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Abstract. Wireless sensor nodes attached to everyday objects and worn
by people are able to collaborate and actively assist users in their activi-
ties. We propose a method through which wireless sensor nodes organize
spontaneously into clusters based on a common context. Provided that
the confidence of sharing a common context varies in time, the algo-
rithm takes into account a window-based history of believes. We approx-
imate the behaviour of the algorithm using a Markov chain model and
we analyse theoretically the cluster stability. We compare the theoretical
results with simulations, by making use of three sets of experimental data
reported from field tests. The results show the tradeoff between the time
history necessary to achieve a certain stability and the responsiveness of
the clustering algorithm.

1 Introduction

Wireless sensor networks, smart everyday objects and cooperative artefacts rep-
resent all different facets of the ubiquitous computing vision, where sensor-
enabled devices become integrated in the environment and provide context-
aware services to the users. Various systems have already been demonstrated
to be able to retrieve the context, such as the physical context (e.g. position,
movement [4]), the situation (e.g. meeting [16]) and even the emotional context
(e.g. mood detection [3]). One step further is to have sensor nodes that inter-
act and use common contextual information for reasoning and taking decisions
at the point of action. Such a “networked world” opens perspectives for novel
applications in numerous fields, including transport and logistics [9], industrial
manufacturing [12], healthcare [7], civil security and disaster management [8].

In this paper we explore a non-traditional networking paradigm, based on
context sharing. Previous work showed that sensor nodes can recognize online
a common context and build associations of the type “moving together” [6, 9].
Starting from this result, we address the problem of organizing the nodes sharing
a common context into stable clusters, given the dynamics of the network and
the fact that the accuracy of the context-recognition varies in time.

The contributions of this paper are as follows. Firstly, we propose Tandem,
an algorithm for spontaneous clustering of mobile wireless sensor nodes. The



algorithm allows reclustering in case of topological or contextual changes, and
tries to achieve stable clusters if there are no changes in the network, by analysing
the similarity of the context over a time history. Secondly, we approximate the
behaviour of the algorithm using a Markov chain model, which allows us to
estimate the percentage of time the clustering structure is correct given that
the topology is stable. Thus, we are able to analyse the cluster stability both
theoretically and through simulations, using experimental data reported from
real field tests. Thirdly, we study the tradeoff between the time history necessary
to achieve a certain stability and the responsiveness of the clustering algorihm.
As a result, we estimate the delay induced by the time history, given a desired
cluster stability.

2 Application scenarios

We describe two applications where wireless sensor nodes are able to extract and
communicate the general contextual information for creating a dynamic cluster.
The cluster is able to provide services such as reporting the group membership,
analysing the cluster activity, recognizing fine-grained events and actions.

2.1 Transport and logistics

Transport and logistics represent large-scale processes that ensure the delivery of
goods from producers to shops [9]. Using the wireless sensor networks technology
in transport and logistics is particularly interesting for dynamically locating the
goods, generating automatic packing lists, as well as for monitoring the storage
condition of a product (e.g. temperature, light) or its surroundings.

The delivery process starts at a warehouse, where the transport company
personnel assemble rolling containers (Returnable Transport Items - RTIs), pick
the requested products from the warehouse shelves, and load them in the RTIs.
Next, the RTIs are moved on the expedition floor, a large area used for temporary
storage (see Figure 1). From the expedition floor, the RTIs are loaded into trailers
according to the shop orders. In order to avoid the errors made during loading of
items in the RTIs, a node equipped with a movement sensor can be attached to
each product. At the moment the RTIs are pushed on the expedition floor, the
sensors from each container correlate their movement and report as a group to
the devices carried by the company personnel. In this way, a missing or wrong
item can be detected before arriving on the expedition floor. The same solution
can be applied for checking the correct loading of the RTIs into the trailers that
deliver the goods to the shops.

In a similar manner works the list generator for automatic packing [1]. Various
order items are packed in a box and an invoice is generated. In order to find
out where a certain item is, nodes with movement sensors can be attached to
each good. When the box is moved around, the items inside can correlate their
movement and decide that they form a group. When the objects are grouped,
checking on the goods and packing lists can be generated automatically.



