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The term “outlier” can generally be defined as an observation that is significantly different from
the other values in a data set. The outliers may be instances of error or indicate events. The
task of outlier detection aims at identifying such outliers in order to improve the analysis of
data and further discover interesting and useful knowledge about unusual events within numerous
applications domains. In this paper, we report on contemporary unsupervised outlier detection
techniques for multiple types of data sets and provide a comprehensive taxonomy framework and
two decision trees to select the most suitable technique based on data set. Furthermore, we
highlight the advantages, disadvantages and performance issues of each class of outlier detection
techniques under this taxonomy framework.
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1. INTRODUCTION

Data mining, as a powerful knowledge discovery tool, aims at modelling relation-
ships and discovering hidden patterns in large databases [1]. Among four typical
data mining tasks, outlier detection is the closest to the initial motivation behind
data mining than predictive modelling, cluster analysis and association analysis [2].
Outlier detection has been a widely researched problem in several knowledge disci-
plines, including statistics, data mining and machine learning. It is also known as
anomaly detection, deviation detection, novelty detection and exception mining in
some literature [3]. Being called differently, all these definitions aim at identifying
instances of unusual behavior when compared to the majority of observations.

Coming across various definitions of an outlier, it seems that no universally ac-
cepted definition exists. Two classical definitions of an outlier include Hawkins [4]
and Barnett and Lewis [5]. According to the former, “an outlier is an observation,
which deviates so much from other observations as to arouse suspicions that it was
generated by a different mechanism”, where as the latter defines an outlier is “an
observation (or subset of observations) which appears to be inconsistent with the
remainder of that set of data”. The term ”outlier” can generally be defined as an
observation that is significantly different from the other values in a data set. How-
ever, as it will be presented in section 3, the notion of outliers may even differ from
one outlier detection technique to another.

Outliers often occur due to the following reasons, which make occurrence of an
outlier typically being an indication of an error or an event [6].
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— Error. This sort of outliers are also known as anomalies, discordant observa-
tions, exceptions, faults, defects, aberrations, noise, damage or contaminants.
They may occur because of human errors, instrument errors, mechanical faults
or change in the environment. Due to the fact that such outliers reduce the
quality of data analysis and so may lead to erroneous results, they need to be
identified and immediately discarded.

— Event. As stated in [4], outliers may be generated by a “different mechanism”,
which indicates that this sort of outliers belong to unexpect patterns that do not
conform to normal behavior and may include interesting and useful information
about rarely occurring events within numerous application domains. Therefore,
it is worthwhile that such outliers would be identified for further investigation.

Over the years, outlier detection has been widely applied for numerous applica-
tions domains such as those described below:

— Fraud detection [7]. The purchasing behavior of people who steal credit cards
may be different from that of the owners of the cards. The identification of such
buying pattern changes could effectively prevent thieves from a long period of
fraud activity. Similar approaches can also be used for other kinds of commercial
fraud such as in mobile phones, insurance claim, financial transactions etc [7].

— Intrusion detection [8]. Frequent attacks on computer systems may result in
systems being disabled, even completely collapsing. The identification of such
intrusions could find out malicious programs in computer operating system and
also detect unauthorized access with malicious intentions to computer network
systems and so effectively keep out hackers.

— Environmental monitoring [9]. Many unusual events that occur in the natural
environment such as a typhoon, flooding, drought and fire, often have an adverse
impact on the normal life of human beings. The identification of certain atypical
behaviors could accurately predict the likelihood of these phenomena and allow
people to take effective measures on time.

— Medical and public health [10]. Patient records with unusual symptoms or test
results may indicate potential health problems for a particular patient. The iden-
tification of such unusual records could distinguish instrumentation or recording
errors from whether the patient really has potential diseases and so take effective
medical measures in time.

— Localization and tracking [11]. Localization refers to the determination of the
location of an object or a set of objects. The collection of raw data can be used
to calibrate and localize the nodes of a network while simultaneously tracking a
moving target. It is a known fact that raw data may contain error, which makes
localization results not accurate and useful. Filtering such erroneous data could
improve the estimation of the location of objects and make tracking easier.

— Logistics and transportation [12]. Logistics refers to manage and control the flow
of products from the source of production to the destination. It is very essential to
ensure product safety and product reliability issues during this process. Tracking
and tracing shipments could find out potential exceptions, e.g., inappropriate
quantity and quality of the product, and notify all trading partners in time.
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Based on these real-life applications, it can clearly be seen that outlier detection
is a quite critical part of any data analysis. In the detection of outliers, there is a
universally accepted assumption that the number of anomalous data is considerably
smaller than normal data in a data set. Thus, a straightforward approach to identify
outliers is to construct a profile of the normal behaviors of the data and then use
certain measure methods to calculate the degree to which data deviate from the
profile in a data set. Those instances that significantly deviate from the profile are
declared as outliers [1]. However, existing methods using pre-labelled data to build a
normal model in a training phase before detecting outliers are very challenging since
not all possible normal behaviors have been encompassed within the normal model.
For example, a data stream refers to a large number of data which continuously
evolves with the time. This may cause that the normal model built in a particular
time instant is invalid in consequent time instants. In this paper, we describes
unsupervised outlier detection techniques that require no labelled training data.

Markou and Singh [13] and [14] present an extensive review of novelty detection
techniques based on statistical and neural network approaches, respectively. How-
ever, they do not classify outlier detection techniques based on different types of
data sets. Hodge and Austin [3] address outlier detection methodologies from three
fields of computing, i.e., statistics, neural networks and machine learning. Outlier
detection techniques presented in these surveys focus only on simple data sets in
which the data usually is represented by low-dimensional real-valued attributes.
Quite often, these techniques are not suitable for complex data sets such as high di-
mensional, mixed-type attributes, sequence, spatial, streaming and spatio-temporal
nature of data sets. To the best of our knowledge, the most extensive survey on
more complex outlier detection techniques is the work of Chandola et al. [100], in
which authors classify outlier detection techniques in terms of various application
domains and several knowledge disciplines.

In this paper, we focus on performance evaluation of different outlier detection
techniques with respect to type of data sets they handle. Our work goes beyond
existing surveys because we provide a comprehensive taxonomy framework and two
decision trees to choose suitable techniques for specific application domains and
data set, and also introduce a through performance evaluation of each class of
outlier detection techniques.

The contributions of this paper are the following, we:

— present a comprehensive taxonomy framework for contemporary outlier detection
techniques based on multiple types of data sets.

— discuss the key characteristic of the current unsupervised outlier detection tech-
niques for multiple types of data sets.

— provide a through performance evaluation of each class of outlier detection tech-
niques.

— introduce two decision trees to choose suitable outlier detection techniques based
on domains of applications and types of data sets, respectively.

The rest of this paper is organized as follows. In Section 2, we discuss classifi-
cation criterion of general-purpose outlier detection techniques. In Section 3, we
present a comprehensive taxonomy framework for contemporary outlier detection
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techniques. The most commonly used outlier detection techniques for the simple
data set are presented in Section 4. The novel outlier detection techniques for com-
plex data sets with specific data semantics are presented in Section 5. In Section
6, we present two decision trees based on applications and types of data sets. We
conclude the paper in Section 7.

2. CLASSIFICATION CRITERION

As mentioned earlier, various outlier detection approaches work differently for par-
ticular data sets, in terms of the accuracy and execute time. No single universally
applicable or generic outlier detection approach exists [3]. Thus, it is very criti-
cal to design an appropriate outlier detection approach for a given data set. In
this section, we summarize several important aspects related to general-purpose
outlier detection techniques and commonly used evaluation metrics. Furthermore,
these aspects will be used as metrics to compare characteristics of different outlier
detection techniques in section 6.

2.1 Characteristics of Outliers

2.1.1 Type of Detected Outliers: Global vs Local. Outliers can be identified as
either global or local outliers. A global outlier is an anomalous data point with
respect to all other points in the whole data set, but may not with respect to
points in its local neighborhood. A local outlier is a data point that is significantly
different with respect to other points in its local neighborhood, but may not be an
outlier in a global view of the data set.

2.1.2 Degree of Being an Outlier: Scalar vs Outlierness. A data point can be
considered as an outlier in two manners, scalar (binary) or outlierness. The scalar
fashion is that the point is either an outlier or not. On the other hand, the outlier-
ness fashion provides the degree of which the point is an outlier when compared to
other points in a data set. This outlierness is also known as anomaly score or outlier
score [15], which usually can be calculated by using specific measure methods.

2.1.3 Dimension of Detected Outliers: Univariate vs Multivariate. Whether a
data point is an outlier is determined by the values of its attributes. A univariate
data that has a single attribute can be detected as an outlier only based on the
fact that a single attribute is anomalous with respect to that of other data. On
the other hand, a multivariate data that has multiple attributes may be identified
as an outlier since some of its attributes together have anomalous values, even if
none of its attributes individually has an anomalous value. Thus, designing those
techniques for detecting multivariate outliers become more complicated.

2.1.4 Number of Detected Outliers at Once: One vs Multiple. Outlier detection
techniques can be designed to identify different number of outliers at a time. In some
techniques, one outlier is identified and removed at a time, then the procedure will
be repeated until no outliers are detected. These techniques may be subject to the
problem of missing some real outliers during the iteration. On the other hand, for
other techniques, they can identify a collection of outliers at once. However, these
techniques may cause some normal data to be declared as outliers in operation.
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2.2 Characteristics of Outlier Detection Approaches

2.2.1 Use of Pre-labelled Data: Supervised vs Unsupervised. Outlier detection
approaches can generally be classified into three basic categories, i.e., supervised,
unsupervised and semi-supervised learning approaches. This categorization is based
on the degree of using pre-defined labels to classify normal or abnormal data [15].

— Supervised learning approach. These approaches initially require the learning
of a normality and an abnormality models by using pre-labelled data, and then
classify a new data point as normal or abnormal depending on which model the
data point fits into. These supervised learning approaches usually are applied
for many fraud detection and intrusion detection applications. However, they
have two major drawbacks, i.e., pre-labelled data is not easy to obtain in many
real-life applications, and also new types of rare events may not be included in
pre-labelled data.

