

88

language should be able to transfer the CBP from business level into an IT-oriented
workflow model on technical level like e.g. BPEL.

Requirement 4: Support of the data flow. It is important that the data flow of the
involved partners of a CBP can be represented by the modelling language [KKS04].
Especially a description of the input needed from partners in order to execute their
process parts is necessary.

Requirement 5: Support of organizational units and roles. Because different partners
are involved in a CBP, it is important to describe the organizational units with the
communication and reporting relationships within the CBP. Furthermore, the role
concept defines the requirements profile of an organizational unit, particularly necessary
for workflow applications. The term “role” describes a certain type of organizational unit
with clearly defined qualifications and skills. Thus, the modelling language should be
able to describe the different organizational units and roles of the partners within the
CBP [KKS04]. The definition of roles also offers to associate activities with roles.
Moreover, this association can further be managed by introducing, for example,
separation of duties and the management of roles can further be managed by, for
example, introducing delegation and revocation of rights and duties.

Requirement 6: Support of the analysis of the CBP. Collaborative business process
analysis denotes all actions that aim towards measurement and examination of running
and finished collaborative processes with the goal of discovering optimization potentials.
Once found, such a potential can be realized by changing the process model in the
modelling phase of the next cycle pass. Thus, the modelling language should support the
analysis of a CBP [MSW06].

Requirement 7: Support of semantic annotation. Ontologies are a very popular
concept and sometimes commonly used for different purposes. However, here we
require a common set (dictionary) of terminologies, a set of relations between terms and
their transformations to private processes/terminologies. This includes the possibility of
transforming process descriptions (models) from one language into another [HW06]. It
also includes the possibility of using the set of terms and their relations for modelling.

3. Concepts to support CBP modelling

In the previous section requirements for collaborative modelling have been discussed. In
this section we present concepts that have been developed for supporting CBP
modelling. Some of these concepts ease the modelling (e.g. interaction patterns), others
are directly focused on CBP modelling requirements (e.g. the concept of public, private
and global views aims to keep private information private). In Section 4 we then discuss
some of the most important modelling languages for CBPs and check both, if they fulfil
the requirements presented in Section 2 and which of them support which concepts
presented in this section.

89

An increased competition forces organizations to concentrate on core competencies and
to collaborate closely yet flexibly with other organizations. This is true not only for
enterprises, but also for public administrations. Thus, methods are required to describe
and automate cross-organizational business processes in an efficient manner. In the last
decade, the area of cross-organizational processes was investigated intensively, e.g. Van
der Aalst2, Petri Nets3, workflow research4 and has been by various research Projects,
e.g. ArKOS5, ATHENA6 and Interop NOE7.

Van der Aalst [Va99] reviewed various forms of interoperability and their usefulness in
the context of E-commerce. There he identified the following five forms of realizing
interoperable systems by enacting cross-organizational business processes: Capacity
sharing, Subcontracting, Chained execution, Case transfer, Loosely coupled. For
facilitating the modelling of CBP, van der Aalst also described the Public-To-Private
(P2P) approach, which provides the means to specify a common public workflow, to
partition it according to the organizations involved and to allow for private refinement of
the parts by the organizations, based on a notion of inheritance [VW01]. The P2P
approach guarantees that the private workflows of the participating organizations satisfy
the public workflow as agreed upon. He also described a top-down (or “outside-in”)
approach to come from global processes to private processes.

Schulz and Orlowska’s model is different from 1-tier peer-to-peer model and 2-tier
private-public model. They stress that the proposed model framework keeps a minimal
set of workflow-relevant data and protocol information, in such a way the workflows can
be reused and their privacy be maintained.

Greiner et al.’s work [Gr06] describes the designing and implementing of cross-
organizational business processes including different levels of technical detail: the
business level, technical level and execution level. They identify how the mappings and
transformations are needed among private process, view process and “global” process
among the different levels. The business level models illustrate the organizational
business aspects as a prerequisite for the successful technical integration of IT systems
or their configurations. The technical model derived from the business level model
secures the technical realization of the process integration and represents the bridge to
the process execution.

Recent research efforts in CBP design were accompanied by the upcoming of new SOA
standards and related concepts like Web Service Choreography and Web Service
Orchestration. As an outcome, three major types of models supplementing cross-
organizational businesses can be observed: First, a “big picture” of the overall CBP, also
called global process model, that displays all organizations involved in the CBP and their
interactions. Second, models of so called private processes which are executed inside an

2 http://is.tm.tue.nl/staff/wvdaalst/
3 http://www.informatik.uni-hamburg.de/TGI/PetriNets/
4 http://www.workflow-research.de/
5 http://www.arkos.info/
6 http://www.athena-ip.org/
7 http://www.interop-noe.org/

90

individual organization and should not be published (completely) to collaboration
partners; nonetheless, they contain some activities that contribute to the CBP. And third,
public processes – also called business process stubs - that display only those parts of the
private processes relevant for the interaction with the other organizations. The same
model types are, however, described differently depending on the research community
that uses the model type. For example, Schulz and Orlowska [SO02] also proposed a 3-
tier workflow model for cross organizational workflow that captures private partner
workflows, workflow-views and coalition workflows. In the following, we shortly
describe 7 concepts that in our perception represent the most relevant concepts to be
captured in CBP design.

Distinguishing between models for private, public and global processes

As mentioned before, to describe and automate collaborative processes in the last years
three different types of process models were introduced [Gr06] [An03]: Private, public
and global process models. A private process model is described from the viewpoint of
an individual organization. Though it may contain activities that represent interactions
with other organizations, it is developed for internal use and thus may contain
confidential information to be hidden from other organizations. A public process model
is also described from the viewpoint of an individual organization. It describes the
interaction of one organization (e.g. Organization A) with one (B) or more (C) partner
organizations. It describes all activities of A being part of this interaction (e.g. “Send
RFQ Message to B”, “Receive Quote Message from C”) and the causality of these
activities. One way to create a public process is to derive it from a corresponding private
process by abstracting all information from it that should be hidden from partner
organizations. A global process model describes interactions between two or more
organizations from a global view point [KL03]. It captures all allowed interactions
between all partners involved in the collaboration. Thus, while the public process of A
only captures the interactions between the organizations A and B as well as the
interactions between A and C, a global process model could contain additionally the
interactions between B and C.

While more technical definitions [Bu02] of public processes focus on digital message
exchanges, on a more conceptual level interaction models can also describe material
exchanges as well as the place and time of such exchanges. A process can be seen as the
combination of various organizational dimensions, e.g. the dimensions function,
organization, data, output and control [Sc98]. A function represents a business activity,
the organizational view describes departments and roles involved in the activity, data
and output describe digital and material entities consumed and produced by functions
and the control flow combines these views and puts the functions in a timely order.
Public processes can be seen as interfaces of private processes and should contain all
information necessary to enable the interaction of different private processes. Therefore,
besides the sequence of functions contained in an interaction, public processes also have
to display information regarding the exchanged data (e.g. which structure an exchanged
message has), the goods and services exchanged as well as the organizational
departments and roles involved in the interaction.

91

The concept of controllability

In contrast to public views that are used to offer insight into own private processes, a
recent approach has been developed within the concept of controllability [Lo06].
Although this approach has been developed for services (and thus for the execution
layer), it can be adapted to the conceptual layer as well. Intuitively, controllability means
that a workflow can interact properly with another workflow. In order to detect
controllability, a strategy for the own workflow is generated. A strategy describes a set
of workflows that could interact with the own workflow. A strategy, usually, is an
automaton, which then is sent to the partner. Using this automaton, the partner can check
if his own workflow is a proper partner to the other one.

Dividing global process models in Swim-lanes

A swim-lane is a concept for partitioning process models in various subsets, where each
subset is executed by one specific actor or organization. Swim-lanes clearly indicate who
has the responsibility for carrying out a particular activity or subset of the process.
Parallel lines divide the process model into lanes that group activities of the process
model by resource definitions, roles, classifiers, organization units or locations. Lanes
are arranged either horizontally (rows) or vertically (columns) to divide the process
model into logical areas or partitions.8 Clear distinctions can be made between the
processes within an organization unit (within a lane) and those process steps where
interactions occur (across lanes). Swim-lanes can contain other swim-lanes which are
called child swim-lanes. From a process management perspective, swim-lanes are also
used to depict ownership or responsibility of all activities and processes within those
swim-lanes. There are a lot of modelling methodologies that use the concept of swim-
lanes as a technique to organize activities and to structure the layout of models in order
to illustrate different functional capabilities or responsibilities. Swim-lanes are used in
UML activity diagrams to logically group activities that correspond to a particular object
as well as in the BPMN.9 Further on, the concept can be used in EPCs in order to divide
additional information like data or responsible persons from the current process flow
[KKS04]. The use of swim-lanes in the context of SAP Business Scenario Maps10 aims
to indicate how enterprises can collaborate with each other to document the added value
potential using a well understandable structure. The swim-lane concept can be used to
structure process models. However, the concept does not provide a methodology to
model processes. Note that one swim-lane, e.g. the swim-lane for organization A, can
also be interpreted as the public process of organization A, since it describes all public
interactions that this organization is involved in.

8 Object Management Group (OMG): BPMN 1.0 Specification, 2006, http://www.bpmn.org
9 UML. http://www.uml.org/
10 SAP. Sap business maps. Technical report, SAP AG, http://www.sap.com/solutions/businessmaps/c-
businessmaps/, 2004.

92

Interaction patterns

The interaction and communication between different public administrations can be very
complex. Even a single communication action within a collaborative process can have a
great range of formats, structures and contents. Interaction patterns try to classify
messages and to define typical structures based on these classifications. Most of the
research that has been done for interaction patterns deals with processes on the execution
layer [BDO05] [DP06]. Patterns are used for example to transform BPEL processes into
Petri nets in order to analyse the Petri net models and also in order to analyse the
controllability of a process.11 Due to the transformation ability between Petri nets and
BPEL, it is possible to use the same patterns that exist for BPEL also for the conceptual
layer.

On the conceptual layer there exist several transformations between the different
languages, e.g. between EPCs and Petri nets. Service interaction patterns have mainly
been developed at the Queensland University by Barros, Dumas and ter Hofstedte
[BDH05] [BDB05].

Visualization of static interfaces

The trend of cooperation intensifies the need for modelling-methods that consider
explicitly the interfaces between more companies participating in one global business
process. Generally, an interface, according to the DIN 44300, is defined as an intended
or real crossover of the boundary between two units of a same kind respecting the agreed
rules for the delivery of data or signals [DIN88]. In object-oriented approaches, the term
interface denominates the totality of the public methods of an object [Ha01]. Whereas
e.g. the EPC method provides edges and connectors for defining the control-flow, until
now, there has been no methodical support for the representation of the crossover
between single functions. If two functions that should be processed sequentially reside in
two organisations that are separated from each other, the business-process rules that
would ensure a smooth transfer of a control-flow from one organisation to another, have
to be defined [HK02].

In practice it has been shown that first approaches to model and visualise the cooperative
business-processes such as e.g. the SAP AG’s C-business maps show a very high
aggregation level and simply express the existence of a process-interface without
providing a real technical added value. Although the necessity for introducing process
interfaces, e.g. in the context of the modelling of the services, has already been detected,
a detailed conceptual specification of a transfer from one process partner to another
remained undone [KZ03]. A suggestion for a concrete configuration of the conceptual
specification of an interface was presented by Kupsch and Klein [KKS04]. In order to
get a compact, intuitively understandable visual representation of interfaces in
association with e.g. EPC, an interface-diagram is recommended for its conceptual
specification. It contains, depending on the company’s goals that the entire process

11 http://sky.fit.qut.edu.au/~dumas/ServiceInteractionPatterns/patterns.html

93

supports, substantial dimensions that are necessary for a successful performance of the
processes. For interfaces of each collaborative process, an appropriate diagram is
created, that is identified through the common name of the process type. The functions
that precede or follow an interface make part of a partner-individual pool. In order to
ensure transparency, the name of an appropriate function/process module is introduced,
depending on the aggregation level applied. Each module can then be specified in
various dimensions. Kupsch and Klein propose the dimensions of time, flexibility, place
and output for each interaction module [KKS04].

Semantic annotation of modelling language

Many problems associated with CBP are semantic in nature, coming up when describing
resources to be exchanged and knowledge to be shared. Hence, if a more automated
solution is required, solutions that describe precisely the models of CBPs, resources and
information are needed.

In the last years these problems have been studied also in the field of web services to
support automatic discovery and composition of services. From this research, a number
of results are now available which (partly) are also applicable for CBP modelling. These
results are mainly based on the concepts of reference ontology, semantic annotation and
semantic services. The basic idea is that resources must be annotated through a reference
ontology, i.e. a structured glossary of concepts shared by a community. The annotated
resources are stored in repositories and can be discovered through searching algorithms
and composed through reconciliation procedures. In general, in CBPs two different
aspects of business process models can be identified that are to be annotated
semantically: Elements describing the structure of the process model, e.g. control flow
elements like logical connectors, and elements describing information, material or other
artefacts that are objects used by the process activities, e.g. Business documents, material
that is to be sent, money that is to be received, etc. Further on, in the context of CBPs,
use of semantic annotations can broadly be categorized into

• Semantic annotation for enabling horizontal matchmaking. Horizontal refers to the
fact, that the models that are to be matched are on the same level of abstraction. For
example, government agency A could provide a semantically annotated EPC model
and agency B tries to match its own EPC model with the model of A.

• Semantic annotation for enabling vertical model transformation or
synchronization. This refers to annotations aiming to describe exactly the elements
of a model for connecting it with a model on a different level of (technical)
abstraction. For example, the elements of an EPC could be annotated in such a way,
that their relation to programming language constructs would be clear.

For the sake of horizontal matchmaking, Thomas and Fellmann [TF06] describe a
concept to annotate (graphical) EPC models with graphical OWL models.
Correspondingly, they describe how theses models can be described with XML
representations of both languages, e.g. with EPML and RDF.

94

Representing long running transactions

Many real-life CBPs have high requirements regarding consistency and can be running
over long periods of time. Especially in distributed environments, it is difficult to control
and ensure the consistency of data belonging to one business process. To make this task
easier, in recent years the concept of transactionality was taken from the field of
database research and was applied to business processes. On the one hand standards for
the execution of consistent transactions were created. On the other hand, the need to
display secure transactions in business models was met and first modelling languages
were offered that contain elements to depict transactions. In general, classical (database)
transactions operate through a small period of time and they are characterised by the
ACID-principle (Atomicity, Consitstency, Isolation und Durability).

It attests that a sequence of activities executed on one system can be seen as a single
transaction, if it satisfies following specifications: either all activities are effectually
completed or they are eventually not started (Atomicity), the activities cause a consistent
system state (Consistency), the activities do not effect any operations that are not part of
the transaction, unless this operation is explicitly visible (Isolation), and the sequence is
not cancelled by a system error after its execution (Durability) [LR97]. The most popular
model for atomic behaviour implementation is the 2-Phase-Commit-Protocol (2PC).
However, this includes the locking of the resources affected by the transaction, i.e. the
resources are locked at the beginning of a transaction and can not be changed by another
transaction until the end of the actual transaction [LR00].

Business process transactions have to be able to cover not transactional programs, long
lasting activities and human activities. Such transactions are also called Long-Running
Business Transactions (LRT) or Business Transactions. These transactions are supported
by the Open Nested Transaction Model and also by the Sagas [GMS87] transaction
model [LR97]. Within atomic transaction models (e.g. 2PC) a rollback occurs before the
transaction’s closure. In case a transaction should not be completed, the locking is taken
from the resources. This means that the resources were not changed during the
transaction process. However, a compensation action is applied to the transaction
activities after the transaction’s closure, i.e. after the resources have been changed. A
compensation sphere is an activities sequence, which either has to be completely
executed or completely revised (compensated). For that purpose a compensation activity
is assigned either to the single activities or to the whole sphere. This compensation
activity is executed, when a transaction has to be rolled back or interrupted [LR97].
Since interoperability should start on the design level and important transactions should
be defined by process designers, modelling languages suitable for R4eGov should
support advanced transaction mechanisms spanning various parties. BPMN12 is one of
the few languages who include this, and will be presented here as an example. For being
able to represent long running business transactions, languages should be able to
represent compensation spheres and corresponding compensation activities. The
difficulty of this endeavour arises by fact that these elements can appear in various

12 Business Process Modelling Notation Specification, OMG 2006,
http://www.bpmn.org/Documents/OMG%20Final%20Adopted%20BPMN%201-0%20Spec%2006-02-01.pdf.

95

models and in different levels of detail. For example, the public process interfaces (e.g. 2
different models) of organization A and B can depict elements belonging to the same
compensation sphere. Moreover, since transactions can be nested they have to be
modelled on various process levels, e.g. in top-processes and underlying sub-processes.

4. Suitability of current standards for CBP modelling

Although there is an abundance of business process modelling languages, only a few
were applicable for CBP modelling in practical cases. One major requirement of
stakeholders in practice is that business process modelling languages should be widely
used in industry and in commercial products. This is the case for EPCs and UML. UML
is of additional importance because there is a strong organization behind UML pushing
it. This is also the case for BPMN and we have therefore selected it for a more detailed
introduction in this section. Another reason of importance is the ability of formal
analysis, optimization and verification, which is the case for Petri nets. Thus, in this
section we analyse the modelling languages UML, BPMN, EPC and Petri nets in more
detail. Note that we selected those for languages from a list of 14 well known standards
(cp. [FMZ07]), but due to space restrictions, we omit the other languages here.

If we consider that the requirement to keep private information private can be fulfilled
by publishing public information of the process only, then this can be done by using a
highly abstracted model of the private workflow. “Highly abstracted” in this context
means private submodels, i.e. parts of the private workflow, that are just published as,
for example, one activity. This is closely related to a hierarchical structure of the model,
where on the top level of the hierarchy there is a very abstract presentation of the
workflow including all interactions with collaborative workflows and on lower levels
there are refinements of this abstraction. However, in order to keep private information
private, only the top level needs to be published. The concept of hierarchy can be applied
to all four languages. There are in particular broad theories of hierarchy for EPCs and
Petri nets. The formal specification of interfaces is still a problem in all modelling
languages. Petri nets come with formal semantics. The interface of a Petri net model
usually is specified by places that act as channels for message passing or document
exchange. The types of data to be exchanged can formally be specified using coloured
Petri nets. However, even for Petri nets there is no special (graphical) element that
models an interface. UML and in particular BPMN and EPC are more powerful in terms
of modelling interfaces having special modelling elements for interfaces and triggering
events. They, however lack formal semantics. The mapping to executable processes is
possible for all languages. In particular, mappings from all for modelling languages to
BPEL exist. However, this cannot be done purely automatic but with computer support.
For BPMN a mapping to BPEL is already contained in the languages specification and
BPMN elements are matching well with BPEL concepts, for example both languages
support elements for distributed transactions. EPC are also a suitable basis for BPEL
transformations (cp. [ZM05]) and the core elements of EPCs (functions and events) map
to the core elements of BPEL (web service invocations and various types of events).
Petri nets can be executed even without mapping to BPEL due to its formal semantics.
The BPMN specification already contains a detailed description of transformation to

96

BPEL. Data flow is fully supported by Petri nets due to their ability of specifying very
complex types (for coloured Petri nets) of tokens, i.e. the data or information are
modelled explicitly and the tokens are evaluated in order to compute the occurrence of
certain events. In the other languages data flow is not directly supported (no data flows
through the process models) but they offer modelling elements for different types of data
(data bases, documents, etc.), which can be associated with activities, such that the flow
and the change of data can be modelled indirectly. All languages lack on explicit support
of involved roles. However, EPCs are suited here because of their ability to model
organizations and to specify who is in charge of certain activities. There is no direct
support of modelling resources (e.g. staff members) in Petri nets but this can be done by
modelling resource places and marking them with corresponding tokens. The ability to
analyze collaborative business processes requires formal semantics. Petri nets have a
formal semantics per definition. There has also been done work on EPCs, UML and
BPMN in order to introduce formal semantics to those languages. There has been done
work for semantic annotation for EPCs. However, to our knowledge there is no other
approach on semantic annotation for the other selected languages.

Table 1: Evaluation of selected business process modelling languages
regarding the requirements of Section 313

 UML Petri nets BPMN EPC

Keep private information private x x x x

Specify the interfaces formally - o - o

Mapping the CBP to executable processes x x x o

Support of data flow o x o o

Support of involved roles - o - x

Support of analysis of the CBP - x - x

Support of semantic annotation - - - o

For all four languages the concept of Swim-lanes is applicable. Though use of swim
lanes is more common for BPMN and UML, they are as well applied to EPC and Petri
nets. As discussed above for the requirement of keeping private information private, in
general for it is possible for all process languages to derive global and public processes
from private processes. However, to our knowledge explicit approaches for this kind of
transformations exist for EPCs and Petri nets only. Concepts for visualization of static
interfaces was described for the EPC [KKS04] and makes most sense for business
oriented languages, e.g. the more formal Petri Nets are less suitable for such
visualizations. Among the four languages, semantic annotations of business process
modelling languages so far exist only for the EPC [TF06]. Long running transactions
are supported explicitly only by BPMN. The concept of controllability is closely related
to the concept of private and public workflows. It has been developed for Petri nets but
can certainly be applied to the other languages as well. Interaction patterns mainly

13 Criteria is satisfied (+), critertia is partly considered (o), criteria is not supported (-)

97

exist for Petri nets and BPEL but can certainly be developed for the other languages as
well.

Table 2: Evaluation of selected business process modelling languages
 regarding the concepts of Section 3

 UML Petri nets BPMN EPC

Swim-lanes x o x o

Private, public and global processes o x o x

Visualization of static interfaces o - o x

Semantic annotation of modelling
languages

- - x x

Representing long running transactions - - x -

Controllability o x o o

Interaction patterns o x o o

5. Summary and future research

To describe and analyse existing approaches to model CBPs we first described
requirements distinct for cross-organizational scenarios. Then state of the art concepts
for modelling the conceptual layer of collaborative processes were described, including
swim-lanes, semantical enriched processes, interaction patterns, and the distinction
between public, private or global views, which are supplemented by the controllability
approach. The latter approach, however, is not ready for application yet and has to be
tested sufficient for real processes. Moreover, it has been suggested for business process
execution and not yet applied to conceptual models. Choosing from a list of 14 well
known standards, we selected and analysed EPC, BPMN, UML and Petri Nets based on
the gathered requirements. Due to their explicit support of business elements, EPC and
BPMN seem to be the most suitable candidates for modelling CBPs. However, for
BPMN an established commercial tool is missing, which do exist for EPCs (e.g. the
ARIS Toolset). Petri nets are more appropriate for formal analysis of business processes.
However, besides the missing commercial tool, there is also a lack of modelling power
in terms of different available process elements, such as organizational diagrams,
interfaces etc. Nonetheless, Petri nets have implicit formal semantics and are able to
model objects flowing through a process. There exist several enhancement and
transformation approaches for EPCs, e.g. EPC models can be directly transformed into
executable formats, such as BPEL or enriched with semantic annotations. Thus, our
future research will concentrate on applying and extending BPMN and EPC for cross-
organizational business process modelling.

The work published in this paper is (partly) funded by the E.C. through the R4eGov
project. It does not represent the view of E.C. or the R4eGov consortium, and authors are
solely responsible for the paper's content.

98

Literature

[An03] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, I. and Weerawarana, S. (2003). Business
Process Execution Language for Web Services – Version 1.1. 2003.

[BDB05] Barros, A., Dumas, M., Bruza, P.: The Move to Web Service Ecosystems. BPTrends
Newsletter, Volume 3, Number 12, December 2005.

[BDH05] Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns: Towards a
Reference Framework for Service-based Business Process Interconnection. Technical
Report FIT-TR-2005-02, Faculty of Information Technology, Queensland University
of Technology, Brisbane, Australia, March 2005.

[BDO05] Barros, A., Dumas, M., Oaks, P.: Standards for Web Service Choreography and
Orchestration: Issues and Perspectives. In Proceedings of the Workshop on Web
Service Choreography and Orchestration for Business Process Management, Nancy,
France, Springer Verlag, September 2005.

[Bu02] Bussler, C., Public Process Inheritance for Business-to-Business Integration. In
Buchmann, A. P., Casati, F., Fiege, L. and Shan, M. C.: Technologies for E-Services –
Third International Workshop TES 2002, Hong Kong, 2002.

[DIN88] Deutsches Institut für Normung e.V.: DIN 44300 : Informationsverarbeitung :
Begriffe. Teil 1. Berlin : Beuth, 1988.

[DP06] Decker, G., Puhlmann, F.: Formalizing Service Interactions Extended version of a
paper to be published in the 4th International Conference on Business Process
Management (BPM'2006), Vienna, Austria, September 2006.

[FL03] Frank, U., van Laak, B.: Anforderungen an Sprachen zur Modellierung von
Geschäftsprozessen. Arbeitsbericht des Instituts für Wirtschafts- und
Verwaltungsinformatik der Universität Koblenz. Http://www.uni-
koblenz.de/~iwi/publicfiles/Arbeitsberichte/Nr34.pdf, Stand: 26.2.2004.

[FMZ07] Freiheit, J.; Matheis, T., Ziemann, J.; Definition of static and dynamic models of
collaborative workflow interoperability. Deliverable D4.1, R4eGov – Towards e-
Administration in the large. IST-2004-026650.

[GMS87] Garcia-Molina, H., Salem, K.: Sagas ; in ACM SIGMOD; 1987; San Francisco; pp.
249-260, 1987.

[Gr06] Greiner, U., Lippe, S., Kahl, T., Ziemann, J., Jäkel, F.W.:Designing and implementing
cross-organizational business processes - description and application of a modelling
frame- work. In Proceedings of the Interoperability for Enterprise. Software and
Applications Conference (I-ESA 2006).

[Ha01] Hansen, H. R.: Wirtschaftsinformatik I. 8. Auflage. Stuttgart : Lucius & Lucius, 2001.

[HK02] Herrmann, K.; Klein, R.: Effizientes Schnittstellenmanagement : Erfolgsfaktor für die
E-Collaboration. In: IM – Information Management & Consulting Nr. 4, 2002.

[HW06] Herborn, T., Wimmer, M.: Process Ontologies Facilitating Interoperability in
eGovernment - A Methodological Framework. In: Proceeding of the Workshop on
Semantics for Business Process Management. p.76-88, 2006.

99

[KKS04] Klein, R., Kupsch, F., Scheer, A.-W.: Modellierung inter-organisationaler Prozesse mit
Ereignisgesteuerten Prozessketten. In: Scheer, A.-W. (ed.): Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 178, Saarbruecken, 2004.

[KL03] Khalaf, R., Leymann, F.: On Web Services Aggregation. In: Benatallah, B., Shan, M.
(eds.): Technologies for E-Services. Lecture Notes in Computer Sciences 2819,
Springer, Heidelberg, 2003.

[KZ03] Klein, C.; Zürn, A.: Einsatz von Prozessmodulen im Service Engineering :
Praxisbeispiel und Problemfelder. In: Bullinger, H.-J.; Scheer, A.-W. (Hrsg.): Service
Engineering : Entwicklung und Gestaltung innovativer Dienstleistungen. Berlin [u. a.]:
Springer, 2003, pp. 737.

[LR00] Leymann, F.; Roller, D.: Production Workflow - Concepts and Techniques PTR
Prentice Hall, 2000.

[LR97] Leymann, F.; Roller, D.: Workflow based applications, IBM Systems Journal 36(1) pp.
102-123, 1997.

[Lo06] Lohmann, N., Massuthe P., Stahl Ch. And Weinberg D.: Analyzing Interacting BPEL
Processes. Intern. Conf. on Business Process Modelling (BPM 2006). 2006

[MSW06] Matheis, T., Simon, B., Werth, D.: Process-Based Performance Measurement of
Networked Businesses. In: Cunningham, P.: Cunningham, M. (Hrsg.): Exploiting the
Knowledge Economy - Issues, Applications, Case Studies, eChallenges e-2006
Conference, Barcelona, 25.-27, pp. 20-28. (ISBN: 1-58603-682-3), Oktober 2006.

[Pe62] Petri, C.A.: Kommunikation mit Automaten. Dissertation, Technische Universität
Darmstadt. Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2, 1962.

[Sc98] Scheer, A.-W., ARIS – Vom Geschäftsprozess zum Anwendungssystem. 3. edition.
Springer, Berlin, 1998.

[SO02] Schultz, K., Orlowska, M.: Towards a cross-organizational workflow model, Proc. 3rd
IFIP Conf. on Infrastructures for Virtual Enterprise, May 1-3, 2002, Sesimbra, Kluwer.

[TF06] Thomas, Oliver; Fellmann, Michael: Semantische Ereignisgesteuerte Prozessketten. In:
Schelp, Joachim; Winter, Robert; Frank, Ulrich; Rieger, Bodo; Turowski, Klaus
(Hrsg.): Integration, Informationslogistik und Architektur : DW2006, 21.-22. Sept.
2006, Friedrichshafen : Proceedings. Bonn : Köllen, 2006 (LNI, P-90), S. 205-224.

[Va99] Van Der Aalst: Process oriented architectures for electronic commerce and
interorganizational workflow. Information Systems,24(8):639 – 671, 1999.

[VW01] Van der Aalst W.M.P., Weske, M.: The P2P Approach to Interorganizational
Workflows, Proceedings of the 13th International Conference on Advanced
Information Systems Engineering, p.140-156, 2001.

[WA04] Wombacher, A.; Aberer, K.: Requirements for Workflow Modeling in P2P-Workflows
derived from Collaboration Establishment; in Proc. 1st Intl. Workshop on Business
Process Integration and Management (BPIM 04), Zaragoza, Spain,IEEE Computer
Cociety Press, ISBN: 0-7695-2195-9, p 1036-1041, 2004.

[ZM05] Ziemann, J.; Mendling, J.: Transformation of EPCs to BPEL – A pragmatic approach.
7th International Conference on the Modern Information Technology in the Innovation
Processes of the industrial enterprises, Genoa, Italy, 2005.

100

Using BPEL as a workflow engine for local enterprise
applications

Nicolas Biri, Pascal Bauler, Fernand Feltz, Nicolas Médoc, Céline Thomase

Centre de Recherche Public – Gabriel Lippmann
rue du Brill 41,
4422 Belvaux
Luxembourg

{biri, bauler, feltz, medoc, thomase}@lippmann.lu

Abstract: This paper gives an overview on the integration of a BPEL workflow
engine into an enterprise application in order to decouple business processes and
application code. The technical complexity of this innovative approach is hidden
by means of Model Driven Software Development (MDSD) techniques and several
component frameworks. By referring to a research project realised in collaboration
of the Centre de Recherche Public – Garbiel Lippmann and the Luxembourg
National Family Benefits Fund (CNPF), with the overall goal to optimise the IT
environment of the CNPF, this paper shows how the proposed approach is
particularly adapted to agile and iterative development projects.

1 Introduction

The project presented in this paper is realised in collaboration with the Luxembourg
National Family Benefits Fund of Luxembourg (CNPF (Caisse Nationale des Prestations
Familiales)). This administration is in charge of the payment of family allowances for
people working in Luxembourg. During the last few years, the CNPF has started a
modernisation and optimisation process highly relying on information technologies.
There are mainly two reasons for this process: First of all, the modernisation is
mandatory to enable the handling of the growing workload and the complexity of the
underlying treatments, which mainly result from the increasing number of borderline
commuters and the extension of the European Union. A second reason for this
modernisation effort consists in offering adequate e-government solutions improving the
quality of service offered to the citizens and so increasing the interest of the population
in modern computer technologies. Due to the geographical situation of Luxembourg and
the high number of borderline commuters, complex cross-administration and cross-
country solutions have to be designed and data exchange protocols have to be specified,
in order to enable the access to the heterogeneous IT environments of the different
neighbouring countries. Strategic investment in modern IT solutions is justified, as the
workforce of the CNPF basically remained unchanged, although the number of
commuters significantly increased over the last decade. After some preliminary and

101

internal discussions, the Centre de Recherche Public – Gabriel Lippmann got involved in
the modernisation process [Ba06, HF06], to design innovative solutions. In this paper we
present a part of this modernisation project by mainly focusing onto the design of
enterprise solutions handling the computations of family allowances for commuters. We
show how modelling technologies combined with agile management concepts,
significantly help to successfully accomplish this project and to move into production.