Fig. 1. Transport and logistics scenario.

The scenario can be further extended, for example to the supermarket carts,
where automated counters can automatically “see” the contents of the carts.

2.2 Body area networks (BAN)

Wearable computing aims at supporting workers or people in everyday life by
delivering context-aware services. One important aspect is the recognition of
human activities, which can be inferred from sensor integrated into garments
and objects people are interacting with. The usage of context information en-
ables more natural interaction between humans and computers and might assist
workers with complex tasks with just now relevant information. Examples in-
clude training unskilled workers for assembly tasks [12], monitoring the health
and activity of patients [7], assisting firefighters engaged in rescue operations in
unknown environments with poor visibility.

Clustering nodes related to the activity of the persons simplifies the selection
of relevant sensors in the environment which can contribute to the recognition of
the currently performed activity. The advantage is that the activity recognition
processing can be kept within the cluster, which is important for environments
where multiple people are present. This provides: (1) identification of the body
wearing the sensors, (2) a better recognition stability when selecting sensors
moving with a person for the recognition task, and (3) potentially a trusted
network where private data can be communicated only to nodes within the
cluster.

3 Related work

Clustering in ad-hoc and sensor networks is an effective technique for achiev-
ing prolonged network lifetime and scalability [13]. Parameters such as the node
degree, transmission power, battery level, processor load or degree of dynamics



usually serve as metrics for choosing the optimal clustering structure. Never-
theless, recent initiatives address the problem of grouping based on application-
specific attributes. For instance, Bouhafs et al. [2] propose a semantic clustering
algorithm for energy-efficient routing in wireless sensor networks. Nodes join the
clusters depending on whether they satisfy a particular query inserted in the
network. The output of the algorithm is called a semantic tree, which allows for
layered data aggregation.

The Smart-Its project [5] first introduces the notion of context sharing: two
smart objects are associated by shaking them together. Using this explicit in-
teraction between the two devices, an application-level connection can be estab-
lished. For example, the two devices can authenticate using secret keys that are
generated based on the movement data [10]. Siegemund [11] proposes a com-
munication platform for smart objects that adapts the networking structure
depending on the context. A clusterhead node decides which nodes can join the
cluster, based on similar symbolic location. Strohbach and Gellersen [14] pro-
pose an algorithm for grouping smart objects based on physical relationships.
They use associations of the type “objects on the table” for constructing the
clusters. A master node (the table) has to be able to detect the relationships for
adding/deleting the nodes to/from the cluster. The solution described is suit-
able for static networks, where the master node is stationary for a long period of
time. In our work, the network is dynamic, the context is permanently changing
and every pair of nodes is capable of understanding the physical relationships,
and thus the common context.

We now give two examples of shared-context recognition algorithms, where
the practical results help us evaluate the clustering algorithm. First, Lester et
al. [6] use the accelerometer data to determine if two devices are carried by the
same person. The authors use a coherence function to derive whether the two
signals are correlated at a particular frequency. Second, Marin-Perianu et al. [9]
propose a correlation algorithm which determine whether dynamic sensor nodes
attached to vehicles on wheels move together. We use the real-world experimental
results reported by both algorithms to analyse the performance of Tandem. For
each case, we evaluate the minimum time history necessary to achieve stable
clusters.

4 Algorithm description

The goal of Tandem is to organize the nodes that share the same context, so that
they can subsequently collaborate to provide a service. Tandem assumes that
each node runs a shared-context recognition algorithm, which provides a number
on a scale, representing the confidence value that two nodes are together. This
algorithm can be for example a coherence function, which measures the extent to
which two signals are linearly related at each frequency [6] (on a scale from 0 to
1), or the correlation coefficient, which indicates the strength and direction of a
linear relationship [9] (on the scale from -1 to 1). Such an algorithm permanently
evaluates the context, so that at each time step every node has an updated image



of the current situation, reflected in a new set of confidence values (one for every
neighbour).