— Unsupervised learning approach. These approaches can identify outliers without
the need of pre-labelled data. For example, distributed-based methods identify
outliers based on a standard statistical distribution model. Similarly, distance-
based methods identify outliers based on the measure of full dimensional distance
between a point and its nearest neighbors. Compared to supervised learning ap-
proaches, these unsupervised learning approaches are more general because they
do not need pre-labelled data that are not available in many practical applica-
tions. In this paper, we will focus on unsupervised learning approaches.

— Semi-supervised learning approach. Unlike supervised learning approaches, these
semi-supervised learning approaches only require training on pre-labelled normal
data to learn a boundary of normality, and then classify a new data point as
normal or abnormal depending on how well the data point fits into the normality
model. These approaches require no pre-labelled abnormal data, but suffer from
the same problem as supervised learning approaches, i.e., a set of representative
normal data difficult to obtain in many real-life applications.

2.2.2 Use of Parameters of Data Distribution: Parametric vs Non-parametric.
Unsupervised learning approaches can be further grouped into three categories,
i.e., parametric, non-parametric and semi-parametric methods, on the basis of the
degree of using the parameters of the underlying data distribution [13].

— Parametric method. These methods assume that the whole data can be modelled
to one standard statistical distribution (e.g., the normal distribution), and then
directly calculate the parameters of this distribution based on means and covari-
ance of the original data. A point that deviates significantly from the data model
is declared as an outlier. These methods are suitable for situations in which the
data distribution model is a priori known and parameter settings have been pre-
viously determined. However, in many practical situations, a priori knowledge of
the underlying data distribution is not always available and also it may not be a
simple task to compute the parameters of the data distribution.

— Non-parametric method. These methods make no assumption on the statistic
properties of data and instead identify outliers based on the full dimensional
distance measure between points. Outliers are considered as those points that
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are distant from their own neighbors in the data set. These methods also use
some user-defined parameters ranging from the size of local neighborhood to the
threshold of distance measure. Compared to parametric methods, these non-
parametric methods are more flexible and autonomous due to the fact that they
require no data distribution knowledge. However, they may have expensive time
complexity, especially for high dimensional data sets. Also, the choice of appro-
priate values for user-defined parameters is not really easy.

— Semi-parametric method. These methods do not assume a standard data dis-
tribution for data, but instead map the data into a trained network model or a
feature space to further identify if these points deviate from the trained network
model or are distant from other points in the feature space, on the basis of some
classification techniques such as neural network and support vector machine. In
this paper, some novel unsupervised neural network and support vector machine
approaches for outlier detection will be further described.

2.3 Type of Data Set

As addressed before, various outlier detection approaches work differently for dif-
ferent sets of data types. Here, we describe several common types of data sets
based on the characteristics and attributes of data. They are divided into simple
and complex data sets, of which the latter can be further categorized into high di-
mensional, mixed-type attributes, sequence, spatial, streaming and spatio-temporal
data sets based on different semantics of data. These complex data sets pose the
significant challenges to the outlier detection problem.

2.3.1 Simple Data Set. The simple data set belongs to a commonly used data
set, where the data has no complex semantics and usually is represented by low-
dimensional real-valued ordering attributes. Most existing outlier detection tech-
niques are applicable for such simple data sets.

2.3.2 High Dimensional Data Set. This data set contains a large number of
data and each data point also has a large number of attributes. As stated before,
detecting multivariate outliers is more complicated, thus many outlier detection
techniques may be susceptible to the problem of the curse of dimensionality [16]
in high-dimensional data sets, especially high computation complexity and no suf-
ficient similarity measures.

2.3.3 Mixed-Type Attributes Data Set. In some practical applications, the data
contains the mixture of continuous (numeric) and categorical attributes. The latter
usually has non-numeric and partial ordering values, e.g., city names, or type of
diseases. This makes it very difficult to measure the similarity between points by
commonly used measure methods. Also, the performance of detecting outliers may
be influenced if the categorical data is simply disregarded.

2.3.4 Sequence Data Set. In the sequence data set, the data is naturally repre-
sented as a sequence of individual entities, such as symbols or letters. Also, the data
has not the same length and no priori known distribution. For example, a compo-
sition of DNA is a sequence from an alphabet set {A, G, C, T}. This makes it very
difficult to define a standard notion of similarity to measure structural differences
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between two sequences.

2.3.5 Spatial Data Set. Attributes of spatial data set are distinguished as spa-
tial and non-spatial attributes. Spatial attributes contain location, shape, direc-
tions and other geometric or topological information. They can determine spatial
neighborhoods in terms of spatial relationships such as distance or adjacency. On
the other hand, non-spatial attributes include the intrinsical information of data
characteristic, which are used to compare and distinguish spatial points in the spa-
tial neighborhood. This requires that outlier detection techniques can consider the
property of spatial correlation of data during the detection of outliers.

2.3.6 Streaming Data Set. A data stream is a large data that is arriving con-
tinuously and fast in the ordered sequence. They usually are unlimited in size and
occur in many real-time applications. For example, a huge amount of data of the
average daily temperature are collected to the base station in wireless sensor net-
works continually. Thus, an efficient outlier detection technique is required to deal
with the data streams in an online fashion.

2.3.7 Spatio-Temporal Data Set. Due to the fact that many geographic phe-
nomena are evolving over time, the temporal aspect and spatial-temporal relation-
ships existing among spatial data also should be considered in detecting outliers for
real-life applications, e.g., geographic information systems (GIS), robotics, mobile
computing, traffic analysis etc.

2.4 Evaluation Methods

2.4.1 Detection Rate, False Alarm Rate and ROC Curves. The effectiveness of
outlier detection techniques can typically be evaluated depending on how many
outliers are correctly identified and also how many normal data are incorrectly
considered as outliers, the latter of which is also known as false alarm rate. The
receiver operating characteristic (ROC) curves [17] shown in a 2-D graph usually
is used to represent the trade-off between the detection rate and false alarm rate.
Figure 1 illustrates an example of ROC curve. The effectiveness of outlier detection
techniques is desired to maintain a high detection rate while keeping the false alarm
rate low [1].

2.4.2 Computational Complexity. The efficiency of outlier detection techniques
can be evaluated by the computational cost, which is known as time & space com-
plexity. Also, the efficient outlier detection techniques should be scalable to a large
and high dimensional data set. In addition, the amount of memory occupation
required to execute outlier detection techniques can be viewed as an important
performance evaluation metrics.

2.4.3 User-Defined Parameter. User-defined parameters are quite critical to the
performance of outlier detection techniques in terms of effectiveness and efficiency.
These parameters are usually used to define the size of local neighborhood of a
point or the threshold of similarity measure. However, the choice of appropriate
parameters is not really easy. Thus, the minimal use of user-defined parameters
can enhance the applicability of outlier detection techniques.
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3. TAXONOMY FRAMEWORK FOR OUTLIER DETECTION TECHNIQUES

In this section, we present a comprehensive taxonomy framework for current out-
lier detection techniques. Also, we briefly describe each class of outlier detection
techniques under this taxonomy framework. In addition, a collection of prevalent
definitions of outliers are presented with respect to different outlier detection tech-
niques.

3.1 Taxonomy Framework

In this paper, we classify non-supervised outlier detection techniques based on
the semantics of input data, as shown in Figure 2. Input data can be classified
as simple or complex data sets. For the simple data set, outlier detection tech-
niques are divided into parametric, semi-parametric and non-parametric methods.
Distribution-based, depth-based and graph-based techniques are proposed for para-
metric approaches. Clustering-based, distance-based and density-based techniques
are proposed for non-parametric approaches. Neural network-based and support
vector machine-based techniques are proposed for semi-parametric approaches. On
the other hand, for the complex data sets, outlier detection techniques are grouped
depending on different types of data sets described in Section 2. Specifically,
subspace-based and distance-based techniques are proposed for high dimensional
data sets. Graph-based techniques are proposed for mixed-type attributes data sets.
Clustering-based and tree-based techniques are proposed for sequence data sets.
Graph-based and distribution-based techniques are proposed for spatial data sets.
Model-based, graph-based and density-based techniques are proposed for streaming
data sets and clustering-based and distribution-based techniques are proposed for
spatial-temporal data sets. Supervised and Semi-supervised approaches can also
employ some outlier detection techniques addressed in unsupervised approaches,
although they initially need to train on pre-labelled data. This topic is outside the
scope of this paper.
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3.2 Overview of Outlier Detection Methods

Early work in outlier detection was done in the field of statistics. Distribution-
based methods assume that the whole data follow a standard statistical distribution
model and determine a point as an outlier depending on whether the point deviates
significantly from the data model. These methods can fast and effectively identify
outliers on the basis of an appropriate probabilistic data model. Depth-based meth-
ods use the concept of computational geometry and organize data points in layers
in multi-dimensional data spaces. Each data point is assigned a depth and outliers
are those points in the shallow layers with smaller depth values. These methods
avoid the problem of fitting into data distribution. Graph-based methods make
use of a powerful tool data image and map the data into a graph to visualize the
single or multi-dimensional data spaces. Outliers are those points that are present
in particular positions of the graph. These methods are suitable to identify outliers
in real-valued and categorical data.

Outlier detection also attracts much attention from the data mining community.
Traditional clustering-based methods are developed to optimize the process of clus-
tering of data, where outlier detection are only by-products of no interest. The
novel clustering-based outlier detection methods can effectively identify outliers as
points that do not belong to clusters of a data set or as clusters that are signif-
icantly smaller than other clusters. Distance-based methods are used to identify
outliers based on the measure of full dimensional distance between a point and its
nearest neighbors in a data set. Outliers are points that are distant from the neigh-
bors in the data set. These methods do not make any assumptions about the data
distribution and have better computational efficiency than depth-based methods,
especially in large data sets. Density-based methods are proposed to take the local
density into account when searching for outliers. These methods can effectively
identify local outliers in data sets with diverse clusters.