Considering the short development phases and the numerous changes required in the IT
environment of the CNPF, we heavily rely on the SCRUM concepts [SB01] to drive the
project. This approach is well adapted for projects with short deadlines running in an
evolving context. The key principle of this method inspired by the agile development
method, is to define priorities on the requirements and to establish short incremental
development cycles (called sprints), each of these containing a few goals to achieve
(called backlogs). Several operational and functional tests have to be passed before a
development cycle can be closed. Furthermore, a development cycle is usually ended by
a practical demonstration involving the partner and the end-user. In the particular context
of the CNPF we consider 2 types of demonstrations, either showing newly designed
business functionalities or discussing the progress in the specification protocol with the
neighbouring countries. This differentiation between operational and specification
results, is due to the need to collaborate with foreign development teams often relying on
the Waterfall model.

To take maximum advantage of the iterative development cycles introduced by the
SCRUM approach, the used technologies and development framework are selected
based on their compatibility with iterative development. This stresses the decision to
realise the application flow by means of executable workflows, in addition Model
Driven Architecture (MDA) and Model Driven Software Development (MDSD) are used
to generate technical and repeatable code segments and as a consequence, to improve the
overall development process.

From a technical point of view, a BPEL (Business Process Execution Language)
workflow engine is introduced to coordinate the core workflows and business processes
of the proposed solution. The common usage of BPEL engines consists in orchestrating
services (usually based on web-services) including handling of incoming messages,
message transformation and message routing. BPEL engines offer by default a message
centric approach, where the analysis of incoming messages determines further
treatments, either by initiating new processes or by passing progress information to
existing processes. Introducing appropriate MDSD frameworks, which hide technical
aspects of the overall solution, facilitates efficient usage of BPEL. The design decision
to build enterprise application architectures around a BPEL engine is justified as follows:

• The family allowances business domain is frequently adapted to political
decisions and legal changes, which results in regular changes of the underlying
business processes. By decoupling application code and application workflows,
maintenance and enhancement aspects can be optimised.

102

• Furthermore, decoupling of application workflows and code is especially
adapted to agile and incremental development projects. The IT teams can start
with simplified workflow skeletons, which are systematically enhanced and
adapted during the various development cycles of the project.

Below, these aspects are discussed in more detail. Section 2 presents the project context
with an overview of the proposed solution. In section 3, the orchestration solutions and
more precisely the BPEL specificities are exposed. The advantages and issues resulting
from the use of BPEL as a workflow engine in an incremental development process, and
its integration into our solution, are explained. This section also discusses some
technical aspects required to avoid de-synchronisation between BPEL workflows and the
application code. Section 4 explains how MDA technologies (Model Driven
Architecture) facilitate this synchronisation and how this technology fits with the agile
approach. Section 5 concludes this paper.

2 Project overview

2.1 Project working plan

The general project goal is to automate the computation of the family allowances for the
people working in Luxembourg. We distinguish the family allowances for Luxembourg
citizens on one side and for commuters on the other side. The complexity of the family
allowances results from a European decision saying that family allowances are
exportable. So each person working in Luxembourg, independently of his or her
residence country, is granted the Luxembourg family allowances. Furthermore the
citizens get the allowances from where they are the highest, either from the residence
country or from the working location. As in Luxembourg the allowances are higher than
in the neighbouring countries, the practical situation is somewhat simplified. As a
consequence, each family with incomes resulting exclusively from activities in
Luxembourg is treated as resident in Luxembourg. The situation is more complex for
families with incomes resulting from activities in different countries. The current
procedure consists in having the residence country pay the family allowances on a
monthly basis. The difference between the local and the Luxembourg’s allowances are
calculated twice a year and are directly paid to the citizen. As this process is error prone
and tedious, a first project goal is to replace this process in order to pay the allowances
on a monthly basis and to delegate eventual clearing operations to the back-end IT
systems. This improvement however requires an excellent collaboration between the
Family Allowances Funds of the neighbouring countries. Special political agreements
have to be established before facing technical burdens related to the heterogeneous IT
environments. These technical issues are discussed in detail in the following paragraph.

103

Due to the high increase of the number of commuters in Luxembourg, the CNPF noticed
in 2001 that they were no longer able to handle all the files manually. At that time,
roughly half of the commuters came from France. That justified the decision to tackle
the French commuters in priority and to start discussions with French allowances offices.
An interesting factor was that the French Family Benefits Fund is organised in a semi-
centralised way, with every region relying on an independent family fund, however all
IT services being provided globally by the French National Benefit Fund (CNAF).

After some delays, the CRP-GL got involved to work on an innovative approach to sort
out these issues and to work out a project plan to tackle the commuter problem. To find
an answer to this tricky situation, a two phases plan was defined. The first phase had to
quickly realise a production ready system, able to handle the French border commuters.
The proposed solution imported family allowances data from the French local benefit
funds of Metz and Nancy and computed on a semestrial basis the difference between
French and Luxembourgish allowances. Development started beginning 2005 and this
semi-automated solution went into production in August 2005. It was extended to
Belgian and German commuters in 2006. This phase, which can be considered as a
preliminary work, is not being discussed in detail in this paper. The second project phase
consists in developing an extendable IT system able to offer fully automated handling of
the French commuters. This solution must perform the monthly computation of the
family allowances and synchronise data between Luxembourg and French Family Funds.
The results of this second project phase are currently in a pre-production phase at the
CNPF and production is scheduled for October 2007. This modular system is supposed
to be extended in order to handle all Luxembourgish commuters within a 2 years
timeframe.

2.2 Solution description

As mentioned above, this chapter puts the focus onto the second project phase. The
proposed solution had to show operational results within 12 months, while it had to
remain extendable to handle on a mid-term basis the family allowances for all neighbour
countries. Another key aspect of the proposed solution was to offer extensive
verification and validation mechanisms, in order to avoid incorrect or double payment of
the family allowances.

The error detection is particularly tricky as the French and Luxembourgish Family
Allowances Funds are involved. An extensive exchange protocol, composed of 3 sub-
components, had to be specified and implemented to automatically handle those error
conditions:

• The first part details how master data concerning the citizens involved in the
cross-border processes are exchanged between the French and Luxembourg
Family Benefits Fund. This section of the protocol specification also defines
the active process for a given citizen, with eventual suspensions of the
payments for a given month.

104

• The second part consists in a detailed error handling protocol. When
abnormal situations are detected, the family funds are informed and the
payments are suspended. Dedicated message exchanges have been defined to
deliver status updates to the peer country in order to avoid incorrect
payments. Due to the international character of these processes, it is indeed
hard to get badly paid money back, especially if the involved citizens no
longer live in the involved countries.

• The last part of this communication protocol handles normal/regular data
exchanges between the French and Luxembourgish benefits funds. The
exchanged data inform the peer country of the paid allowances and define
the appropriate feedback.

During this project, a close collaboration between the French and Luxembourgish IT
teams is mandatory in order to overcome organisational constraints. In addition, the
communication protocol has to take the differences between the French and the
Luxembourgish IT systems into account and to guarantee compatibility with both
environments. Luxembourg has the advantage of being able to start with a new IT
system with limited historical data and no technical constraints. The French environment
is mainframe based and in production since several years. All new developments have to
be carefully thought through, realised and tested. By no means new developments may
negatively impact the running processes and the daily operations. The different design
methodologies adopted by the two development teams also has consequences onto the
working plan and the project schedule. The Luxembourg team uses agile development
approaches based on the Scrum concept, whereas the French team uses the classical
waterfall approach. As a consequence, the data exchange protocol has to be specified
and implemented following a waterfall approach. As a consequence this sub-task has to
be decoupled from the back-end system design.

This second project phase started in September 2005 and, since March 2007, is
progressively moving into production stage.

Below we concentrate on the Luxembourgish part of the cross-border project, by
exposing the design decision, the business processes and data manipulations at the
CNPF. The core application is built around the validation workflow, which consists of
several controls depending on the particular situation of the involved citizens and the
corresponding allowances. The main workflow collects the appropriate data, coordinates
the validation process and computes the appropriate results.

105

3 Integrating BPEL in a local application

3.1 Motivation

The first definition of the business processes are realised by means of EPC (Event-
Driven Process Chain) ARIS diagrams in close collaboration with the CNPF business
analysts. The EPC diagrams are handed over to the project team and are manually
translated into BPEL workflows. We use a BPEL engine to handle workflow execution,
as it is an orchestration language for web-services, initially designed by IBM and then
standardised by OASIS. The language provides a way to describe the behaviour of
business processes enabling transactions with remote services and ensuring interactions
between them. The basic tasks of BPEL are service calls, message reception, message
filtering, conditional routing and a compensation mechanism to recover from external
failures. The processes are executed inside a BPEL engine, which offers management
functionalities like the creation and the termination of processes according to a basic
lifecycle mechanism.

Using a workflow engine to execute the underlying business processes provides an easy
way to separate the behaviour of a process from the rest of the business logic. Thanks to
this property, we can easily adapt a process to new requirements. Changing a test or
adding a service access to a process can easily be done as the workflow is clearly
separated from the rest of the code. Furthermore, most of the BPEL process editors
provide a graphical representation of the BPEL process. Even if these representations are
not normalized, they are informative enough to be used during discussions with non-IT
people at the CNPF.

The environment of the CNPF and the nature of the processes lead our choice towards
the BPEL solution. The use of BPEL is especially adapted when orchestrating fully
automated workflows without human intervention, running in a distributed IT
environment [Si05]. In our particular project context however, the prime goal of BPEL is
to coordinate local services and to ensure execution of business processes. As a
consequence several adjustments are mandatory to adapt the BPEL engine to our special
needs.

3.2 Benefits of BPEL combined with agile development

This section shows how, in an iterative development environment, BPEL workflows can
facilitate the definition of business processes. We want to emphasize, that a BPEL based
business process definition approach, is particularly adapted to small and incremental
development cycles. The defined business processes have to be generic and flexible
enough to follow the actual status of the underlying development of business
functionalities. In practice, business processes have to be extended on a regular basis in
order to integrate new business functions realised by the development teams.

106

Figure 1. Example process: the first steps

The first modelling task consists in defining an ARIS EPC skeleton of the underlying
business process. This initial BPEL process contains some place holders in form of wait
actions, which are progressively replaced over the various production cycles. The next
modelling steps consist in refining these processes. We distinguish between two kinds of
refinements:

• Refinements, which integrate newly implemented tasks and business functions

• Refinements which modify the initial process by adding new structural
elements in order to represent significant workflow changes

A typical example of these types of refinements of the BPEL workflow is given in
Figures 1 and 2. For a better readability, we use a graphical representation of the BPEL
processes. In Figure 1, we have the first version of the process, where potential external
calls are replaced by wait tasks. In the second step we use two new features: the control
task and a choice for the last step of the process. In the last step presented in Figure 2,
we introduce a loop on the different files controlling the received data and an error
handling. The left part of the “loop box” corresponds to normal behaviour; the right part
corresponds to the error handling.

This example shows that BPEL processes are well adapted to iterative enhancements
through short development cycles. The systematic refinement of the processes has two
advantages: the process can easily be adapted to only access available services and
though have testable workflows, and the multiple cycles of development give us many
opportunities to correct possible errors introduced in previous modelling phases.

Initiate

Assign

Control

Assign

Compute

Step 1

Initiate

Treat

Step 2

Assign

Receive

Launch
following
workflow

Relaunch
file

Block
File

Wait/Receive a
message

Assign a variable

Service call

Condition

Wait

107

3.3 Integration issues

As the BPEL engine is used in an unusual way to orchestrate local services inside an
enterprise application, we have to adapt the underlying architecture as well as the
behaviour of the BPEL engine to fit these special needs. The architectural changes and
adaptations are discussed in this section together with some best practices identified
during the modelling process of the BPEL workflows.

The BPEL standard heavily relies on web-services. All communication with the BPEL
engine relies on this technology, which introduces a certain performance overhead.
Extensive performance tests however showed that this overhead is marginal compared to
the underlying computations and as a consequence, the proposed solution mainly has to
try to optimise the number of required web-service calls.

Figure 2. Example process: the final step

Using a BPEL engine at the core of the enterprise application requires the development
of appropriate communication interfaces between the workflow engine and the other
parts of the project. We consider three types of communication:

• Communication of Data from the application to the BPEL engine: the
application server sends messages to the BPEL processes deployed as web
services on the BPEL server. These messages can either start a new process
or respond to an active process waiting for a specific event.

Initiate

Step 3

Assign

Receive

Launch
following
workflow

Relaunch
file

Block
File

Assign

Wait/Receive a
message

Assign a variable

Service call

Condition

Wait

Error handling

Loop

Treat

Assign

Error
treatment
request

Assign

108

• Message flow from the BPEL engine to the application: the BPEL server
accesses business functionalities deployed as web services on the application
server. We use a facade pattern [Ga97] to realise the interface between the
web services and the real implementation of these functionalities.

• Communication inside the BPEL engine: the main process dispatches
incoming messages to the appropriate BPEL sub processes. This is done
using the correlation feature offered by the BPEL language. Each sub
process is accessed as a web service by the main process.

The main difficulty in this collaborative context is to ensure coherency between the
processes related to the various actors in the communication. As the BPEL solution is
process oriented, it is message centric. This means that the behaviour of the processes
depends on the received messages and is not state-transition oriented. Consequently we
have to integrate a mechanism introducing this notion of state inside the processes. This
is done by means of a coordination component in charge of the synchronisation of the
application state and the BPEL workflow state. The proposed coordination component
can be divided into 4 parts:

1. A State Machine framework deployed on the application server. This
framework is used by the enterprise application to trace the expected state of
the BPEL process.

2. The coordination component offers query possibilities on the BPEL engine,
checking if the process states inside the application code and the workflow
engine are identical.

3. Automated handling of error conditions also relies on the coordination
component to restore consistent status at the application and the workflow
level. This error handling may result in rollback operations.

4. An event correlation module makes sure that incoming messages only
influence the concerned processes. For instance, a main BPEL process
catches all the incoming messages and dispatches them to the sub processes.
A special identifier determines the process instance concerned by a given
message. A sub process catches an incoming message only if it is actually
waiting for this particular type of message. This offers an additional degree of
protection and increases the reliability of the overall solution.

109

4 Model Driven Software Development and agile method

Model Driven Software Development (MDSD) is a core technology of the proposed
project. It helps to encapsulate most of the underlying technical aspects of the enterprise
application and to focus development efforts onto the business part. The UML based
platform independent model (PIM), describing the technical aspects of the project, is
enhanced by several stereotypes to obtain a platform specific model (PSM). This PSM is
used as input for the generator framework to produce platform specific code. In addition
to the generation of the persistency layer by means of Enterprise Java Beans (EJB),
several models define orchestration context behaviour. In this part, we present how
MDSD is used in our incremental and collaborative conception process and we give
some more information about the orchestration specific models.

4.1 MDSD development cycle

The proposed MDSD approach relies on several scientific papers explaining how the
agile development paradigm can be applied to MDA [Me04] or to MDSD [St06]. The
proposed project validates the use of the theoretical approach by a development team in
a practical environment.

Figure 3. Correlated upgrade of the meta-model and of the application

Meta-Model
1

Meta-Model
2

Software upgrade due to a meta-model upgrade

Meta-model upgrade due to a software upgrade

Meta-Model

Application
Version 1

Analyse

Conception

Application
Version 2

Analyse

Conception

Application
Version 1

Analyse

Conception

Application
Version 1'

Analyse

Conception

110

Conceptually we distinguish the meta-model defining the general architecture and the
application specific model. Both meta-model and application model evolve
independently, have however mutually influencing side effects. Each development cycle
relies on previous iterations, but may also require some adaptations at model, meta-
model or code generation side. These changes may be caused by new functional
requirements, which result in enhancements of the underlying meta-model or by
architectural improvements within the meta-model. As a consequence, each development
cycle can be seen as a new test for the robustness of the code and the generic aspect of
the proposed models. Another advantage of the proposed approach is a quicker and more
robust development. Our practical experiences are in line with the theoretical results on
the common usage of MDSD technologies in an agile development environment.

Decoupling meta-model evolutions from the agile development cycles has positive side
effects on the overall architecture and on the resulting enterprise applications. Figure 3
schematically shows the relationship between the application development and the meta-
model evolution.

MDSD techniques significantly reduce the development effort when applied to repetitive
or technical tasks, are however of little advantage when representing business logic or
application specific code where manual coding is more efficient.

Another MDSD specific problem encountered during the above-mentioned project is that
existing modelling tools offer only very limited multi-user support. Model sharing, or
model versioning features are not ready for productive use and merging UML models is
prone to error. As a workaround, we use a planning document to indicate who in the
development team has ownership of the various models. This workaround introduces
some overhead which is however fully acceptable in this particular project.

4.2 The State Machine model

In the overall MDSD approach we also introduce state machine support built around the
state pattern proposed in [Ga97]. According to its definition, this pattern is applicable in
the following context:

• The behaviour of an object depends on its state and it must change its
behaviour at run-time depending on that state.

• Operations have large, multipart conditional statements that depend on the
object’s state. The State pattern puts each branch of the conditional structure
in a separate class.

In our particular context, this definition exactly corresponds to the definition of the
workflows state management. Each workflow contains two classes to handle its state
transition: a state class that provides the core operation for state transition and a context
class with the information that has led to the current state.

111

+getState()
+setState()
+stateTransition1()
+stateTransition2()
+stateTransition3()
+stateTransition4()

«Context»
EntityContextBean +getState()

+setState()
+stateTransition1()
+stateTransition2()

ConcreteStateA

+getState()
+setState()
+stateTransition3()
+stateTransition4()

ConcreteStateB

-state

* 1 +stateTransition1()
+stateTransition2()

«interface, State»
InterfaceConcreteStateA

+stateTransition3()
+stateTransition4()

«interface, State»
InterfaceConcreteStateB

-state

* 1

+getState()
+setState()

«interface»
IStateMachine

AbsEntityBean

Figure 4. A State framework instance

The development team can limit itself to defining the major states (ConcreteStateA,
ConcreateStateB) regrouping all states of a given state machine, as well as the
appropriate transitions (stateTransition1..4). This UML model shown in Figure 4 is used
as input and applied to the underlying meta-model. The code generator framework
establishes the link with the abstract state machine, giving a generic behaviour to the
workflows and with the persistence layer offering data persistence by means of
Enterprise Java Beans (EJB). If the default behaviour is not appropriate, the developer
may use inheritance mechanisms to overwrite the default.

5 Conclusion

This paper shows the benefits and difficulties encountered when integrating a BPEL
engine into enterprise applications and when relying on BPEL processes to manage
business workflows. The use of such a solution in an agile development process
improves the flexibility of the proposed solution. It enables systematic enhancements of
the business processes by adding new components to the workflow while maintaining a
loose coupling between the enterprise application and the workflow engine. The
resulting application shows significant better adaptability to changes. A key challenge of
the proposed solution is to guarantee synchronisation between the application code and
the workflow engine, by combining a message centric behaviour with a state-transition
behaviour. This synchronisation component extensively uses various Model Driven
Software Development techniques to offer an appropriate framework for integrating the
enterprise application and the BPEL engine.

112

The overall experience of using a BPEL workflow engine in the particular context of
Luxembourg National Benefits Fund is positive. The modernisation of the IT
environment of the CNPF is ongoing while showing success stories, validating the
underlying design decisions. Some additional conceptual complexity is added in the first
project phases, which is compensated by a better adaptability of the overall solution.
Further improvements concentrate on performance tuning in order to reduce the
overhead introduced by the web-service approach of the BPEL.

Bibliography

[Ba06] Bauler P., Feltz F., Biri N., Pinheiro P., Implementing a Service-Oriented Architecture
for Small and Medium Organisations, EMISA’06, Germany, 2006.

[Co05] Contenti M., Mecella M., Termini A., Baldoni R., « A Distributed Architecture for
Supporting e-Government Cooperative Processes », E-Government: Towards Electronic
Democracy, Lecture Notes in Computer Science, vol. 3416, Springer, p. 181-192, 2005.

[Ga97] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns – Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1997.

[HF06] Hitzelberger P., Feltz F., An Interoperable Communication Platform for a Public
Agency. 5th international EGOV conference, Krakow, Poland, 2006..

[Me02] Martin R.C.: Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall, 2002.

[Me04] Mellor S.J.: Agile MDA, A white paper. http://omg.org/mda/mda_files/AgileMDA.pdf ,
2004.

 [Sc95] Schwaber K., SCRUM Development process, OOPSLA'95 Workshop on Design
Patterns for Concurrent, Parallel, and Distributed Object-Oriented Systems

[SB01] Schwaber K., Beedle M., Agile Software Development with Scrum, Prentice Hall PTR
Upper Saddle River, NJ, USA, 2001.

[Si05] Silver B., Agile To The Bone, Intelligent Enterprise,
http://www.intelligententerprise.com/showArticle.jhtml?articleID=57702677, 2005.

[St06] Stahl T., Völter M., Bettin J., Haase A., Helsen S., Model Driven Software Development
– Techonology, Engeneering, Management, Wiley, 2006.

113

BPMN-Q: A Language to Query Business Processes

Ahmed Awad
Business Process Technology Group

Hasso-Plattner-Institute, University of Potsdam, Germany
ahmed.awad@hpi.uni-potsdam.de

Abstract: With the growing role business processes play in today’s business life, they
are being seen as an asset for the organization. With hundreds of process models
developed by different process designers it would be helpful to look up the repository
for models that could handle a similar situation before developing new ones. In this
paper we introduce a new visual query language for business processes. The language
addresses processes definitions. It extends BPMN for its abstract syntax as BPMN is
a standard visual notation for modeling business processes. The overall architecture
of the system in which the language can fit, in addition to the details of the query
processing are also discussed.

1 Introduction

With the growing role business processes play in today’s business life, business processes
are being seen as an asset for the organization. With hundreds of process models developed
by different process designers would be interested in looking up the repository for models
that could handle a similar situation before inventing a new model. That is why querying
a business process repository might be needed in such a situation. Querying of business
processes can be divided into three stages, each of which has its own importance and its
effect on way business is conducted:

1. Querying business process definition: this abstract model that shows the flow be-
tween activities, branching, joining, and data requirements. Querying at such level
helps business analysts search for certain patterns within enterprise repository of
business processes. This helps learn more about the way business is conducted,
allows reusability of some business processes that might have been developed by
others instead of duplication, and might help discover redundancy. Research under
this category includes [VKL06, WLK06, BEKM06, LS06].

2. Querying running instances of business processes: querying here is almost a tool in
the hand of administrator of a business process enactment engine to monitor the sta-
tus of running processes, trace the progress of execution, make ad-hoc queries about
a status of a certain process. Querying here is in flavor of Business Activity Mon-
itoring BAM. This helps detect deadlocks, or unbalanced load on resources[MS04,
BEMP07]

115

3. Querying execution history (logs) of completed business processes, which is also
known as business process mining [vdAvDH+03] for a sample. While the purpose
of business process mining is to reverse engineer the process definition from logs,
purpose of querying here is wider. Depending on how much details the log gives,
querying can provide us with statistics about duration of processes, bottlenecks, and
the like.

In this paper we introduce a new query language that addresses the first category shown
above. The rest of the paper is organized as follows, Section 2 discusses usages scenarios
that are behind the design of the language in addition to requirements we extracted from
these scenarios. Section 3 introduces the language informally discussing the abstract and
concrete syntax of the language with an example. In Section 4 we formally describe the
operation of the language. Section 5 discusses the different components of the language
and how it was implemented. Details of how queries are processed are discussed in Section
6. Related work is discussed in Section 7. Section 8 concludes the paper with a view on
how the work can be extended.

2 Usage Scenarios and Requirements

Our work on the development of this query language was motivated with business scenar-
ios that were extracted from a thorough scanning of literature as shown in the following
subsections.

2.1 Change Impact Analysis

Change in the design of process models is constant. This change could be due to new rules,
obligations, or as a react to competitors improvement of service. Uncontrolled application
of change would lead to degraded service or product delivered to customers rather than
enhanced. This is because the change of some business activities or group of activities
will lead to unforeseen affects on other business activities. Before applying change a
business analyst or higher level manager should have a view on the related activities to the
area of change. Impact or dependency (control flow, data flow) between activities are the
major elements to be queried in this situation. Queries could take the form (for instance)
like in [DC05].

2.2 Discovery of Frequent Process Patterns

Modularization has been always a principle of good software design. Modularity helps lo-
calize the effect of software updates and control redundancy. The same motivation can be
applied to process models as an input to a transformation that delivers an executable busi-

116

ness process. If certain patterns of a group of business activities appear in the same way in
several models, it seems feasible to move those patterns to sub processes and replace their
occurrences by calls to these sub processes. Frequent patterns have been proven to exist in
real business [TLR07], one of the difficulties that faced the authors were the lack of tools
to query the definition of process models to extract those frequent patterns.

2.3 Checking Fulfillment of Quality Constraints

Enforcement of some quality checking operations in the business process might be neces-
sary to fulfill requirements of international quality standards like TQM, or ISO[FES05] .
For instance in manufacturing processes it is necessary that the product passes through a
quality check process after manufacturing an before moving it to warehouse or making it
available to customer. Checking conformance of process models to this constraint can be
done by querying the structure of process models.

We believe the above scenarios motivate the need of a unified access to a shared repository
of business processes where structure of processes is the target of queries. The queries in
such cases also share the following properties:

• Ad-hoc: usually queries are started by a claim or a doubt by a business analyst who
tries to prove his claim from the underlying pool of processes.

• Iterative: usually it is not just a query that captures a snapshot and it is over, rather it
is a progressive process with the nature of discovery. It begins with a simple query
then the results are modified to be input for another phase of querying. The cycle
stop is dependent on what the user is looking for and how far she is satisfied with
the result.

2.4 Requirements

From the above usage scenarios we can see that the query language should target both
business users 2.1,2.3 and technical users 2.2. We summarize the requirements for the
query language in the following points:

1. The language should be of visual interface. The visual interface increases the us-
ability chance for the language specially by non-technical users.

2. The language must support the navigation of process structures to answer queries.

3. Query definition goes in the same way a process definition goes. (Try to introduce
the least number of new notations). This makes the learning curve for the language
lower.

4. The language should support the notion of paths between nodes in the process graph.

117

5. The result of the query can be either the whole process model containing a match
to the query or only the matching part. This should be based on a user predefined
preference.

6. The ability to modify the results of queries to create new queries to support the
iterative nature for the querying scenarios.

3 BPMN-Q

According to the requirements mentioned in section 2.4, the language we introduce is a
visual language that is based on notations from BPMN [bpm06] (Requirements 1,2). The
language currently addresses a subset of modeling notations available in BPMN (Activ-
ities, Events, Simple gateways). Figure 1 shows a metamodel (abstract syntax) for the
language which is an extension for the BPMN Metamodel,as an extension the Activity
metaclass describes both concrete and variable activities (will be further explained in Sec-
tion 3.1), also GateWay metaclass is further distinguished as either a split or join. The
Connectivity metaclass was extended with new Path metaclass (details in Section 4.1) to
satisfy requirement 4. while Figure 2(a) shows the graphical notation for elements already
in BPMN, also the notation to support the new concepts are shown in 2(b) (Requirement
3). The symbol with nested square, diamond and a star we call it a generic shape (visu-
alization of FlowObject metaclass), we introduce this shape for the sake of increasing the
expressive power of the language; whenever the user is not sure about the type of thing he
needs in a query, the generic shape is placed. At runtime the query processor will generate
and test all possibilities as will be shown in Section 6. The same idea for the diamond
with S (visualization of Split metaclass), and that with J (visualization of Join metaclass)
inside.

CoreElement

Connectivity
-isNegative : boolean(idl)

FlowObject

SequenceFlow GateWay
-isAnd : boolean(idl)
-isOR : boolean(idl)
-isXOR : boolean(idl)

Event Activity

Split Join StartIntermediateEnd

Path
-execlude : Object

Figure 1: Language Metamodel

118

Concrete

//

X

X //

(a) (b)

@Variable

Figure 2: Language Elements

3.1 Example

We start with an informal introduction via an example to show how this is intended to
work. Figure 3 shows a simple process model against which we will apply example
queries.

B

A

C E

D

Figure 3: Sample business process model

Figure 4 contains five queries that represent simple edge expression queries (a),(b) and
path expression queries (c),(d) and complex expression queries (e).

It is clear that the query representation is much like the way process models are defined
(Requirement 3). There are two extensions shown in these queries:

1. Queries (a),(b) have an activity whose name is @X. This notation we call the vari-
able activity i.e. an activity that might be bound to one or more activities in the
queried process model. We prefix the activity name with the symbol ”@” to inform
the query processor that this is a variable activity node. In a single query expression
no two variable nodes can have the same name.

119

// B@X

//

C

@X

(a) What are the
alternatives?

(c) What happens from the
start until B is reached?

(e) What happens from
the start until a point of
choice between C and
other activities?

@XA

(b) What activities directly
follow A?

// EA

(d) What happens
between A and E?

Figure 4: Sample queries

2. Queries (c), (d) the sequence flow arrow is labeled with the Symbol //. This is the
symbol to represent path expressions between nodes.

To answer any query the query expression is matched to the process model. The query is
answered via a set of resolution phases. If any of these phases fail, the query processing is
terminated with no match. Details of processing queries are in Section 6. A single query
graph maybe matched with more than one sub graph from the same process graph.

B

C

B

Result of query (a)

B

A

Result of query (c)

A

C E

Result of query (d)

B

A

C

Result of query (e)

Figure 5: Queries results

Figure 5 shows the answer for the queries from Figure 4 against the process model in
Figure 3. We notice that query (b) had no result because the variable node could not be
bound with a concrete activity node that is a direct successor to activity A, also query (a)
had two different results due to the fact that the process model had two different XOR

120

splits that have successor activities.

4 Formalization

In this section we give the formal background of both process graphs and query graphs. A
process model based on BPMN can be viewed as a directed typed attributed labeled graph.
Here each node in the graph has a type (task, gateway, event etc), each of them might be
associated with other attributes like (name, further type details, ID) more details are in
Section 5.

Definition 4.1 A process graph is a tuple PG= (N, E, T, L) where

• N = finite set of nodes.

• E ⊆ N ×N.

• T: N → {ACTIVITY, EVENT, GATEWAY}

• L: N → l is a labeling partial function .

As we have seen in Section 3 a query is also a graph. It is a directed typed attributed
labeled graph, where type ACTIVITY is further described as either a concrete activity or
a variable activity. Edges in query graph are also typed as either sequence flow or paths
that connect two nodes.

Definition 4.2 A query graph is a tuple G= (N, S,NS, P, NP, T,L) where

• N = finite set of nodes. N = CA ∪ V A ∪ EV ∪GW where

– CA = set of concrete activities.

– VA = set of variable activities.

– EV = set of events.

– GW = set of gateways.

– CA ∩ V A ∩ EV ∩GW = ∅

• S ⊆ N ×N = sequence flow edges between nodes.

• NS ⊆ N ×N = negative sequence flow edges between nodes.

• P ⊆ N ×N = path edges between nodes.

• NP ⊆ N ×N = negative path edges between nodes.

• T: N → {CONCRETE ACTIVITY,VARIABLE ACTIVITY, EVENT, GATEWAY}

• L: N → l is a labeling partial function .

121

4.1 Paths

In Definition 4.2, path expression means actually all possible paths that can be found
between the source and target nodes even if these paths contain cycles (due to the graph
oriented nature of BPMN). Path expression is the most expensive in its computation, so
when we describe how query processing takes place in Section 6, we will see how it is
postponed by the query processor. The evaluation of a path expression contributes to the
answer process graph according to Definition 4.3.

Definition 4.3 A function allpaths: N ×N ×PG→ {PG ∪ ∅ } = PG’(N’,E’,T,L) where:

• PG’ ⊆ PG.

• x ∈ N’ iff:

– x = source.
– x =target.
– x lies on a path from source to target in pg ∈ PG.

• ∀ x,y ∈ N’ e(x,y) ∈ E → e(x,y) ∈ E’

It is possible also according to the path metaclass in Figure 1 to restrict the path expression
to exclude certain activity node from the path.

4.2 Negative Edges and Negative Paths

According to Definition 4.2, it is possible to express in the query what we call negative
edges NS, and negative paths NP. These represent further Boolean conditions that can be
enforced on the result of the query. For instances if two nodes A and B are connected
with a negative edge in the query graph this means that in any match to the query the
nodes bound to A and B must not have a sequence flow edge between them. The same
applies to negative paths. Negative edges and negative paths evaluation works according
to Definitions 4.4,4.5

Definition 4.4 A function checkNegativeEdge:N × N × PG → {true,false } = true iff
e(n,m) /∈ E.