4.1 Requirements

Following the scenarios from Section 2, the nodes sharing the same context are
within each-others transmission range, so we consider only one-hop clusters. The
environment is dynamic, with frequent contextual and topological changes. The
requirements and design choices for the clustering algorithm are the following:

– Incorporate dynamics. The clusters can merge or split, depending on the
context changes. Nodes can join and leave the cluster at any time if the
topology or context changes accordingly. For example, in the BAN scenario,
people can pick up and use different tools, and then return or exchange
them with other people. In this case, the nodes attached to the tools have to
join and leave the BAN clusters. Contextual and topological changes cannot
be predicted, so the clustering algorithm cannot assume a stable situation
during cluster formation.

– Stability. If there are no contextual or topological changes, the clustering
structure has to be stable. Following the remark that every node periodically
re-evaluates the shared context with its neighbours, the fluctuations of the
confidence values may lead to unwanted changes in the cluster structure.
Therefore, the cluster has to cope with these fluctuations in order to keep
the structure as stable as possible. A possible solution to increase the stability
is to analyse the similarity of the context over a larger time history. In this
sense, a tradeoff has to be found between the spontaneity in accommodating
changes and the desired cluster stability.

– Energy-efficiency. The communication overhead should be kept to a mini-
mum, for prolonging the lifetime of the wireless network.

– Facilitate service provisioning. The clusters have to be able to easily interact
with the higher-layer applications and provide context-aware services to the
user.

4.2 Cluster formation algorithm

For the sake of simplicity, we assume that a node is aware of its neighbours
(every node within the range) and the one-hop communication is reliable (this
can be achieved for example by using a simple stop-and-wait ARQ protocol).

Each node v periodically computes the confidence of sharing the same con-
text with its neighbours. If the confidence with a neighbour u exceeds a certain
threshold, then v considers that it shares the same context with u for the given
time step. The final decision for sharing the same context with u is founded
on the confidence values from a number of previous time steps, called the time

history (see Section 5.1).
The fact that the perception of the shared context may vary from one node

to another leads to nodes having different views of the cluster membership. To



Algorithm 1 Tandem - node v (events/actions)
Initialization:

1. r(v)← ⊥, r(u)← ⊥, ∀u ∈ Γ (v)

GetContext:

1. r0(v)← r(v) // Store the root of v
2. Update h(v, m), ∀m ∈ Γ (v) // Update the history
3. M ← {m ∈ Γ (v) | h(v, m) > hmin} // Select the nodes sharing the same context with v
4. if M 6= ∅ then

5. M0 ← { m ∈M | r(m) = m} // Select from M the nodes that are clusterheads
6. if M0 6= ∅ then

7. Choose u ∈M0 such that pn(u) = max{pn(m) | m ∈M0}
8. if (r(v) = ⊥) ∨ (r(v) /∈M0) ∨ (r(v) = v ∧ pn(v) < pn(u)) then

9. r(v)← u // Choose u as the root of v
10. end if

11. else if r(v) 6= v then

12. M1 ← { m ∈M | r(m) 6= ⊥} // Select from M the nodes that have a valid root
13. if M1 6= ∅ then

14. r(v)← ⊥
15. else

16. r(v)← v // Become root
17. Generate pn(v) > 0
18. end if

19. end if

20. else

21. r(v)← ⊥ // v is unassigned
22. end if

23. if r0(v) 6= r(v) then

24. Send SetRoot (v, r(v), pn(v)) to neighbours // Announce root change
25. end if

provide a consistent management of the membership list and cluster organiza-
tion, a clusterhead or root node is dynamically elected among the nodes that
share the same context. This also assists the service provisioning and the inter-
action the higher-layer applications. In order to allow merging of clusters and
to facilitate the election process, the candidate clusterheads dynamically gener-
ate unique priority numbers, either based on the unique hardware addresses, or
as a context-dependant measure, such as the rapidity in occupying the wireless
medium. A regular node subscribes to the clusterhead with which it shares a
common context and has the highest priority number.

We use the following notation:

– V is the the set of nodes in the network.
– n is the number of nodes in the network, n = |V |.
– r(v) is the root or clusterhead of node v.
– pn(v) is the priority number of node v.
– Γ (v) is the neighbourhood of node v.
– h(v, u) represents the number of times v and u are sharing a common context

over a total time history of H steps.
– hmin is the minimum amount of times when two nodes are sharing a common

context, such that they can safely be considered part of the same cluster.