In addition, some classification techniques have been applied to outlier detection.
Unsupervised neural networks based methods can autonomously model the under-
lying data distribution and distinguish between the normal and abnormal classes.
Those data points that are not reproduced well at the output layer are considered as
outliers. These methods effectively identify outliers and automatically reduce the
input features based on the key attributes. Unsupervised support vector machine
based methods can distinguish between the normal and abnormal classes by map-
ping data into the feature space. Those points that are distant from most other
points or are in relatively sparse regions of the feature space are declared as outliers.
These methods effectively identify outliers without pre-labelled data.

Being concerned with the complex data sets, several novel outlier detection meth-
ods have been proposed to deal with data with specific semantic. Subspace-based
methods project the data into a low-dimensional subspace and declare a point as
an outlier if this point lies in an abnormal lower-dimensional projection, where
the density of the data is exceptionally lower than the average. These methods
reduce the dimensions of data and efficiently identify outliers in high dimensional
data sets. Tree-based methods construct a specific tree as index to decompose data
structure and use an efficient similarity measure for the sequence data to distin-
guish outliers from non-outliers. These methods efficiently identify outliers only
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by examining nodes near the root of tree. Model-based methods detect outliers by
the construction of a model, which can represent the statistical behavior of data
stream. Outliers are those points that deviate significantly from the learned model.
These methods can efficiently deal with the streaming data in an online fashion.

3.3 Prevalent Definitions of Outlier

The definitions of an outlier have been differently introduced by various outlier
detection techniques. Being defined differently, they all aim at identifying instances
of unusual behavior when compared to the rest majority of observations. As shown
in Table I, we present a collection of prevalent definitions of outliers with respect to
specific method-based outlier detection techniques. Clearly, there is no universally
accepted definition exists.
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Table I. Prevalent definitions of outliers.

Author Definition

Hawkins [4] Distribution-based outlier : An outlier is an observation, which deviates
so much from other observations as to arouse suspicions that it was
generated by a different mechanism.

Barnett and
Lewis [5]

Distribution-based outlier : An observation (or subset of observations)
which appears to be inconsistent with the remainder of that set of data.

Rousseeuw
and Leroy
[19]

Distribution-based outlier : Let T be observations from a univariate Nor-
mal distribution N(µ, σ) and o is a point from T. Then the Z-score for
o is greater than a pre-selected threshold iff o is an outlier.

Rousseeuw
and Leroy
[19]

Depth-based outlier : Depth-based outliers are points in the shallow con-
vex hull layers with the lowest depth.

Laurikkala et
al. [29]

Graph-based outlier : Outliers are points that are present in particular
positions of the graph.

Yu et al. [38],
Jiang et al.
[39]

Clustering-based outlier : Outliers are points that do not belong to clus-
ters of a data set or as clusters that are significantly smaller than other
clusters.

Knorr and
Ng [42]

(i) DB(f,D) outlier : An object o in a data set T is an outlier if at least
a fraction f of the objects in T lies at a greater distance than D from o.

(ii) DB(k,D) outlier : An object o in a data set T is an outlier if at most
k objects in T lie at distance at most D from o.

Ramawamay
et al. [44]

DBk
n outlier : The top n points with the maximum distance to their own

kth nearest neighbor are considered as outliers.

Angiulli and
Pizzuti [70]

DBk
ω outlier : Given an integer k, the weight ω of a point is defined

as the sum or average of the distances separating it from its k nearest-
neighbors. Outliers are those points scoring the largest values of weight.

Breunig et al.
[46]

Density-based outlier : Outliers are points that lie in the lower local
density with respect to the density of its local neighborhood.

Hu and Sung
[50]

Density-based outlier : A point can be considered as an outlier if its own
density is relatively lower than its nearby high density pattern cluster,
or its own density is relatively higher than its nearby low density pattern
regularity.

Hawkins et
al. [57]

Neural network based outlier : Points that are not reproduced well at the
output layer with high reconstruction error are considered as outliers.

Scholkopf et
al. [61]

Support vector machine based outlier : Points that are distant from most
other points or are present in relatively sparse regions of the feature space
are considered as outliers.

Aggarwal
and Yu [64]

Subspace-based outlier : A point is considered to be an outlier if in some
lower-dimensional projection it is present in a local region of abnormal
low density.

Muthukrishnan
et al. [93]

Time series streaming outlier : If the removal of a point from the time
sequence results in a sequence that can be represented more briefly than
the original one, then the point is an outlier.

Shekhar et al.
[82]

Spatial outlier : A spatial outlier is a spatially referenced point whose
non-spatial attribute values are significantly different from those of other
spatially referenced points in its spatial neighborhood.

Cheng and Li
[98]

Spatio-temporal outlier : A spatial-temporal point whose non-spatial at-
tribute values are significantly different from those of other spatially
and temporally referenced points in its spatial or/and temporal neigh-
borhoods is considered as a spatial-temporal outlier.
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4. OUTLIER DETECTION TECHNIQUES FOR SIMPLE DATA SET

In this section, we describe method-based outlier detection techniques for the simple
data set. Specifically, we summarize main ideas and relevant features of these
techniques, and also give a brief evaluation for each outlier detection category.

4.1 Distribution-Based Method

Distribution-based methods, as typical parametric methods, are the earliest ap-
proach to deal with the outlier detection problem. They assume that the whole
data follow a statistical distribution (e.g., Normal, Poisson, Binomial) and make
use of mathematics knowledge of applied statistics and probability theory to con-
struct a data model. They employ statistical tests to determine a point as an outlier
depending on whether it deviates significantly from the data model.
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Fig. 3. An example of distribution of points

Grubbs and Frank [18] initially carry out the test on detecting outliers in a uni-
variate data set. They assume that the whole data follows a standard statistical
t-distribution and aim to identify one outlier at each iteration. In particular, each
point has it own G value, which is the Grubbes test statistic value and can be
calculated based on the sample mean and standard deviation. If the G value of
a point is greater than a threshold value, i.e., the upper critical value of the t-
distribution, the hypothesis of no outliers is rejected at corresponding significance
level. Furthermore, the point is identified as an outlier and immediately eliminated
from the data set. The procedure will be repeated until no more outliers are de-
tected. The approach does not require user-defined parameters and all parameters
are calculated directly from original data. However, multiple iteration may change
the probabilities of detection and influence the accuracy of the test.

Three most important fundamental textbooks [4, 5, 19] concerning with outlier
detection present classical definitions of distribution-based outliers respectively, as
shown in table (0??). Also, Barnett and Lewis [5] and Rousseeuw and Leroy [19]
further address a comprehensive description and analysis of statistical outlier detec-
tion techniques. They discuss the problem of detecting outliers in univariate and
multivariate data. In detecting univariate outliers, they assume that data points
can be modelled by a statistical standard distribution, usually the Gaussian (nor-
mal) distribution being used. The statistical distribution includes two parameters,
the mean and standard deviation. Based on the observation that the probability
of a point that lies outside three standard deviations away from the mean is only
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0.0027, thus, three standard deviations is used as a threshold to determine how
significantly a point deviates from the data model, as shown in Figure 3. Alter-
natively, a simplified Z-score function that more directly represents the degree of
anomaly of each point is defined as:

Z = (x− µ)/σ (1)

Where µ is the mean, σ is the standard deviation. If the absolute value of Z-score
of a data point is greater than 3, the point is declared as an outlier. On the other
hand, in detecting multivariate outliers, they usually assume a multivariate normal
distribution to represent the data. In order to use a simple threshold to determine
whether a point is an outlier or not, the Mahalanobis distance, an effective distance
measure, can take the shape of the multivariate data distribution into account
and identify the attribute correlations accurately. For a d -dimensional multivariate
sample xi (i = 1; n), the Mahalanobis distance is defined as:

MDi =
√

(xi − t)T Σ−1(xi − t) (2)

where Σ represents the d×d covariance matrix and t is the multivariate mean.
Furthermore, for N d -dimensional points from a normal distribution, the square of
Mahalanobis distance follow a chi-square distribution (χ2

d) with d degree of freedom
[20]. Thus, an outlier in multivariate data is a point whose Mahalaobis distance
is larger than a pre-defined threshold. Alternatively, Euclidean distance is another
basic distance measure and is defined as:

EDi =

√√√√
n∑

i=1

(xi − yi)2 (3)

where xi, yi are two points and n is the dimensionality of the data. The Euclidean
measure is seldom used in distribution-based outlier detection approaches since it
cannot effectively capture the shape of the multivariate data distribution. The
authors further carry out numerous discordance tests under different circumstances
depending on the data distribution, the distribution parameters, the number of
expected outlier and the types of expected outlier. The testing results show that
the approach achieves good performance in finding outliers in univariate data.

Based on their work, [21, 22] propose robust outlier detection approache based on
the minimum covariance determinant (MCD), which aims at alleviating the problem
that the mean and standard deviation of the distribution may be extremely sensitive
to outliers during the computation of Mahalanobis distance. The main idea of MCD
is to only use a subset of points, which are the minimum number of non-outliers to
minimize the determination of the covariance matrix.

Eskin [23] proposes a mixture model approach to detect outliers in univariate
data. The author assumes that the data is modelled as a mixture of two distribu-
tions M and A, which represent the majority of normal points and the minority of
anomalous points respectively. Each point in the data set is fallen into either M
or A based on corresponding probability value λ. Initially, all of data points are
put in the set of M while the set of A is empty. The probability function of the
entire data may change by moving a data point from M to A. If the difference of
the probability function value is larger than a pre-defined threshold c, the point is
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declared as an outlier and then moved permanently to A. The procedure will be
repeated until every point in the set of M experiences the comparison. The choice
of two user-defined parameters λ and c is very important and may greatly influence
the performance of this approach.

Yamanishi et al. [24] present a mixed model of Gaussian distribution to represent
the normal behaviors of data in the detection of outliers. Each data point is assigned
a score based on the degree to which the point deviates from the model. A higher
score of a point indicates that the point is more likely to be an outlier. This outlier
detection approach can be used to handle categorical and continuous variables.