Definition 4.5 A function checkNegativePath: N × N × PG → {true,false } = true iff
allpaths(n,m,p) = ∅.

5 Architecture and Implementation

Figure 6 shows architecture for the query language. We briefly describe each component.

122

Query Editor: is a visual editor where the user can compose query in a way that conforms
to Definition 4.2 and the queries look like those in fig. 4. The task of the query editor ends
with passing the composed query graph to the processor component. The query editor is
implemented by an extension to Microsoft Visio (see Figure 7 for a snapshot).

Query EditorModel Editor

Query
Processor

Query Graph

Processes Graphs

Result Graphs

Translation middleware

BPEL XLANG EPC

Repository

Updates

Figure 6: Suggested Architecture

Query Processor: receives the query graphs and works on answering it according to steps
detailed in Section 6.
Repository: is a central database that stores an abstract uniform representation of the
enterprise process models. This abstraction conforms to Definition 4.1. The database
schema is simple with the following tables:

• Model(ID,Name,Description).

• Activity(ID,Name,Model).

• Event(ID,Name,Type,Model).

• GateWay(ID,Name,Type,Model).

• SequenceFlow(ID,Source,Destination,Model).

• Paths(Source,Target,Path,Model): This table is used to encode paths with all lengths
that are extracted from process models. Extraction of paths comes in a post step to
the storage of process models in other tables.

123

Model Editor: displays the results or messages returned by the query processor. Results
can be changed by the user and then stored back in the repository, or can be reissued as
new queries (Requirement 6). This is also implemented by extending Microsoft Visio.
Translation Middleware: translates business process definitions from specific languages
syntax to the repository internal representation with metadata associated with the process
graph relating it back to its source. This Middleware makes it possible to unify the query
interface against different process definition languages(not currently implemented in the
prototype).

Figure 7: Query Editor

6 Query Processing

With the start of execution the query processor receives the corresponding query graph. To
answer the query we need to search process definitions stored in the repository for those
that satisfy the query graph. As we can see the repository as a graph database, one of
the best ways to reduce the search space is to filter the database for only graphs which
seem promising to satisfy the query [SWG02]. Within the set of graphs resulting from the
filtering, we try to find an answer for the query. We have mentioned in Section 4 that all
nodes are attributed by IDs. Actually we can distinguish two nodes of the same type by

124

ID. The process of assigning an ID to a node in the query graph with respect to a process
graph is called binding. The query processor has to examine all possible bindings for
each node. The query processor follows an approach in finding bindings that as much as
possible binds a node in a way that will reduce the possible bindings for other nodes that
are connected with it via sequence flow edges. We call this the informed binding. With
following a set of binding steps query graph is transformed into a process graph that is the
answer to the query.The query processor does the following steps for bindings 1) Replace
generic shapes. This is a pre processing step whenever the query graph contains any of
the generic shapes in Figure 2, the processor generates new versions of the original query
graph in each the generic shape is replaced by shapes that can appear in process graphs.
This operation simulates the principle of late binding in Object Oriented Programming
OOP. 2) Bind concrete activity nodes. 3) Bind event nodes. 4) Bind gateway nodes. 5)
Bind variable activity nodes. 6) Check negative edges. 7) Check negative paths. 8)
Substitute paths.
After each binding step a new version of the query graph is created where the node is
replaced by its bound node from the process graph, all edges and paths are also updated
to refer to the bound node. Once a query graph version passes the first five steps, all
its nodes are concrete i.e. are assigned IDs from the checked process graph. The query
processor then goes to check negative edges and negative paths, steps 6, 7 according to
Definitions 4.4,4.5 respectively. The last step the query processor does is to resolve path
edges between nodes according to Definition 4.3 which means the maximal sub graph of
the process graph in which nodes are either the two end nodes stated in the path , or a node
that lies on a path from the start node to the end node. This step was postponed because
(a) It is the most time consuming step, (b) We have to know exactly which nodes we look
for paths between. If the query processor does not find an answer to any of the steps
mentioned above, it terminates the evaluation of the query graph version. On the other
hand, when a query graph version passes all the steps successfully it is now considered
as an answer to the initial query and is forwarded to the Model Editor component to be
displayed.

6.1 Performance

Table 1 shows the running time in milliseconds of queries varying in complexity, these
queries are shown in Figure 8 . The queries were run against a repository containing 143
nodes, and 170 edges distributed among 11 process models. The machine used to run
queries is a PC running Windows XP with 1 GB of RAM.

Query Runtime Query Runtime
(a) 109 (e) 1172
(b) 219 (f) 5663
(c) 1313 (g) 3828
(d) 1141

Table 1: Queries running time in milliseconds

125

//

B C

A @S

A

B

C

//

//

X //X //

B

C

//

//

@A

//

(a) Activity B is immediately followed by activity C

(b) What activities directly follow activity A?

(c) What follows Activity A?

(d) B and C are stemming from
a common AND-Split node (not
necessarily direct predecessor)

(e) Same like in (d) but with
ensuring that no possibility for
synchronization between B and C

(f) What happens from start to
end (the whole process)?

(g) What activities involved
in which cycles?

Figure 8: Queries of varying complexity

It can be simply deduced that the number of generic symbols (generic shapes, splits, and/or
join), paths, variable nodes are of direct effect on the running time of a query, and this is
due to that each type of them increases the number of possibilities to find a binding. Each
of the alternative query graphs has to be tested for a match. In order to control the growth
of generated query graphs we followed the concept of informed binding we talked about
in this section. Another major effect on performance is the substitution of paths. The
process of finding all possible paths between two nodes in a process graph at runtime goes
in O(N3), of course if more than one path expression exists in a query graph the running
time of the query is unacceptable. It is even worse with the iterative nature of queries,
with each run all paths have to be computed again. To solve this problem we added a
computation step that is executed at loading time of a new process model to repository,
and each time a process model is modified. This step is to compute paths with all lengths
between nodes (if there is a path). So the cost of computing a path is now constant at query
execution time rather than cubic.

7 Related Work

In [VKL06] a repository for process definitions based on BPEL [ACD+03] was built.
BPEL files are annotated with organization specific metadata, the repository was queried
through a set of APIs that address at first place queries issued by programmers to select
a specific BPEL file for execution based on metadata search criteria. Our work is dis-
tinguished in that we address humans at analyst level, query is based on the structural
properties of process models. Similar work in [WLK06] queries the content of business
process based on a framework for describing this content. The framework consists of four
concentric levels: high level flow, business flow, activity, and task. Each level is associated

126

with metadata that are used for querying. The query goes from the broader scope narrow-
ing the result set with each step from a level to the next level based on values specified
for associated metadata at each level. Work in [BEKM06], [LS06] are considered close to
our work from the point that they query process definition from structural point of view.
The Business Process Query Language BPQL in [BEKM06] works on an abstract repre-
sentation of BPEL files. We can distinguish our work with the handling of cycles in the
process graph, a point that is not available in BPEL. Another point is the ability to query
with generic expressions like generic shapes, splits, and/or joins. Querying process vari-
ants in [LS06] utilizes graph reduction techniques to find a match to the query graph in the
process graph, comparing it to our work we have more concepts like the variable activi-
ties, path finding, and generic shapes which increase the expressive power of the language
in addition to handling process graphs with cycles while [LS06] works on acyclic graphs
only.

8 Conclusion and FutureWork

In this paper we introduce a new visual query language for searching repositories of busi-
ness processes. The language was an extension of BPMN in its abstract syntax. Also
we discussed an architecture where the language fits, the details of query processing were
discussed. We have shown throughout Section 3 and Section 5 how requirements 1,2,3,4,
and 6 were satisfied. Regarding requirement 5 we chose in our prototype implementation
to show the matching model with highlighting the answer within it. As Future work, cov-
ering data flow, resources, and messaging between interacting processes are open areas to
be included in the query language.

References

[ACD+03] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,
Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trick-
ovic, and Sanjiva Weerawarana. Business Process Execution Language for Web
Services version 1.1. Technical report, OASIS, 2003.

[BEKM06] Catriel Beeri, Anat Eyal, Simon Kamenkovich, and Tova Milo. Querying business
processes. In VLDB’2006: Proceedings of the 32nd international conference on
Very large data bases, pages 343–354. VLDB Endowment, 2006.

[BEMP07] Catriel Beeri, Anat Eyal, Tova Milo, and Alon Pilberg. Query-based monitoring of
BPEL business processes. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages 1122–1124, New York, NY,
USA, 2007. ACM Press.

[bpm06] Business Process Modeling Notation (BPMN) Specification, Final Adopted Speci-
fication. Technical report, OMG, 2006.

127

[DC05] Weizhen Dai and H. Dominic Covvey. Query-Based Approach to Workflow Process
Dependency Analysis. Technical Report 01, School of Computer Science and the
Waterloo Institute for Health Informatics Research, Waterloo,Ontario,Canada, 2005.

[FES05] Alexander Förster, Gregor Engels, and Tim Schattkowsky. Activity Diagram Pat-
terns for Modeling Quality Constraints in Business Processes. In Lionel C. Briand
and Clay Williams, editors, MoDELS, volume 3713 of Lecture Notes in Computer
Science, pages 2–16. Springer, 2005.

[LS06] Ruopeng Lu and Shazia Wasim Sadiq. Managing Process Variants as an Information
Resource. In Schahram Dustdar, José Luiz Fiadeiro, and Amit P. Sheth, editors,
Business Process Management, volume 4102 of Lecture Notes in Computer Science,
pages 426–431. Springer, 2006.

[MS04] Mariusz Momotko and Kazimierz Subieta. Business Process Query Language a
Way to Make Workflow Processes More Flexible. In ADBIS‘2004: Proceedings
of the 8th East-European Conference on Advances in Databases and Information
Systems, pages 306 –321. Springer Berlin / Heidelberg, 2004.

[SWG02] Dennis Shasha, Jason Tsong-Li Wang, and Rosalba Giugno. Algorithmics and Ap-
plications of Tree and Graph Searching. In Symposium on Principles of Database
Systems, pages 39–52, 2002.

[TLR07] Lucineia Heloisa Thom, Cirano Lochpe, and Manfred Reichert. Workflow Pat-
terns for Buisiness Process Modeling. In Barbara Pernici and John Atle Gulla, ed-
itors, CAiSE, volume 4495 of Lecture Notes in Computer Science, pages 349–357.
Springer, 2007.

[vdAvDH+03] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L.
Maruster, G. Schimm, and A. J. M. M. Weijters. Workflow mining: a survey of
issues and approaches. Data Knowl. Eng., 47(2):237–267, 2003.

[VKL06] Jussi Vanhatalo, Jana Koehler, and Frank Leymann. Repository for Business Pro-
cesses and Arbitrary Associated Metadata. In Demo Session of the 4th International
Conference on Business Process Management, pages 25–31, Vienna, Austria, 2006.

[WLK06] Avi Wasser, Maya Lincoln, and Reuven Karni. ProcessGene Query- a Tool for
Querying the Content Layer of Business Process Models. In Demo Session of the
4th International Conference on Business Process Management, pages 1–8, Vienna,
Austria, 2006.

128

OBSE – an approach to
Ontology-based Software Engineering in the practice

Andrej Bachmann, Wolfgang Hesse, Aaron Russ (University Marburg)
Christian Kop, Heinrich C. Mayr, Jürgen Vöhringer (University Klagenfurt)

Philipps-University Marburg University of Klagenfurt
 Hans-Meerwein-Strasse Universitätsstraße 65 - 67

 35032 Marburg 9020 Klagenfurt
{rodionov,hesse,russa}@mathematik.uni-marburg.de {chris,heinrich,juergen}@ifit.uni-klu.ac.at

Abstract: In this article we present a new approach to Ontology-based Software
Engineering (OBSE) meant for practical use in enterprises and industrial projects.
Following this approach, Software projects are no longer driven only by
requirements and models but also by one or several ontology/ies covering their
application domain. Our main thesis says that OBSE can offer similar
opportunities and benefits for re-engineering and re-use in the early phases of
software development as object orientation does for the later ones. OBSE is to be
supported by tools which integrate ontologies in the SE process. A prototype of
such a tool – based on the KCPM and EOS methodologies – is presently being
developed in a joint project of our groups.

1 Introduction
Ontologies have been introduced as a key concept in informatics in the last decade of the
previous century when the rapid growth of the internet and its services created new
demands on automated agents and similar devices which require facilitated and
encompassing access to domain knowledge of various application domains. Gruber has
defined ontology as an explicit specification of a conceptualization [Gru 95].
Applications of ontologies in Informatics comprise the fields of Artificial Intelligence,
Agent systems, Database & Information systems, Web Technology and other fields.

In the Software Engineering (SE) field conceptualisation has played a major role for long
time, e.g. during the analysis, modelling and design phases of software development,
where all relevant entities of the application domain with their features and relationships
have to be conceptualized. This way, considerable portions of domain knowledge are
elaborated in almost every application-oriented software project. Similarly, large
portions of technical and implementation-oriented knowledge are worked out during the
detailed design, implementation, test & integration phases. However, whereas object
orientation (OO) technology has led to major achievements in re-using the latter kind of
knowledge this is still a desire and challenge as far as the domain knowledge relevant for
the early phases is concerned.

Ontologies seem to be an appropriate concept for describing portions of domain
knowledge which is to be re-used across several software projects. Thus we aim for a
new approach for integrating ontologies in the SE process. Following this Ontology-

129

based Software Engineering (OBSE) approach, software projects are no longer driven
only by requirements and models but also by one or several ontology/ies covering their
application domain (cf. fig 1).

Our main hypothesis is that by combination of
Knowledge and Software Engineering techniques OBSE
can offer similar opportunities and benefits for re-
engineering and re-use in the early phases of software
development as object orientation does for the later ones.
Of course, such an approach has to be supported by tools
for software engineers who want to integrate ontologies
in their SE process.

Project
requirements

[NL]

extract

Project
knowledge

base

Model
(e.g. [UML])

Code
(e.g. [Java])

transform &
develop

implement

Domain
knowledge

base

Project
requirements

[NL]

Project
requirements

[NL]

extract

Project
knowledge

base

Model
(e.g. [UML])

Code
(e.g. [Java])

transform &
develop

implement

Domain
knowledge

base

Two major questions arise when we investigate
approaches to OBSE in more detail:
 (1) What is the appropriate form (and language) for
expressing ontologies in the SE context? and

(2) How can the SE process be extended to an OBSE
process including the use and evolution of ontologies?

Fig. 1: An ontology-based
 software processing

For dealing with both questions, previous work of the two groups authoring this article
can usefully be employed:
• The Klagenfurt Conceptual Predesign (KCP) method offers glossaries as an

appropriate and useful instrument to deal with ontologies in the early phases of
software development.

• The (Marburg-based) method for Evolutionary, Object oriented Software
Development (EOS) offers a Software Process model which is flexible and wide
enough to cover ontology-based processes as well and allows for a unique treatment
of software and ontology engineering processes.

In our view, the OBSE process should be a combination of both (Software and Ontology
Engineering) life cycles following some sort of rendezvous principle: Software Engine-
ering projects inherit from existing ontologies in the early (analysis and modelling)
phases and offer (parts of) their results for further ontology development and evolution.
The first step allows re-use of domain knowledge whereas the later promotes re-use of
project specific knowledge. The EOS model serves as a joint framework for defining and
supporting the OBSE approach.

Furthermore we argue that the appropriate form for including domain knowledge from
ontologies in the SE process is the glossary form making the KCP method and tools a
key basic technology for OBSE. Since glossaries are modular, flexible and easy to
handle for users, domain experts and engineers, they seem to be a most appropriate form
for documenting reusable knowledge.

In the subsequent sections, we will first briefly compare Software and Ontology
Engineering processes and then define our OBSE process model based on the KCP and

130

EOS approaches. In the last sections we will deal with tool support for OBSE and
include a rough sketch of the tool prototype under construction.

2 Software and Ontology Engineering process: brief comparison
Ontological Engineering has been advocated by Mizoguchi [Miz 98] and analogies (as
well as differences) with Software Engineering and their processes have already been
discussed, e.g. in [G-L 02] and [Hes 05]. In the following table, both fields are compared
and of some of their outstanding characteristics and properties are listed (cf. Fig. 2).

 Software Engineering Ontology Engineering
Target
groups

• Software managers, engineers and
users engaged in a particular project

• Domain experts, ontology builders
and users dealing with many projects
in a particular domain

Principal
requi-
rements

• Functional requirements regarding
system procedures, correct output etc.
• Quality requirements re. user
friendliness, reliability, performance ..

• Trustability and consistency
• Compatibility and accessibility from
many projects and applications

Project
duration

• determined, limited for one project • undetermined, unlimited

Process
structure

• often sequential: phases, activities,
but also iterations and cycles
• Sub-processes for components or
increments

• mostly cyclic, cycles maybe grouped
in phases
• Sub-processes for developing or
revising subdomains

Process
models

• Waterfall, incremental, component-
based, prototyping, spiral-like

• incremental, component-based,
evolutionary

Concepts,
languages
and tools

• Use cases, natural language,
modelling & programming languages
(e.g. UML), diagrams, pseudo code
• Tools: Editors, modelling tools,
compilers

• Natural language, glossaries, tables,
semantic networks, topic maps,
conceptual graphs, ontology languages
• Tools: Ontology editors, modelling
tools

Results
and
products

• project-specific, (relatively) short-
term oriented, usable for particular
application

• spanning many projects, long-term
oriented, re-usable, "sharable" among
many organisations and projects

Fig. 2: Some characteristics of Software and Ontology Engineering

As the table shows, ontology development resembles software development in various
respects but there are also significant discrepancies between the two kinds of processes,
e.g. resulting from different target groups, contexts and requirements. For a more
comprehensive discussion we refer to [Hes 05].

131

3 KCPM: A glossary-based approach to Software and Ontology
Engineering

In order to motivate the KCP method (KCPM) as a missing link between software
requirements and software modelling/design we will briefly present our glossary
approach, the concepts and representation forms of KCPM. Afterwards the appropriate-
ness of KCPM will be discussed.

KCPM was introduced to support the requirements elicitation process. As described in
the previous section there are a lot of similarities between software engineering and on-
tology engineering. During the first phases of requirements engineering and knowledge
acquisition the developers (ontology builders and software engineers, resp.) have to
communicate with experts1. Performing this task the engineer is more like a doctor who
has to ask the right questions or like a pilot who has to check that everything is working
before he starts the engine. The paradigm of such a check list which supports the task to
formulate the right questions directly leads to the idea of using glossaries as a concept
for representing requirements. In the KCP methodology, a glossary is employed as the
central knowledge base for gathering, storing and communicating domain knowledge
during the requirements capture and modelling phases of software projects [M-K02].

In particular glossaries have the following advantages:
• Domain experts are mostly familiar with glossaries since they use them in their daily

work.
• It is easier to find a gap in a glossary-like specification (the regarding column is

empty). Thus a glossary is like a check list.
• Information that belongs together (e.g. regarding the same concept) is associated with

that concept. Thus the information is collected in a very compact manner.
• The structure of a glossary is standardised and predefined.
• The semantics of the key terms of glossaries (e.g. the column names) are predefined.
• The glossary type (e.g. thing type glossary, operation type glossary) as well as the

several columns within these glossary types provides a first classification of the
collected information.

3.1 Small set of modelling concepts

The glossary is built up by few kinds of (table-like) type descriptions the most important
of which are: thing types and connection types. In order to support the glossary building
task, linguistic techniques such as natural language text analysis are employed and
supported by corresponding tools [FKM+ 00]. Glossaries may be transformed into
conceptual models or UML-like class structure diagrams according to a set of laws and
transformation rules in a semi-automated way.

1 We assume that every person is an expert on a certain domain. In the most specific way he/she is the expert
of the tasks he/she has to do in an enterprise.

132

Thing-type is a generalisation of the UML concepts class and attribute. Thus, typical
thing types are e.g. author, book, contract as well as descriptive characteristics like
customer name, product number, product description. It seems to be easy to decide,
which of the above examples is a class and which one is an attribute, but what about a
concept used in a domain which is not well known by the designer (e.g. the concept
ICD10 in the medical domain). Following KCPM the question whether the concept is a
class or an attribute is not a primary question but this will be decided later and be
supported during the mapping process. Instead the system analyst can concentrate on
gathering additional information for that concept, which is much more important during
requirements analysis. Meta-attributes which head the glossary columns (e.g. Examples,
Synonyms, QuantityDescription) give hints to ask the right questions.

Fig. 3: Overview of the KCP meta model

Things are related within the real world. To capture this, the KCPM model introduces
the concept of connection-type. Two or more thing-types can be involved in a
connection-type. This is based on the NIAM (ORM) object/role model [N-H 89]. A
sentence (business rule) leading to a connection type could be the following: Authors
write books. The model is open for specific semantic connection-types (possession,
composition, generalization, identification etc.) e.g. An ISBN number identifies a book.

This glossary approach works similar for all the other KCPM concepts (connection type,
operation type etc.) which are described in other papers. In the meta schema concepts
and columns (meta attributes) are distinguished in the following way. KCPM concepts
are derived from the class ModelingElement and columns from ModelingComponent.

3.2 KCPM as a link between domain ontologies and SE

As was mentioned before, KCPM was introduced as a requirements modelling language.
However looking at the modelling concepts and the representation concepts of KCPM,
KCPM can be also seen as a link between Ontologies and Software engineering. In order
to motivate this assumption it has to be shown that

(1) There is a general relationship between KCPM and ontologies
(2) KCPM can be used for conceptual models in the software engineering domain.

133

To justify the first statement we need to answer first the following questions: What is the
purpose of an ontology? What are possible ontology representations?

Since Gruber’s article [Gru 95] ontology is understood as a means for knowledge
sharing. In [Gua 98] domain and task ontologies describe the vocabulary related to a
generic domain. This distinguishes domain ontology from a conceptual model where the
vocabulary has to be refined for the project specific purpose.

For the second question we have to take a look at the several representations of onto-
logies. These representations range from lexicons, notion lists, and topological maps to
formal specifications. Most often glossaries are used to describe the notions.

Comparing this with the KCPM approach we can conclude: KCPM has a representation
concept that fits very well into possible representation concepts of ontologies.
Furthermore, in the previous section the advantages of such a representation were
already stated. These advantages can also be applied to ontologies.

As static concepts KCPM offers just thing types and connection types. From our
experience in many modelling projects, we learned that the distinction between classes
and attributes is often artificial, premature or project dependent. A notion which might
be modelled as a class in one project (e.g. address, driver) might be modelled also as an
attribute in another project. If we abstract from this distinction using thing types for both
in common, then this fits much better to the ontology level where the involved parties
have to concentrate on getting a shared knowledge and understanding of a domain.

To motivate the second statement from above, we refer the reader to [M-K 02] where we
have described in detail how thing types and connection types can be mapped to
conceptual models used in the SE domain (i.e. UML diagrams). Furthermore it was
explicated in [V-M 05] that integration on the conceptual level (e.g. using KCPM) has
advantages compared to integration in the later phases of software development. This
has also a beneficial impact on the process of shared knowledge generation. If two or
more involved parties want to adjust their knowledge to a common shared knowledge it
is much better to abstract from terms like class and attributes.

3.4 General Overview of the OBSE cycle

Based on these connections between KCP glossaries, UML, and ontologies, a unification
and combination of the ontology development life cycle for a certain domain on the one
hand side and software project life cycles concerning the same domain on the other is
promising. A first glance on the combined life cycles is shown in fig. 4. The key for this
unification is the use of KCP glossaries in both life cycles: On the ontology side, the
domain knowledge is captured in a glossary before it is (partly automatically, see above)
transformed to UML or some other ontology language (OL) representation. On the
software project side, project specific domain knowledge is extracted from the
requirements after elicitation and stored in a glossary-like knowledge base which is
transformed to UML models in the described way and then further to code of some
programming language (PL).

134

In our unified process, KCP glossaries are used in order to support the requirements and
ontology engineering processes as well as the exchange between both of them. Since in
this phase requirements are mainly collected through user interviews and the study of
natural language (NL) documents, ambiguities can easily occur and lead to
communication problems. On the other hand, domain ontologies usually contain data
that is reviewed by domain experts and that describe the important concepts and
relationships of the specific domain.

These data can be used in various ways to replace or to complement information
gathered in the "normal" requirements engineering process. For example, information
that was collected through usual requirements engineering techniques might be verified
while matching it against the ontology data. This way, discrepancies between the
ontology description and the data from other sources might be identified. These conflicts
are often caused by ambiguities or imprecision in the requirements documents and must
be resolved. Moreover, the ontology data might complement the previously gathered
requirements. This can be accomplished combining the domain glossary and the project
glossary by schema integration (cf. chap. 3.3).

Ontology life cycle Software project life cycle

Ontology
(OL form)

revise

Ontology
(UML form)

transform

System version
(PL form)

Project KB
(glossary form)

System model
(UML form)

extract

build

revise

Project
requirements

[NL]

Domain
knowledge

(NL)

Ontology
(glossary form)

extract

transform

exchange
knowledge

Ontology life cycle Software project life cycle

Ontology
(OL form)

revise

Ontology
(UML form)

transform

System version
(PL form)

Project KB
(glossary form)

System model
(UML form)

extract

build

revise

Project
requirements

[NL]

Domain
knowledge

(NL)

Ontology
(glossary form)

extract

transform

exchange
knowledge

Fig. 4: Ontology and software project life cycles combined in a rendezvous manner

This combined and integrated ontology can be modified in order to meet project specific
needs. Using this ontology the project runs through the following design and imple-
mentation phases of the software development life cycle. During the final project phases
domain knowledge that has been gained during the project and which was not yet part of
the domain ontology or which should be used for its revision can be exported and then
used within an integration process modifying the original domain ontology.

4 The EOS model and its use for a combined OBSE process
4.1 Basic concepts of the EOS model

In order to obtain a uniform view on both Software and Ontology Engineering processes
as sketched above, the EOS model can successfully be used (cf. [Hes 03], [Hes 05]). It
has been developed in order to support Evolutionary Object oriented Software Develop-

135

ment and it offers a high degree of flexibility and scalability for both software managers
and engineers when dealing with complex projects which include many components and
highly concurrent development processes. Its use for Software Engineering projects has
been described in detail elsewhere (cf. e.g. [Hes 96], [Hes 97], [Hes 03]). Among its key
concepts are:

• Component-based structure and architecture-driven, uniformly structured develop-
ment cycles: Unlike most of its traditional predecessors, the EOS model binds
development cycles to the building blocks of the system architecture. All develop-
ment cycles consist of the four main activities analysis, design, implementation and
operational use – irrespective of its occurrence at the system, component or
module/class layer (cf. right part of fig. 5). This way, development processes become
highly scalable and flexible.

• Multiple, mostly concurrent development cycles and evolutionary software develop-
ment: Re-development or revision cycles may be activated and performed on demand
at any architectural level and thus system evolution is encouraged and supported by
the EOS model. Concurrent development cycles are synchronised by means of revis-
ion points, i.a. predefined points in time where certain activities have to be finished
and their results are available for review or delivery.

4.2 Ontology development described in EOS terms

Ontologies are preferably structured as hierarchies (cf. [Gua 98]), e.g. consisting of the
three levels:
• universal ontology
• discipline ontologies
• domain ontologies
Further decomposition may lead to smaller units – let us call them ontology components
(OC's) in analogy to the EOS terminology. Ontologies are in a continuous process of
evolution – this leads to the requirement of independent, often concurrent OC
development cycles. These can be well defined using the general EOS schema for
describing development cycles:
• Ontological analysis aims at defining the OC and delimiting its boundaries,

identifying potential applications, analysing the relevant terminology, building a
taxonomy, describing terms as glossary entries, and dissolving terminological con-
flicts. The analysis results in a first version of the OC glossary.

• Ontology design deals with defining a (sub-) structure of the OC, defining facts and
rules, building UML maps of the OC, check-ups and comparisons with other glossar-
ies, modifying and (re-) structuring the taxonomy and particular glossary entries,
dissolving terminological conflicts.

• Ontology implementation and integration aims at translating the OC and its elements
into a formal ontology language, checking syntax and semantics, integrating and
validating sub-ontologies, comparing and unifying conflicting terms, dissolving
terminological conflicts

136

• Ontology operational use comprises publishing the OC, checking, validating its
ingredients and asking for and receiving feedback, adapting the OC to super-/neigh-
bour ontologies, looking for requests for revision, initiating revision (if necessary).

If we consider an ontology as a hierarchy of OC's, we can use the EOS model as a
generalised life cycle model for developing ontologies of any size in an evolutionary
way: Ontology development is then a complex process of concurrent OC developments.
One particular OC may be developed in two ways: either (in a top down fashion) as part
of the (already existing) encompassing domain ontology, or (bottom up) as part of a
software project located in the concerned domain. In the latter case, the (ontology-
related) results of the project have to be integrated into the encompassing domain
ontology.

Of course, this step is not easy and is quite similar to the well-known schema integration
problem. It consists of combining the separate ontology parts to a single one by
identifying communalities and conflicts, while resolving the latter. However, the
continuous update of domain ontologies through project ontologies allows the
knowledge bases to be kept up-to-date and always relevant for further projects. Such an
approach can only be successful if the domain ontologies are of high quality and if
sophisticated and well-proven comparison and integration techniques are used.

4.3 Outline of an EOS-based OBSE process

With the above prerequisites, we can define an OBSE process as a combination of
project and ontology development cycles. We consider a software project concerning an
application domain D for which a domain ontology OD already exists. The subset of OD
which contains all definitions and explanations relevant for our project P is defined as an
ontology component OCP. An OC development cycle may be attached to OCP as out-
lined above and depicted in the left part of fig. 5.

Two so called bridges support the exchange of information between the domain onto-
logy and the software project life cycles (shown on the left and right part of fig. 5, resp.).
The first bridge (labelled by "import") is relevant in the analysis phase of the software
development process. If the resulting system enters the phase of operational use and has
proven stable enough, the second bridge to the ontology life cycle (called "export"
bridge) becomes relevant.

In particular, ontology analysis of OCP results in a glossary GLP which can be transferred
to the software project P via the import bridge. According to the EOS guidelines, system
analysis for the project P starts from requirements which delimit the scope of the system
S to be built and of its application domain D. Moreover, system analysis steps are now
supported by the imported definitions of OCP (cf. fig. 5). This way, project P profits
from previous ontology work on the domain D as aimed by the overall OBSE approach.

Ontology import may also be broken down to the component structure of S. According
to the EOS model, the system analysis and design steps for S lead to a component
structure consisting of components Xi (I = 1, …, n). Let us suppose X1 to be the
component responsible for the application domain D. Then the analysis of X1 implies
importing the definitions of OCP via the import bridge. If there are more components

137

relying on the domain D and its definitions, the same import procedure applies for all
these components.

Following the analysis steps, the software project P goes on as prescribed by the EOS
model: Components are designed, may be decomposed into sub-components and
modules which run through their own development cycles. Implemented modules are
tested and integrated to subsystems which in turn are integrated (in an incremental or
whatever way) to form the envisaged system S.

SX 1

X 3

X 4

X 2

M21

M01

M31

M02

import

export

S

X 3

X 2

M21

M01

M31

M02

OCP

exportOD

SX 1

X 3

X 4

X 2

M21

M01

M31

M02

import

export

S

X 3

X 2

M21

M01

M31

M02

OCP

exportOD

Fig. 5: System development and ontology life cycles interconnected

Operational use is the last step of every EOS development cycle – and, in particular, of
the overall system development cycle (marked by "S" in fig. 5). This step is the second
anchor point for OBSE-related actions: A review of the project and its results implies a
particular resume of its contributions to the domain ontology. If there are any significant
enhancements or modifications, these are transferred to the ontology development
process of OCP via the export bridge. Again, these contributions may be located in some
component(s) of the system S, viz. in their implementations and are to be extracted via
the project glossary.

5 The OBSE tool and prototype
The OBSE tool is intended to support software engineers who want to work along the
OBSE process. The main purpose of the tool is to combine the KCPM based ontology
development with the EOS software developing process. In the centre of this integration
are import and export bridges (cf. fig. 5 and process description above).
• For import activities, the tool provides support by transferring elements of the

domain ontology into a project knowledge base during the analysis phase.
• On the export side, information gained from a project is transferred to its respective

domain ontology via the second bridge offered by the tool. Typically this process
takes place in the operational use phase.