The algorithm constructs a set of one-hop clusters, based on the context
information shared by the nodes. A node v can be: (1) unassigned, where v is



Fig. 2. Graphical simulation of the clustering algorithm on BANs.

not part of any cluster, (2) root, where v is clusterhead, or (3) assigned, where
v is assigned to a cluster where the root node is one of its neighbours.

Algorithm 1 gives the detailed description of the cluster formation and up-
date of knowledge among neighbouring nodes. Every node has the following
information about its neighbours: the root, the priority number and whether it
shares a common context for a specified time history. Let v be an arbitrary node
in the network. At each time step, node v changes or chooses its root node in
the following cases: (1) v is unassigned, (2) v does not share a common context
with its root, (3) the root of v is no longer a root or (4) v is root and there
is another neighbour root, sharing the same context with v, that has a higher
priority number. In any of these cases, v chooses as root node the neighbour
root u with which it shares a common context and which has the highest pri-
ority number. If such a neighbour does not exist, v competes for clusterhead or
becomes unassigned. The decision is based on the current status of the neigh-
bours and tries to minimize the effect of the following erroneous situation: due to
context fluctuations, an assigned node v may loose its root node and cannot join
another cluster because none of its neighbours is root. Therefore, v may become
root, form a new cluster and attract other nodes in that cluster. To avoid this
undesirable outcome, a node declares itself root only if all its neighbours with
which it shares a common context are unassigned. If there exists at least one
neighbour u with which v shares a common context and u has a valid root node,
then v becomes unassigned.

Node v announces the changes in choosing the root node by sending a local
broadcast message SetRoot to its neighbours. In case of topological changes, this
message is also used to announce the new neighbours of the current structure.



Let us consider the example from Figure 2. A BAN is associated with each
person, consisting of five nodes placed in various locations: backpack, belt, pocket
and wrist. The clustering structure is seen from the perspective of node 4, which
is attached to the wrist of the left person. The clusterheads are represented with
bigger, red-filled circles (nodes 1 and 8). The red arrows indicate the assignment
of the other nodes to the current clusterheads. Node 7 is unassigned, as the
shared-context recognition algorithm did not associate this node with any of the
neighbouring clusterheads at the previous time step. The grey arrows show the
confidence values computed by node 4 at the current time step in this particular
case. The confidence values for the nodes on the same body with node 4 range
between 0.66 and 0.88, while for the other body they lie between 0.39 and 0.57.
Because the confidence of sharing the same context with the root node 1 is 0.66
and above the threshold, node 4 keeps the current root. Otherwise, it would
become unassigned (node 4 has some neighbours with the same context, having
a valid root node), or assigned to the other cluster, if the confidence value for
the neighbouring root node 8 was higher than the threshold.

5 Cluster stability analysis

Several algorithms for context sharing have been proposed in the literature, us-
ing various sensors and providing different accuracies (see Section 3). However,
none of them gives a measure of the overall accuracy of the system, when mul-
tiple nodes sharing different contexts come together. We would like to analyse
the cluster stability from both the theoretical point of view, by giving average
approximation, upper and lower bounds, and through simulations. In addition,
we are interested in the tradeoff between the time history necessary to achieve
a certain stability and the responsiveness of the clustering algorithm. First, we
compute the probabilities of correctly assessing the context, given the distrib-
ution of the confidence values. Second, we model the algorithm using Markov
chains and we derive an approximation for the proportion of time the clustering
structure is in a correct state.

5.1 Determination of common context

In this section, we give an example of how the probabilities of correct detection
of the shared context can be computed.

Let v be a node in the network and u a neighbour of v. If v does not share
the same context with u (e.g. they represent sensor nodes attached to differ-
ent persons), we model the confidence value computed by the shared-context
recognition algorithm with the random variable X1(v, u). If v shares the same
context with u (e.g. they are attached to the same person), we model the confi-
dence value as a random variable X2(v, u). We take the distribution encountered
during the experiments as the reference Probability Density Function (PDF): we
associate the random variables X1(v, u) with the PDF ϕ1 and the corresponding
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Fig. 3. The calculation of the threshold value T and the probabilities p and q.