4.1.1 Evaluation of Distributed-based Techniques. Distribution-based approaches
are mathematically justified and can effectively identify outliers if a correct prob-
abilistic data model is given. Also, the construction of the data model helps to
store minimal amount of information to represent the model, instead of the entire
actual data. However, distribution-based techniques suffer from two serious prob-
lems. Firstly, these techniques only work well in a single-dimensional data set so
that they are not suitable to identify outliers in even moderately high dimensional
spaces. Secondly, in many real-life situations, a priori knowledge of data distribu-
tion is not available. Finding a possible standard distribution that fits the data is
computationally expensive and eventually may not produce satisfactory results.

4.2 Depth-Based Method

Depth-based methods exploit the concept of computational geometry [25] and or-
ganize data points into layers in k -dimensional data space. Based on the definition
of half-space depth [26], also called as depth contours, each data point is assigned a
depth and outliers are those points in the shallow layers with smaller depth value.

Fig. 4. An example of depth of points [26]

Rousseeuw and Leroy [19] describe two basic depth-based outlier detection tech-
niques for low dimensional data sets, i.e., minimum volume ellipsoid (MVE) and
convex peeling. MVE uses the smallest permissible ellipsoid volume to define a
boundary around the majority of data. Those points are outliers if they are not in
the densely populated normal boundary. Convex peeling maps data points into con-
vex hull layers in data space according to peeling depth. Outliers are those points
in the shallow convex hull layers with the lowest depth. Both MVE and convex
peeling are robust outlier detection techniques that use the specific percentages of
data points to define the boundary. Thus, these outlying points will not skew their
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boundary. The key difference between the two techniques is how many outliers
are identified at a time. In particular, MVE maintains all data points to define
a normal boundary, then removes multiple outliers at once, while convex peeling
builds convex hull layers and then peels away one outlier with the lowest depth at
a time. The procedure will be repeated until a pre-defined number of outliers have
been removed from the data set.

Based on [19], Ruts and Rousseeuw [27] present an outlier detection approach
using the concept of depth contour to compute the depth of points in a two-
dimensional data set. The deeper the contour a data point fits in, the more robust
it is regarded as an outlier. Johnson et al. [28] further extend the work of [27], and
propose a faster outlier detection approach based on computing two-dimensional
depth contours in convex hull layers. In particular, this approach only needs to
compute the first k depth contours of a selected subset of points, instead of the
entire data as it is done in [27] and it is robust against collinear points.

4.2.1 Evaluation of Depth-based Techniques. Depth-based approaches avoid the
problem of fitting to a data distribution but instead compute multi-dimensional
convex hulls. However, they are inefficient for the large data set with high dimen-
sionality, where the convex hull will be harder to discern and is computationally
more expensive. Experimental results show that existing depth-based methods
provide acceptable performance for only up to 2-dimensional space.

4.3 Graph-Based Method

Graph-based methods make use of a powerful tool data image, i.e., map the data
into a graph to visualize the single or multi-dimensional data spaces. Outliers are
expected to those points that are present in particular positions of the graph.

Laurikkala et al. [29] propose an outlier detection approach for univariate data
based on box plot, which is a simple single-dimensional graphical representation and
includes five number values: lower threshold, low quartile, median, upper quartile
and upper threshold. Figure 5 shows an example of a box plot. Using box plot,
points that lie outside the lower and upper threshold are identified as outliers.
Also, these detected outliers can be ranked by the occurrence frequencies of out-
liers. Thus, the box plot effectively identifies the top n outliers with the highest
occurrence frequencies and then discards these outliers. The approach is applicable
for real-valued, ordinal and categorical data. However, it is too subjective due to
excessively rely on experts to determine several specific points plotted in the graph,
e.g., low and upper quartile.

Scatter plot [30] is a graphical technique to detect outliers in two-dimensional
data sets. It reveals a basic linear relationship between the axis X and Y for
most of the data. An outlier is defined as a data point that deviates significantly
from a linear model. Figure 6 shows an example of a scatter plot. In addition,
spin plot [31] can be used for detecting outliers in 3 -D data sets. D-D plot [22] is
used to illustrate the relationship between a MCD-based robust distances [21] and
the full Mahalanobis distances on detecting outliers. Marchette and Solka [32] use
interpoint distance measure to order the data image in data sets to roughly group
outliers according to how anomalous they are.
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Fig. 6. An example of a scatter plot.

4.3.1 Evaluation of Graph-based Techniques. Graph-based approaches have no
assumptions about the data distribution and instead exploit the graphical repre-
sentation to visually highlight the outlying points. They are suitable for identifying
outliers in real-valued and categorical data. However, they are limited by the lack
of precise criteria to detect outliers. In particular, several specific points in the
graph are determined subjectively by experts, which is also a very time-consuming
and difficult process.

4.4 Clustering-Based Method

Clustering-base methods use one data mining technique, i.e., clustering, to effec-
tively and efficiently cluster data. Traditional clustering-based approaches, e.g.,
DBSCAN [33], CHAMELEON [34], BIRCH [35], CURE [36] and TURN [37] are
developed to optimize the process of clustering rather than detect outliers. Also,
they do not have a formal and acceptive definition for outliers. Thus, detecting
outliers in these approaches are only by-products of no interest. Here, we describe
several novel outlier detection approaches, which are designed specially for detect-
ing outliers based on clustering techniques. In these approaches, outliers are points
that do not belong to clusters of a data set [38] or are clusters that are significantly
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smaller than other clusters [39]. As shown in Figure 7, the points O1, O2 and the
cluster C1 are outliers. The detection of local outliers in clusters is addressed in
[40, 41] .

O1

O2

C1

Fig. 7. An example of clusters of points

Yu et al. [38] propose an outlier detection approach based on a signal-processing
technique wavelet transform, which has the multi-resolution property and can be
extended to detect outliers in data sets with different densities. In particular,
this approach uses wavelet transform to quantize the data space and finds the
dense clusters in the transformed space. By removing clusters from the original
data, the remaining points in the non-dense clusters are labelled as outliers. This
approach cannot measure the degree of outlierness, and also do not detect outliers
by considering the distance between small clusters and their closest large cluster.

Jiang et al. [39] present a two-phase clustering approach to identify outliers. In
the first phase, this approach partitions the data into clusters based on a heuristic
instead of the traditional k -means algorithm, which is optimized to search for a
fixed number of clusters. The used heuristic states “if the points in the same cluster
are not close enough, the cluster can be split to two smaller clusters”. This helps
to reduce the time complexity since the data is processed as fractions and not as
whole. In the second phase, this approach employs an outlier-finding process (OFP)
to identify outliers based on the construction of a minimum spanning tree (MST),
which can remove the longest edge of the tree. Eventually, the small clusters with
less number of nodes in the tree are considered as outliers.

He et al. [40] introduce a new definition of a cluster-based local outlier, which
takes both the size of a point’s cluster and the distance between the point and its
closest cluster into account. Each point is associated with a cluster-based local
outlier factor (CBLOF), which is used to determine the degree of its outlierness.
The proposed approach first partitions the data into clusters by using a squeezer
algorithm, which only makes one scan over the data set and produces good clus-
tering results. Then the outlier factor is computed for each point and outliers are
points which have the largest values. This approach has the linear scalability with
respect to the size of data and can work well in large data sets.

Ren et al. [41] propose a more efficient clustering-based local outlier detection
approach by combining the detection of outliers with grouping data into clusters
in a one-time process. This approach does not require the beforehand clustering
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process addressed in [38, 39, 40]. The degree of a point’s outlierness is measured by a
local connective factor (LCF), which indicates how significantly the point connects
with other points in the data set. Specifically, LCF is further calculated by a
vertical data representation P-Tree [41], which uses logical operations to efficiently
compress the data and can be used as an index for the pruning. Outliers are those
points that are not connected with clusters. Experimental results show that this
approach has better performance in terms of efficiency for large data sets compared
to approaches reported in [39, 40].

4.4.1 Evaluation of Clustering-based Techniques. Clustering-based approaches
do not require a priori knowledge of data distribution and exploit clustering tech-
niques to efficiently filter and remove outliers in large data sets. In particular, novel
clustering-based approaches have been developed to optimize the outlier detection
process and reduce the time complexity with respect to the size of data. However,
these approaches are suspectable to high dimensional data sets since they rely on
the full-dimensional distance measure of points in clusters.

4.5 Distance-Based Method

Distance-based methods, as typical non-parametric methods, identify outliers based
on the measure of full dimensional distance between a point and its nearest neighbor
in the data set. Euclidean distance is commonly used as a similarity measure in
distance-based methods.

D

O

Fig. 8. An example of a distance of an outlier

Knorr and Ng [42, 43] define a distance-based outlier as, “a point o in a data set
T is a DB(p,D) outlier if at least a fraction p of the points in T lies at a greater
distance than D from o”. An example of a distance-based outlier is hown in Figure
8. Based on this definition, the detection of outliers relies on Euclidean distance
to measure similarity between every pair of points. The two parameters D and
p are used to determine the range of neighborhood. The authors further propose
three outlier detection algorithms, i.e., index-based, nested-loop and cell-based. The
index-based algorithm is based on a priori constructed index structure and executes
a range search with radius D for each point. If more than M = (1− p)N neighbors
are found in a point’s D-neighborhood, the search will stop and the point is declared
as a non-outlier, otherwise it is an outlier. The nested-loop algorithm avoids the
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cost of preliminary construction of the index, and instead partitions the entire set
of points into blocks and then directly computes the distance between each pair of
points in the blocks. A point that has less than M neighbors within the distance
D is declared as an outlier. The two algorithms have the same time complexity of
O(k N2), where k is the dimensionality and N is the number of points in the data
set. The cell-based algorithm partitions the entire data set into cells and effectively
prunes away a large number of non-outlier cells before finding out outliers. This
helps to speed up outlier detection by only detecting outliers in the subset of cells,
which may include potential outliers. These algorithms depend on two user-defined
parameters D and p, which are not usually easy to determine. Also, they do not
provide a ranking on the degree of outliers.