138

These bridges work on the glossary level. This means that the elements of the domain
ontology are transferred via import functions into the KCPM glossary of a project and
vice versa by export functions. However, often the knowledge to be transferred is not
given in glossary form but maybe, e.g. in UML form. In order to support the transfer in
these cases as well, transformations from KCPM glossaries to UML and back have been
implemented [SMK 04], [Rus 07]. These transformations ensure an indirect export of
UML models typically developed in software projects as well as the use of imported
glossary elements in projects working with UML.

In the majority of cases both import and export requires an integration of KCPM glossa-
ry entries into existing KCPM glossaries. For example, at the beginning of a project a lot
of information about the associated domain was extracted from project requirements into
the project knowledge base (i.e. a conceptual model in glossary form) [M-K 02]. This
model can be enhanced by elements from the domain ontology using import functionali-
ty of the OBSE tool. This is an integration process which requires specific merge func-
tions for glossaries (cf. [V-M 05]). The integration steps must be seen as semi-automatic.
Meaning the tool user can choose which elements are transferred, and specify the rules
that are to be used during each integration step. The export of glossary entries into the
existing domain ontology is done analogously. Since both integration functions work on
the glossary level, they have been implemented in a uniform manner in the OBSE tool.

Besides the import-export functions which are essential to the OBSE process, the OBSE
tool offers other features which support the management of glossaries on the domain on-
tology side as well as on a project knowledge base. This is not limited to graphic or
table-like views of data with integrated edit function but also incorporates a built-in and
always adjustable OBSE project description. This offers the user a help facility e.g. de-
fining roles, activities and artifacts of the process, guides him/her with iteration and ac-
tivity descriptions and combines the use of the tool with planning and designing activi-
ties of the process. By integrating the OBSE process description into the OBSE tool we
hope to promote the ability to learn and consistently use both.

One fundamental question concerns the
architecture and platform of the OBSE
tool: Which architecture would best be
suited for the tool having above mention-
ed goals in mind? For various reasons
(detailed in the following) we have de-
cided for a PlugIn based architecture,
rooted in the Rich Client Platform (RCP)
– at least for our first OBSE tool pro-
totype.

RCP is a framework consisting of a rela-
tively small core which is extendable for
specific functionality via PlugIns and
compatible with many operating systems.

139
Fig. 6: OBSE tool structure

A well known implementation of RCP forms the basis of the Eclipse toolset [L-M 05].
This will be used as a platform of our prototype and allows us to construct the OBSE
tools as a collection of multiple PlugIns.

Eclipse RCP elements such as perspectives and views permit the definition of different
views on data for different roles and tasks in the process while maintaining uniform
usage and surface. This way, different PlugIns appear to the user as a almost monolithic,
homogeneous system. The Eclipse Process Framework (EPF) plays a key role in the
OBSE tool development and the implementation is eased by its RCP based structure. It
allows a description (with roles, activities, artifacts etc.) of the OBSE process to be
generated and published via the tool. Another advantage of the framework is the ability
to adapt process descriptions to one's own needs. Should it be necessary to define addi-
tional tasks or replace artifacts with its own variants in a project that is being carried out
with OBSE this can be achieved with the help of the EPF underlying process part of the
tool. This supports the scalability of the OBSE process, i.e. it makes it usable for small
as well as for large projects.

We see additional advantages in other frameworks from the Eclipse Foundation. This
includes the Eclipse Modeling Framework (EMF) and Eclipse Graphical Framework
(GEF). The KCPM meta model is defined with EMF. The classes of the meta models
used by other PlugIns are generated by this model, including interfaces and facade
classes. This provides the consistency of the KCPM meta model and the code which
belongs to it. GMF is a powerful tool for implementing the graphical representations of
glossary entries (cf. fig. 6). The OBSE-Tool prototype, which is currently being
developed implements the above mentioned concepts and will presumably be finished by
end of 2007.

6 Outlook: OBSE and MDA
Model Driven Architecture (MDA) [OMG 03] is a model centred approach which is
expected to play an growing role in future SE. In the terminology of MDA three
different types of models are defined: Computation Independent Model (CIM), Platform
Independent Model (PIM) and Platform Specific Model (PSM). The idea is to engineer
an abstract model which then can be used to generate more specific models for different
target platforms. These models can be described in a modelling or natural language –
note that PIM and PSM are usually expressed in UML. MDA concentrates on PIM and
PSM and their transformation. For CIM only an imprecise description can be found.

We argue that project specific KCP models are suitable as CIM (cf. fig. 7). In [GDD 06]
it is pointed out that CIM can be seen as some kind of ontology and as mentioned in
chapter 3, the KCP method presents an appropriate way for expressing ontologies.
Beyond this similarity, project specific KCP models are created from project
requirements as well as from a domain ontology whereas CIMs are expected to describe
the requirements for a system and the system’s immediate environment.

140

Fig. 7: OBSE and Model-driven Development (MDD)

The use of KCP models as CIM paves the way for a possible MDA extension going
beyond the so far existing transformations which are virtually limited to the PIM and
PSM stages. This extension will reduce the conceptual distance between requirements
and other NL-based documents on the application domain on the one hand side and
UML-like, project-specific models (PIM’s) on the other. The semi-automatic mapping
from KCP glossaries to UML models provides an automated transformation from CIM
to PIM. It extends the MDA approach for use in the early software development phases.
Moreover, our OBSE approach does not only take (project-specific) requirements into
account but also (project-independent) ontologies.

This way, the scope of CIM’s is extended to domain-spanning ontologies and future
(mostly automated) MDA transformation chains may lead the developers from early-
phase documents describing requirements and domain knowledge in glossary form
through various model stages down to executable programs in some common
programming language. This opens a way to combine Knowledge and Software Engine-
ering and to make domain-specific knowledge via CIM's and glossaries reusable for
professional SE projects.

References
[C-P 99] St. Cranefield and M. Purvis: A UML profile and mapping for the generation of ontology-

specific content languages. In.: The Knowledge Engineering Reviews, Vol. 17.1., pp. 21-39,
Cambridge Univ. Press 1999

[FKM+00] G. Fliedl, Ch. Kop, H. C. Mayr, W. Mayerthaler, Ch. Winkler: Linguistically based
requirements engineering - The NIBA project. In: Data & Knowledge Engineering, Vol. 35,
pp. 111 – 120 (2000)

[GDD 06] D. Gasevic, D. Djuric, V. Devedzic: Model Driven Architecture and Ontology
Development. Springer 2006

[G-L 02] M. Gruninger, J. Lee: Ontology - Applications and Design. CACM 45.2, pp. 39-41 (2002)
[Gru 95] T. Gruber: Towards principles for the design of ontologies for knowledge sharing, Int. J. of

Human-Computer Studies 43 (1995), also: What is an Ontology?
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

[Gua 98] N. Guarino: Formal Ontology and Information Systems. In: Proc. FOIS '98, Trento (Italy),
pp 3-15. IOS Press Amsterdam 1998

141

[Hes 96] W. Hesse: Theory and practice of the software process - a field study and its implications
for project management; in: C. Montangero (Ed.): Software Process Technology, 5th
European Workshop, EWSPT 96, pp. 241-256. LNCS 1149, Springer 1996

[Hes 97] W. Hesse: Improving the software process guided by the EOS model. In: Proc. SPI '97
European Conference on Software Process Improvement. Barcelona 1997

[Hes 02] W. Hesse: Das aktuelle Schlagwort: Ontologie(n). Informatik Spektrum 25.6, pp. 477-480
(2002)

[Hes 03] W. Hesse: Dinosaur Meets Archaeopteryx? or: Is there an Alternative for Rational's Unified
Process? Software and Systems Modeling (SoSyM) Vol. 2. No. 4, pp. 240-247 (2003)

[Hes 05] W. Hesse: Ontologies in the Software Engineering process. In: R. Lenz et al. (Eds.): EAI
2005 - Tagungsband Workshop on Enterprise Application Integration, GITO-Verlag Berlin
2005 and: http://sunsite.informatik.rwth-aachen.de/ Publications/CEUR-WS/Vol-141/

[Hes 06] W. Hesse: Modelle - Janusköpfe der Software-Entwicklung - oder: Mit Janus von der A-
zur S-Klasse. Proc. Modellierung 2006, pp. 99-114. GI-LNI P-82, Springer 2006

[HKM+ 04] W. Hesse, R. Kaschek, H.C. Mayr, B. Thalheim: Ontologien in der und für die
Softwaretechnik. Proc. Modellierung 2004, Marburg, pp. 269-270. GI-LNI P-45, Springer
2004

[KFM+ 05] Ch. Kop, G. Fliedl, H.C. Mayr, M. Hölbling, Th. Horn,: Extended Tagging as a Source for
Mapping Requirements Texts to Conceptual Models. In: Proc. 10th Int. Conf. on Natural
Language Applications for Information Systems NLDB2005, Alicante, LNCS Springer
2005

[K-M 03] Ch. Kop, H.C. Mayr: An Interlingua based Approach to Derive State Charts form Natural
Language Requirements In: Hamza M.H. (Hrsg.): Proceedings of the 7th IASTED
International Conference on Software Engineering and Applications, pp. 538 – 543. ACTA
Press 2003

[KMZ 04] Ch. Kop, H.C. Mayr, T. Zavinska: Using KCPM for Defining and Integrating Domain
Ontologies. Proc. Int. Workshop on Fragmentation versus Integration - Perspectives of the
Web Information Systems Discipline, Brisbane Australia. LNCS, Springer 2004

[KVH+05] Ch. Kop, J. Vöhringer, M. Hölbling, Th. Horn, Ch. Irrasch, H.C. Mayr: Tool Supported
Extraction of Behavior Models. In: R.K. Kaschek et al. (Eds.): Proc. 4th Int. Conf. on
Information Systems Technology and its Applications ISTA2005; Palmerston North (NZ),
LNI Springer 2005

[L-M 05] Jean-Michel Lemieux, Jeff McAffer: Eclipse Rich Client Platform: Designing, Coding, and
Packaging Java™ Applications. Addison Wesley 2005

[M-K 02] H.C. Mayr, Ch. Kop: A User Centered Approach to Requirements Modeling, Proc.
Modellierung 2002, pp. 75-86. LNI p-12, Springer 2002

[Miz 98] R. Mizoguchi: Tutorial on Ontological Engineering, Osaka University 1998
http://www.ei.sanken.osaka-u.ac.jp/pub/miz/Part1-pdf2.pdf

[N-H 89] G.M. Nijssen, T.A. Halpin: Conceptual Schema and Relational Database De-sign – A fact
oriented approach. Prentice Hall Publ. Comp, 1989

[OMG 03] Object Management Group (OMG): MDA Guide Version 1.0.1, http://www.omg.org/
(2003)

[Rus 07] A. Ruß: Übersetzung von UML-Diagrammen für die Ontologie-basierte Software-
Entwicklung. Diploma thesis. Univ. Marburg 2007

[SMK 04] A. Salbrechter, H.C. Mayr, Ch. Kop: Mapping Pre-designed Business Process Models to
UML In: Hamza M.H. (Hrsg.): Proc. of the 8th IASTED International Conference on
Software Engineering and Applications, pp. 400-405. ACTA Press Cambridge (USA) 2004

[V-M 05] J. Vöhringer, H.C. Mayr: Integration of schemas on the pre-conceptual level using the
KCPM-approach. Proc. 16th Int. Conference on Information Systems Development
ISD2005. LNCS Springer 2005

142

Viewpoint-based Meta Model Engineering

Stephan Kurpjuweit, Robert Winter

Institute of Information Management
University of St. Gallen

Mueller-Friedberg-Strasse 8
9000 St. Gallen, Switzerland
stephan.kurpjuweit@unsig.ch

robert.winter@unisg.ch

Abstract: Work systems are complex artifacts that address the concerns of a large
and diverse group of stakeholders. These concerns must be reflected in the models
which are created as used in the development process. Current work systems
engineering methods assume that concerns are more or less mutually independent
and can be addressed sequentially. We argue - in analogy to other engineering
disciplines - that this assumption is too restrictive. To facilitate the creation of
models that simultaneously express multiple stakeholder concerns, we propose an
approach which systematically elicits the stakeholder concerns, and derive a
customized meta model from these concerns. We also show how this approach has
been applied in an industrial case study, and propose a set of extensions to the
method engineering meta model that allow method engineers to include
stakeholder concerns in work system design methods.

1 Introduction

Models play a pivotal role in information systems and work systems1 engineering:
Among other purposes, models of the system under construction serve as a blueprint for
its implementation, to reason about its prospective properties, to structure its
development process, to decompose the system into mutually independent sub problems
and to communicate it among the various stakeholders in the development process.

Like almost any engineered artifact, work systems are inherently complex and must
address the concerns of a large and diverse group of stakeholders. These include
participants in the design and implementation process of the work system as well as
stakeholders concerned with the properties of the work system to be implemented. The
models of the work system created throughout its development process must adequately

1 Following the argumentation of Alter, we prefer the term work system (WS) over the more specific term
information system (IS). A work system is defined as “a system in which human participants and/or machines
perform work using information, technology, and other resources to produce products and/or services for
internal or external customers” [Al06b].. Information systems can thus be seen as a specific subtype of work
systems [Al03], [Al06a].. Therefore, throughout this paper we refer to the results of the design process as work
systems.

143

reflect the concerns of these various stakeholders. The applied modeling concepts must
appropriately express these concerns.

Most approaches in information systems and work systems engineering put concerns on
the same level with process phases and the artifacts created within these phases. This
reflects the assumption that concerns are more or less mutually independent and can thus
be addressed one by one in sequential order (e.g. [FS95, Sc01, Wi03]). Sutton and
Rouvellou [SR01] argue that this view is too restrictive because most concerns cut
across process phases and the corresponding artifact types. Although this observation has
been made for the domain of software engineering, it seems to be reasonable to assume
that it holds true for the even broader domain of work systems engineering.

Meta models define the modeling concepts that can be used to describe models
[KLC05]. Meta models can thus be seen as models of modeling languages [Fa05] and
“the task of creating a meta model is the task of creating a language that is capable to
describe the relevant aspects of a subject under consideration that are of interest for the
future users of the created models” [Hö07].

To summarize: Innovative engineering approaches will address increasingly complex
artifacts (work systems instead of information systems) by means of models that
simultaneously express multiple crosscutting stakeholder concerns. Consequently, also
the applied modeling concepts and meta models will be more complex and should be
constructed systematically. Though a large theoretical foundation is available in the area
of conceptual modeling and language construction (e.g. [BP06, LSS94, Mo05, STW03,
We03, WW02]), only little work has been done to address the systematic construction of
meta models that explicitly and comprehensibly represent the concerns of the various
stakeholders.

In this paper we propose a systematic and applicable approach to elicit the concerns and
the information needs from all stakeholders of a work system and to derive a customized
meta model from these concerns and needs. Our approach incorporates and complements
existing approaches and insights from the available theoretical body of knowledge. It has
been applied and iteratively refined in case studies with industry partners.

The paper is structured as follows: Sections 2 and 3 discuss key concepts that lead to
requirements or solution ideas for our approach. Section 4 summarizes the requirements
for viewpoint-based work systems engineering. Section 5 presents our approach to meta
model engineering. Section 6 discusses how our approach can be integrated into the
method engineering meta model, and section 7 briefly describes an industrial application
of the proposed approach.

2 Models, Meta Models, Stakeholders, Concerns, and Viewpoints

According to Stachowiak [St73], a model possesses three essential properties: the
representation property (a model represents an original, e.g. the work system under
consideration), the reduction property (a model represents a relevant subset of all

144

possible properties of the original), and the pragmatic property (a model serves a
purpose). Although many possible modeling purposes have been discussed, three main
categories can be identified (cf. [LHM95]):

(1) Documentation and communication (here: to document the work system as-is and to
communicate it among the stakeholders)

(2) Analysis and explanation (here: to analyze how the work system performs with
respect to certain concerns and to identify strategies how it may be improved)

(3) Design (here: to prescribe a to-be blueprint of the work system).

A model is created by a modeler and interpreted by one or more users with respect to a
certain purpose [Le04]. As modelers and users of a model are not necessarily identical, it
is important to ensure that both parties are able to understand the model.

Models conform2 to meta models. Meta models define the modeling concepts that can be
used to describe models [KLC05]. A meta model is thus a model of a modeling language
[Fa05]. As a meta model itself is a model, it may conform to a meta meta model. Though
in this way a hierarchy of models and meta models can be carried to the nth level, in
practice the definition of the meta meta model is usually reflexive [Hö07].

According to Harel and Rumpe [HR00], a modeling language has syntax (defining the
notational aspects) and semantics (defining the meaning). Additionally Kühn introduces
the notation as explicit representation of the language elements [Kü04]. In this view a
meta model defines the abstract syntax of a modeling language (i.e. the modeling
constructs and valid ways to combine them [Hö07]), while the notation defines the
concrete syntax [Di03].

As mentioned before, work systems are inherently complex and must address the
concerns of a large and diverse group of stakeholders. These include systems architects,
project managers, sponsors, implementers, and change agents who are participants of the
design and implementation process, as well as customers, employees, managers, system
operators, outsourcing partners, or the workers’ council which are stakeholders
concerned with the properties of the implemented work system3. Catalogs of – mostly
technical – concerns have been published for software and information systems
engineering (cf. [Al00, Ba04, CE00]). These include quality concerns like security (cf.
[CE00]) or system performance (cf. [Al00]) as well as design related concerns like the
structure and representation of data (cf. [CE00]). In the context of work systems
engineering, also strategic and organizational concerns like business service realization
and business process efficiency should be considered (cf. [Do04]). Based on the
definition suggested by Sutton and Rouvellou [SR01] we define a concern as a matter of
interest in a work system. Accordingly, a stakeholder is defined as a person or an
organization that has a concern in a work system.

2 We agree with Bézivin [Be05]. and Favre [Fa05] who argue that the term conforms to should be preferred
over instance of.
3 This distinction is similar to the distinction between design time and run time concerns of a software system.

145

The models of the work system must adequately reflect the concerns of the various
stakeholders. The stakeholders’ concerns and needs impact models of the work system in
two ways: First, syntax and notation of the modeling language must be appropriate for
the stakeholders’ educational background (internal quality). This is for example relevant
if employees with a business background must be able to interpret a procedural model of
the work system.

Second, the design of the work system itself (i.e. the model content) must address the
requirements of stakeholders to ensure that the work systems implemented on the basis
of the models satisfies their requirements (external quality). This is for example the case
if stakeholders responsible for the security of a work system need to ensure that
appropriate technical mechanism (e.g. firewalls, encrypted network connections) or
appropriate organizational mechanisms (e.g. policies to have transactions reviewed by a
second set of eyes) are in place. In the latter case, the modeling language must also
provide appropriate modeling constructs to express the design decisions made to address
the stakeholders’ concerns. The distinction between internal and external quality
originates from the ISO/IEC 9126 standard [ISO01] and has been adopted to evaluate the
quality of conceptual models (cf. [Mo05]).

In software engineering and requirements engineering the concept of viewpoints has
been discussed since the early 1990s (cf. [Fi92, KS92, Nu94]) to simultaneously
consider multiple concerns in system description and design [Do04]. The IEEE-1471
standard for architecture description [IEE00] contains the most prominent conception of
viewpoints. Despite all differences between the various notions of viewpoints that have
been published, most authors agree that a viewpoint describes appropriate modeling
machinery (e.g., a modeling language and/or a modeling method) to capture one or more
related concerns about a system. The viewpoint definition most suited for the purpose of
this paper has been given by Bayer [Ba04]: “A viewpoint covers a number of concerns
and defines the information associated with the concern in the metamodel.” In our
approach viewpoints are a major concept to structure the stakeholders’ requirements and
to derive meta model fragments which satisfy these requirements.

3 Methods and Situational Method Engineering

The generic structure of development processes is codified in methods. Brinkkemper
defines a method as “[…] an approach to perform a systems development project, based
on a specific way of thinking, consisting of directions and rules, structured in a
systematic way in development activities with corresponding development product”
[Br96]. The discipline of method engineering (ME) is concerned with the design, the
construction, and the adaption of methods. Though most method concepts discussed in
the ME discipline aim at engineering and transforming information systems [TA03], the
concept of a method can also be applied at the scope of work systems [Ba05].

Based on a review of approaches to method implementation and method construction,
Heym [He93] and Gutzwiller [Gu94] identified five constituent elements of methods:
design activities, documents specifying design results, roles, techniques, and the meta

146

model of the method. Braun et al. [Br05] validated this set of concepts for the
description of generic methods by analyzing twelve scientific publications in the domain
of method engineering . Thus, these five elements of work system design methods can be
seen as a “core” method engineering meta model (unshaded entities in figure 4). As
indicated by the method engineering meta model, design results conform to the meta
model, which is an integral component of a method.

Recent research in method engineering has stressed the fact that methods are generic
artifacts and must be adapted to the specific project type and context factors at hand
[Br96, Ha97]. [Bu07] differentiates between the “project type” (defined in terms of the
initial situation and the project goals to be achieved) and the “context” (defined in terms
of environmental factors that may impact the project execution) and proposes an
extension to the core method engineering meta model by adding the concepts “context”,
and “project type”. A “situation” is a combination of certain contexts and certain project
types. A “method fragment” is a generalized concept for design activities and techniques
and can be adapted to a specific situation by means of “adaption mechanisms”. Figure 4
includes these extension concepts as entities shaded in dark grey.

As entire work systems are rarely designed from scratch, methods are usually applied in
transformation projects (cf. [Bu07]). This raises the need to differentiate various states of
the work system (e.g., as-is vs. to-be). It should be noted that as-is and to-be models of
the work system may not only differ regarding represented content, but also regarding
modeling concepts applied - and thus regarding the underlying meta model. This is
typically the case if the transformation project applies a new paradigm to structure the
work system. E.g., new paradigms are applied when moving from an application-
oriented IT landscape to a service-oriented IT landscape, or from a hierarchical
organizational structure to a matrix-oriented organizational structure.

4 Goals for an Approach to Meta Model Engineering

From the description of key concepts in sections 2 and 3, the following key requirement
categories for systematical, viewpoint-based work systems engineering can be derived:

(1) The fact that meta models are constructed as integral parts of work system design
methods must be reflected.

(2) The concerns and information needs of both participants in the work system
construction process as well as stakeholders concerned with the properties of the
work system must be considered.

(3) The approach must be independent of a specific meta meta model and thus
independent of a specific modeling technique (cf. section 5).

(4) As an engineering approach it should facilitate reuse of meta models, provide a
design rationale for modeling decisions, and address the need to adapt meta models
to specific project types and to specific context factors.

147

5 A Systematic Approach to Meta Model Engineering

The purpose of our approach is to systematically elicit the concerns and the information
needs from all stakeholders of a work system and to derive a meta model from these
concerns and needs. Since our approach intends to be independent of specific meta
modeling methodologies and meta meta models (cf. section 4, goal 3), we construct our
engineering approach around any epistemologically valid meta modeling technique4 that
supports modeling and integration of meta models. Researchers have proposed meta
modeling techniques based on the ER Model [NKF93, STM88], Attribute Grammars
[Ka89, So95], Predicate Logic [NKF93], the object-oriented modeling approach [Ju00,
Kü03] or other approaches [Aj96] (cf. [BSH99]).

The basic idea of our approach is to partition the complete set of modeling requirements
into viewpoints, to develop a meta model fragment for each viewpoint, and to integrate
the meta model fragments into a comprehensive meta model. By that means, our
approach implements three engineering principles: First, the complex modeling problem
is partitioned into less complex and mutually independent sub problems (divide and
conquer). Second, the meta model fragments describe encapsulated solutions, which can
be reused in similar situations. Third, the purpose of meta model elements can be traced
back to the modeling requirements.

Consequently, the proposed approach consists of three main steps: “Requirements
Elicitation”, “Meta Model Fragment Selection or Design”, and “Meta Model Fragment
Integration”. We add two auxiliary steps:” Identification of Relevant Concerns” (to gain
an overview of all concerns to be addressed) and “Viewpoint Relationship Overview” (to
check the set of viewpoint for completeness and consistency).

4 Similarly to software engineering methods that are typically independent of specific programming languages.

148

List of Relevant
Concerns

Viewpoint
Requirements
Specification 1

Viewpoint
Requirements
Specification 2

Viewpoint
Requirements
Specification n

…

Viewpoint 1 Viewpoint 2 Viewpoint n

Meta Model
Fragment 1

Meta Model
Fragment 2

Meta Model
Fragment n

…

Integrated
Meta Model

D
es

ig
n

Va
lid

at
io

n

D
es

ig
n

Va
lid

at
io

n

D
es

ig
n

Va
lid

at
io

n

Viewpoint Relationship Diagram

Identification
of Relevant
Concerns

Requirements
Elicitation

Viewpoint
Relationship
Overview

Meta Model
Fragment
Selection or
Design

Meta Model
Fragment
Integration

1

2

3

4

5

Process
Steps

Documents

Figure 1: Viewpoint-based Meta Model Engineering – Overview

Figure 1 illustrates the process steps and documents of the proposed approach. Steps 2
and 4 are performed for each viewpoint. Thus, in a modeling project the steps can either
be performed in sequential order if the scope of the meta model or the criteria to partition
the requirements in viewpoints are unclear at the beginning, or the steps can be
performed iteratively for each viewpoint. Our approach addresses two general
application scenarios:

(1) The initial definition of reusable viewpoint as part of a new method development
project: In this case the desired degree of generality (i.e. the project types and the
context factors for which the viewpoints should be applicable) must be considered.

(2) The application of viewpoints in a concrete project: In this case the selection and
integration of existing meta model fragments are the main activities.

The modeling projects we conducted with industry partners revealed aspects of both
scenarios: For some concerns it was possible to reuse pre-defined meta model fragments,
while for other concerns new meta model fragments had to be created.

The five steps of the proposed approach are specified in detail as follows:

Step 1: Identification of Relevant Concerns

The goal of step 1 is to assemble a broad list of relevant concerns form a large and
diverse group of stakeholders. A reference list of concerns can be used as a starting point
(e.g. [Al00, CE00]). The set of concerns however should be specific for the project type

149

and the context factors at hand. Ideally this activity is performed within a workshop
where all important stakeholders are present (or at least represented).

Object Purpose Concern Stakeholder Situation

1. Representation of the Object As-Is 2. Representation of the Object To-Be

3. Modelers and Information Sources 4. Model Users and Information Targets

In which situation
(project types and
context factors)?

How can the object as-is be
modeled? (incl. example
models)

How can the object to-be be
modeled? (incl. example
models)

Who will interpret the models?
How will the information be
used?

Who will create the models?
On the basis of which
information sources?

Which stakeholder
perspective will be
taken?

Which concern will
be modeled?

Why will the object
be modeled?
(1) documentation
and communication,
(2) analysis and
explanation
(3) design

Which parts of the
work system will be
modeled?

5. Design Strategies 6. Compatible Approaches

To which approaches, standards,
and frameworks should the model
be comaptible?

Which design decisions may
impact the concern in a
positive or a negative way?

Figure 2: Viewpoint Requirements Template (VRT)

Step 2: Requirements Elicitation

The technique applied in this step is adapted from the Goal-Question-Metric (GQM)
Method [SB99], an approach to systematically derive situational metrics from questions
that are in turn derived from stakeholder goals: In structured interviews with the
individual stakeholders, each concern identified in step 1 is refined on the basis of the
viewpoint requirements template (VRT) shown in figure 2 (a tailored version of the goal
template provided by the GQM method). Related concerns may be refined together in
one VRT. The VRT consists of a viewpoint goal and six additional elements to be filled
in by the stakeholder. The viewpoint goal can be paraphrased: “Represent the OBJECT
to {document and communicate or analyze and explain or design} the CONCERN from
the perspective of STAKEHOLDER in SITUATION.” (cf. [SB99])

Next, specific questions are derived on the basis of the viewpoint goal: What questions
should the model answer to achieve the viewpoint goal? These questions represent
requirements regarding the information content of the models and thus the modeling
concepts included in the meta model fragment.

150

Step 3: Viewpoint Relationship Overview

This step is optional but may be useful to gain a model-centric overview of the method
under construction and to check the information gathered in the different VRTs for
correctness, completeness, and consistency. One overall viewpoint relationship diagram
is created that summarizes the information about the relationships of the different
viewpoints; Figure 3 illustrates the available vocabulary: “model/document type”,
“modeler/model user”, “stakeholder”, “information source/target” as well as the
relationships “manual transformation”, “automated transformation” (each either between
two model/document types or a document/model type and an information source/target),
and “association” (between stakeholder and model/document type, modeler/model user
and model/document type). Figure 6 shows an example of a model relationship diagram.

Figure 3: Viewpoint Relationship Diagram (Legend)

Step 4: Meta Model Fragment Selection or Design

In this step the individual viewpoint specifications are complemented by adding an
appropriate meta model fragment. The meta model fragment can either be designed from
scratch or selected from a viewpoint catalogue. The meta model fragment must be
validated against its requirements by answering the questions derived in step 2.

To design the meta model fragment from scratch, an appropriate modeling technique
should be applied. As our approach intends to be independent of specific modeling
techniques and meta meta models (see above), we only specify the following constraints:

(1) The meta model must be minimal, i.e. only contain elements that are motivated by
the information needs specified in the viewpoint. Otherwise effort may be spent
later on to model content that cannot be interpreted with respect to a viewpoint goal
(cf. [SB99]).

(2) A design rationale for the individual meta model elements must be recorded (to
address goal 4 as stated in section 4).

(3) The semantics of the meta model elements must be clarified at least intuitively to
avoid misunderstandings between different stakeholder groups.

A simple and straightforward way to achieve this is a table that provides for each meta
model element a short rationale, example instances, and if necessary also negative
examples that shall not be modeled as instances of the meta model element.

151

Step 5: Meta Model Fragment Integration

Once meta model fragments for all relevant viewpoints are available, these fragments
must be integrated into one integrated meta model that expresses the interrelationships
between the various viewpoints. Again, the concrete approach for meta model
integration depends on the underlying meta meta model. Researchers have published
several approaches to meta model integration (e.g. [BSH99, ES06, Kü03, RR01]). In
general, the following issues must be addressed: (a) Terminology must be adjusted to
ensure that semantically similar concepts have the same name and that semantically
different concepts have different names (cf. [ES06, RR01]). (b) Generalizations must be
created if two concepts have similar semantics but different structures (cf. [RR01]). (c)
Specializations must be created if one concept is a specialization of another concept (cf.
[RR01]). (d) If the same information content is represented in different ways, such
redundancies need to be removed (cf. [RR01]). (e) In order to relate meta model
fragments, interface modeling concepts may have to be introduced (cf. [ES06, Kü03]).

In order to ensure that all concerns and information needs are covered, the integrated
meta model should also be validated against the questions noted in the individual
viewpoint specifications and against the viewpoint relationship diagram.

6 Extensions to the Method Engineering Meta Model

The extended method engineering meta model proposed in [Bu07] (cf. section 3) does
not reflect the viewpoint-based design of meta model fragments as presented in the paper
at hand: While design activities and techniques are considered as method fragments that
constitute the building blocks of methods and that can be configured and composed
according to the requirements of specific project types and context characteristics, the
meta model is still treated as a monolithic artifact.

To reflect the viewpoint-based meta model engineering approach discussed in the
previous sections, we propose another set of extensions to the method engineering meta
model by adding the following concepts:

− “stakeholder” who has one or more concerns and who might hold one or more roles
in the development project.

− The stakeholder’s concerns are addressed by “design strategies” which are applied
in the design activities.

− A “meta model fragment” provides the modeling concepts to capture the design
decisions which are based on a design strategy in order to address a concern. Thus,
meta model fragments are concern-related. The complete meta model of a method is
an integration of all relevant meta model fragments as described in section 5.

− As defined in section 2, “viewpoints” package one or more concerns together with
related meta model fragments.

− The concept “notation” introduces the differentiation between the abstract and the
concrete syntax as proposed by Kühn [Kü04] (cf. section 2).

152

Figure 4 illustrates the proposed, extended method engineering meta model. The
additions specified in this section are shaded in light grey. The proposed meta model
extensions are in accordance with existing viewpoint-based approaches from software
and requirements engineering (cf. section 2) and reflects the ideas presented in the paper
at hand.