Cumulative Distribution Function (CDF) Φ1. Similarly, we associate the random
variables X2(v, u) with the PDF ϕ2 and CDF Φ2.

Node v selects the subset of its neighbours with which it shares a common
context based on a threshold value T . We choose T as the intersection point
of the two PDFs ϕ1 and ϕ2, which minimizes the sum of probabilities of an
incorrect determination. We denote p as the probability of the correct detection
of the common context and q as the probability of the correct detection of
different contexts. The probabilities p and q are computed in the following way
(see Figure 3):

p = 1 − Φ2(T ), q = Φ1(T ) (1)

We compute the threshold value for the case where the distributions are
normal, which is valid for the applications described in Section 2 (see the ex-
perimental data reported by [6, 9]). Let us consider two normal distributions,
ϕ1(µ1, σ1) and ϕ2(µ2, σ2). The intersection point of ϕ1 and ϕ2 which lies be-
tween µ1 and µ2 is the following:

T =
µ1σ

2
2 − µ2σ

2
1 + σ1σ2

√

(µ1 − µ2)2 + 2(σ2
2 − σ2

1)ln(σ2/σ1)

σ2
2 − σ2

1

(2)

Using Eq. 1 and 2, it is straightforward to compute p and q, knowing the
characteristics of ϕ1 and ϕ2. We are now interested in how these probabilities
change if we involve the time history in the decision process. The probability ph

of the correct detection that two nodes share a common context for a minimum
time history hmin out of a total of H time steps is given by the CDF of the
binomial distribution:

ph(hmin,H) =

H
∑

k=hmin

(

H
k

)

pk(1 − p)H−k (3)

Similarly, the probability qh of the correct detection of different contexts for
a minimum time history hmin out of a total of H time steps is:



qh(hmin,H) =

H
∑

k=hmin

(

H
k

)

qk(1 − q)H−k (4)

We have therefore p = ph(1, 1) and q = qh(1, 1).

5.2 Modelling with Markov chains

We approximate the behaviour of the algorithm with a Markov chain, which
allows us to estimate the global probability of having a correct cluster. We stress
on the difference between a time step and a Markov chain step. A time step is
related to the periodic update of the context information by the shared-context
recognition algorithm which runs on every node. For improving the probabilities
of correct detection of the shared context, the algorithm looks over a time history
H, composed of a number of time steps (see Section 5.1). A Markov chain step
is the “memoryless” transition from one state to another, which happens on
intervals equal to the total time history H.

We define a group G as the collection of nodes that share the same context
in reality. We define a cluster C as the collection of nodes which have the same
root node (as a result of Agorithm 1). The goal of the clustering algorithm is
that for any group of nodes G, there exists a cluster with the root r0 ∈ G
such that ∀v ∈ V, r(v) = r0 ⇔ v ∈ G. Taking the example from Figure 2,
we have two groups: G1 = {0, 1, 2, 3, 4}, G2 = {5, 6, 7, 8, 9} and two clusters:
C1 = {0, 1, 2, 3, 4} with root node 1, C2 = {5, 6, 8, 9} with root node 8.

We define the following states for cluster C:

1. Correct: The cluster has exactly one root node from the group and all the
members of the group are part of the cluster1.

2. Has root: At least one group member is root.
3. No root: None of the group members is root.
4. Election: After reaching state 3, members of the group start an election

process for choosing the root node.

For example, cluster C1 from Figure 2 is Correct, while C2 is in the state Has

root, since node 7 is unassigned.
The transition matrix that determines the Markov chain is the following:

P =









p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44









Let m ≥ 0 be the number of root nodes with higher priority than the current
root and k ≥ 1 the number of nodes in the cluster. If the cluster has a root, let
r0 be the root node. The probabilities pij are evaluated in a worst case scenario,
by minimizing the chance to get in the Correct state.

1 We intentionally take G ⊆ C. The nodes from C \G are part of other groups, which
have the corresponding clusters in an incorrect state.