Ramaswamy et al. [44] further extend the outlier definition in [42] based on
the distance of a point from its kth nearest neighbor, instead of the estimation of
an appropriate distance D. Also, they provide a ranking of the top n outliers by
the measure of the outlierness of points. Their novel definition of distance-based
outliers is that the top n points with the maximum distance to their own kth nearest
neighbor are considered as outliers. The authors also exploit the index-based and
nested-loop algorithms to detect outliers. Furthermore, they propose a partition-
based algorithm to prune a significant number of partitions and efficiently identify
the top n outliers in the rest of partitions from the data. Experimental results
show that this partition-based algorithm reduces the cost of computation and I/O
in large and multi-dimensional data sets. However, these algorithms suffer from the
choice of the input parameter k. Also they only consider the distance to the kth

nearest neighbor and ignore distance to other closer points.
Bay and Schwabacher [45] propose an optimized nested-loops algorithm that has

near linear time complexity on mining the top n distance-based outliers. They
randomize the data and partition the data into multiple blocks. Each point is
associated with an anomaly score, which is determined by either the distance to its
kth nearest neighbor or the average distance to its k nearest neighbors. The top
n distance-based outliers with the largest scores initially are identified in the first
block. Then the smallest score of them is used as a cut-off for the rest of blocks.
If a point in other blocks has a larger score than the cut-off, the cut-off will be
increased and replaced by the smallest score in the new n outliers, otherwise, the
point will be pruned. Eventually, n extreme outliers are identified and the cutoff
increases along with pruning efficiency. However, the algorithm is sensitive to the
order of data and the distribution of the data set. If the data is sorted or correlated,
the performance is poor and time complexity is of quadratic order in the worst case.

4.5.1 Evaluation of Distance-based Techniques. Distance-based approaches do
not make any assumption about the data distribution and are computationally
more efficient than the depth-based approaches for large data sets. The proposed
distance-based outliers definitions can generalize many notions from distribution-
based approaches. However, they rely on the existence of some well-defined notions
of distance to measure the similarity between two data points in the entire space,
which is not easy to define in high dimensional data sets. Also, they only identify
outliers in a global view and are not flexible to discover local outliers, especially in
data sets which have diverse densities and arbitrary shapes.
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4.6 Density-Based Method

A key problem of distance-based approaches is that they suffer from detecting local
outliers in a data set with diverse densities. For example, as shown in Figure 9, two
points O1 and O2 are viewed as outliers with respect to the clusters C1 and C2,
respectively. However, O2 may not be an outlier using distance-based methods due
to the fact that C2 is too dense relative to C1. Thus, density-based approaches are
proposed to solve this problem by taking local density into account when searching
for outliers. The computation of density still depends on full dimensional distances
measure between a point and its nearest neighbors in the data set.

Fig. 9. A problem of distance-based methods in a data set with different densities [46]

Breunig et al. [46] originally introduce the notion of density-based local outliers
based on the density in the local neighborhood. Each data point is assigned a local
outlier factor (LOF) value, which is calculated by the ratio of the local density
of this point and the local density of its MinPts nearest neighbors. The single
parameter MinPts of a point determines the number of its nearest neighbors in
the local neighborhood. The LOF value indicates the degree of being an outlier
depending on how isolated the point is with respect to the density of its local
neighborhood. Points that have the largest LOF values are considered as outliers.

Based on the work reported in [46], many novel density-based approaches [47,
48, 49, 50, 51, 52, 53] have been developed to further improve the effectiveness and
efficiency of LOF. Also, [54] and [55] combine distance-based and density-based
approaches to identify outliers in a data set.

Chiu and Fu [47] present three enhancement schemes for LOF called LOF
′
, LOF

′′

and GridLOF. The first two schemes are variants of the original LOF computation
formulation. LOF

′
provides a simpler LOF formulation by replacing local reacha-

bility density with MinPts-dist, where local reachability density indicates the local
density of a point’s MinPts nearest neighbors, and MinPts-dist indicates the dis-
tance to the point’s MinPts nearest neighbors. This scheme also reduces one scan
over the data on the computation of local reachability density. LOF

′′
is a generation

of LOF by using two different MinPts values to define a point’s neighborhood and
the point’s neighbors’ neighborhood, and can capture local outliers within differ-
ent circumstances. The third scheme GridLOF uses a simple grid-based technique
to prune away some non-outliers and then only computes the LOF values for the
remaining points. This helps to reduce the computation of LOF for all points,
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however, the deletion of points may affect the LOF values of those points in their
own neighborhood.

Jin et al. [48] propose an efficient outlier detection approach, which only de-
termines the top n local outliers with the maximal LOF values and reduces the
computation load of LOF in [46] for all points. The approach does not find LOF
values for all points to select the top n outliers, and does not also perform the
process of immediately pruning non-outliers before detecting potential outliers. In-
stead, it first uses an efficient clustering technique, i.e., BIRCH [35] to compress
the data into micro-clusters, where a group of data is so close together, and then
computes LOF upper and lower bounds for each micro-cluster. The micro-clusters
with the largest LOF low bound are chosen to identify the top n local outliers. The
approach suffers from the choice of the parameter MinPts.

Tang et al. [49] present an outlier detection approach more effective than [46],
especially for sparse data sets, where the non-outlier patterns may have low densi-
ties. The approach uses a connectivity-based outlier factor (COF) value to measure
the degree of outlierness and takes both the density of the point in its neighborhood
and the degree that the point is connected to other points into account. The COF
can be calculated using the ratio of the average distance from the point to its k -
distance neighbors and the average distance from its k -distance neighbors to their
own k -distance neighbors. Points that have the largest COF values are declared as
outliers.

Hu and Sung [50] consider the problem of detecting outliers in a data set, where
two patterns exist, i.e., high density clustering and low density regularity. The
latter pattern consists of a set of regularly spaced points whose density are lower
than that of their neighboring outliers. The authors introduce a new definition
of an outlier according to these two different patterns, “if a point’s own density
is relatively lower than its nearby high density pattern cluster, or its own density
is higher than its nearby low density pattern regularity, the point can be declared
as an outlier”. The definition enhances the effectiveness of LOF, which does not
work well in the low density regularity. The proposed approach uses a variance
of volume (VOV) value to measure the degree of being an outlier and has similar
time complexity with LOF. Points that have the largest VOV values are declared
as outliers. This approach depends on a choice of a parameter constant intensity,
which is used to decide the density of clusters.

Papadimitriou et al. [51] present a fast outlier detection approach called LOCI
to detect local outliers based on the concept of a multi-granularity deviation factor
(MDEF) value, which is used to measure a point’s relative deviation of its local
neighborhood density from the average local neighborhood density in its neighbor-
hood. To alleviate the difficulty of choosing values for MinPts in [46, 47], LOCI
uses a different definition for the local neighborhood, where each point has the same
radius, instead of the fixed number of neighbors. A point can be declared as an out-
lier by comparing its MDEF with a derived statistical value, which is automatically
derived from the data. Experimental results show that LOCI achieves good perfor-
mance to accurately identify outliers without the user-defined threshold. However,
the choice of an appropriate user-defined radius of the local neighborhood becomes
a critical issue, especially for high dimensional data sets.
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Kim et al. [52] propose an outlier detection approach, which uses the distance
between a data point and its closest prototypes as the degree of outlierness. Proto-
types refer to a small percentage of representative data from the original data can
be identified by using the k -means technique. Then the outlierness of these proto-
types are calculated by taking the measure of distance and density into account.
Prototypes with the largest values will be removed. Finally, the approach measures
the degree of outlierness of each original data point depending on its distance to its
closest remaining prototypes. Outliers are points that are far from their prototypes
with the largest distance values. Prototypes are not easily accurately determined,
especially in data sets with different densities.

Ren et al. [53] develop an efficient density-based outlier detection approach based
on a relative density factor (RDF) value, which is a local density measurement to
measure the degree of being an outlier by contrasting the density between a point
and its neighbors. The approach uses P-Trees to efficiently prune some non-outliers,
and then only computes the RDF value for the remaining small subset of the data.
Outliers are points whose RDF values are greater than a pre-defined threshold.
Experimental results show that the approach has better performance than LOF
and LOCI in terms of efficiency for large data sets.

Fan et al. [54] introduce a novel outlier notion by considering both local and global
features of the data set. They define an outlier as a point that is inconsistent with
the majority of the data or inconsistent with a group of it neighbors. The proposed
approach uses a clustering technique, i.e., TURN [26] to efficiently identify outliers
by consecutively changing the resolution of a set of data points. The resolution-
based outlier factor (ROF) is used to measure the degree of outlierness of a point.
Outliers are the top n points with the lowest ROF values. The approach does not
need any input parameters and is more effective to detect outliers than DB-outlier
and LOF.

Kollios et al. [55] propose a density-based biased sampling approach to detect
DB-outlier based on kernel density estimator, which makes use of some randomly
sampled points to represent the density of the whole data set and efficiently approx-
imate the underlying probability distribution. Outlier detection can be performed
based on measuring how many points are present within the distance D from a data
point in the data set. After one single-pass through the data, those points that have
less number of neighbors in their own neighborhood than a specified threshold are
considered as outliers. The performance of this approach depends on the accuracy
of the density estimator.

4.6.1 Evaluation of Density-based Techniques. Density-base approaches have no
assumption about the data distribution and effectively identify local outliers in data
sets with diverse clusters. However, a weakness of density-based approaches is the
determination of input parameters, which are usually based on a priori or trail-and-
error estimation. Also, the density definition is based on full dimensional distance
computation between points, which is susceptible for high dimensional data sets.

4.7 Neural Network Based Method

Neural networks (NN) are often used in safety-critical applications for regression
or classification purpose [56]. They can autonomously model the underlying data
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distribution and distinguish the normal/abnormal classes. Recently, unsupervised
neural network methods have been applied for outlier detection [56, 57, 58, 59].
Neural networks do not require pre-labelled data to permit learning and can identify
those data points that are not reproduced well at the output layer as outliers. The
reconstruction error can be used as the measure of outlierness for data points.