Design Activity

Design Result

Role Technique

Meta Model

Method Fragment

Context Project Type

Situation

Adaptation
Mechanism

influences influences

is part of is part of

is part of

is part of

predecessor /
successor

is part of

Conforms to

participates
in

produces /
consumes

guides
creation of

Notation

Stakeholder
has

Concern

has

Design Strategy

adresses

Meta Model
Fragment

expressed in

conforms to

described in

Viewpoint

is part of

is part of

applied in

Figure 4: Extended Method Engineering Meta Model (Notation adapted from UML class diagram)

7 Case Study: Modeling IT Architectures

In this section we briefly describe an industrial case study in which our approach has
been applied. The meta modeling project was conducted with a mid size financial service
provider in Germany. The goal was to establish a meta model that facilitates
management and planning of the organization´s IT architecture. In the requirements
elicitation phase of the project 14 stakeholder groups were interviewed in workshops
resulting in a total of 45 essential requirement statements which could be structured in 16
viewpoint specifications.

The meta model fragments derived for the individual viewpoints were modeled from
scratch using the object-oriented modeling approach [Ju00, Kü03] and a variant of the
UML class diagrams as notation. Figure 5 shows the integrated meta model. In the meta
model cardinalities and identifiers of relationships as well as attributes of classes are
omitted.

153

As indicated by the method engineering meta model, the concept of a viewpoint is also a
method fragment and can thus be adapted to specific situations. This is necessary
because the concerns of a stakeholder and the design strategies to address these concerns
may depend on context factors and project types. For example, the concerns of the
workers’ council will depend on the size and the economic situation of the enterprise.
Another example is that available design strategies to optimize the alignment between
business processes and available IT functionalities will be different in context of a
standard software as opposed to a best of breed IT strategy. Considering viewpoints as
method fragments as well as composing meta models from concern-related meta model
fragments are aids to overcome the monolithic approach to meta modeling which
dominates traditional method engineering.

Person

Org. UnitProcess

Application

specializationpart of

Site

Position

Product Distribution
Channel

System
Software

Business
Information

Object

Data Entity Software
Component

User
Interface

Business
Logic

Data
Container

Interface

Server

Physical
Server

Sever
Cluster

Virtual
Server

Information
Flow

Application
Environ-

ment

part of

part of

Figure 5: Complete Meta Model (simplified)

The proposed approach can be seen as a meta method, i.e. a method to engineer meta
models as part of methods. In this light, the method engineering meta model presented in
figure 4 becomes the meta model of our meta method, and the design results
incorporated in the meta method conform to this meta model.

The appendix contains further case study material that exemplifies intermediate
documents which were created throughout the meta modeling project.

154

8 Conclusion and Further Research

In our paper we presented a new approach to meta model engineering: By means of a
five step process, the modeling requirements from all stakeholders of a work system are
elicited, specified as viewpoints, and refined into meta model fragments which are in
turn integrated into a comprehensive meta model. In this way meta models are
constructed that simultaneously reflect the concerns of multiple stakeholders. Such meta
models will be an important component of innovative work system design methods.
Furthermore, we proposed extensions to the method engineering meta model that allow
the method engineer to include stakeholder concerns in descriptions of work system
design methods.

In an industrial case study our approach turned out to be useful to construct meta models
which address multiple stakeholder concerns. Further research should focus on an
evaluation of the proposed approach as part of the design research process. For such an
evaluation we will conduct further case studies (to evaluate that the concerns of various
stakeholders can be elicited and reflected properly) as well as experiments (to evaluate
that the integration of meta model fragments and the verification of the integrated meta
model lead to reproducible results). Based on the initial contribution presented in this
paper, there are three broad directions to extend this work: First of all, a handbook of
viewpoints for work system design can be assembled on the basis of existing research
results from concern-focused research communities and on the basis of further industrial
case studies. Second, the mechanisms to adapt viewpoints to specific project types and
context factors can be formalized. This could for example be achieved by incorporating
approaches from reference modeling (e.g. [Be02, Br03]). Third, our approach could be
extended to provide concrete guidelines for the design and integration of meta model
fragments on the basis of specific meta meta models. This requires the evaluation and
integration of existing meta modeling techniques (e.g. [NKF93, STM88]).

References

[Aj96] Ajisaka, Tsuneo: The software quark model: a universal model for CASE repositories. In:
Information and Software Technology 38 (1996), S. 173-180.

[Al00] Aldrich, J.: Challenge Problems for Separation of Concerns. OOPSLA 2000 Workshop on
Advanced Separation of Concerns, Minneapolis, USA, 2000.

[Al03] Alter, Steven: 18 Reasons Why IT-reliant Work Systems Should Replace “The IT Artifact”
as the Core Subject Matter of the IS Field. In: Communications of the Association for
Information Systems 12 (2003) 23, S. 366-395.

[Al06a] Alter, Steven: Work Systems and IT Artifacts - Does the Definition Matter? In:
Communications of the Association for Information Systems 17 (2006) 14, S. 299-313.

[Al06b] Alter, Steven: The Work System Method. 1, Work System Press, Larkspur, CA 2006.
[Ba04] Bayer, Joachim: View-based Software Documentation. Ph.D. Thesis, Universität

Kaiserslautern, Kaiserslautern, 2004.

155

[Ba05] Baumoel, Ulrike: Strategic Agility through Situational Method Construction. In:
Reichwald, Ralf; Huff, Anne Sigismund (Hrsg.): Proceedings of the European Academy
of Management Annual Conference (EURAM2005). http://www.euram2005.de, 2005,

[Be02] Becker, Joerg; Algermissen, Lars; Delfmann, Patrick; Knackstedt, Ralf:
Referenzmodellierung. In: Das Wirtschaftsstudium 30 (2002) 11, S. 1294-1298.

[Be05] Bézivin, J.: On the Unification Power of Models. In: Software and System Modeling 4
(2005) 2, S. 171-188.

[BP06] Becker, Jörg; Pfeiffer, Daniel: Konzeptionelle Modellierung – ein
wissenschaftstheoretischer Forschungsleitfaden. In: Lehner, Franz; Nösekabel, Holger;
Kleinschmidt, Peter (Hrsg.): Multikonferenz Wirtschaftsinformatik (MKWI 2006), Band
2, 2006.

[Br03] vom Brocke, J.: Referenzmodellierung - Gestaltung und Verteilung von
Konstruktionsprozessen. Ph.D. Thesis, Logos, Berlin, 2003.

[Br05] Braun, Christian; Wortmann, Felix; Hafner, Martin; Winter, Robert: Method Construction
- A Core Approach to Organizational Engineering. In: Haddad, Hisham; Liebrock, Lorie
M.; Omicini, Andrea; Wainwright, Roger L. (Hrsg.): Proceedings of the 20th Annual
ACM Symposium on Applied Computing (SAC 2005). ACM, Santa Fe 2005, 1295-
1299.

[Br96] Brinkkemper, Sjaak: Method Engineering - Engineering of Information Systems
Development Methods and Tools. In: Information and Software Technology 38 (1996),
S. 275-280.

[BSH99] Brinkkemper, Sjaak; Saeki, Motoshi; Harmsen, Anton Frank: Meta-Modelling Based
Assembly Techniques for Situational Method Engineering. In: Information Systems 24
(1999) 3, S. 209-228.

[Bu07] Bucher, Tobias; Klesse, Mario; Kurpjuweit, Stephan; Winter, Robert: Situational Method
Engineering - On the Differentiation of "Context" and "Project Type". IFIP WG8.1
Working Conference on Situational Method Engineering (ME07), 2007.

[CE00] Czarnecki, K.; EIsenecker, U.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

[Di03] Dijkman, Remco M.; Quartel, DIck A.C.; Pires, Luís Ferreira; Svan Sinderern, Marten J.:
An Approach to Relate Viewpoints and Modeling Languages. Seventh IEEE
International Enterprise Distributed Object Computing Conference, 2003.

[ES06] Emerson, Matthew; Sztipanovits, Janos: Techniques for Metamodel Composition. The 6th
OOPSLA Workshop on Domain-Specific Modeling, OOPSLA, 2006.

[Fa05] Favre, Jean-Marie: Foundations of Meta-Pyramids: Languages vs. Metamodels - Episode
II: Story of Thotus the Baboon. In: Bézivin, J.; Heckel, R. (Hrsg.): Language
Engineering for Model-Driven Software Development. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Dagstuhl 2005,

[Fi92] Finkelstein, A.; Kramer, J.; Nuseibeh, B.; Finkelstein, L.; Goedicke, M.: Viewpoints: a
framework for integrating multiple perspectives in system development. In: International
Journal on Software Engineering and Knowledge Engineering 2 (1992) 1, S. 31-58.

[FS95] Ferstl, Otto K.; Sinz, Elmar J.: Der Ansatz des Semantsichen Objektmodells (SOM) zur
Modellierung von Geschäftsprozessen. In: Wirtschaftsinformatik 37 (1995) 3, S. 209-
220.

[Gu94] Gutzwiller, Thomas: Das CC RIM-Referenzmodell für den Entwurf von betrieblichen,
transaktionsorientierten Informationssystemen. Physica, Heidelberg 1994.

[Ha97] Harmsen, Frank: Situational Method Engineering. Moret Ernst & Young Management
Consultants, Utrecht 1997.

[He93] Heym, Michael: Methoden-Engineering - Spezifikation und Integration von
Entwicklungsmethoden für Informationssysteme. Ph.D. Thesis, University of St. Gallen,
1993.

156

[Hö07] Höfferer, Peter: Achieving Business Process model Interoperability Using Metamodels
and Ontologies. In: Österle, Hubert; Schelp, Joachim; Winter, Robert (Hrsg.): 15th
European Conference on Information Systems (ECIS 2007), 2007.

[ISO01] ISO/IEC: Standard 9126: Software Product Quality. International Standards Organization
(ISO, International Electrotechnical Commission (IEC), 2001.

[Ju00] Junginger, Stefan; Kühn, Harald; Strobl, Robert; Karagiannis, Dimitris: Ein
Geschäftsprozessmanagement-Werkzeug der nächsten Generation. In:
Wirtschaftsinformatik 42 (2000) 5, S. 392-401.

[Ka89] Katayama, Takuya: A Hierarchical and Functional Software Process Description and its
Enaction. 11th Int. Conf. on Software Engineering, 1989.

[KLC05] Klint, Paul; Lämmel, Ralf; Verhoef, Chris: Towards an engineering discipline for
grammarware. In: ACM Transactions on Software Engineering and Methodology
(TOSEM) 14 (2005) 3, S. 331-380.

[KS92] Kontonya, G.; Sommerville, I.: Viewpoints for requirements definition. In: IEE/BCS
Software Enginereing Journal 7 (1992) 6, S. 375-387.

[Kü03] Kühn, Harald; Bayer, Franz; Junginger, Stefan; Karagiannis, Dimitris: Enterprise Model
Integration. In: Bauknecht, K.; Tjoa, A. M.; Quirchmayer, G. (Hrsg.): Fourth
International Conference EC-Web 2003 – Dexa 2003, Berlin et al., 2003.

[Kü04] Kühn, Harald: Methodenintegation im Business Engineering. Ph.D. Thesis, Universität,
Wien, 2004.

[Le04] Leist, Susanne: Methoden zur Unternehmensmodellierung - Vergleich, Anwendungen und
Diskussionen der Integrationspotenziale. Habilitation, Institut für Wirtschaftsinformatik,
Univeristät St. Gallen, St. Gallen, 2004.

[LHM95] Lehner, Franz; Maier, Ronald; Hildebrand, Knut: Wirtschaftsinformatik: Theoretische
Grundlagen. 1, Carl Hanser Verlag, München, Wien 1995.

[LSS94] Lindland, Odd Ivar; Sindre, Guttorm; Solvberg, Arne: Understanding Quality in
Conceptual Modeling. In: IEEE Software 11 (1994) 2, S. 42-49.

[Mo05] Moody, Daniel L.: Theoretical and practical issues in evaluating the quality of conceptual
models: current state and future directions. In: Data & Knowledge Engineering 55
(2005) 3, http://dx.doi.org/10.1016/j.datak.2004.12.005, S. 243-276.

[NKF93] Nuseibeh, B.; Kramer, J.; Finkelstein, A.: Expressing the relationship between multiple
view in requirements specification. 15th Int. Conf. on Software Engineering, 1993.

[Nu94] Nuseibeh, B.: A Multi-Perspective Framework for Method Integration. Ph.D. Thesis,
University of London, London, 1994.

[RR01] Ralyté, Jolita; Rolland, Colette: An Assembly Process Model for Method Engineering. In:
Dittrich, Klaus R.; Geppert, Andreas; Norrie, Moira C. (Hrsg.): Advanced Information
Systems Engineering, Berlin, 2001.

[SB99] van Solingen, Rini; Berghout, Egon: The Goal/Question/Metric Method. 1, McGraw Hill,
London 1999.

[Sc01] Scheer, August-Wilhelm: ARIS – Modellierungsmethoden, Metamodelle, Anwendungen. 4,
Springer, Berlin Heidelberg 2001.

[So95] Song, X.: A framework for understanding the integration of design methodologies. In:
ACM SIGSOFT Software Engineering Notes 20 (1995) 1, S. 46-54.

[SR01] Sutton, S. M.; Rouvellou, I.: Issues in the Design and Implementation of a Concern-Space
Modeling Schema. Advanced Separation of Concerns Workshop, Toronto, Canada,
2001.

[St73] Stachowiak, H.: Allgemeine Modelltheorie. Springer, New York, Wien 1973.
[STM88] Sorenson, Paul G.; Tremblay, Jean-Paul; McAllister, Anderew J.: The Metaview System

for Many Specification Environments. In: IEEE Software 5 (1988) 2, S. 30-38.
[STW03] Shanks, Graeme; Tansley, Elizabeth; Weber, Ron: Using Ontology To Validate

Conceptual Models. In: Communications of the ACM 46 (2003) 10, S. 85-89.

157

[We03] Weber, Ron: Conceptual Modelling and Ontology: Possibilities and Pitfalls. In: Journal of
Database Management 14 (2003) 3, S. 1-20.

[Wi03] Winter, Robert: Modelle, Techniken und Werkzeuge im Business Engineering. In: Österle,
Hubert; Winter, Robert (Hrsg.): Business Engineering - Auf dem Weg zum
Unternehmen des Informationszeitalters. Springer, Berlin etc. 2003, 87-118.

[WW02] Wand, Yair; Weber, Ron: Research Commentary: Information Systems and Conceptual
Modeling - A Research Agenda. In: Information Systems Research 13 (2002) 4, S. 363-
376.

158

Appendix: Case Study Material

Table 1: Viewpoint Refinement (simplified)

O
w

ne
rs

hi
p

IT
-r

el
at

ed
 a

rti
fa

ct
s

D
oc

um
en

ta
tio

n

C
or

re
ct

 im
pl

em
en

ta
tio

n
of

ow

ne
rs

hi
p

po
lic

ie
s

IT
 a

ud
it

A
ss

ig
ni

ng
 e

xp
lic

it
ow

ne
rs

to

 a
pp

lic
at

io
ns

 a
nd

 o
th

er

IT
-r

el
at

ed
 a

rti
fa

ct
s (

lik
e

in
fo

rm
at

io
n

ob
je

ct
s,

co
m

po
ne

nt
s,

en
vi

ro
nm

en
ts

,
et

c.
)

A
re

 th
er

e
ap

pl
ic

at
io

ns
 fo

r
w

hi
ch

 n
o

ow
ne

rs
 h

av
e

be
en

de

fin
ed

?
A

re
 th

er
e

ap
pl

ic
at

io
ns

 th
at

ha

ve
 n

ot
 b

ee
n

au
di

te
d

fo
r

m
or

e
th

an
 tw

o
ye

ar
s?

Ap
pl

ic
at

io
n

Pe
rs

on

O
rg

. U
ni

t

C
om

po
ne

nt
 R

eu
se

So

ftw
ar

e
ar

ch
ite

ct
ur

e
D

es
ig

n

C
os

t o
f a

pp
lic

at
io

n
de

ve
lo

pm
en

t

So
ftw

ar
e

ar
ch

ite
ct

R
eu

se
 o

f s
of

tw
ar

e

co
m

po
ne

nt
s a

cr
os

s m
ul

tip
le

ap

pl
ic

at
io

ns
 /

R
eu

se
 o

f s
ys

te
m

 so
ftw

ar
e

(e
.g

.,
D

B
M

S,
 W

FM
S)

W
hi

ch
 c

om
po

ne
nt

s a
re

av

ai
la

bl
e

in
 e

xi
st

in
g

ap
pl

ic
at

io
ns

?
/

W
hi

ch
 in

te
rf

ac
es

 a
re

av

ai
la

bl
e

to
 u

se
 th

es
e

co
m

po
ne

nt
s?

W

hi
ch

 sy
st

em
 so

ftw
ar

e
of

 th
e

di
ff

er
en

t t
yp

es
 is

 c
ur

re
nt

ly
 in

us

e?

B
us

in
es

s I
T

 A
lig

nm
en

t
Pr

oc
es

se
s,

A
pp

lic
at

io
ns

A

na
ly

si
s

Pr
ov

id
in

g
ad

eq
ua

te
 IT

 fo
r

bu
si

ne
ss

 p
ro

ce
ss

es

Pr
oc

es
s o

w
ne

r

Pr
ov

id
in

g
IT

fu

nc
tio

na
lit

ie
s f

or
 e

ac
h

pr
oc

es
s s

te
p

 /
R

ed
uc

tio
n

of
 m

ed
ia

 b
re

ak
s

W
hi

ch
 p

ro
ce

ss
 a

ct
iv

iti
es

ar

e
no

t I
T

su
pp

or
te

d?
 /

W
hi

ch
 p

ro
ce

ss
es

 in
cl

ud
e

m
ed

ia
 b

re
ak

s?
 /

W
hi

ch
 a

ct
iv

iti
es

 a
re

su

pp
or

te
d

by
 m

ul
tip

le

ap
pl

ic
at

io
ns

?

IT
 C

on
so

lid
at

io
n

Pr
oc

es
se

s,
A

pp
lic

at
io

ns

A
na

ly
si

s
C

os
t o

f a
pp

lic
at

io
n

op
er

at
io

ns
 a

nd

m
ai

nt
en

an
ce

A

pp
lic

at
io

n
ar

ch
ite

ct

C
on

so
lid

at
io

n
of

ap

pl
ic

at
io

ns
 th

at
 a

re
 in

 u
se

fo

r a
 si

m
ila

r p
ur

po
se

s /

C
on

so
lid

at
in

g
of

 sy
st

em

so
ftw

ar
e

of
 th

e
sa

m
e

ty
pe

(e

.g
.,

D
B

M
S,

 W
FM

S)

W
hi

ch
 a

pp
lic

at
io

ns
 a

re

us
ed

 i
n

th
e

in
di

vi
du

al

pr
oc

es
se

s (
so

rte
d

by

or
ga

ni
za

tio
na

l u
ni

t,
pr

od
uc

t,
di

st
rib

ut
io

n

ch
an

ne
l)?

 /

W
hi

ch
 sy

st
em

 so
ftw

ar
e

of

th
e

sa
m

e
ty

pe
 is

 c
ur

re
nt

ly

in
us

e?

V
ie

w
po

in
t

O
bj

ec
t

Pu
rp

os
e

C
on

ce
rn

Sa
ke

ho
ld

er

D
es

ig
n

St

ra
te

gi
es

Q
ue

st
io

ns

M
et

a
 M

od
el

Fr
ag

m
en

t

159

IT Consolidation
(Application Architect)

Product Model

Process /
Application
Alignment

Model

Process
Model

Application
Catalogue

Software
Architecture
Specification

IT Audit
Report

Business IT Alignment
(Porcess Owner)

Ownership
(IT Audit)

Component Reuse
(Software Architect)

For each application
one software architecture
specification document

Figure 6: Viewpoint Relationship Diagram (simplified)

Table 1 illustrates the refinement of four viewpoints into meta model fragments: IT
Consolidation, Business IT Alignment, Component Reuse, and Ownership. Note that for
illustrative purposes these viewpoint specifications are simplified versions of the original
viewpoints. The following elements of the viewpoint requirements template (VRT, cf.
section 5) are omitted: representation of the object as-is, representation of the object to-
be, modelers and information sources, model users and information targets. The
information described in these elements is summarized in the example viewpoint
relationship diagram shown in figure 6. The element “compatible approaches” of the
VRT is not relevant for the viewpoints at hand. The “situation” to be addressed by the
viewpoints is the architecture management and planning process of the partner company.

In all meta models shown in table 1 cardinalities and identifiers of relationships as well
as attributes of classes are omitted. Figure 5 shows the integrated meta model from the
four viewpoints (bold model elements) and further model elements originating from
other viewpoints. All four meta model fragments are contained in the integrated meta
model. The association between “application” and “system software” illustrates the need
to modify meta model fragments during the integration process: Another viewpoint
(Application Environment Management) raises further modeling requirements on the
relationship between applications and system software that are not relevant in the context
of the viewpoints “IT Consolidation” and “Component Reuse” presented here.

Figure 7 and Figure 8 illustrate how the meta model has been instantiated in models.
Figure 7 shows processes and how these processes are mapped onto organizational units
in a process landscape. Figure 8 shows the business IT alignment model relating
processes and applications in a two dimensional matrix.

160

Figure 7: Example Model (Process Landscape)

Figure 8: Example Model (Business IT Alignment Model relating Processes and Applications)

161

Design and Usage of an IT-System for
workplace management with ergonomic analysis

under health protection aspects

Clemens Dubian

Volkswagenwerk Kassel
Health Care / Human Resources
clemens.dubian@volkswagen.de

Wolfgang May

Institute for Computer Science
 Göttingen University

may@informatik.uni-goettingen.de

Abstract: This article describes an information system for analysis and description
of workplaces under the aspects of health protection and ergonomic risks, which is
currently being developed at Volkswagenwerk Kassel. The system provides an in-
strument for matching ergonomic risks of workplaces with work limitations of em-
ployees for an efficient assignment of employees to appropriate workplaces. It in-
tegrates data from several existing systems and collects additional data. The collec-
tion and maintenance of data is accomplished by an analysis team and by the team
leaders in the factory.

Besides the functional aspects, the following two issues have been solved: mini-
mizing the effort for the collection and maintenance of data by using a hierarchical
categorization of the objects of interest and their properties. Secondly, for accom-
plishing the acceptance and direct benefit for the following user groups (health
care, human resource management, and most of all, local supervisors), group-
specific graphical user interfaces are provided.

1 Introduction

There are legal requirements that bind industrial businesses to document all work-
specific hazards (German: Belastungen/Gefährdungen) including ergonomic risks. To
accomplish activities for workplace design and for the identification of appropriate
workplaces for employees with work limitations, it is necessary to get an overview of the
ergonomic risks situation. Additionally, against the background of demographic change,
the appropriate design of workplaces for older employees gets more and more important.

The project for developing an IT system to collect work-specific hazards is led by the
departments for health care and human resource management with support from the
work council. Besides the improvement of employee assignments, the system collects all
other existing information of workplaces that is somehow associated with health care.
Additionally, it is the pronounced aim of health care to use the system to get information
about coincidences between working conditions and diseases.

163

This article is structured as follows: Chapter 2 explicates the notions of the application
domain and describes the modeling. Chapter 3 describes relevant functionality and pre-
sents some GUIs. Chapter 4 concludes the paper with a short discussion including status
and acceptance, transferability of the approach, and perspectives.

2 Application Domain and Modeling

2.1 Concepts of the Application Domain

The developed system combines information about different views on the company,
especially its product division. The structural classification of the plant into organiza-
tional units is essential for user guidance and responsibilities:

In the Volkswagenwerk Kassel, the classification begins on the plant management level
and leads over divisions to local teams. All workplaces in the production are grouped
into teams, each of them led by foremen (more concretely, one foreman per shift; such a
team is usually called “Meisterschaft”). This structure is not specific to the given use
case, but is a common structure of large industrial plants. In this presentation we restrict
ourselves to the production area; workplaces in e.g. logistics, administration and health
care can be handled in a similar way.

Thus, large parts of the modeling are concerned with aspects of the production area.
Volkswagen Kassel employs about 14,000 people at about 7,000 workplaces which
include about 20,000 machines to analyze. Information is not captured and stored sepa-
rately for each item, but managed in categories at different levels of abstraction. Concep-
tually this is modeled by multiple inheritance at different dimensions. The main dimen-
sions are (i) the equipment ontology of machines, and (ii) the structuring of the actual
working processes. To adequately formalize these coherences, the abstract concept of
categories describes an “entity to analyze”. Categories inherit from other categories and
add own properties. Categories represent machine classes (e.g. milling machines), ma-
chine types (e.g. Gleason Pfauter GP90 as a special type of milling machines), tasks or
any other (abstract) concept related to the workflows.

From the working process structure aspect, the focus of analyzed workplaces differenti-
ates between tasks of one job; large assembly lines are partitioned in (abstract) compo-
nents. A workplace includes all machines and tasks handled by one employee. The as-
signment of machines to workplaces is weighted by percentages, so that one machine
can be assigned to several workplaces.

The ergonomic risks analysis combines both views. The basic analysis objects are con-
crete objects such as machines, and categories. The ergonomic risks of each workplace
are then derived from its composition. Besides the analysis of machines or categories,
there are hazards caused by the work location such as noise or temperature, or exposure
to hazardous substances.

164

Furthermore workplaces themselves are aggregated to workplace packages. Thus, a
group of workplaces together performing a larger working process can be associated to a
group of employees who organize who is assigned to which workplace, optionally in-
cluding job-rotation. Each workplace and each workplace package is associated to ex-
actly one operating team. Therefore the view of a team’s foreman is one of the main
views of the workplace management system. It is used by the foremen to maintain the
information about the structure and the actual assignments in their area. The functional-
ity and the GUI are described in more detail in Section 3.

In the description above, the abstract concept of “workplace” has been used for modeling
the production environment. For modeling the actual production workflows, workplaces
are associated to employees. For that, one function of the workplace management system
is the structural association of employees to workplaces in terms of planning and sched-
uling. Based on that, the actual occupation of workplaces within a shift is maintained.

For the assignment of employees to workplaces, work limitations of employees must be
taken into account: upon medical checks, the health care department states work limita-
tions for employees, like “no heavy lifting”. German legislation requires a certain system
of preventive medical checkups under specific circumstances; this is also organized via
the system.

2.2 Existing Information Infrastructure

The workplace management system integrates different views and data, which are par-
tially stored in other already existing information systems that are maintained autono-
mously. In the following the connections from the workplace management system to
other information systems are described (see Figure 1). The current system is a proto-
type; therefore the described connections contain manual data transfer.

Structural data contains the organizational structure of Volkswagen. Organizational units
are used for defining access policies. The structural data is maintained in the SAP system
by the human resource management. Personnel base data is also maintained by the hu-
man resource management within the SAP system. Current data about employees who
are present on the factory site (electronical check) can be obtained from the Access Au-
thority System (ZUBESY), a plant security system. The actual realization of this connec-
tion is subject to privacy protection issues.

The Hall Layout System (HLS) contains layouts of every hall, including the positioning
of the individual machines. The workplace management system uses the layouts to struc-
ture and associate workgroups, workplaces, machines and employees via a graphical
user interface.

The central file for operating equipment and machines (ZBM) contains and maintains all
data on machines and operating equipment including inventory number, its assignment
to organizational units and the positioning with respect to the coordinates in the HLS.

165

H
ea

lth
 C

a
re

 D
a

ta

H
a

za
rd

o
us

 S
u

bs
ta

nc
e

D
a

ta
S

tr
uc

tu
ra

l D
at

a

P
er

so
nn

e
l D

at
a

E
qu

ip
m

e
nt

 D
a

ta
M

ac
hi

ne
 d

at
a:

-I
nv

e
nt

or
y

nu
m

be
r

-
M

a
nu

fa
ct

ur
er

-
T

yp
e

-
N

a
m

e
-

Lo
ca

tio
n

-
O

rg
a

ni
sa

tio
n

 u
ni

t

O
rg

an
is

at
io

n
U

ni
ts

:
-

ID
-

S
ho

rt
 n

a
m

e
-

D
e

sc
ri

p
tio

n
-

C
os

t
ce

nt
er

P
er

so
nn

el
 B

as
e

D
at

a:
-

B
a

se
 n

u
m

b
er

-
N

a
m

e
-

F
or

e
na

m
e

-
O

rg
a

ni
sa

tio
n

 u
ni

t
W

or
k

L
im

it
at

io
ns

-
K

ey
-

T
ex

t
P

re
ve

nt
iv

e
M

ed
ic

al
 C

he
ck

up
s

-
K

ey
-

D
at

e

A
tt

en
d

an
ce

:
-

E
le

ct
ro

ni
c

ch
e

ck

H
az

ar
do

us
 S

ub
st

an
ce

s:
-

M
at

er
ia

l r
el

ea
se

 n
u

m
b

er
-

N
am

e
-

In
gr

e
di

en
ts

-
L

im
it

va
lu

e
-

N
ec

e
ss

a
ry

 p
re

ve
nt

iv
e

m
ed

ic
al

 c
he

ck
up

s
-

R
ep

or
ts

H
a

ll
La

yo
u

t
D

at
a

H
al

l l
ay

ou
t

-L
a

yo
u

t p
la

ns
 o

f h
a

lls

A
ct

iv
e

D
a

ta

W
o

rk
p

la
ce

 M
a

na
ge

m
e

nt

F

ig
ur

e
1:

 C
on

ne
ct

io
ns

 o
f t

he
 w

or
kp

la
ce

 m
an

a
ge

m
e

nt
 s

ys
te

m

166

The division for chemical safety maintains the hazardous substances database (APM).
Hazardous substances are associated to workplaces within workplace analysis and
through hazardous substance measurements.

Medical data, which is important for human resource management and team leaders, is
transferred from the Occupational Medicine Administrative System (AMVW) of the
health care division to the SAP system. The workplace management system gets the
combined data through a protected interface from the SAP system.

2.3 The Conceptual Model

The conceptual model of the application area is shown in Figure 2, where concepts are
grouped into individual-related information, workplace structure and working environ-
ment characteristics.

working environment characteristics

Individual-related information

workplace structure

hazardous
substance

machine

category

base data

workplace

workgroup

belongs to 0,n0,nbelongs to 0,1

1,n

ergonomic
risks req. preventive

medical checkup

organisational unit

employee

belongs to
1,1

0,n

includes

0,n

0,n

contact with

0,n

0,n
associated with

0,n

0,n

associated to 0,n0,n

assigned to
0,n

1,n

workplace /
workgroup

exposed
to

0,n

0,n

location

localized at
1,1

0,n

belongs to

0,n

0,n

work
limitation

has
0,n

0,n

0,1

1,1

subcategory
of

0,n 0,n

personnel data
SAP

structural data
SAP

Hazard. subst.
APM

operational data
ZBM

health care data
SAP (AMVW)

result of preventive
medical checkup

passed through0,n 0,n

matches

0,1

0,1

matches

belongs to
0,n

0,n

Hall layout
HLS

analysis data

Figure 2: ER-diagram of the workplace management system

The modeling of the workplace structure mirrors the described structural aspects. Base
data describes the combination of an instance of a category and a location inside the

167

plant, referring to the Hall Layout System. It combines properties of the location with
properties of the category and is associated to an organizational unit (referring to the
SAP system). Information about machines refers to the operational data kept in the
ZBM; a more concrete example is given at the end of this section.

The analysis data about workplace environment characteristics contains ergonomic risks,
exposure to hazardous substances and the required medical checkups. This information
is related to each of the categories.

Personnel data and some medical data from employees are imported from the SAP sys-
tem into the workplace management system. An employee can be assigned to a single
workplace or to a workgroup. If an employee is associated to a workplace or workgroup,
the workplace management system matches the work limitations of the employee with
the ergonomic risks of the workplace and relates with preventive medical checkups.

Example. Input of initial data (such as the definition of the category hierarchy including
the weighting and data about machine classes and types) is done by analysts. As shown
in, a Gleason-Pfauter P90 is a milling machine (German: Fräsmaschine; 90%) as well as
a deburring machine (10%) and therefore combines analysis of both categories. At a
Gleason-Pfauter P90, usual millcutting (70%) and deburring (10%) are dry, more com-
plex millcutting (20%) requires using cooling lubricant. Each instance is associated with
its location. Each of the categories is associated with its analysis data, and the properties
of the actual machine are obtained as a combination of that data.

2.4 Application-Specific Modeling of Risk Analysis

The core aspect of the system is the information about risk analysis and connecting it
with individual-related data. Risk analysis is the analysis of all risks that employees are
exposed to during their work time. For the given application, risk analysis consists of
ergonomic risk analysis, which is described in more detail below, and hazardous sub-
stance analysis. Based on the analysis of different individual hazards of a workplace, the
overall characteristics of the workplace can be summarized. For the actual assignment of
employees to workplaces, these characteristics must be matched with the work limita-
tions of the employees.