Sykacek [56] presents an outlier detection approach using the equivalent error
bar [56] to identify outliers in the trained network with multi-layer perception.
Outliers are points that are residual outside the equivalent error bar depending on
a pre-defined threshold.

Hawkins et al. [57, 58] present an outlier detection approach for large multivariate
data sets based on the construction of replicator neural networks (RNN), which is
a variant of the usual regression model. Specifically, RNN is a feed-forward multi-
layer perception neural network and contains three hidden layers between the input
and output layers. Figure 10 shows a schematic view of the fully connected RNN.
The use of RNN is to reproduce the input points at the output layer with minimized
reconstruction error. If some small number of input points are not reconstructed
well and cause high reconstruction errors in the trained neural network, these points
can be considered as outliers. An outlier factor is used to measure the degree of
outlierness of each point based on the average reconstruction error. Experimental
results show that this method is effective for detecting network intrusion.

Fig. 10. Structure of a replicator neural network [57]

Fu and Yu [59] propose an outlier detection approach based on artificial neural
network (ANN), which can be trained by different training algorithms. The authors
describe three different structures of the trained ANN, i.e., one has no hidden layer,
the other two ones have a hidden layer. Outlier detection can be performed in
the three ANNs by a modified Z-score, which is used to measure the degree of
outlierness of data points. If points are statistically inconsistent with the trained
neural network, they are declared as outliers.

4.7.1 Evaluation of Neural Network based Techniques. Neural network based
approaches, strictly belong to a semi-parametric method and are trained to model
the underlying data distribution without a priori assumption on the properties
of data. They are used to effectively identify outliers and automatically reduce
the input features based on the key attributes. However, they are susceptible to
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high dimensional data sets, where neural networks are harder to be trained well.
Moreover, they need extra training time and are also sensitive to model parameters.

4.8 Support Vector Machine Based Method

Support vector machine (SVM) based methods are often used to deal with clas-
sification or regression problems by the data mining community [61]. They can
distinguish between normal and abnormal classes by mapping data into the fea-
ture space. Recently, unsupervised SVM-based methods have been used for outlier
detection [61, 62, 63]. They do not require a pre-labelled data set to determine a
boundary region and can efficiently identify outliers by using the kernel functions.

Scholkopf et al. [61] present an outlier detection approach, which uses a kernel
function (radial basis function) to efficiently map the original data into a vector
space typically of high dimensions (feature space). Outlier detection can be per-
formed depending on the position of points in the feature space. Those points that
are distant from most other points or are in relatively sparse regions of the fea-
ture space are labelled as outliers. However, the performance of the approach is
quite susceptible to the choice of variance parameter of radial basis function, which
determines the size of the boundary regions.

Tax and Duin [62] further propose an outlier detection approach based on un-
supervised SVM, called support vector domain description (SVDD). The approach
uses a Gaussian kernel function to map the whole data set to high dimensional fea-
ture space. Then SVDD can classify normal data into one class from the rest of the
feature space by learning an optimal hypersphere, which is a sphere with minimum
volume, containing the majority of data points. Those points that belong to the
boundary of the sphere are called support vector. On the contrary, the points that
lie outside this sphere are considered as outliers. The approach does not measure
the degree of being an outlier for each data point and it only determiners if a point
is an outlier or not based on discrete outlier factor.

Petrovskiy [63] exploits the same idea of SVDD and presents an outlier detection
approach by using kernel functions and fuzzy set theory. Instead of learning a sphere
in the feature space, the approach constructs one fuzzy cluster, which contains all
points from the original space, and then uses a continuous decision function to
measure the degree of outlierness of each point in the cluster. Those points whose
outlier factor is less than a threshold are considered as outliers. This approach
provides the degree of outlierness.

4.8.1 Evaluation of Support Vector Machine based Techniques. Unsupervised
SVM-based approaches do not have any assumption on data distribution and can
effectively identify outliers without pre-labelled data. However, the computation
of the kernel functions is a computationally expensive task. Also, it is not easy to
determine appropriate parameters to control the size of boundary region.

5. OUTLIER DETECTION TECHNIQUES FOR COMPLEX DATA SETS

In this section, we describe outlier detection techniques designed specially for the
complex data sets such as high dimensionality, mixed-type attributes, sequence
data, spatial data, data streams and spatio-temporal data sets. Specifically, we
summarize main ideas and relevant features of these techniques, and also give a
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brief evaluation for corresponding outlier detection methods.

5.1 Outlier Detection Techniques for High Dimensional Data Set

The outlier detection techniques we have introduced so far consider the full di-
mensional attribute space for detecting outliers and have good performance for
relatively low-dimensional data sets. However, they will be susceptible to the prob-
lem of the curse of dimensionality [16]. In particular, in high dimensional spaces,
where the data is sparse, convex hull or MVE becomes harder to discern, the notion
of proximity is less meaningful and distance computation is computationally more
expensive. Also, high dimensionality increases time complexity and makes it more
difficult to accurately approximate the distribution of underlying the data. Thus,
several approaches have been proposed specially for detecting outliers in high di-
mensional data sets. They can generally be classified into subspace-based [64, 65,
66, 67] and distance-based [68, 69, 70, 71] methods.

Aggarwal and Yu [64, 65] propose a subspace-based outlier detection approach by
observing the density distribution of projections, which refer to clusters in a low-
dimensional subspace. This approach first projects the data into a low-dimensional
subspace, and defines that an abnormal lower-dimensional projection is one in which
the density of the data is exceptionally lower than the average. A point is eventually
considered as an outlier if it is located in an abnormal lower-dimensional projection.
Specifically, an evolutionary search algorithm is used to determine low-dimensional
projections since it can efficiently find hidden combinations of dimensions in which
data is sparse and has a faster processing time than the naive brute-force search
algorithm. A sparsity coefficient value represents the density of a low-dimensional
projection and can be used to measure the outlierness of projections. The smaller
the sparsity coefficient value, the more abnormal the projection is. The points in
the projections with the top n smallest sparsity coefficient values are identified as
outliers. In this approach, the choice of an appropriate value for a pre-defined
parameter, i.e., the dimensionality of subspaces is not easy.

Based on this work, Zhu et al. [66] present a robust outlier detection approach
specially for high dimensional data sets by incorporating directly user-defined ex-
ample outliers. As a result, points can be considered as outliers if they are in an
extremely low-dimensional subspace, which also includes so many examples that it is
outstanding significantly than any other subspaces. Similar to [64], the authors em-
ploy the evolutionary search algorithm to efficiently determine the low-dimensional
subspaces. Also, a fitness function is used to measure the outlierness of subspaces.

Shyu et al. [67] propose an outlier detection approach based on principal com-
ponents analysis (PCA), which is a robust estimator of the correlation matrix of
normal patterns. This approach sequentially executes two functions of principal
components to identify outliers. The first function uses the major principal com-
ponents to detect extreme points with large values of variances and covariances
depending on the subset of original attributes. The second function uses the minor
principal components to further identify the rest of outliers, which have different
correlation structures from normal patterns. This approach based on PCA does
not have any assumption on the data distribution and can be applied in real-time
applications by effectively reducing the dimensionality of the data space without
losing any valuable information.
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Angiulli and Pizzuti [68, 69] design an approach to efficiently find out the top n
outliers in large and high-dimensional data sets based on distance-based methods.
The authors introduce a new definition of outliers, that is, those points with the
largest values of ωk, which is the sum of the distance to their k nearest neighbors.
Based on this definition, outliers can be identified by two phases, approximate and
exact solutions. The approximate solution first determines an approximate subset,
which includes k candidate outliers. The exact solution further determines the true
outliers from these candidate outliers. A space-filling curve is used to linearize the
data set. However, the time complexity of the approach is still of quadratic order
with the number of dimensionality in the worst case.

Ghoting et al. [70] extend the work of [45] and present a fast distance-based
outlier detection approach. In particular, this approach uses a divisive hierarchical
clustering to effectively partition the data set into clusters in terms of the similarity
of distance, and further efficiently identifies outliers relying on a novel nested loop
algorithm, which aims at finding a data point’s k approximate nearest neighbors,
which are within a cutoff threshold, instead of its nearest neighbors used in [45].
Experimental results show that this approach has near-linear time performance
with the increase of dimensionality.

Chaudhary et al. [71] introduce an outlier detection approach based on k-d
tree, which is a space decomposition data structure. This approach uses k-d tree
to efficiently partition the whole data set into groups so that all objects in each
group have the similar outlierness. As a result, those points in a sparse region
are considered as outliers. In order to generate regions with the uniform density,
an improved k-d tree with special cuts is used to separate out the clusters from
the sparse regions. Furthermore, a smoothing factor value is used to measure the
sparseness of the region around points. This approach does not scale well with the
number of dimensions.

5.1.1 Evaluation of Techniques for High Dimensional Data Sets. Subspace-based
approaches identify outliers by finding lower-dimensional projections or selecting
the key subset of attributes. They effectively overcome the effects of the curse of
dimensionality for traditional outlier detection approaches. However, it is not easy
to choose appropriate values for the pre-defined parameters of lower-dimensional
projections, and it is also is difficult to decide which are key attributes. Distance-
based approaches still are computationally expensive in high dimensional data sets
and the time complexity is of quadratic order in the worst case.

5.2 Outlier Detection Techniques for Mixed-Type Attributes Data Set

Most non-parametric approaches use the notion of distance or density to measure
the similarity between two data points in continuous (numeric) data spaces. Sim-
ilarly, distribution-based and neural network based approaches identify outliers in
numeric or ordinal data sets. However, they will be susceptible to many real-life
applications, where the data contains both continuous and categorical attributes,
the latter of which only include partial ordering values. This mixed-attribute data
is very difficult to measure by traditional distance metric, and also may influence
the performance of detecting outliers if it is only simply disregarded. Thus, sev-
eral approaches have been designed specially for detecting outliers in categorical or
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mixed-type attributes data sets based on graph-based [72, 73, 74, 75, 76] methods.