The ergonomic risk analysis [La04] is based on a questionnaire. The questionnaire in-
cludes general aspects of given tasks and workplaces, and complementary questions
related to the kinds of potential work limitations. Risk analysis distinguishes between
exposures, e.g. hazardous substances or oil, ergonomic risks related to physical strain,
e.g. heavy lifting, as well as special requirements like stereoscopic vision, e.g. for driv-
ing a stacker, or work in night shift.

Risks and exposures are classified according to how they are characterized:

(1) A risk or exposure without weighting is just quantified by “yes” or “no”. It excludes
employees with the corresponding work limitation. The exposure “skin contact with oil”

168

C
at

eg
or

y

is
 a

1,
1

A
na

ly
si

s
da

ta

lo
ca

tio
n

m
ac

hi
ne

cl
as

s m
ac

hi
ne

ty
pe

m
ac

hi
ne

m
ill

in
g

m
ac

hi
ne

de
bu

rr
in

g
m

ac
hi

ne

G
P

 9
0

In
vN

r:
 4

2

ha
s

ha
s

ha
s

us
ed fo
r

is
 a

is
 a

is
 a

A
na

ly
si

s
da

ta

lo
ca

te
d

1,
1

1,
*

1,
*

1,
*0,

*

0,
*

1,
1

1,
1

0,
* 1,

*
90

%

10
%

A
na

ly
si

s
da

ta
:

dr
y

A
na

ly
si

s
da

ta
:

co
ol

in
g

lu
br

ic
.

st
an

da
rd

m
ill

cu
tti

ng m
or

e
co

m
pl

ex
m

ill
cu

tti
ng

us
ed fo
r

us
ed fo
r70

%

20
%

is
 a

is
 a

is
 a

H
al

l:
2,

 F
lo

or
: 1

F
ie

ld
: M

12
lo

ca
te

d

A
na

ly
si

s
da

ta
:

no
is

e
90

db

w
or

kp
la

ce

as
si

gn
ed

to

0,
*

ta
sk

 c
la

ss

m
ac

hi
ne

op

er
at

or

pe
rc

en
ta

ge

pe
rc

en
ta

ge

de
bu

rr
in

g

A
na

ly
si

s
da

ta

us
ed fo
r

10
%

A
na

ly
si

s
da

ta
:

dr
y

as
si

gn
ed

to
pe

rc
en

ta
ge

is
 a

is
 a

A
na

ly
si

s
da

ta

ha
s

is
 a

is
 a

10
0%

0,
*

F
ig

ur
e

3:
 E

xa
m

pl
e

fo
r

ca
te

go
ri

za
tio

n

169

for example excludes employees who are allergic to oil no matter if the contact is for one
hour or one minute.

 (2) A risk or exposure with weighting is expressed in terms of the percentage of working
time. Those hazards only exclude employees with the corresponding work limitation
when they are associated for a specific duration. For example there could be one task to
bend down to lift work pieces. If this task amounts to 2% of the working time it should
be no problem even for an employee with the work limitation “no bending down often”.
When forming a working group, the overall risk or exposure is computed according to
the distribution; depending on the characteristics of the working group (e.g. frequency of
job rotation), this can amount to maximum- or average-based formulas.

 (3) For ergonomic risks or exposures that have more complex characteristics, there are
Key Indicator Methods of the Federal Office for Occupational Safety and Health
(Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, BAuA). With help of these Key
Indicator Methods the risk or exposure can be calculated and results in a score. However
multiple scores from different tasks cannot be added easily. To determine a score, the
interim results must be summarized in a given manner and the Key Indicator Method
must be performed again with the summarized values. The result is a structural rating
with multiple attributes.

Work limitations wrt. ergonomic risks or exposures are expressed in the same way by
prohibitions (“no skin contact to oil”) or threshold values (“bending down must not be
more than 10% of working time").

As a consequence of the analysis, the necessity of preventive medical checkups can be
derived through the category network. For instance a preventive medical checkup im-
plied by exposition to a certain hazardous substance related to a certain machine type can
be derived for employees assigned to workplaces and workgroups by the following rela-
tionships:

hazardous
substance

machine type

medical checkup
required

machineworkplaceworkgroup

employee employee

Categorization lowers redundancy and therefore supports consistency not only for col-
lecting data, but especially reduces efforts for data maintenance.

3 Functionality

User groups in the workplace management system have access to different functional-
ities according to their requirements and their rights. A central task is to collect and

170

maintain the information about risk analysis and workflow structure. This is done by
analysts and foremen. The actual assignment of employees to workplaces that changes
daily is maintained locally by the foremen. The information system is also used by dif-
ferent user groups for several retrieval tasks. The Human Resource Department and the
foremen use it for finding and assigning workplaces to employees with work limitations.
The Health Care Department obtains background information about an employee’s
workplace conditions in the context of medical checkups. Additionally the scheduling of
medical checkups is supported.

For each user group, a specific GUI is implemented, according to its needs. This chapter
discusses the functionality and gives an impression of the target-group specific GUIs.

3.1 Maintenance of Individual-Independent Information

The initial risk analysis is performed by a team of analysts, including ergonomists, plan-
ners, representatives of chemical safety and occupational health physicians. The risk
analysis information can be updated later. The initial workplace definition is also done
by the analysts. Changes in workflows are usually maintained by the foremen by chang-
ing associations and attribute values (e.g. percentages). The changes of associations,
both in risk analysis and workplace definitions lead automatically to a new calculation of
affected categories by the system.

The task of analysts is to build categories and to enter data about analysis objects, using
a tree view-based GUI for designing the category structure. The actual machine catego-
ries are populated by importing existing data about machines from the ZBM. The analy-
sis data is then added in cooperation between ergonomic specialists from Health Care
and the foremen by using a questionnaire. The original concept of the questionnaire was
taken from Frieling [Fr04]. Modifications and extensions are made by suggestions from
a consortium of automotive industries as well as from an ergonomic workgroup of
Volkswagen and incorporated by the Health Care department.

The second stage of the initialization consists of defining workflows and workplaces.
This step is also carried out by the analysts together with the foremen, using either the
tree view-based interface described above, or the graphical interface of the foremen that
is described in Section 3.2.

After completing the initialization, the foremen take on maintenance of workplace defi-
nitions and the actual daily assignment of employees to workplaces.

3.2 Foremen View: Definition of Workplaces and Employee Assignment

The main focus for designing this user interface was to enable foremen (i.e. people with
a non-IT professional context) to handle the workplace management system without the
need for long instructions and with a minimum of time for data maintenance.

171

At first “dot-plans” (Figure 4, right-hand side) were used to identify workplaces. These
plans are abstract illustrations with rectangles as machines and dots as employees (work-
places). After further interviews with foremen it turned out, that the plans of the hall
layout provide a useful complementary view as shown in Figure 4, left-hand side.

Associations can be made by drag&drop, each object has an interactive context menu
and double-click and mouseOver for detail information. This GUI is used for four tasks,
in which different items are shown in the graphics:

Definition of workplaces: Machines and workplaces () are positioned according to
their location information (note that a workplace as an abstract notion gets a virtual loca-
tion). Assignments of machines to workplaces are done by drag&drop and are indicated
by (blue) connection lines.

Figure 4: Foremen’s view with hall layout background

Definition of workgroups: Workplaces () and workgroups () are positioned accord-
ing to their (virtual) location information. Assignments of workplaces to workgroups are
done by drag&drop and are indicated by (yellow) connection lines (cf. Figure 4, left-
hand side).

Assignment of employees: For each actual shift, the employees are assigned to work-
places or workgroups. The hall layout plan shows workplaces () and workgroups (),
and additionally all employees already present in the plant are listed to the right of the
hall plan (cf. the test employee in Figure 4 where the mouse cursor points to). Moving
the mouse cursor to an employee, the description area on the upper right shows work

172

limitations of the employee (in the above example “no heavy lifting”; in German: “Kein
schweres Heben”). All workplaces and workgroups get a specific colored border accord-
ing to the match between their ergonomic risks and work limitations of the employee: all

workplaces are marked with green icons (, cf. Figure 4 left-hand side), where this
employee has no conflicting work limitations. In case of possibly conflicting work limi-

tations, the workplace is marked with a yellow icon (; this requires a decision on a
by-case-basis), and if there is a definite conflict with a work limitation, the workplace is
marked with a red icon. The actual assignment is again done by the foreman by
drag&drop. Pointing the mouse cursor to a workplace on the other hand, all employees
in the visible area get a specific colored border according to the match.

Detailed search to assign employees with work limitations: In that view, machines,
workplaces and employees are shown. By pointing to a machine or an employee, the
appropriate detailed matches are shown. Through this view, light duty work can be cre-
ated by setting up a workplace definition that consists only of operations of specific
machines without ergonomic risks.

To minimize the latency during maintenance, the workplace management system func-
tions mostly without full post backs. Server functionalities are initiated with JavaScript,
results integrated with AJAX [Ga05]. Therefore workplace definitions and associations
of employees to workplaces can be maintained fast and efficiently.

3.3 View for Human Resource Management

The human resource management is interested in finding adequate workplaces for each
employee. Adequate in that case means that the employee can handle the workload with-
out limitations. This search can be invoked for an employee, or for any combination of
work limitations1, starting at any height of the tree of organizational structure. Figure 5
illustrates such a search for the organizational unit HK1, which is gearbox production,
with the work limitation “no heavy lifting” (“Kein schweres Heben”). The hall layout is
used as background and the user can navigate through it.

If more than 50 workplaces are matched against an employee, they are combined in
rectangles for each organizational unit below the chosen one, e.g. HK1-4/3, HK1-4/4 and
HK1-4/5. Each rectangle shows included workplaces in numbers. These numbers are
colored according to the match against the employee (e.g. in HK1-4/4 there are 17 ade-
quate (green) workplaces, 14 possibly adequate (yellow) and no non-adequate (red)
workplaces). By clicking on a rectangle, it is enlarged to get details of every included
workplace. By further zooming in, the view gets more and more detailed, until it shows
the same detailed view including individual workplaces as shown in Figure 4.

The search is e.g. needed in cases when employees cannot work at their former work-
place or in their former workgroup anymore. This happens for example, when an em-

1 Adequacy of a workplace for an employee also depends on his knowledge and abilities.

173

ployee had an accident or gets new work limitations for other medical reasons by an
occupational health physician. Foremen and superiors can use the search with access
limited to their organizational unit.

Figure 5: Search for an adequate workplace in multiple organizational units

3.4 View for the Health Care Department

Every time an employee consults the Health Care department, the physician can use the
system to get an impression of the work situation of the employee within a few seconds:
the workplace management system enables occupational health physicians to have a
closer look at the specific workplace. Workplace summarization gives an overview of all
medically relevant information of the workplace or the workgroup. Managed by a tree
view, all associations including weightings and subtotals are listed. Photos and videos
illustrate why specific ergonomic risks are associated to a workplace.

By keeping history of all associations of an employee to his workplaces, all working
conditions the employee was exposed to during his working life are registered. In that
way the so called exposition record is generated. Those records are a substantial funda-
ment for investigating coincidences between working conditions and diseases.

174

4 Discussion

We presented a use case of enterprise modeling on a detailed level. The modeling uses a
concept hierarchy for representing and structuring equipment and the actual work in the
production division. The categorization is applied to capture and maintain information
about ergonomic issues. In addition to the modeling and the analysis data which are
captured by analysts during the project, the integration of the existing information from
heterogeneous sources had to be solved on the conceptual level as shown in the dia-
grams, and then had to be implemented.

Relevance. The topic “risk analysis and work limitations of employees” and the corre-
sponding additional expenses for searching adequate workplaces emerged recently due
to a German law that implements European regulations for occupational health and
safety, and due to the background of demographic change.

Status. The workplace management system is a prototype developed by the Health Care
and Human Resource Management departments. It implements a standard three layer
architecture with data layer, application layer and representation layer where the Intranet
application connects to a relational database.

Acceptance. Critical for the benefit of every information system is its acceptance by all
involved user groups. For that purpose the system, the modeling and especially the user
interfaces have been designed in close communication with prospective users, incorpo-
rating their continuous feedback. As most of the maintenance and daily use is done by
the foremen in the production, their GUI is a crucial factor to achieve ongoing success.
Until now workplaces for approximately 800 employees are being analyzed and about 40
users are testing the usability.

Transferability. The described modeling of work categorization and matching possibili-
ties is transferable to other larger industrial plants. Concerning risk analysis in particular,
different environments lead to different restrictions and requirements. The model pro-
vides a framework that can be used for any matching possibility that fits into one of the
three summation methods.

Related Work. Work on enterprise ontologies [Us95, Di06] usually deals with high-
level aspects of enterprises like organizational structure, administration, business process
models and patterns, business transactions, strategic goals etc. In contrast, our approach
focuses on the modeling of the industrial production level.

Usually industrial workflows are designed and analyzed by using MTM [BL06] (Meth-
ods-Time Measurement) methods and tools. MTM-Ergonomics [MTMe] is a proposal
based on the experiences of several companies. MTM-Ergonomics and similar ap-
proaches (for an overview see [La04]), in most cases proprietary, systems allow for
workplace analysis and for the search for workplaces corresponding to given restrictions.
However, none of the systems known to the authors integrates personnel data.

175

New Features. By integrating personnel data, the Workplace Management System al-
lows actual matching of employees to workplaces and thus supports the daily planning
and scheduling and runtime rescheduling. Another distinguishing feature is that it is
based on generating an ontology in terms of a hierarchical structuring of the production.
This categorization reduces maintenance efforts since work parts and machine types are
analyzed separately. They allow changes in workplace definitions without the need for
new analyses: if a workplace definition changes, the summarized analysis is recalculated
as shown in Section 2.4.

Perspectives. The functionality of the current prototype focuses on the requirements of
running the production process in the plant. Further on, more advanced usage of the
information available in the system can include the following:

From an ergonomic point of view, the categorization can be used for testing transferabil-
ity of improvements to similar machines. Data mining algorithms can be used to search
for peculiar or similar structures and enlarge and refine categorization; activity recom-
mendations could be derived automatically.

Up to now, the workplace management system includes import and gathering of required
data and maintenance of analysis data as well as generating reports. The full historization
of all maintained and all integrated data builds a large data stock. Thus, a powerful fun-
dament for upcoming studies is build.

For health care, exposition files are very precious data for further analysis. The search
for similarities between exposition records from employees who suffer of a specific
disease could provide knowledge about coincidences. On a long term perspective, large
studies about effects of health care actions or about effects of hazards can be developed
with minimum effort. This also includes studies about contact to hazardous substances.

References

[Ga05] J.J. Garrett: Ajax: A New Approach to Web Applications. Tech. Rep. Adaptive
Path, http://adaptivepath.com/publications/essays/archives/000385.php, 2005.

[Fr04] E. Frieling: DFG Schwerpunktprogramm 1184: Altersdifferenzierte
Arbeitssysteme. Zeitschrift für Arbeitswissenschaft, 2006; S. 71-80.

[La04] K. Landau: Montageprozesse gestalten. ergonomia Verlag, Stuttgart, 2004.
[BL06] R. Bokranz, K. Landau: MTM-Handbuch. Schäffer-Poeschel, Stuttgart, 2006.
[MTMe] http://www.mtm.com/produkte/software/ticon_modul_ergo.php
[Di06] Jan L. G. Dietz: Enterprise Ontology: Theory and Methodology. Springer, 2006.
[UK95] M. Uschold, M. King, S. Moralee and Y. Zorgios: The Enterprise Ontology,

http://www.aiai.ed.ac.uk/~entprise/enterprise/ontology.html, 1995

176

On Industrial Use of Requirements Engineering Techniques

Lars Bækgaard
Department of Business Studies

Aarhus School of Business, University of Aarhus
Fuglesangs Alle 4, DK-8210 Aarhus V, Denmark

lab@asb.dk

Jens Bæk Jørgensen and Kristian Bisgaard Lassen
Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

jbj@daimi.au.dk
k.b.lassen@daimi.au.dk

Abstract. We discuss two experiments in which requirements engineering
techniques has been used and evaluated. In the first experiment a
technique called Executable Use Cases is applied in the development of an
IT system for public utility services. In the second experiment a technique
called Activity Cases is applied in the development of an IT system for a
public library. For each experiment we discuss the lessons that we have
learned. We use the lessons to scetch a plan for future research in terms of
a set of scenarios for combined use of Executable Use Cases and Activity
Cases.

1 Introduction

We present, discuss, and learn from two experiments in which two requirements
engineering techniques called Executable Use Cases and Activity Cases has been applied
and evaluated. Executable Use Cases support animation of process models and Activity
Cases support flexible activity modeling. Based on the experiments we present a set of
scenarios that combine the two techniques.

Development methods like Structured Analysis [De78], Multiview [AW90] and
Contextual Design [BH98] are based on the assumption that information systems
development should be based on a thorough understanding of the work contexts of the
systems. Our work is based on the same assumption and our aim is to provide create
techniques that provide such understanding and facilitate creative requirements processes
that are based on well-founded understandings of work contexts.

Our research method can be characterized as design science [MS95], [HM04]. We have
created the techniques and experimented with their use in order to evaluate their
relevance as requirements engineering techniques.

177

We conducted two experiments based on result from a requirements specification
workhop in which the techniques Executable Use Cases and Activity Cases were
presented and discussed. The experiments were conducted in real-world requirements
engineering situations. The experiments represents the first af a series of evaluation
activities in our design science project. In future activities in the project we will
experiment with combinations of the two techniques and we will decide if it is desirable
to modify the techniques. This implies that the presented results are preliminary results
from a larger ongoing project.

The paper is structured as follows. Section 2 we introduce the notion of executable use
cases and discuss an experiment where a set of business processes are modeled by means
of executable use cases. In Section 3 we introduce the notion of activity cases and we
discuss an experiment where a set of business processes are modeled by means of
activity cases. In Section 4 we discuss some of the implications of the experiments and
we suggest directions for future research.

2 Experiment 1 - Executable Use Cases1

The Public Utilities Aalborg (PUA) are responsible for providing gas, electricity,
heating, water, sewer services, and garbage collection to the Aalborg region, which has
approximately 160,000 inhabitants. PUA is the shared administration for six companies,
one for each type of service. In total, PUA has around 450 employees. The employees
uses a number of IT systems in their daily work. Examples are accounting systems and
geographical information systems (GIS).

PUA has hired the software company WM-data to deliver a new IT system, which we
will call the Authorization System (AS). AS will be used by PUA to administer the access
rights for different users of different IT systems. AS should support creation of new user
accounts, update of the rights of existing users, and closing of user accounts.

WM-data is a Scandinavian company, whose branch in Aalborg will develop AS. It is
beforehand decided that AS should be based on OIM2—a standard off-the-shelf system
for management of user rights and privileges across enterprises. This means that in the
first place, WM-data must carry out analysis work aimed at aligning the real needs of
PUA with what is actually possible with the given technology, i.e., OIM.

As part of this analysis work, WM-data has been interested in trying out the
requirements engineering approach that we call Executable Use Cases (EUCs) [JB04b],
and we have used the AS project as an experiment for our research on EUCs.

1 Experiment 1 was carried out by the second and the third authors.
2 Oracle Identity Manager, formerly known as Oracle Xellerate Identity Provisioning.

178

We will describe use of EUCs in the AS analysis project in this section and we will
report on some preliminary findings, based on work carried out in the period April-June
2007, where a series of analysis workshops were held; the participants in the workshops
were personnel from PUA, analysts and developers from WM-data, and the second and
the third authors of this paper.

Executable Use Cases (EUCs)

An Executable Use Case (EUC) [JB04b] supports specification, validation, and
elicitation of requirements. EUCs spur communication between stakeholders and can be
used to narrow the gap between informal ideas about requirements and the formalisation
that eventually emerges when a system is implemented. An EUC consists of three tiers.
Each tier represents the considered work processes that must be supported by a new
system. The tiers use different representations: Tier 1 (the informal tier) is an informal
description; tier 2 (the formal tier) is a formal, executable model; tier 3 (the animation
tier) is a graphical animation of tier 2, which uses only concepts and terminology that are
familiar to and understandable for the future users of the new system. Tier 3 has the
potential to offer significant advantages as a means of communication.

The three tiers of an EUC should be created and executed in an iterative fashion. The
first version of tier 1 is based on domain analysis, and the first version of tiers 2 and 3,
respectively, is based on the tier immediately below. Figure 1 illustrates the approach.

Figure 1 Executable Use Cases

EUCs have notable similarities with traditional high-fidelity prototypes of IT systems;
this comparison is made in more detail in [BJ04]. In [JB04a], it is described how an EUC
can be used to link and ensure consistency between, in the sense of Jackson [Ja04], user-
level requirements and technical software specifications.

179

An EUC can have a broader scope than a traditional use case [Co01]. The latter is a
description of a sequence of interactions between external actors and a system that
happens at the interface of the system. An EUC can go further into the environment of
the system and also describe potentially relevant behaviour in the environment that does
not happen at the interface. Moreover, an EUC does not necessarily fully specify which
parts of the considered work processes will remain manual, which will be supported by
the new system, and which will be entirely automated by the new system. An EUC can
be similar to, in the sense of Lauesen [La03], a task description.

AS EUC Tier 1: Analysis Documentation Produced by WM-data

At the workshops that we report on here, analysts from WM-data documented work
processes (current and future), primarily by drawing swim lane diagrams as the one
shown in Figure 2 which depicts the workflow that must be carried out, when a new user
is created, who should be allowed to access the PUA network.3 The input necessary to
make the descriptions came from relevant personnel from PUA, who participated in the
workshops.

Figure 2 Partiel swim lane diagram showing creation of a new user of the PUA network

3 The partial swimlane diagram is in danish and included to illustrate the diagrams that were used to create
EUCs.

180

A number of swim lane diagrams were created. In total, 3 x 6 = 18 different work
processes are considered. The number 3 comes from the fact that, we consider three
different action types, namely (1) creation, (2) update, and (3) closing of user accounts;
the number 6 comes from the fact that we consider 6 different IT systems (or more
generally, “resources”), namely the systems named Network, Navision, GIS, Xellent,
EDoc, Geo Environ.

AS EUC Tiers 2 and 3

Tier 2 is (1) a formalized version of tier 1, and (2) an execution engine that drives the
graphical animation of tier 3. The animation tier, tier 3, is created with the help of Magee
et al’s SceneBeans animation framework [MP00]; Figure 3 shows a snapshot.

The animation tier is consistent with the CPN model of the formal tier. At any time, the
graphical animation represents the current state of the CPN model and mimics its
execution. Technically, the link between the CPN model and the animation tier is that the
CPN model calls drawing functions when it executes. The CPN model thus causes
graphical objects like organisational unit icons and document icons to be created, moved,
deleted, etc. in the animation.

Figure 3 Snapshot of the animation tier of the EUC

Figure 3 mimics a situation, where five stakeholders are cooperating in the handling of a
request to open a new user account. The stakeholders are the department manager, a
secretary, the chief executive, the IT department of PUA, and an external IT centre. The
document icon represents the request. In the current situation, the request is on its way
from the secretary to the chief executive; the animation user sees the document icon
moving. The piece of information attached to the icon counts how many times the
modelled document has been handed over.

181

When the animation starts, it presents a dialog box that prompts the animation user to
specify what he wants to mimic. Which system is in concern? Do we want to consider
creation, update, or closing of a user account? It can also be specified whether that
handling mode should be normal or urgent; in the latter case, some of the stakeholders
which are involved in the normal handling are bypassed.

The animation layer is in general generated manually, as was the case of our EUC as
well. This meant that we had to map each state change/transition in the model to a
concept in the animation, so e.g. when the transition that moves a letter from one person
to another occur in the model, we made the necessary SceneBeans command to reflect
this in the animation.

Lessons learned

Through meetings with PUA we learned that EUCs are valid in many phases in the
lifecycle of the system that we are working towards. The lessons that we learned can be
divided into four parts that we explain in the remainder of this section.

EUCs offer better understanding of requirements. Text documents as well as swim lane
diagrams (Figure 2) were used to structure the requirements found in workshops by users
and experts that knew of existing workflows. The attendees at the workshops found it is
hard to get a full overview of the whole process just using text documents and swim lane
diagrams, since these descriptions describe scenarios, rather than representing a complete
model. Our EUC had all the requirements encoded as rules and when it is executed, it
shows how all the requirements play together. A further improvement is that with the
EUC, it is easy to get users to talk about requirements; since they did not have to talk of
the requirements from e.g. the swim lane diagrams’ box and arrows, instead they used
terminology that the EUC’s graphical presentation offer.

EUCs are useful when selling a new system. When presenting users for how a new
system will work, we learned that text documents and swim lane diagrams, often seem
inappropriate to convey the ideas behind the new design. The analysts at PUA thought
that the EUC was a much better means of communication when talking to non-technical
users or management that do not have time to fully understand the traditional
requirement artefacts. Furthermore, PUA would like to present users of the system, how
the current workflows are and how the future workflows will be, using the same
graphical layer.

EUCs give momentum in the Software Development Phases. A software developer
attended the meeting with PUA and software analysts when we presented the EUC. He
claimed that this EUC gave him more contexts of the workflows that occur at PUA, with
regards to who does what and when, and also that he thought that it was easier to
remember them, than using e.g. swim lane diagrams.

182

EUCs keep focus on what is important. It was noted when we presented the EUC that in
contrast to traditional prototyping, people actually discussed what was important at this
stage of the analysis: The workflows. One person noted that over the years he has
observed that if you show a person a screenshot of a user-interface and want him to
discuss the workflow in the system, the person may begin to focus on the user-interface
itself.

This could be because he does not have anything in particular to say about the workflow,
but feels obligated to comment on something. In this way a lot of unnecessary and
untimely discussions were generated. He felt that EUCs, because of their simple and
non-user-interface appearance make people consider how the systems workflow are and
should be, rather on e.g. prematurely designing the user-interface.

EUCs are useful after deployment. Artefacts generated in the analysis phase of a
software project, are seldomly used for anything else but input to the design phase. One
of the people at PUA thought that EUCs would be very useful as a supplement to
manuals and other kinds of documentation of the system. For non-technical users these
traditional ways of documenting the functionality of the system are hard to read and
understand, so instead of using the documentation they will often resort to simply asking
other people instead. The PUA person continued, and said that the EUC would help the
individual to understand his or her role in the organization.

3 Experiment 2 - Activity Cases4

The experiment

The experiment was carried out as a part of a pre-analysis project at a public Danish
library, Vejle Library. The purpose of the pre-analysis project was to identify possible
improvements of the library’s mediation of library user’s search for relevant information.
A library user that requests search mediation will be serviced by a librarian. During a
search session a librarian will use the library user’s expressed information needs to
search for relevant information via search engines and databases.

During the pre-analysis project a number of analysis and design activities were carried
out. User simulations were used to establish understandings of the current activities
Modeling of current activities were used to capture aspects of these understandings.
Formulation of future stories and brain storms were used to create visions about changed
activities and new ways of using IT systems. Modeling of Future situations were used to
capture aspects of the visions.

4 Experiment 2 was carried out by the first author.

183

The purpose of the research project was to experiment with activity modeling by means
of activity cases and interaction patterns. The research was carried out by a librarian and
a researcher. The librarian was the primary actor in the pre-analysis project. The
researcher served as a consultant in the pre-analysis project.

Modeling techniques

We used activity cases, informal process models, and interaction patterns to model
existing and envisioned information search activities.

An activity case defines selected characteristics of an existing activity or a vision about a
new activity [Bæ05]. We use the following four aspects (NICE) to characterize activity
cases. The name expresses the essence of the corresponding activity. The name is
important because we use to refer to an activity and indicate what it is about. The
intention expresses the purpose of an activity. The content of an activity can be described
in terms of actions, events, actors, resources etc. The content can be described by means
of, say, activity diagrams [RJ99], BPMN diagrams [Wh04], and EPC diagrams [De02],
[LL06], or they can be described in terms of text. The environment of an activity can be
described in terms of actors that interact or statically related with the activity.

We have used interaction patterns to define the structural aspects of the information
search activities in the library. An interaction pattern defines a dynamic relation between
two participants. At least one of the participants must be an actor [Bæ06].

MODIFY CONTROLSENSE

MOVE GIVE

Figure 4 Interaction patterns

Figure 4 shows the notation we use to model interaction patterns. Circles represent
actors. Rectangles represent objects (things or information). Dotted rectangles represent
locations. MOVE is a pattern where an actor moves an object to a destination. GIVE is a
pattern where an actor gives an object to another actor. SENSE is a pattern where an
actor senses aspects of an object (the dotted line indicates that no visible, physical action
is taken place). MODIFY is a pattern where an actor modifies an object. CONTROL is a
pattern where one actor controls the activities of another actor.

The situation

The experiment focused on an activity where a library user has a set of information. A
librarian uses his understanding of these needs to search for information resources. The
use and the library engage in a dialogue about the user’s information needs, potential
search terms, and the relevance of search results.

184

The information search activity is characterized by communicative interaction between
user and librarian and it is characterized by a shared interaction with IT-systems like the
Internet and library databases. Also, there is an important element of cognitive activities
where the user and the librarian tries to understand the problem at hand and where they
consider possibilities and think about formulations and search results.

Activity case 1 – current situation

This activity case represents selected aspects of the current mediation of user’s
information search. It is based on user simulations during which two librarian’s
simulated the information search activity playing the roles of user and librarian.

Name. Information search.

Intention. To mediate a library user’s search for information resources.

Content. The leftmost diagram in Figure 5 represents the current search activity in terms
of a set of activities that the librarian and the user carry out. The notation is informal.
Rectangles represent objects and round-corner rectangles represent activities. Formulate
query is an activity in which the user expresses information needs and the librarian asks
questions and suggests interpretations. Based on this the librarian formulates a set of
search terms that is used as input to a search activity in which the librarian uses the
search terms to ask a query to a search system. The user and the librarian analyse and
evaluate the answer—a set of objects that is returned from the search system (database,
Internet search engine, etc.). Select is an activity in which the librarian uses “cut &
paste” to copy relevant resources from an answer to the resource collection—a text
document in which the selected resources from search answers are stored. Finish is an
activity in which the resource collection is formatted and enhanced with clarifying
comments.

Finish

Select (cut
& paste)

Ressource
collection in
ustructurered

text
document

Search

Answer

Formulate
query

Search terms

Update

Ressource
collection

Librarian

User

Search
system

Answer

Query

Create

Questions/
suggestions

Needs

Parameters

Figure 5 Current search activities

185

The rightmost diagram in Figure 5 represents the current search activity in terms of a set
of interactions. Two persons, a librarian and a user, participates in the activities. The user
expresses information needs. The librarian asks questions and suggests interpretations.
The librarian adjusts search parameters and poses query with search terms to the search
system. The search system creates an answer to a query. The librarian updates the
resource collection that contains selected resources from query answers. The user can see
the answers and the resource collection.

Environment. Other activities in which librarian and user engage.

Activity case 2 – future situation

This activity case represents selected aspects of the current mediation of user’s
information search. It is based on brain storms and analysis of Activity Case 1b.

Name. Information search.

Intention. To mediate a library user’s search for information resources.

Content. The leftmost diagram in Figure 6 represents the envisioned future search
activity in terms of a set of activities that the librarian and the user carry out. The
notation is informal. Rectangles represent objects and round-corner rectangles represent
activities.

Finish

Use
ressource
manager

Answer

Formulate
query

Save

Databases

Search

Other
sub sessions

Search terms

Structured
ressource
collection

Control

Update

Search system

Answer

Other
systems

Ressource
collection

Ressource
manager

Create

User

Librarian

QuestionsNeeds

QueryParameters

Figure 6 Future search activities

The major change when compared to the model in Figure 5 is that the model in Figure 6
presumes that an actor (IT system) called an Resource Manager can be used to manage
the resources that are evaluated as relevant parts of the query answers. Rather than
manually updating an unstructured resource collection then librarian uses the Resource
Manager to select and modify selected resources.

186

The rightmost diagram in Figure 6 represents the envisioned future in terms of a set of
interactions. Two persons, a librarian and a user, participates in the activities. The
resource manager updates the resource collection. The user controls the resource
manager. The user expresses information needs. The librarian asks questions and
suggests interpretations. The user adjusts search system parameters. The user poses
query with search terms to the search system. The search system creates an answer to a
query. The librarian adjusts search system parameters. The librarian poses query with
search terms to the search system. The librarian controls the resource manager. The
resource collection is “read” by other systems.

Environment. Other activities in which librarian and user engage. Environment of other
systems.

Lessons learned

Activity case 1 were created in order to understand the existing situation and to support
discussions about potential improvements. Activity case 2 represents the results of these
discussions. The following lessons are based on the observed experiences from the use of
activity cases and from informal conbersations with library staff.

Activity cases support modeling flexibility. Activity cases support a balanced focus on
the elements of a modeled activity that are considered relevant, i.e., actors, activities,
things, and information etc. No specific modeling languages are presumed. Any
combination of formal and informal modeling languages can be used. This turned out to
be very relevant in the library case because the informal activity flow modeling notation
turned out to give an insufficient view of the activities. The library case is characterized
by many iterative interactions that are not easily captured in terms of activity flow. The
interaction patterns turned out to supplement the activity flows.

Activity cases support innovation. Interaction patterns facilitate creative discussions
about the roles played by IT-systems in business activities. The use of interaction
patterns in activity cases turned out to be useful in creative discussions about potential
uses of IT-systems to improve the library search activities. The reason is that all
interactions can be mediated by actors that are added between the interacting elements.
For example, the Resource Manager can be viewed as a mediator that mediates the
librarian’s interaction with the selected resources.

Activity cases go beyond workflow modeling. An activity case focuses on a selected
activity system in terms of ist name, intention, content, and environment. This implies
that the modeler is encouraged to go beyond mere workflow modeling. In then library
case we modeled the selected activity system (information search) in terms of both
workflow and interaction patterns because the workflow perspective turned out to be an
inadequate representation of the the roles of mediating tools in the search process.

187

4 Discussion

The following scenarios describe potential combinations of EUCs and activity cases.
They are based on the lessons learned from the two experiments. All scenarios are based
on the assumption that the requirements engineering process is structured around three
EUC-tiers.

Scenario 1 – Activity cases may be used as organizing principle. When the three EUC-
tiers are created a significant amount of models may be created. These models can be
organized as activity cases to ensure that all models are named in a coherent manner and
contextualized in terms of their intentions and environments. The NICE template offers a
framework for model organization. Different models of a specific activity can be traced
if all models (Tier 1, Tier 2, Tier 3) are contextualized by means of the NICE template
and if a coherent naming scheme is used.

Scenario 2 – Activity cases may be used to support innovation. Activity cases can be
used to support innovation and creativity when Tier 1 is created. Activity Cases are
useful for gaining the first ground in understanding a problem, and they do this by
structuring the domain in actors, resources, actions, and events. EUCs on the other hand
are useful making a full behavioral model, of the discrete descriptions captured by each
activity case, and to establish in a greater degree the resource perspective and control-
flow perspective of the overall system. EUCs are used to support deep understanding of
the dynamics of complex processes.

Scenario 3 – Activity cases may be used to support flexible clarification. Activity cases
are used to support fast experimentation with processes that have turned out to be
problematic in EUCs. When a process model is animated one or more deficiencies may
be detected. In such situations the flexibility of activity cases may be used to experiment
with ways to overcome each identified deficiency without having to formally model the
process.

The next series of evaluation experiments in our design science project will be based on
scenarios like these. The experiments will be based on industrial requirements
engineering activities in which a set of promising scenarios will be evaluated. The
scenarios implicitly characterize a requirements engineering process that combines
flexibility and agility with formality and animated processes. It is very likely that such a
process could have been used to improve our to experiments. The public services case
could have used the NICE template to organize the various models and it could have
benefited from the flexibility offered by Activity Cases. The library search case could
have benefited from the animations offered by EUC. Animations of the search process
could be distributed to relevant librarians and selected user as a basis of a more thorough
validation of the proposed new search activity.

188

5 Conclusion

We have presented two different requirements engineering techniques called EUCs and
Activity Cases. An EUC consists of three different models of the work processes that
must be supported by a new system. Tier 1 is an informal model. Tier 2 is a formal,
executable model that is based on Tier 1. Tier 3 is a graphical animation of tier 2. Tier 1
is created in an informal modeling activity. Tier 2 is created in a formal modeling
activity. Tier 3 is an animation activity in which the formal model from Tier 2 is
animated. An activity case is model of a work activity. It is based on a templete with four
hedalines: Name, Intention, Content, and Environment. Activity cases can be used to
experiment with models of existing and envisioned business processes. For each
technique we have described and discussed an experiment in which the technique has
been applied and evaluated. And we have sketched three scenarios that represent
possible combinations of EUCs and Activity Cases. Future research includes industrial
experiments that are based on these scenarios. The purpose is to identify characteristics
of a requirements engineering process that combines flexible modeling, formal
modeling, and process animation.

References

[AW90] Avison, D. E. and A. T. Wood-Harper (1990). Multiview, Blackwell Scientific
Publications.

[BH98] Beyer, H. and K. Holtzblatt (1998). Contextual Design. Designing Customer-
Centered Systems, Morgan Kaufmann.

[BJ04] Bossen, C. and J. B. Jørgensen (2004). Context-Descriptive Prototypes and their
Application to Medicine Administration. DIS'2004. Designing Interactive
Systems. Cambridge, Massachusetts, Acm Press.

[Bæ05] Bækgaard, L. (2005). From Use Cases to Activity Cases. ALOIS'05. Action in
Language, Organisation and Information Systems. Limerick, Ireland.

[Bæ06] Bækgaard, L. (2006). Interaction in Information Systems - Beyond Human
Computer Interaction. ALOIS'06. Action in Language, Organisation and
Information Systems. Borås, Sweden.

[Co01] Cockburn, A. (2001). Writing Effective Use Cases, Addison-Wesley.

[De78] De Marco, T. (1978). Structured Analysis and System Specification. Yourdon.,
Yourdon.

[De02] Dehnert, J. (2002). Making EPCs fit for Workflow Management. EPK’2002 -
Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten. Trier,
Germany.

189

[HM04] Hevner, A. R., S. T. March, et al. (2004). "Design Science in Information
Systems Research." MIS Quarterly 28(1): 75-105.

[Ja01] Jackson, M. (2001). Problem Frames - Analyzing and Structuring Software
Development Problems, Addison-Wesley.

[JB04a] Jørgensen, J. B. and C. Bossen (2004). Executable Use Cases as Links Between
Application Domain Requirements and Machine Specifications. 3rd
International Workshop on Scenarios and State Machines (at ICSE'2004).
Edinburgh, Scotland, IEEE.

[JB04b] Jørgensen, J. B. and C. Bossen (2004). "Executable Use Cases: Requirements
for a Pervasive Health Care System." IEEE Software 21(2): 34-41.

[La03] Lauesen, S. (2003). "Task Descriptions as Functional Requirements." IEEE
Software 20(2): 58-65.

[LL06] Lübke, D., T. Lüecke, et al. (2006). Using Event-Driven Process Chains for
Model-Driven Development of Business Applications. Workshop XML4BPM
2006 - XML Integration and Transformation for Business Process Management.
Passau, Germany.

[MP00] Magee, J., N. Pryce, et al. (2000). Graphical Animation of Behavior Models.
22nd International Conference on Software Engineering. Limerick, Ireland,
ACM Press.

[MS95] March, A. T. and G. F. Smith (1995). "Design and Natural Science Research on
Information Technology." Decision Support Systems 15: 251-266.

[RJ99] Rumbaugh, J., I. Jacobson, et al. (1999). The Unified Modeling Language
Reference Manual, Addison-Wesley.

[Wh04] White, S. A. (2004). Introduction to BPMN, WWW.BPMN.ORG.

190

UML 2 Profiles for Ontology Charts and Diplans

Issues on Metamodelling

Jose Cordeiro
1
 and Kecheng Liu

2

1EST Setúbal/IPS, Rua do Vale de Chaves, Estefanilha,

2910-761 Setúbal, Portugal

j.cordeiro@computer.org
2 The University of Reading, Whiteknights,

Reading, RG6 6AF, UK

k.liu@reading.ac.uk

Abstract. Organisational Semiotics (OS) uses Ontology Charts (OC) for

requirements representation. This technique that shows affordances and their

ontological dependencies constitutes the essential diagrammatic communication

facility of this theory. On the other hand Diplans diagrams are in a similar way

the main mean of expression of the Theory of Organized Activity (TOA).

Diplans show us bodies and (human) actions and their relationships. Both

theories belong to the socio-technical perspective of information systems

development and were chosen as part of a unification work that includes both.

Regarding UML, it is a de facto standard and it is seen as a powerful and

widely accepted technique for modelling. To represent OC and Diplans with

UML will most benefit the underlying theories by widening their audience and

enabling to use the numerous available tools.

 This paper proposes two new UML 2 profiles for representing respectively,

OCs and Diplans. Examples of application of both profiles are shown and an

extended discussion on their creation is made. Our concern is to bring to

discussion the different issues that came forward when metamodelling both

solutions and, consequently, to assess the feasibility of UML for this purpose.

1. Introduction

Modelling plays a major role in the way we perceive, plan and act within a particular

context. Models show us simplifications of the reality, usually by representing and

emphasizing some key elements of this reality. Each theory defines its own reality or

context and has its particular view of the world. The major elements of these theories

are commonly shown in models, thus highlighting their key concepts. In order to

represent these central concepts many theories developed a particular diagrammatic

language where the concepts and their relationships are shown. This is the case of

Organisational Semiotics (OS) which uses Ontology Charts (OC) for modelling

concepts such as affordances and ontological dependencies. A second case, which is

used in this paper, is Diplan that is another diagrammatic language applied by the

Theory of Organized Activity (TOA), to express the concepts of bodies and (human)

191

actions and their relationships. These theories were chosen as part of a unifying work

that intends to merge them both. Important gains are obtained by using UML and in

particular UML Profiles instead of those particular kinds of diagrams, examples are:

• A much wider audience will be able to understand and use the diagrams

• A uniform and less ambiguous (formal) way of representing the elements

and their relationships

• The possibility to use the numerous available UML tools

• A possible and easy way to exchange and to include diagrams in

applications as part of the requirements and/or documentation

In this sense this paper presents and proposes two new UML 2 profiles for

representing, respectively OCs and Diplans. Besides the creation of these profiles the

creation process itself happens to be a great challenge and many issues were raised.

So, we intend to report here as well the difficulties and the issues that emerged from

the creation process. We think that many of the problems found will be common to

other researchers, that our solutions will be helpful to them and the issues raised will

contribute to the discussion and to the enhancement and evolution of UML in general

and UML metamodelling in particular.

This paper is organised as follows: section 2 will present the related work, section

3 will be devoted to the necessary theoretical background on TOA and OS, UML

proposed profiles will be shown and exemplified in section 4, section 5 will present

the discussion and rationale for the created profiles and finally, conclusions will be

given in section 6.

2. Related Work

We found a minor number of attempts to use UML within OS. In [LO99] an UML

activity diagram is extended in order to support norm specifications. Norms are not

depicted in OCs but are directly attached to each individual affordance shown in these

charts. OCs doesn’t provide any means to represent these norms and this work is

useful as an extension of OCs. Also [SD03] presented another work related to norms.

In this case use cases are derived from norm analysis. There is a small part of their

work associated with this particular derivation and not much relevant.

A recent paper and the most significant for the use of UML in OS is the paper of

[Bo04] where some heuristic rules for class diagram derivation from OCs are

proposed. Even so, this work just gives some ‘simple’ hints on how to obtain (and

translate) the OC elements into UML elements. Used UML elements were limited to

classes and associations, compositions and generalizations relationships among then.

To the best of our knowledge no other research work tried to apply UML profiles

to produce specialized UML diagrams for expressing OCs. The same is true about

Diplans. In fact there was no other related work which relates UML and TOA.

Regarding UML profiles much work has been done and we will point some

references afterwards when appropriate.

192

3. Ontology Charts and Diplans Theoretical Background

3.1. Organisational Semiotics and Ontology Charts

OS applies Semiotics to the study of business systems and organisations. Within OS

the work of Ronald Stamper is the most advanced and influential and is the one

usually referred as OS in general while denoting Stamper’s particular theory and view

(see for example [St73], [St96], [St00] and [Li00]). OC is the diagrammatic language

used in Stamper’s OS and is the outcome of applying the method of Semantic

Analysis (SAM) to an organisational problem. OCs are mainly used for organisational

requirements offering a precise and stable view. Affordances and Ontological

dependencies are the key elements depicted in these charts. Affordances are the

invariants of the environment and represent patterns of behaviour afforded by some

agent. As an example, a cup may be considered an affordance because it affords

drinking, holding liquids, throwing it, and other actions (or patterns of behaviour).

Ontological dependencies (OD) are existential dependencies between affordances

where some affordances cannot exist without the existence of others. For example

swimming is not possible without being immersed in water. The swimming affordance

requires the existence of both a water affordance and an immersed agent affordance.

Agents and affordances are represented as nodes in OCs, while ODs are the lines

connecting these nodes. Agents and affordances allow specific/generic relationships

between them. Also ontological dependencies can model existential relationships

between a whole and a part. Affordances can be substantive, representing here-and-

now or semiological, standing for other affordances. On the other hand agents can

have roles in the scope of an OD. Affordances can also be Universal or Particular

corresponding to a concept similar to respectively type and instances. Time is also

present in OCs – leftmost affordances must exist before affordances on the right side

to exist. Last elements represented in OCs are determiners which generalize the

Ontological Dependency

[Role]

Affordance

#Determiner

Ontological Dependency

(whole/part)

•

Fig. 1. An Ontology Chart of a grocery shop (proposed by Ronald Stamper)

193

concept of a measurement. For example size is a determiner of a coat affordance

permitting to reduce the scope of the total of possible coats. An example of an

Ontology Chart is given in Figure 1.

3.2. The Theory of Organized Activity and Diplans

The DIPLAN language, which is described in [Ho88], is the diagrammatic language

used by the Theory of Organized Activity - TOA [Ho97]. This language was

developed from Petri Nets and permits simulation and action sequence analysis. A

Diplan show us in a graphical form an (human) activity. This activity is seen by TOA

as the fundamental element of every organisation or business system. Within each

activity or in a Diplan we have actions, bodies and their relationships. An action in

TOA corresponds to the unit of human effort, whereas bodies represent material or

physical units. The only type of action described in a Diplan is the human action.

Actions are doubly performed by a person and by an Organizational Entity that this

person represents (for example an organisation, a committee, a president, etc.).

Actions and bodies are related by involvement: every action involves at least one

body; every body is involved in at least one action. Diplans can show us different

types of involvement (or relationships) between actions and bodies, namely creation,

destruction, support, use, state change and definition. Bodies, and only bodies, can

have states which can also be shown in the diagrams. An example of a Diplan is

shown in figure 2 together with the explanation of the diagram elements.

Fig. 2. A DIPLAN of a grocery shop activity

194

4. UML Profiles for Ontology Charts and Diplans

4.1. The OS UML Profile

The UML profile metamodel created for OC is depicted in figure 3. The stereotypes

and constraints defined for this profile are detailed in table 1. Besides these UML

extensions a particular diagram – the OC Diagram – was created in order to represent

a standard OC with UML. Discussion of the creation of this profile is made in the

next section.

Table 1. OS profile stereotype definitions

Name Affordance

Extended Class Class
Description Represents the Affordance concept. An affordance is an element that enables

a group of actions for an agent.
Constraints An affordance cannot have attributes.

Affordances operations are abstract.
Notes Affordance operations can be used to specify operations that are enabled by

the affordance
Name Agent

Base Class Affordance Notation

Description Describes an agent Affordance. An agent
represents a person or a legal entity

Constraints ------

Optionally an agent can
be shown inside an
oval figure

Fig. 3. OS Profile metamodel

195

Name Semiological

Base Class Affordance
Description A special kind of affordance representing a speech act.
Constraints ------

Notes Also described as a semiotic sign: something that stands for another thing, not
the actual thing.

Name Substantive

Base Class Affordance
Description Represents the common affordance, which is different from an Agent or a

semiological affordance
Constraints ------

Name Ontological

Extended Class Dependency Notation

Description An Ontological relationship is a binary dependency
between two affordances where the dependent
affordance cannot exist without the existence of
the other.

Constrains 1) This relationship can only be applied between
affordances.
2) It is a binary relationship.
3) An affordance can only be the target of at most
two Ontological dependency relationships.

Notes A dotted line may be used for dependencies on
semiological affordances.

Name Whole-part

Base Class Ontological Notation

Description An Ontological whole-part relationship is a binary
dependency between two affordances where the
dependent affordance represents the part that
cannot exist without the whole.

Constrains -----
Notes
Name ValueType

Extended Class DataType
Description Used with affordances to express information about properties and/or

parameters.
Attributes determiner: ValueType [0..1]

A kind of quantity that is identified by an instance of the determiner
stereotype.

Constraints The determiner attribute must reference a ValueType to which the
«determiner» stereotype has been applied.

Notes Stereotype imported and adapted from SysML profile (OMG, 2007c)
Name Determiner

Base Class ValueType
Description A kind of quantity that represents a measurement dimension. For example

size, height, volume, identifier.
Constraints The “determiner” attribute inherited from the ValueType stereotype must not

contain any value.
Notes Stereotype imported and adapted from SysML profile (OMG, 2007c)

196

The OC Diagram defined in this profile is a special case of a UML Class

diagram. This diagram is used for showing affordances and their ontological

dependencies. All OC diagrams are provided with an immutable instance

specification of an agent affordance named Society. This instance should be

the root of all ontological dependencies in the diagram where ultimately all

affordances are ontologically dependent on. Because the only kind of

dependency shown in OC diagrams is the ontological dependency it will be

possible (and optional) to omit the stereotype keyword. Another notation rule

is to respect the OC rule that states that all dependencies must be depicted

from left to right. This means that affordances dependent on other affordances

should appear at right of the affordances from which they depend. If the UML

tool adopts and verifies this criterion within OC diagrams then it will be

possible to hide all direction information from the dependency lines.

In figure 4 the example given in figure 1 is reproduced with the OS profile

applied to it.

4.2. The TOA Profile

The Diplan metamodel is given in figure 5 and the description of all created

stereotypes and constraints is presented in table 2. Discussion of this profile will be

given in the next section as well.

Fig. 4. An OC diagram using the OS Profile

197

Table 2. TOA Profile stereotype definitions

Name Action

Extended Class Class
Description Represents an (human) action concept
Constraints ------

Name Body

Extended Class Class Notation

Description Represents the TOA concept of a body. A body
is a material element

Constraints ------
Notes A body can and usually have states that can be

shown in the usual UML way

Optionally a body can be
shown inside an oval
figure

Name Person

Extended Class Class Notation

Description Represents the TOA concept of a person.
Attributes body:Body

Represents the body of the corresponding
person as a material element

Constraints ------
Notes Usually the body is not shown.

Optionally a person can
be shown inside an oval
figure

Name OrganizationalEntity

Base Class Class Notation

Description Represents the TOA concept of an
Organizational Entity

Attributes body:Body
Represents the body of the corresponding
organizational entity

Constraints ------
Notes Usually the body is not shown.

Optionally an
organizational entity is
inside an oval figure

Name IsCaseOf

Extended Class Generalization Notation

Description Is case of has a similar meaning to the UML
generalization element

Constraints The general and specific classifiers should be
both bodies or both actions

Notes The notation is the same as for Diplan and the
semi arrow points to the generic element

Fig. 5. TOA Profile metamodel.

198

Name Involves

Extended Class Association
Description An involvement relationship relates an action with a body
Constraints 1) This relationship must be applied between an action and a body.

2) It is a binary relationship
Notes
Name creation

Extended Class Association Notation

Description Describes the creation of a body by an action
Constraints Navigation is in the direction of the action to the

body
Notes A solid arrow is used for the association end

Name destruction

Extended Class Association Notation

Description Describes the destruction of a body by an action
Constraints Navigation is in the direction of the body to the

action
Notes A solid arrow is used for the association end

Name support

Base Class Involves Notation

Description Support is effort towards the continued
existence and/or improvement of the body

Constraints Navigation is in the direction of the action to the
body

Notes Semi circle end is used for the navigation end

Name definition

Base Class Involves Notation

Description When a body is in a specified state by definition
Constraints Navigation is in the action – body direction

Notes Semi square end is used for the navigation end

Name Use

Base Class Involves Notation

Description When a body is used by an action
Constraints Navigation is drawn in the direction of the body

to the action
Notes Semi circle end is used for the navigation end

Name stateChange

Base Class Involves Notation

Description Means that a body changes its state because of
the associated action

Constraints ------
Notes A stereotype is used for this representation

As in the case of the OS profile a new kind of diagram is defined for use with the

TOA profile - the Diplan diagram. This diagram is used to show action, bodies and

their involvement relationships. The involves stereotype may be omitted because all

the association relationships depicted in the Diplan diagrams are of this kind. As

before the example given in figure 2 is reproduced in figure 6 with the TOA profile

applied to it.

199

5. Discussion

One of the key reasons to choose UML profiles in this work instead of defining a

complete metamodel for OCs and Diplans representation is the possibility to use

UML tools. Among other benefits these tools allow for model interchange, model

validation and model storage. In this sense UML profile construction becomes an

unavoidable and mandatory process. In order to build these profiles some guidelines

should be followed. (see for example [FV04]). In a general and simple view these

guidelines recommend us to create a specific domain metamodel, to choose from this

metamodel the relevant elements, to extend the appropriate UML metamodel

elements with some of these elements and to define additional constraints and tagged

values (see [Ru05]). Although simple, this process has many issues, difficulties and

compromises when we are metamodeling non object-oriented theories. In the next

sub-sections some of the problems felt will be exposed and discussed. It should be

stated as well that both UML profiles were created using the version 2.1.1 of the

UML superstructure and infrastructure [Om07a], [Om07b].

5.1. The OS profile

Following the guidelines for profile creation drive us to an initial step, which is to

find corresponding UML elements for OC elements. This is straightforward in this

case, the ontological dependency clearly maps to a kind of dependency and the

extension of the UML dependency element become obvious. Regarding affordances

no similar concept exists within UML and the common solution in these cases is to

extend the metaclass “class”. In fact this extension is very well adapted in this case

because it allows the use of the ‘generalization’ relationship for affordances, a notion

that is already present with affordances. Another benefit is the possibility to express

normal affordances as classes corresponding to Universals in OS and specific

affordances as instance specifications corresponding to Particulars. Generalization

can also be used in the metamodel for distinguish the different types of affordances,

namely agents, substantive and semiological affordances.

A first problem appears because we need to express roles in dependency

Fig. 6. A Diplan diagram using the TOA Profile

relationships. The dependency relationship doesn’t allow roles to be associated with

the target and/or source elements. Alternatively, it would be possible to extend the

UML association for the ontological dependency in order to express roles but this

solution would lose its expressive power. In fact, the OS profile was made

considering its intended users, so it was important that obtained models were close to

the UML notation (and semantics). The objective was to increase the number of

people that would understand OC diagrams. Therefore the goal was to be close to the

standard UML semantics and notation and to avoid new notations in this profile.

A second difficulty is: how to express the determiner concept? A determiner is a

generalization of a measurement and it is an affordance as well. In this case it was

modelled as an attribute associated with an affordance. As attributes, determiners

must be ontologically dependent on their classes, thus this relationship becomes

implicit and doesn’t need to be shown. This solution also obliges old OC creators to

understand this new notation.

Concerning the representation of the different types of affordances the solution

makes necessary to use stereotypes to identify each kind. Visually this solution allows

users to better understand the affordances used in a particular model. As been said

before no new notation was given in this case.

A last problem occurs with an interesting rule that is followed when creating

traditional OCs: affordances that depend on other affordances should be on the right

of the affordances on which they depend. Time is introduced according to this rule, all

left affordances exists before right affordances exist. UML has a poor representation

of time and doesn’t provide any spatial information about the elements. Except for a

few cases, it is possible to put an UML element in any place in the model area and not

much concern is made about its position. The solution for tool creators is to consider

this new information in OC diagrams in order to make the rule effective. One more

rule that cannot be formalized in UML is that each OC diagram must have an

affordance instance specification named Society which is the root of ontological

dependencies. These considerations lead to an issue in UML related to diagrams. A

UML diagram is (surprisingly) not seen as a model element and it is created outside

the metamodel. The new OC diagram and its elements is just a group of

recommendations and rules in its application and no formal criteria are adopted for its

definition.

5.2. The TOA profile

The TOA profile adopts a different approach from the OS profile; it is oriented

towards a close connection to its original notation. Although the resulting models are

UML models, the appearance will resemble the original Diplan diagrams. Regarding

the main elements represented in Diplans, namely bodies, actions, persons and their

involvement relationships, their translation to associated UML profile elements is not

so straightforward. Bodies are material elements and no similar concept exists in the

UML metamodel except for artifacts but this concept is too much focused on

deployment and software elements and not suited for our goals. Therefore the usual

class extension is the natural solution in this case. As a result involvement is also

naturally expressed as an association extension. The main issue is about the action

concept. There is an action element but it is not a classifier and it cannot be used with

201

an association according to the UML metamodel specification. This limitation doesn’t

allow us to express non directed relationships between actions and classes. Even in

object oriented programming it is possible to classify operations (another kind of

actions) and relate them with classes (for example actions can be modifiers, selectors,

etc.) but the expression of these notions is not allowed in a simple way. An additional

(and surprisingly as well) characteristic in the UML metamodel is the absence of a

simple relationship metaclass between elements; this relationship is available for

directed relationships through the dependency relationship but not for non directed

relationships. The only relationship of this type is the association relationship but it is

special because it is a classifier as well, and should relate two classifiers. This

becomes a problem for the representation of the person concept. Naturally this

concept could be expressed using the actor element (which is a classifier) but, in this

case, there are limitations as well given the scope of the association relationship. An

actor cannot be simply associated with a class because it doesn’t have properties (as a

class does) and therefore cannot own an association end. In this case no roles can be

connected with the actor. Any association between an actor and a class must own both

association ends, thus navigation is not possible. This restricts the use of the different

types of involvement. So, the solution was to turn the person concept into a stereotype

using a UML class extension.

Concerning the different types of involvement they are represented using

stereotypes deriving ultimately from the UML association element and keeping the

original notation. Let us just add a note for the person and organizational entity

elements, which possess a body that it is represented as an attribute in the

corresponding stereotype. Also a body is the only element that can have states

according to TOA, this adapts perfectly to the body being a class.

A last difficulty found and not solved in the TOA profile was how to express a

multiple relationship existing in the state change involvement. In the original diagram

it was possible to dissociate the states from a person’s body by connecting the

previous and next states linked to the involvement relationship in the middle of it.

This kind of graphic element is not available in UML and it is not syntactically and

semantically possible to build a similar construct from the available UML elements.

5.3. General Remarks

Different strategies were identified when metamodelling both profiles regarding the

selection of the UML metamodel elements to extend. In the OS profile the approach

was to create a notation close to the traditional UML notation which leads to a

selection of elements whose semantics was close to common UML. The TOA profile

adopted a different criterion: the notation would have to be close to the original

Diplan notation. We think that a third approach that would favour the similarity

(semantics) between both the UML elements and the elements from the considered

theory could also be possible.

Regarding the UML metamodel we found many problems when metamodelling

both profiles. The UML metamodel is designed according to an Object Oriented

approach and it shows many limitation when used to express different domains and

approaches. As an example the limitation found to relate diagrammatically some

UML elements such as classes and actors or classes and actions can be extrapolated to

202

other elements. Also, it lacks a normal relationship between model elements. Another

problem not mentioned before is that the UML metamodel mixes different concerns

in its hierarchy whereas other elements are not even considered. For instance some

metaclasses refer to model elements aspects such as PackageableElement,

NamedElement that are mixed with other aspects while elements such as diagrams,

positioning aspects are not present.

Table 3 - Summary of identified UML issues

UML issue Comments

Notation may vary

It was possible to adapt both OS and Diplan profiles to a notation that
was similar to, respectively, standard UML or to the original
diagrammatic notation. This is a problem for users, making difficult to
understand different models when applying relatively different
notations.

UML metamodel
elements usually have
hidden aspects

Some simple UML elements like action, actor, state and others cannot be
used to represent similar concepts because they cannot be freely
associated with other elements. This is hidden and it is a consequence
of the rigidity of the UML metamodel when defining these elements.

Relationships between
elements are limited

The UML metamodel doesn’t have a concrete relationship metaclass
between elements, the usual solution is to use the association
relationship that obliges the concepts to be represented as classes

UML metamodel
elements with limited
combinations among
them

The UML metamodel limits our capability to combine different
metamodel elements. A simple example was the impossibility to use
roles with dependency relationships.

A diagram is not an
UML metamodel
element

It is not possible to adequately formalize relationships between
diagrams and model elements. For example spatial information about
model elements in a diagram cannot be used. Also number limitations
of model elements in a diagram can’t also be expressed. There are more
examples of this problem.

6. Conclusions and future work

In this paper two UML profiles for Ontology Charts and Diplans were introduced.

These profiles will permit the underlying theories, respectively Organisational

Semiotics and the Theory of Organized Activity to use UML tools with several

benefits as follows:

• Possibility to communicate the diagrams to software development teams

and to include them with other diagrams in the same software project

• Interoperability of the diagrams with other model tools

• Consistency and verifiability of the diagrams

• Formalization of the diagrams

Besides these benefits OS in particular will gain with notation normalization. In fact,

as we can observe from different works (for example [St96], [Li00]) different

notations for OCs have been used. When using the OS profile, the associated UML

tool will provide a single notation which should be used by all users, thus leading to a

standard notation.

203

Concerning profiles creation this paper has raised different issues, from UML

deficiencies and missing components to different strategies for profile development.

Table 3 summarizes most of the issues found in this process.

This work was part of a research project that has as a goal to create a unified and

fundamental theory for software development that will merge some relevant concepts

of both OS and TOA. Future work will reuse created profiles for the modelling of this

new theory.

References

[Bo04] Bonacin, R., Baranauskas, M. C. C. and Liu, K. 2004. From Ontology Charts to Class

Diagrams - Semantic Analysis Aiding Systems Design. In Proceedings of the 6th

International Conference on Enterprise Information Systems, ICEIS 2004, Porto, Portugal.

v. 1. p. 389-395

[FV04] Fuentes, L. and Vallecillo, A., 2004. An Introduction to UML Profiles. UPGRADE,

The European Journal for the Informatics Professional, 5(2):5-13, April 2004. ISSN: 1684-

5285

[Ho97] Holt, A. 1997, Organized Activity and Its Support by Computer, Kluwer Academic

Publishers, Dordrecht, The Netherlands.

[Ho88] Holt, Anatol W., 1988, ‘Diplans: a new language for the study and implementation of

coordination’. In ACM Transactions on Information Systems (TOIS) Volume 6, Issue 2,

pages: 109 – 125.~

[LO99] Liu, Kecheng and Ong, Tina (1999) A Modelling Approach for Handling Business

Rules and Exceptions, The Computer Journal, 42(3), 221-231.

[Li00] Liu, K. 2000, Semiotics in Information Systems Engineering, Cambridge University

Press, Cambridge, UK

[Om07a] OMG, 2007a. Unified Modeling Language Superstructure Specificacion, v2.1.1.

Available: http://www.omg.org/cgi-bin/doc?formal/07-02-05 (May 2007)

[Om07b] OMG, 2007b. Unified Modeling Language Infrastructure Specificacion, v2.1.1.

Available: http://www.omg.org/cgi-bin/doc?formal/07-02-06 (May 2007)

[Om07c] OMG, 2007c. SysML FTF convenience document. Available:

http://www.omg.org/cgi-bin/doc?ptc/2007-02-04 (May 2007)

[Ru05] Rumbaugh, J., Jacobson, I. and Booch, G., 2005. The Unified Modeling Language

Reference Manual (2nd edition), Addison-Wesley, Reading, MA

[SD03] Shishkov, B. and Dietz, J. 2003, Deriving Use cases from Business processes, the

Advantages of DEMO. In: Enterprise Information Systems V. Eds. O. Camp, J.B.L. Filipe,

S. Hammoudi, and M. Piattini. Kluwer Academic Publishers, Dordrecht/Boston/London,

2004.

[St96] Stamper, R. 1996, ‘Signs, Norms, and Information Systems’, in Signs of Work, eds.

Holmqvist B. et al, Walter de Gruyter, Berlin.

[St73] Stamper, R., 1973, Information in Business and Administrative Systems, John Wiley and

Sons, Inc., New York.

[St00] Stamper, R., 2000, Information Systems as a Social Science: An alternative to the

FRISCO Formalism, in Falkenberg, E., Lyytinen, K. and Verrijn-Stuart (Eds), Information

System Concepts: An Integrated Discipline Emerging, Kluwer Academic Publishers,

Massachusetts, pages: 1-51.