Otey et al. [72, 73] present an approach to effectively identify outliers in a mixed
attribute space by taking into account the dependencies between continuous and
categorical attributes. An anomaly score function is used to compute three differ-
ent dependencies, i.e., between (i) categorical attributes, (ii) continuous attributes
and (iii) continuous and categorical attributes. Outliers are points that deviate
from these dependencies. In a categorical attribute space, two data points are con-
sidered linked if they have at least one common attribute-value pair. The number
of attribute-value pairs in common indicates the strength of the associated link
between these two points. A data point can be considered as an outlier if it has
very few links or very weak links to other points. In a mixed attribute space, the
dependence between the values with mixed continuous and categorial attributes is
captured by incrementally maintenance of covariance matrix. A data point can be
considered as an outlier if the number of its attribute-value pairs that are infrequent
and its corresponding covariance are violated from the dependencies between the
mixed attributes. This approach suffers from the problem of dimensionality. Also,
the construction of covariance matrix implies an assumption that the whole data
has the same distribution, which is not easily available in real-life applications.

Wei et al. [74] propose an efficient approach for detecting local outliers in cate-
gorical data. This approach uses a hypergraph model to precisely capture the dis-
tribution characteristics in a data subspace. A hypergraph is a generalized graph,
consisting of a set of vertices and hyperedges. Each vertex corresponds to a data
point in the data set, and each hyperedge contains a group of points that have a
frequent attribute-value pairs. In this model, a point can be considered as an out-
lier if the deviation of the point on an outlying attribute is less than a pre-defined
threshold. In particular, this approach alleviates the problem of the curse of di-
mensionality depending on selecting the most relevant subspaces. Also, it uses the
connectivity property of points to efficiently deal with missing-value data.

He et al. [75] present a local-search heuristic approach to identify outliers in
categorical data. On the basis of a heuristic observation that the removal of some
points from a data set will result in a data set that is less discord, this approach
uses an entropy function to measure the degree of disorder of the rest of data set.
A point is declared as an outlier if the entropy value after exchanging its label with
each of the pre-defined outliers is decreased. This procedure will be repeated until
k outliers are identified. Experimental results show that this approach scales well
with the size of data sets.

Yu et al. [76] propose an outlier detection approach for detecting centric local
outliers in categorical/numerical data, instead of detecting local outliers around
bounder in LOF [46]. The similarity among points can be measured by a similarity
graph, which is a weighted connected undirected graph. A weight value for a pair of
points specifies the similarity between of the two points. A point can be considered
as an outlier if its similarity relationship with its neighbors is lower than the sim-
ilarity relationships among its neighbors’ neighborhood. The use of the similarity
graph overcomes the disadvantage of the traditional similarity measure and can
easily be applicable for categorical/ordinal as well as numerical data.
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5.2.1 Evaluation of Techniques for Mixed-Type Attributes Data Sets. Graph-
based approaches effectively visualize the similarity relationships between the mixed-
attribute data points and highlight outliers according to the degree of similarity re-
lationships. They can overcome the disadvantage of traditional similarity measure
for categorical data. However, they may suffer from the curse of dimensionality,
and also lack strictly precise criteria for determining outliers.

5.3 Outlier Detection Techniques for Sequence Data Set

In some applications, the data is naturally represented as a sequence of individual
entities, such as symbols or letters. It becomes very difficult for traditional distance
and density-based outlier detection techniques to define a standard notion of sim-
ilarity for measuring the structural differences between sequences. Thus, existing
outlier detection techniques for sequence data sets exploits clustering-based [77] and
tree-based [78] methods.

Budalakoti et al. [77] introduce an outlier detection approach for high-dimensional
symbol sequences. This proposed approach efficiently clusters the sequence data
into groups and find out anomalous subsequences that deviates from normal be-
haviors in a cluster as outliers. In particular, a fast normalized longest common
subsequence (nLCS) is used as the similarity measure for comparing sequences, in-
stead of computational expensive LCS measure. Furthermore, the authors provide
a detailed analysis for detected sequence outliers and also reveal possible anomalous
events inside these sequences.

Sun et al. [78] propose an approach for detecting outliers in sequence data sets
depending on building a probabilistic suffix tree (PST), which exploits the theory
of a variable-order markov chain and uses a suffix tree as its index structure. In
detecting outliers, only nodes near the root of the tree need to be examined for
distinguishing outliers from non-outliers. This helps to reduce the size and time
of the construction of PST. The approach uses the length of normalized probability
as the sequence similarity measure, which can efficiently find the top n outliers in
a sequence data set, and also determine a given query sequence is an outlier if its
value of similarity measure is greater than a user-defined threshold. The theory of
entropy further verifies the effectiveness of the similarity measure.

5.3.1 Evaluation of Techniques for Sequence Data Sets. Both clustering-based
and tree-based approaches use efficient similarity measures for comparing sequences
and further distinguish abnormal subsequences from non-outliers. Differently, clustering-
base approaches use traditional clustering algorithms to cluster the sequence data
into groups. Tree-based approaches construct a specific tree as index to decompose
data structure. However, these approaches may be suspectable to high dimensional
data sets. Also, time complexity will increase with the construction of trees.

5.4 Outlier Detection Techniques for Spatial Data Set

Spatial data has non-spatial and spatial attributes. Non-spatial attributes include
the intrinsical information of data characteristic and are used to compare and dis-
tinguish spatial objects in spatial neighborhoods. In traditional outlier detection
techniques, distribution-based approaches work well in one-dimensional data sets
and only consider the statistical distribution of non-spatial attribute values. They
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ignore the spatial relationships between data points. On the other hand, most
non-parametric methods do not distinguish between spatial and non-spatial at-
tributes, but use all dimensions to define the neighborhood based on concepts of
distance, density and convex-hull depth. Thus, many spatial outlier detection ap-
proaches have been developed and can be categorized into graphical and statistical
approaches. The first category uses a graph to illustrate the distribution of neigh-
borhood difference and identify those points in particular positions of the graph as
outliers. These approaches include variogram clouds [79], pocket plots [80], scat-
terplot [31] and Moran scatterplot [81]. Here, we focus on several spatial outlier
detection techniques [82, 83, 84, 85, 86, 87, 88, 89, 90] in statistical approaches.

Shekhar et al. [82] originally introduce a general definition of a spatial outlier,
i.e., a spatially referenced point whose non-spatial attribute values are significantly
different from those of other spatially referenced points in its spatial neighborhood.
This definition indicates whether a data point is declared as a spatial outlier depends
on the difference between an attribute value of the point and the average attribute
value of its spatial neighbors. The proposed algorithm uses a single non-spatial
attribute to compare the difference between spatial neighborhoods and identifies
spatial outliers computationally efficiently by computing the global algebraic ag-
gregate functions. Shekhar et al. [83] further consider the graph structure of the
spatial data and exploit a graphical method for spatial outlier detection. Specif-
ically, this method compares the difference between an attribute value of a data
point and the average attribute of its neighbors, and checks whether that the whole
data fits into a normal distribution. Those points whose testing values are greater
than a specified confidence interval are considered as spatial outliers.

Lu et al. [84] propose two iterative algorithms and a non-iterative algorithm to
detect spatial outliers. All of three algorithms depend on the choice of a neigh-
borhood function and a comparison function. The neighborhood function refers
to a summary statistic of attribute values of all the spatial neighbors of a data
point. The comparison function is used to further compare the attribute value of
this point with the summary statistic value of its neighbors. In particular, two iter-
ative algorithms use the same neighborhood function and identify only one outlier
through each iteration, and then the attribute value of this outlier is immediately
replaced by the average attribute value of its neighbors so that this outlier will not
impact the subsequent iterations negatively. The non-iterative algorithm defines a
different neighborhood function based on the median of the attribute values of the
neighbors. The advantage of the use of median is to reduce the negative impact
caused by the presence of neighboring points with extremely high/low attribute
values. Lu et al. [85] further detect spatial outliers with multiple attributes using
Mahalanobis distance, which considers ranges of variance and covariance between
attributes measured. The comparison function is assumed to follow a multivariate
normal distribution, and those points can be considered as spatial outliers if their
Mahalanobis distance is larger than a specified confidence interval.

Kou et al. [86] present two spatial weighted outlier detection algorithms, which
considers the impact of spatial relationship on the neighborhood comparison. For
a data point, each of neighbors in its spatial neighborhood is assigned a different
weight in terms of their own impact on the point. In the first algorithm, a weighted
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average of the non-spatial attribute value of its neighbors is computed to compare
the difference with the attribute value of this point. The top n point with the
largest difference values are identified as outliers. The second algorithm compares
the attribute value of the point with each of its neighbors one by one, which helps
to retain the variance among the neighbors.

Chawla and Sun [87] propose a spatial local outlier detection approach. The issue
of detecting spatial local outliers is usually missed by most techniques, which focus
on discovering spatial global outliers by the statistical test. This approach, based on
LOF [18], efficiently computes the degree of outlierness of each point in a data set,
and also considers the values of spatial autocorrelation and spatial heteroscedasticity,
which are used to capture the effect of a data point on its neighborhood and the
non-uniform variance of the data, respectively. The use of the two statistics values
aims to avoid the assumption of an identical or independent distribution of data.

Zhao et al. [88] present a wavelet analysis based spatial outlier detection approach
to detect region outliers, which aims at determining a group of outliers instead of
an outlier. The multi-resolution character of wavelet analysis enables that the
original data is decomposed into different spatial scales, and then the localization
of variation shown in the frequency domain further determines the spatial regions
of the potential spatial outliers at certain scales of interest. Each suspect region
outlier is further viewed as a single point and is verified whether it is a true outlier
by the spatial outlier detection algorithm proposed in [85]. Lu et al. 2004 [89]
extend this work and identify the boundary of region outliers using edge detection
with competitive fuzzy classifier.

Adam et al. [90] address a definition of micro neighborhood based on both the
spatial relationship and the semantic relationship among neighbors. Based on this
definition, a point can be considered as an outlier if it differs sufficiently from other
points in the micro neighborhood. The authors use the same distance-based outlier
detection technique proposed in [42] to identify spatial outliers.