204

Service Identification and Design – A Hybrid Approach In

Decomposed Financial Value Chains

Falk Kohlmann

Information Systems Institute
University of Leipzig

Marschnerstraße 31, 04109 Leipzig, Germany
kohlmann@wifa.uni-leipzig.de

Abstract: Service-orientation is recognized as an important enabler for increasing
efficiency and flexibility of transformation processes in business. Based upon the
necessity of meeting dynamic customer needs and supporting organization
concepts with numerous partners within emerging networks, flexible bundling of
business processes is a key requirement. Service models derived from business and
shared within a network can foster this flexibility. However, there is a lack of
methodologies for combining technical-driven and business-driven service
identification and clustering as well as aligning it with business network design.
For this purpose this research paper discusses different techniques of service
identification and design and presents two techniques and its instruments how a
business driven discovery of services can enhance the financial networks design.
The Swiss Banking sector serves to motivate and demonstrate the applicability of
the suggested model due to the ongoing structural transformation driven by
competence orientation, increased competition and business model adjustment.

Keywords: service-oriented architecture, service identification and clustering, business
network redesign, service map

1 Introduction

1.1 Motivation

Following the tradition of object- and component-oriented architecture models, the
service-oriented architecture (SOA) concept promises on the first hand as a
technological concept the integration of heterogeneous application environments.
However, SOA can also contribute to a more flexible allocation of business activities
among partners in a value chain or network. This requires for adequate integration
between the technological and the business world. In many contributions and discussions
SOA is attributed a ‘silver bullet’ status to reach these goals. The key element and basic
precondition for implementing SOA and providing the critical link to the business
processes is the identification and clustering of business functions as services. For this
purpose this paper will exemplify how serviced can be deduced and composed in a
business-driven manner and verified by business as well as technical oriented design
principles and criteria. Furthermore it will be outlined how the proposed techniques fit in

205

an engineering-oriented framework supporting business network redesign (BNR). The
objective is supporting BNR by different instruments, guidelines and procedure models.
This paper belongs to a multilateral, two-year research program that started in summer
2006 and investigates the management of service-oriented networks in the banking
industry succeeding a completed two-year research program about bilateral sourcing.
Our 18 research partners cover various institutional sizes and roles in the banking value
chain (e.g. regional retail bank, international private bank, outsourcing provider,
software provider). Beside specific bilateral projects, the partners contribute to the
research in biannual steering committee meetings and quarterly workshops
supplemented by case studies and interviews taking place throughout the research
program substantiating the applicability of the envisioned approach.
Within this research program this paper focuses on service identification and clustering
as well as the instruments service map and service cluster and exemplifies their
application in the payments process. This paper follows the argumentation of Steen et al.
claiming that SOA “provides better handles for architectural alignment and business and
IT alignment, in particular” [St05]. Moreover we argue that the concept of service-
orientation can be used as well to foster BNR.

1.2 Research Focus

By elaborating a methodology/architecture this research adopts a design science
approach [He04] and presents results which have been elaborated in this research
program. This comprised four workshops with all partners and 19 bilateral semi-
structured interviews. The artefact, which is designed in this paper, is a technique for
identifying and clustering business-driven services and a vertical consolidation with
design instruments for business network redesign. A unified methodological approach
for BNR on all layers has not been reached yet even though BNR is in debate for several
years. Moreover as to be shown there is a lack of methodologies for service modelling
aligned with sourcing models and combined with instruments for BNR. Business
transformation, currently expressed by the integration of applications and the networking
among companies (business networking) is apparent in the financial industry. Contrary
to other industries such as the automotive industry most European banks developed
proprietary applications over the last decades. This resulted in complex, heterogeneous
and monolithic application landscapes with numerous proprietary interfaces and an
increased total cost of ownership [HRW04]. As stated in several interviews with bank
representatives during our research, many banks therefore aim at introducing
standardized application architectures which may be maintained on a modular basis from
a third party. The banking industry is facing a growing need to reduce vertical
integration and the necessity to tap the potential of specialization effects in business
networking. The industrialization of the finance industry as well as the emergence and
redesign of networks such as the three networks grouped around the service provider
Finnova, Avaloq and RTC (Real-Time-Center), initiated by Swiss cantonal banks, is
currently in progress and requires adequate and business aligned application
architectures to manage the growing complexity [Kn06]. The Swiss and German
Banking sector and especially the payments process has therefore been chosen to
motivate and demonstrate the applicability of the suggested model.

206

The structure of the paper reflects his goals. Subsection 2.1 and 2.2 discusses
methodologies and concepts for business transformation and enterprise architecture,
followed by subsection 2.3 describing drivers and challenges of service-oriented
architectures. Subsection 3.1 carries out existing strategies for service modelling and
based upon this foundation subsection 3.2 and 3.3 elaborate the integration of SOA and
service modelling in BNR as well as conceive a hybrid technique for service
identification and clustering. The functionality and the applicability of the proposed
approach will be exemplified in section 4 at the cases of Equens and Postbank. The
paper concludes with subsection 5 and a discussion of potential weaknesses and further
research.

2 Services and Business Transformation

2.1 Methodologies for Business Transformation

Based upon drivers such as globalization, innovation and an increase in market
competition, business transformation towards more decomposition, disintegration and
networking has been recognized in many industries. Currently it is evolving in the
banking industry [GH03] especially in Swiss and German institutes, which is one reason
why the two payment processing companies Equens and Postbank has been chosen as
case study in this paper. While business transformation is a key theme, it has already
been pursued by business process redesign (BPR) and business network redesign (BNR).
E.g. Venkatraman [Ve94] conceived the redesign of (external) business networks as
logically next step after the redesign of cross-functional processes inside an organization.

Following Alt [Al06], models are important instruments for reducing complexity and
distinguishing various elements on several interconnected layers as part of a BNR
methodology. Existing enterprise modelling approaches, such as Multi-Perspective
Enterprise Modelling (MEMO), Semantic Object Model (SOM) or Architecture for
Integrated Information Systems (ARIS) follow this principle. Most of these
methodologies have emerged with process-orientation and conceive processes as links
between business strategies and the (technological) application architecture. Approaches
such as Business Engineering (BE) [Oe95] that aim at semi-formalization of procedures,
roles, activities and result documents have been termed engineering-like methodologies
recognizing as well the business process as main lever of change and therefore key
element in shaping future business solutions and the underlying IS [Oe01]. As
procedures, activities and result documents are in the focus of this research and services
are conducted in a business-driven manner the ‘Business Engineering Model’ (BE) (see
[Oe95]) has been chosen as foundation, simultaneously providing consistency across the
three layers: strategy, process and systems.

2.2 Enterprise Architecture

Existing enterprise architecture approaches [Fo03] are focusing on processes, objectives
and organizational structures and deduce business requirements for systems design

207

lacking in terms of cross-enterprise processes and networkability. Similarity can be
recognized in approaches of organizational architecture [BSZ01, 267ff.] focusing on
distribution of decision rights and incentive systems. ANSI/IEEE [Ie00] is defining
enterprise architecture as organization of a system implying its components,
relationships and governance structures. Enterprise architecture frameworks provide
meta models, design methods, common vocabulary and reference models. As referred to
in subsection 2.1 the BE has been chosen to provide structure to the approach in this
paper.

2.3 Service-orientation and Business Transformation

SOA is recognized as an important concept for business transformation and is discussed
from two perspectives (technological, business). Nevertheless SOA has like many
‘magic words’ numerous different definitions. For example, SOA is conceived in a
technical view as a “paradigm that supports modularized exposure of existing
application functionality to other applications as services” ([Na04], 41). SOA in a
broader view can be defined as the “policies, practices, frameworks that enable
application functionality to be provided and consumed as sets of services published at a
granularity relevant to the service consumer” [SW04, 3]. Service-orientation from a
business view denotes the ability of reusing tasks and processes by solving them at one
location [KÖ06, 236]. Therefore SOA has been proposed as dedicated layer between
processes and systems for several business transformation frameworks.

Core element of any SOA are specified services, which may be identified in general by
two approaches: technical-driven service modelling (bottom-up) and business-driven
service modelling (top-down). For a combination of bottom-up and top-down the term
hybrid has been suggested by [KKB07]. Procedure models for all approaches will be
described and distinguished in section 3. Due to the fact that a general definition of
services as part of a SOA is missing (see [FS05, 756]) and the aim of the paper is
providing a business-driven service approach, services will be defined as: “independent
usable and extensive specified functional components, which support the value
performance of process activities”.
A reduction in operating risks, time-to-market, integration costs and maintenance costs
are only few benefits ascribed to SOA. Contrary higher complexity is suspected. In order
to reduce complexity a classification framework for SOA and services should be
provided. Based upon prior research (see [AGL05], [Sa05], [Ta05]) three service layers
has been differentiated and comprises (1) process services which support activities of the
core processes of a company and include some references to at least one activity of a
business process such as foreign currency supply service and regulation service, (2) rule
services which encapsulate business and validation rules used by process services such
as product rule service and regulation rule service, and (3) entity services which
encapsulate core entities and business objects, such as contract, partner or order.
Infrastructure services providing services of a fine granularity to support transportation
of information at data level are outside the scope of this paper.

208

3 Towards Architecture for Service-orientation

Based upon this foundation the following chapter will differentiate related work by
comparing the derived strategies of service modelling: top-down, bottom-up and hybrid.
Subsection 3.2 will disclose the integration of the instruments service map and service
cluster with instruments on the process and strategy layer followed by the
exemplification of hybrid service identification and clustering techniques exceeding
existing approaches.

3.1 Comparison of Existing Research Approaches

As described above, service modelling based upon a top-down approach is mainly used
when understanding SOA as a concept of connecting business and technology. Based
upon the analysis of business processes or business events [KKB07], service candidates
are identified by applying widespread design principles ([Ba05], [Fr04] and [PG03]):
loose coupling, modularity, business orientation and interface orientation. Existing
business processes are decomposed to achieve service candidates. However a pure top-
down approach neglects addressing the underlying and existing IS applications. Though
services using a top-down approach provide a proper support for modelling new business
roles such as global custodian or credit factory by orchestrating services, existing IS
applications and platforms need to be taken into account in order to reduce setup costs
and verify technical feasibility. Contrary, core element and basis for the bottom-up
approach of service modelling are existing applications. A key step within provided
procedure models is the analysis of currently existing applications and there IS
functionality [Na04] as foundation for systems reengineering [ZLY05]. Researchers of
bottom-up service modelling such as [Na04], [KSR04] or [ZLY05] are focusing on
consolidating and rationalizing access to IS functionality by using services. [Na04] e.g.
argues that technology-based and application-based composition of services can provide
broader benefits than business-driven service composition, as technology’s capabilities
and back-end systems may be used more efficient and effective. The achievable benefit
and key driver for bottom-up service modelling can therefore mainly be seen in the
application integration of heterogeneous landscapes as well as in reduction of
maintenance costs. Services and SOA are used to consolidate “multiple applications
running on varied technologies and platforms” [Na04, 41]. However numerous
application strategies besides SOA already exist and the necessary alignment of business
processes and IS applications as basis for faster time-to-market and more flexible
business models are not addressed in this approach. Nevertheless as top-down service
modelling is focusing on existing business processes and bottom-up service modelling is
based upon existing applications a third approach has emerged to capture functionality
contained neither in processes nor in applications. Middle-out service modelling or goal
modelling is described e.g. by [LA02], [Ar04] or [Sa05]. Business is modelled as goals
and sub-goals, underlined by key performance indicators and metrics representing the
quality of the so reached service candidates. Services are identified and modelled
focusing on these goals. However the challenge remains to identify the cut of the
business goals and to ensure the fit with the remaining enterprise architecture.
To comprise the existing approaches the criteria strategy, origin and examination of the
service cut are discussed as they occur in all methods. Moreover existing approaches can

209

be criticized lacking in terms of visualization, categorization and incorporation with
instruments on process and strategy layer resulting in the next criteria shown in table 1.
Simultaneously the criteria were iteratively discussed in the mentioned workshops and
following the requirements of business transformation and the claim for network design
within an engineering framework.

 KKB07 Na04 Ar04, LA02 Presented approach

Strategy Top-Down Bottom-up Middle-out Hybrid

Origin business process
existing
application

business intents
business process, network
and sourcing model

examination of the
service cut

design principles,
stakeholder

application
functionality

design principles
design principles, sourcing
models, reference processes,

visualization
instruments - -

goal service
graphs service map, service cluster

alignment with
instruments on
process and strategy
layer

- - -
reference processes, role
models, reference networks

service
categorization

process-, basic
services - - process-, rule-, entity

services

service composition /
clustering

via process
services - via enterprise

components
via service clusters

service specification
operation, input,
output, consumer - -

e.g. description, input,
output, serviceuser, business
object

application of
process models

business process - -
reference and existing
business processes

application of
sourcing models - - -

incorporation of developed
sourcing models for the
deduction step

reference to network
and business model
design

- - -
Incorporation of developed
network and existing
business models

Table 1: Comparison of existing service modelling strategies

Currently evolving initiatives such as the Industry Value Network of SAP try to combine
the recognized lack of combining business-driven service identification and clustering
with technical feasibility. However a methodology which above all is integrated in an
engineering framework, linked with instruments and procedure models for business
network redesign and taking sourcing models and business roles into account has not
been reached yet.

3.2 Integration of Network Design and Service Modelling

As business processes are within the BE the main lever, the services within our approach
are further based upon (reference) sourcing models (cf. figure 1). The so reached
services are composed to service clusters which on one side provide more flexibility to
disaggregated business processes providing the missing link between existing

210

application landscapes and business and on other side interrelate with business roles
elaborated by business models and networks. Business roles, represented in a role model,
can apply the service-orientation paradigm and interrelate directly with the service
clusters. The business roles, representing certain business models, such as research
provider, product designer, asset manager, valor data refiner or global custodian use or
provide certain service clusters designed as independent from each other.

Fig.1: instruments for business network redesign

As the service cut is based upon these sourcing models, business processes and business
roles the incorporation of legal requirements such as customer data access increases the
reusability of the specified services by enhancing the ability to support diversified
business strategies (scope and scale) to the same extent. The analysis of business
networks is enriched by the embodiment of used services and service clusters. The
instrument of the service map affiliates the approach of reducing complexity by
structuring the services clusters in two dimensions: customer proximity as well as core
vs. support activity, resulting in three overlapping domains: distribution competence,
execution competence and support competence (cf. figure 3). The service map contains
the service clusters and its encapsulated services.
Linking sourcing models, business roles, processes and services within an engineering-
oriented framework provide benefits for both sides: the challenge of the service cut is
addressed as the cut last not longer solely on business processes and critics of existing
BNR approaches addressing network modelling solely on high level without
interdependency towards IS are prevented as service clusters and maps provide a
connection to IS-models.

3.2 Procedure Model for Service Identification and Clustering

To avoid missing service candidates as described in the middle-out approach while
simultaneously using the benefits of correlating business and IT with the hybrid
approach, an engineering-based methodology covering both aspects is needed.

211

Enterprise architectures addressing business transformation can provide a foundation for
business-driven service identification.
The proposed model extends existing approaches ([KKB07], [Ar04], [LA02]) by
combining service identification and clustering, integrating it in an engineering-oriented
framework and implying besides business processes, strategic aspects. Pattern such as
design pattern or architectural pattern are used to structure e.g. communication elements
or software systems in object-orientation [SB03] and can therefore be adapted to
enhance the structure in SOA. Service clusters ensue this pattern paradigm by structuring
services and visualization instruments such as service maps. The proposed techniques for
service identification and clustering, shown in figure 2, consist of four phases covering
preparation and initialization, analysis, verification and detailing. The differentiation of
the four phases has been made on basis of the gradation of existing procedure models
(e.g. [Ar04], [KKB07]) and has been verified in workshops and interviews. The cross-
reference models, which are provided for the finance industry case within the
methodology, are indicated in figure 2.
During the preparation phase the required models are selected and the area for service
identification and clustering is identified. Besides the enterprise model, which describes
all existing processes of a company on a high granularity, and the network model, the
(reference) business process (in this paper the payments process) is needed for the
identification of the services and the service list containing the specified services is
needed for the clustering of the specified services. All three were elaborated in the
mentioned research program. The network model with its described roles and therefore
implicit exhibited business models is necessary in order to assess the service cut. During
the analysis phase the service identification follows a top-down approach based upon the
business processes and the network model either representing an as-is or to-be state. The
service candidates are deducted through the fine granular activities of the process
incorporating existing design principles as stated above and defined service criteria:
specified service context, part of one service layer according to a specified service
classification pattern, reusability level as well as defined status before and after a
request.
A workflow is created based upon the business processes exemplifying the activities
underlined with additional determined and associated information concerning:

• the state changes of the information and business objects (e.g. create, access)
• legal requirements concerning availability and ownership of data
• interdependencies of certain tasks and business rules
• business roles and sourcing strategies using/providing the activity

The deduction of the service clusters is based upon the service map and list
corresponding to the analysed area and follows therefore a bottom-up approach. Again
design principles and criteria are incorporated in the analysis. The result of the analysis
phase is service and cluster candidates containing domain specific knowledge as in this
paper of the finance industry.
After a service or cluster candidate has been identified a functional description has to be
made. The verification phase examines if the candidates fulfil the criteria and design
principles, if the functionality isn’t already be provided by another service or
incorporated in another cluster and if the candidate fits the business needs of the process
and the role. Beside the criteria the candidates have been verified especially in terms of

212

technical feasibility in workshops and semi-structured interviews with business and
application architects of our research partners as proposed in the Business System
Planning method, also used for business component design by Albani [Al03].

Fig.2: process models for business-oriented service identification and clustering

The assignment of the detailing phase is to specify the service or cluster in detail. The
service is allocated according to a classification scheme including the following
requirements: service functionality (results), service context (business object,
classification), service behaviour (pre- and post condition, service interdependencies),
service interface (input an output data), service quality (expected response time,
automation, error recovery) and business impact (reusability, covered business tasks).
The so-reached specification is comprehensible e.g. to Albani [Al03] differentiating
seven level for the specification of business components and web services such as
quality, behaviour and interface. Moreover during the service identification and
clustering process guidelines and best practices have to be taken into account in order to
provide an efficient service cut. Table 2 exemplifies some guidelines, which were
developed and verified in several workshops with practitioners.

Guideline Description

differentation of rules
institute particular and legal rules are concentrated in rule services and allocated to
process services

business-orientation
service identification is based upon as-is or to-be business processes detailed
towards activities of a specific enterprise, business network and sourcing model or
to-be reference business processes, reference business networks or reference

213

sourcing models
usage of reference
models

domain specific reference models have to be taken into account to avoid solely as-is
modelling and sequential analysis

business-object
intersection

data services always allude to one business object

incorporation of legal
requirements

legal domain related rules have to be taken into account to support different
business models, roles and sourcing models

data ownership
when orchestrating and re-using services, data ownership and availability has to be
considered

Table 2: extracted guidelines for service design

4 Application of Methodology in the Payments Process

The following section will apply the techniques to the domain of the finance industry
especially the payments process. As the payment process covers numerous activities we
confine the analysis scope in subsection 4.1 upon the process step payments entry
focusing the business object payments. Subsection 4.2 will exemplify service maps for
two payment processing providers. The transformation of the European finance industry
can be outlined by main drivers currently stressing the institutes, shown in table 3.

Driver Impact

market changes
increased competition based upon globalization and changes in market structures (e.g.
cantonal banks overcome provincial borders) as well as market concentrations [GH03]

Regulations
increased regulation efforts based upon emerging international guidelines such as
SEPA (single European payment area)

customer structure
increased customer expectations based upon internet based banking solutions such as
online brokerage

product complexity increased product diversity result in higher costs for product listing [Kn06]

Technology
former development of proprietary applications resulted in intricate serviceable,
mainframe-based and monolithic application landscapes [HRW04]

Competitiveness
decreasing margins based upon additional cost pools result in downward cost income
ratios.

Table 3: main drivers for business transformation in the finance industry

Summarizing, the banking sector is facing currently two main challenges: application
integration and value chain reconfiguration [Ba05]. Furthermore the required business
networking based upon competence orientation and diversification is inadequately
supported by existing core banking platforms as they facilitate networkability only to a
low extent [AS07]. According to the apparent business transformation in German and
Swiss banks, the finance industry has been chosen to exemplify the applicability of the
proposed techniques.

4.1 Service Specification

Following the proposed techniques and guidelines using banking-specific models
(payment reference role model and business network, payment reference business
process and payment reference sourcing models), 48 services and 17 clusters can be
identified. Table 4 exemplifies at the payments data service how these 48 services were
specified resulting in one service list. Afterwards the services and clusters were
exhibited in a service map. According to the to-be business process which was used the

214

interdependencies between the services were examined and also incorporated in the
service map. Since, the service map is used to enhance the design of different business
models, represented as a business role, such as specialist execution, foreign currency
trader or specialist regulations. The service clusters are used at first sight, to describe the
underlying functionality (business scope). Simultaneously existing business models,
such as of the Swiss private bank Vontobel acting as portfolio manager for the Raiffeisen
Classic Portfolio of the Swiss association of Raiffeisenbanken (SVRB) can be easier
analysed as service clusters provide the often missed link between strategy and IS.

section Subsection Description

service
functionality

Results

Service provides necessary information of the customer
throughout the transaction, where customer master data can’t be
accessed directly due to legal requirements. Service
encapsulates all data relevant for the execution of a payment
and enables a one-view to one transaction including the status.

business object single payment service
context Classification data service layer

pre condition ID available and existing
post condition datasets are readout and returned

service
behaviour

service interdependencies used by process services in the payment execution process
Input payement-ID

service
interface output data

account number, customer master data, instrument, execution
date, currency, customer discount …

expected response time less than 2 seconds
Automation fully automated; STP-rate 100%

service
quality

error recovery level A; within 1hour
Reusability reutilization where transactions are processed

business
impact covered business tasks

throughout the business process, where transaction data is
accessed

Table 4: extracted specification of payment data service

4.2 Application of Service Design in Two Cases

The enhancements for the design of networks on the basis of the proposed service
modelling approach are illustrated by two cases: Deutsche Postbank AG (DPB) and
Equens N.V. (Equens), which are major players for payment execution in Germany.
Both provide sourcing models for the execution of domestic payments as well as support
services for archiving, investigations and control. Furthermore the offer of DPB covers
the execution of foreign country payments, regulation examination and foreign currency
trade. In terms of sourcing levels, DPB offers almost full outsourcing and Equens offers
a sourcing model based upon payment execution. Therefore both business models
encompass the same core (payment execution) but differ in terms of scope. DPB and
Equens are operating within a widespread correspondence network and cooperate with
clearing institutes, national banks, distribution banks and others. Moreover payments
execution is a standardized business with low margins, which results in high potentials
for outsourcing. Figure 3 exemplifies the reduced service maps of both providers
focusing only on the service clusters. Though the differences are minor at first sight, the
implications by looking at the offered services are more fundamental. Concentrating on
the payments entry cluster, which consists of 15 services, Postbank offers all services in
contrary to Equens, which doesn’t offer digitalization of non-electronic payment

215

instructions, supported by the recognition, digitalization and recognition rule service.
The identified services can support both providers to the same extent and the proposed
reference service clusters can avail the analysis of business models by detailing them via
service clusters and services. Additionally the communication between IT and business
department as well as between enterprises is enriched by specified and standardized
service elements on different abstraction layers providing a clear link between strategy,
process and systems layer.

Fig. 3: service cluster maps Postbank and Equens

5 Summary and Outlook

Swiss banks are currently facing a fundamental transformation towards more networked
structures (cf. section 1 and 4). In order to reach high efficiency and flexibility the
redesign of networks should be supported by an integrated methodology implying
procedure model, guidelines and instruments as well as standardization efforts. Service
orientation and SOA seems to be an adequate ‘silver bullet’ to support the business
transformation (cf. section 2.3). Key element in implementing SOA is the identification
and clustering of business functions as services (cf. section 2.3). However by linking it
with strategic aspects existing approaches show shortcomings (cf. section 3.1). The
paper has therefore presented an approach for business-oriented service modelling (cf.
section 3.3) as a combination of business-process driven and business-object driven
service identification and technical verification by design principles and service criteria
supplemented by a process model for service clustering. Coinstantaneous the service-
oriented architecture concept has been integrated in an engineering-oriented framework
(cf. section 3.2). The instrument of the service map has been deduced as a result of the

216

techniques (cf. section 3.2). The case studies Postbank and Equens have been used to
apply the service map (cf. section 4.2). Standardized and specified business oriented
services bypass differences in terms of business model scope and business process
sequence.
Further research should address a detailing of the guidelines and the formulation of the
procedure model for BNR, including the presented techniques. The holistic methodology
will be based upon a meta model, which is in progress and will be presented in one of
the next papers. Moreover we will dare to apply the service-orientation paradigm
towards the strategy layer by converging business roles and service clusters aiming at a
consistently enterprise architecture. By the time we will apply the instruments to further
industries in order to provide a generalized methodology. Furthermore the techniques
should be enhanced by the aspects of service versioning and iteratively design and
redesign of as-is and to-be services. Coinstantaneous we will focus on how different
service maps of e.g. providers and banks can be examined and matched.

References

[Al03] Albani, A. et al.: Identification and Modelling of Web Services for Inter-enterprise

Collaboration Exemplified for the Domain of Strategic Supply Chain Development,
In: Proceedings of the OTM Confederated International Conferences CoopIS, DOA,
and ODBASE 2003, Catania, 2003; pp. 74-92.

[Al06] Alt, R.: Business Network Redesign – Overview of Methodologies and Example of
Process Portals. In Business Process Transformation (Markus, L.M., Grover, V.,
Series: Advances in Management Information Systems, M.E. Sharpe) (2006).

[AGL05] Alt, R.; Gizanis, D.; Legner, C.: Collaborative Order Management: Towards Standard
Solutions for Interorganisational Order Management. In: International Journal
Technology Management, 31 (1/2), 2005; pp. 78-97.

[AS07] Alt, R.; Smits, M.: Networkability of Organizations and Business Networks, In:
ECIS’07: Proceedings of the 15th European Conference on Information Systems, St.
Gallen, 2007 pp. 119-130.

[Ar04] Arsanjani, A.: Service-oriented Modelling and Architecture, In: IBM
DeveloperWorks, 2004

[Ba05] Baskerville, R. et al..: Extensible Architectures: The Strategic Value of Service-
Oriented Architecture in Banking, In: ECIS’05: Proceedings of the 13th European
Conference on Information Systems, Regensburg, 2005, pp. 761-772.

[BSZ01] Brickley, J.A., Smith, C.W., Zimmerman, J.L.: Managerial Economics and
Organizational Architecture, 2. edition., McGraw-Hill, Boston 2001.

[Fr04] Fritz, F.-J.: An Introduction to the Principles of Enterprise Services Architecture
(ESA), In: SAP Insider, 2, 2004; URL: http://www.sapinsideronline.com/spijsp/
article.jsp?article_id=37906&volume_id=5147, (26.04.2007).

[FS05] Ferguson, D.; Stockton, M.: Service-oriented architecture: Programming model and
product architecture, In: IBM Systems Journal, 44 (4), 2005; pp. 753-780.

[Fo03] Foegen, M., Architektur und Architekturmanagement - Modellierung von rchitekturen
und Architekturmanagement in der Softwareorganisation, in: HMD - Praxis der
Wirtschaftsinformatik, 40 (2003) 232, S. 57-65

[GH03] Geiger, H., Hürzeler, H.: The Transformation of the Swiss Private Banking Sector, In:
Journal of Financial Transformation, 9, 2003; pp. 93-103

[He04] Hevner, A.R. et. al.: Design Science in Information Systems Research, In: MIS
Quarterly 28 (1), 2004; pp. 75-105.

217

[HRW04] Homann, U.; Rill, M.; Wimmer, A.: Flexible Value Structures in Banking, In:
Communications of the ACM, 47 (5), 2004; pp. 34-36.

[Ie00] IEEE (eds.): IEEE Recommended Practice for Architectural Description of Software
Intensive Systems, IEEE Std 1471-2000, 2000. Available:
http://standards.ieee.org/reading/ieee/std/se/1471-2000.pdf

[KKB07] Klose, K., Knackstedt, R., Beverungen, D.: Identification of Services – A
Stakeholder-based Approach to SOA Development and its Application in the Area of
Production Planning, In: ECIS’07: Proceedings of the 15th European Conference on
Information Systems, St. Gallen, 2007; pp. 1802-1814.

[Kn06] Knowledge@Wharton (Eds.): Special Report: Unraveling Complexity in Products and
Services, Philadelphia, 2006; pp. 1-12.

[KÖ06] Kagermann, H.; Österle, H.: Geschäftsmodelle 2010. Wie CEOs Unternehmen
transformieren, 2nd edition, Frankfurt, 2006.

[KSR04] Kaabi, R. S.; Souveyet, C.; Rolland, C.: Eliciting Service Composition in a Goal
Driven Manner, In: ICSOC '04: Proceedings of the 2nd international conference on
Service oriented computing, New York, 2004; pp. 308-315.

[LA02] Levi, K., Arsanjani, A.: A Goal-driven Approach to Enterprise Component
Identification and Specification, In: Communications of the ACM, 45 (10), 2002; pp.
45-52.

[Na04] Nadham, E.G.: Seven Steps To a Service-Oriented Evolution, In: Business Integration
Journal, 2004; pp. 41-44.

[Oe95] Oesterle, H.: Business in the Information Age. Berlin etc.: Springer, (1995) pp. 13-18.
[Oe01] Oesterle, H.: Enterprise in the Information Age. In Oesterle H.; E. Fleisch, R. Alt

(Eds.), Business Networking: Shaping Collaboration Between Companies. Berlin etc.:
Springer, (2001) pp. 17 - 53.

[PG03] Papazoglou, M.P.; Georgakopoulos, D.: Service-oriented Computing, In:
Communications of the ACM, 46 (10), 2003; pp. 25-28.

[Sa05] SAP (Eds.): Enterprise Services Design Guide, SAP AG, 2005; URL:
http://www.sap.com/platform/netweaver/pdf/BWP_ES_Design_Guide.pdf
(12.02.2007).

[SB03] Schmidt, D.C., Buschmann, F.: Patterns, Frameworks, and Middleware: Their
Synergistic Relationships, In: ICES’03: Proceedings of the 25th International
Conference on Software Engineering, Portland, 2003; pp. 694-704.

[St05] Steen, M.W.A. et al.: Service-Oriented Enterprise Architecture, In: (Stojanovic, Z.;
Dahanayake, A.), Service Oriented Systems Engineering, Hershey, 2005; pp. 132-154.

[SW04] Sprott, D.; Wilkes, L.: Understanding Service-Oriented Architecture, In: The
Architecture Journal, 2004.

[Ta05] Taylor, J.: Achieving Decision Consistency across the SOA-based Enterprise Using
Business Rules Management Systems. In: WISE '05: Proceedings of the Web
Information Systems Engineering Conference, New York, 2005; pp. 750-761.

[Ve94] Venkatraman, N.: IT-Enabled Business Transformation: From Automation to
Business Scope Redefinition, MIT Sloan Management Review, Vol. 35, No. 2, pp. 73
– 87 (1994).

[ZLY05] Zhang, Z.; Liu, R.; Yang, H.: Service Identification and Packaging in Service
Oriented Reengineering, In: SEKE '05: Proceedings of the 17th International
Conference on Software Engineering and Knowledge Engineering, 2005.

218

	EMISA_Papers.pdf
	1 Introduction
	2 State-of-the-Art of Enterprise Architecture Maintenance
	3 The Challenge of Enterprise Architecture Maintenance
	4 A Federated Approach to Enterprise Architecture Maintenance
	4.1 Maintenance Concept
	4.2 Maintenance Process
	4.3 Roles

	5 Implementation at a Large Financial Service Provider
	6 Conclusions and Future Work
	References
	10_Bachmann.pdf
	1 Introduction
	2 Software and Ontology Engineering process: brief comparis
	3 KCPM: A glossary-based approach to Software and Ontology E
	3.1 Small set of modelling concepts
	3.2 KCPM as a link between domain ontologies and SE
	3.4 General Overview of the OBSE cycle

	4 The EOS model and its use for a combined OBSE process
	4.1 Basic concepts of the EOS model
	4.2 Ontology development described in EOS terms
	4.3 Outline of an EOS-based OBSE process

	5 The OBSE tool and prototype
	6 Outlook: OBSE and MDA
	References