5.4.1 Evaluation of Techniques for Spatial Data Sets. Graph-based approaches
illustrate the distribution of neighborhood difference and identify those points in
particular positions of the graph as outliers. Statistical approaches explicitly dis-
tinguish between spatial and non-spatial attributes, and effectively identify outliers
by comparing the non-spatial attribute of a point with the average non-spatial at-
tribute value of its spatial neighbors. However, they assume a normal distribution
to represent the whole data, which is not always the case in many real-life situations.

5.5 Outlier Detection Techniques for Streaming Data Set

Traditional outlier detection techniques work well in static data sets, where all data
points are stationary. However, in streaming and dynamic data sets, a large volume
of data is continuously and fast transferred in an ordered sequence, and also data
may be constantly added, removed, or updated. In this data set, a data model built
in a particular time instant may be invalid in consequent time instants. Thus, data
stream can be viewed as an infinite process consisting of data which continuously
evolves with the time [91]. The issue of detecting outliers in streaming data has
gained much attention and several relevant approaches are categorized into model-
based [91, 72, 92], graph-based [93, 94] and density-based [95, 96, 97] methods.
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He et al. [91] present a model-based approach to identify outliers in data streams
by using frequent patterns, which represent common patterns of a majority of data
points in data sets. The degree of outlierness for each point is measured by a
frequent pattern outlier factor (FPOF) and n points that contain very few frequent
patterns are considered as outliers. In particular, a lossy counting technique is used
to efficiently approximate frequent patterns over data streams with a single pass,
instead of finding them exactly with multiple passes. However, the authors do not
give any experimental results or performance evaluation of this approach.

The outlier detection approach proposed by Otey et al. [72] also can handle
dynamic and streaming data in a distributed setting. Specifically, a local model is
first built in each participating local data set, and a global model is constructed
based on these local models. As a result, each local data set has a copy of the global
model and can calculate the degree of outlierness for each point in its local data set
by an anomaly score function. Points whose score are greater than a pre-defined
threshold are flagged as local outliers.

Yamanishi et al. [92] detect outliers in non-stationary time series data based
on a typical statistical autoregression (AR) model, which represents a statistical
behavior of time series data. The proposed approach first incrementally learns the
AR model by a sequentially discounting AR model estimation (SDAR) algorithm,
which can effectively deal with non-stationary data streams by gradually weakening
the effect of past data. Each data point is then assigned to an anomaly score, which
measures how large the point deviates from the learned AR model. A higher score
of a point indicates that the point is more likely to be an outlier.

Muthukrishnan et al. [93, 94] define a new notion of an outlier in time series data
streams based on a representation sparsity metric histogram, i.e., if the removal of
a point from the time sequence results in a sequence that can be represented more
briefly than the original one, then the point is an outlier. In the histogram, a few
buckets partitioned from data stream can summarize the data. Outlier are points
whose removal from the data set result in an improved succinct representation of
the remaining data. The proposed approach can efficiently find outliers at any
instant of massive data streams over time only using very small memory space.

Pokrajac et al. [95] propose an incremental density-based approach to detect out-
liers in data streams. This approach exploits the static iterated LOF [18] algorithm
to deal with each new point inserted into the data set and iteratively determines
whether the point is an outlier. Furthermore, it can efficiently adapt to the update
of the data profiles caused by insertion or deletion of data points. Experimental
results show that the incremental LOF has the equivalent detection performance
with LOF and is also more computationally efficient. However, it is not appropriate
for high dimensional data because of expensive computation of indexing structures.

Palpanas et al. [96] propose an original outlier detection approach for real-time
streaming sensor data in wireless sensor networks (WSNs). This approach has no a
priori knowledge of data distribution, but instead builds a model of the most recent
values in a sliding window and also uses kernel density estimator to efficiently
and effectively approximate the data distribution. Outliers are those values that
deviate significantly from the model by using the distance-based approach in [42].
Subramaniam et al. [97] further use LOCI [51] to identify density-based outliers,
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which overcomes the disadvantages of distributed-based outlier detection and also
being applied to the multi-dimensional data. Experimental results show that this
approach achieves high accuracy of data distribution estimation and high outlier
detection rate with low memory occupation and message transmission.

5.5.1 Evaluation of Techniques for Streaming Data Sets. Model-based approaches
represent the statistical behavior of data stream by the construction of a model and
further declare those points that deviate from this model as outliers. They can effi-
ciently deal with the streaming data in an online fashion, however, it is not easy to
construct an accurate model to represent the whole data. Graph-based approaches
identify outliers based on estimating the distribution of data stream. However,
they may suffer from the curse of dimensionality and the accuracy of the estima-
tion of data distribution. Density-based approaches overcome the disadvantages of
distribution-based outlier detection and also are applied to the multi-dimensional
data. They can achieve high outlier detection rate with low memory occupation.

5.6 Outlier Detection Techniques for Spatio-Temporal Data Set

Most existing spatial outlier detection techniques focus on detecting spatial outliers,
which only considers the non-spatial attributes of data or the spatial relationships
among neighbors. However, in all geographic phenomena evolving over time, tem-
poral aspects and spatial-temporal relationships existing among spatial data points
also need to be considered in detecting outliers. Currently, two initial work [98, 99]
have addressed the detection of spatio-temporal outliers in data sets on the basis
of clustering concepts and statistical tests.

Cheng and Li [98] introduce a formal definition of spatio-temporal outliers (ST-
outliers), i.e., a spatial-temporal point whose non-spatial attribute values are signif-
icantly different from those of other spatially and temporally referenced points in
its spatial or/and temporal neighborhoods. The definition indicates that ST-outliers
are identified by comparing the spatio-temporal points with their spatio-temporal
neighbors. Considering the temporal aspects, the authors declare a point as a ST-
outlier by checking if the point’s attribute value at time T is significantly different
from the statistical attribute values of its neighbors at time T − 1 and T + 1. They
further propose a four-step approach to detect ST-outliers, i.e., classification, ag-
gregation, comparison and verification. In particular, the classification step aims
at finding out the spatio-temporal points of interest by clustering the input data,
which can be achieved by either supervised classification based on priori knowledge
of the data or unsupervised classification if prior knowledge of data is not available.
The aggregation step uses different spatial scales of the data to generate different
clusters and effectively filter the noises. In comparison step, potential spatial out-
liers can be identified by comparing the results obtained from the classification step
with the results obtained from the aggregation step. The verification step further
compares these potential spatial outliers with their temporal neighbors in a con-
tinuous pattern. If the difference value is greater than a statistical threshold, these
outliers will be considered as true ST-outliers. Experimental results generated from
a practical coastal geomorphic study show the effectiveness of the approach. How-
ever, the author do not consider the effect of the granularity of spatial and temporal
scales, and also the temporal dimension is poorly treated without any metrics.
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Birant and Kut [99] define a similar definition of ST-outlier as [98] and present
a ST-outlier detection approach based on clustering concepts. In particular, this
approach consists of three steps, clustering, checking spatial neighbors, and check-
ing temporal neighbors. In the clustering step, an efficient clustering technique
DBSCAN [33] has been improved in supporting temporal aspects and detecting
outliers in clusters with different densities. As a result, potential outliers are those
points which do not belong to any of clusters. The following two steps further
verify these potential outliers. In the checking spatial neighbors step, a potential
outlier is labelled as a spatial outlier if its statistic value is outside a user-specified
confidence interval. In the checking temporal neighbors step, if this spatial outlier
is significantly different from its temporal neighbors in consecutive time units, it
is labelled as a true ST-outlier. This approach uses several pre-defined parameters
and some of them are very sensitive for the performance of outlier detection. Also,
Euclidean distance is used to compute the distance of any two points, which is not
suitable for high dimensional data sets.

5.6.1 Evaluation of Techniques for Spatio-Temporal Data Sets. Clustering-based
approaches identify the spatio-temporal points of interest in clusters with different
densities and further verify these potential outliers by statistical tests. They can
explicitly consider the temporal aspects and spatial-temporal relationships existing
among spatial data points during outlier detection. However, the temporal dimen-
sion is poorly treated without any appropriate metrics so that these approaches are
susceptible to high dimensional data sets. Also, they assume a normal distribution
to represent the whole data, which is not available in many real-life situations.

6. DECISION TREES

Availability of various outlier detection techniques with different characteristics
makes selecting the most suitable technique for a specific data sets more crucial than
ever. In this section, we present two decision trees to be used as guidelines. Table II
gives an overview of appropriate techniques for application domains. Table III & IV
compare characteristics of outlier detection techniques based on type of data sets.

Table II. Outlier detection techniques applied to specific application domains
Technique- Application domains
based on Fraud Intrusion Environmental Medical and Localization Logistics and

detection detection monitoring public health and tracking transportation

Distribution
√ √ √ √ √ √

Depth
√ √ √ √ √ √

Graph
√ √ √ √ √ √

Clustering
√ √ √ √ √

Distance
√ √ √ √

Density
√ √ √ √

NN
√ √ √

SVM
√

Subspace
√

Tree
√ √ √

Model
√ √ √ √ √
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7. CONCLUSION

In this paper, we present a comprehensive taxonomy framework for contemporary
outlier detection techniques based on simple and specific semantics of data. Also,
we introduce a through performance evaluation of each class of outlier detection
techniques under this taxonomy framework. Furthermore, we provide two decision
trees to choose suitable outlier detection techniques for specific application domains
and type of data sets.

There is no single universally applicable or generic outlier detection approach.
Thus, the developers should consider whether an outlier detection technique is
suitable for a data set depending on several important aspects, i.e., the use of pre-
labelled data, the use of parameters of data distribution, the type and dimension
of detected outliers, the degree of being outliers, the number of detected outliers
at once. Also, outlier detection techniques are desired to maintain a high detection
rate while keeping the false alarm rate and time complexity low. Additionally, the
number of used user-defined parameters should be taken into account.
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