Table 1. Transition probabilities pij

Probability Value Probability Value

p11 qmpk−1 p21 qmpk−1qm(k−1)

p12 qm(1 − pk−1) p22 qm(1 − pk−1qm(k−1))
p13 1 − qm p23 1 − qm

p14 0 p24 0

p31 0 p41 0

p32 0 p42 qmk(1 − (1 − p)k(k−1))
p33 0 p43 0

p34 1 p44 1 − qmk(1 − (1 − p)k(k−1))

The conditions which determine the probabilities pij are the following:

– p11: (a) r0 remains root in the next step, as r0 does not share the same
context with other root nodes with higher priority, and (b) all the nodes in
the group share the same context with r0.

– p12: (a) r0 remains root in the next step, and (b) there exists at least one
node in the group that does not share the same context with r0.

– p13: r0 shares the same context with a root node with higher priority, so that
it gives up its role and joins another cluster.

– p21: (a) r0 remains root in the next step, (b) all the nodes in the group do
not share the same context with other root nodes with higher priority and
(c) all the nodes in the group share the same context with r0.

– p23: r0 shares the same context with a root node with higher priority, so that
it gives up its role and joins another cluster.

– p34: from state No root the system goes at the next step to state Election.
– p42: (a) all the nodes in the group do not share the same context with any

root node with higher priority, and (b) there are at least two nodes in the
group that share the same context.

Table 1 gives the computed probabilities for each transition of the Markov
chain. We notice that the Correct state can be reached only from the Has root

state. If m > 0, the probability p21 is minimized, so that in the stationary
distribution of the Markov chain, the probability to be in the Correct state is
lower than the real probability. Calculating the fixed row vector of the Markov
chain yields the following result:

p1(m, k, q, p) =
p21p42

(1 + p21 − p11)(p42 + p42p13 + p13)
(5)

We define the cluster stability PS as the probability of a cluster to be in
the Correct state. Given that there are c clusters in the network, we have the
following lower and upper bounds:

p1(c − 1, k, q, p) ≤ PS ≤ p1(0, k, q, p) (6)



An estimation of the average case is given by:

PS ≈ p1(
c − 1

2
, k, q, p) (7)

6 Results

A typical example of context sharing is the similarity of movement, which we
analyse in this section using real experimental data corresponding to the sce-
narios described in Section 2. In general, the movement information is extracted
from accelerometers. Simpler sensors such as tilt switches can be also used, but
with less accurate results. We have the following two concrete examples of wire-
less objects moving together:

1. RTI - wireless sensor nodes used in a transport scenario, which correlate
their movement pattern; both tilt switches and accelerometers are used to
extract the movement information [9].

2. BAN - smart devices that decide whether they are carried by the same
person, using the coherence between the movement data provided by ac-
celerometers [6].

Table 2 shows the characteristics of the normal distributions derived from
the concrete experiments conducted in both application examples, together with
the computed threshold from Eq. 2 and the probabilities p and q. Contrary to
the RTI scenario, where the nodes moving together experience exactly the same
movement pattern, in the BAN scenario different parts of the body are engaged
in different types of movements during walking. For a realistic evaluation, we
choose the worse case experimental results from the BAN scenario [6], where
the nodes are attached to the pocket and wrist of the subjects (Pocket/Wrist
experimental trial).

Table 2. Statistics from the experiments and computed probabilities.

Application µ1 σ1 µ2 σ2 T p q

RTI - tilt switch 0.641 0.087 -0.017 0.249 0.438 0.9902 0.9662
RTI - accelerometer 0.817 0.106 0.009 0.124 0.442 0.9998 0.9998
BAN - Pocket/Wrist 0.757 0.065 0.519 0.069 0.640 0.9636 0.9607

For our experiments we use the OMNeT++ [15] simulation environment.
The scalability analysis of the movement correlation method proposed for the
RTI scenario indicate a maximum network density of 100 nodes [9], imposed
by the shared wireless medium. Because the same periodic transmission of the
movement data is needed for the BAN scenario [6], we use in our simulations the
same maximum network density for both applications. As the cluster formation
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Fig. 4. Cluster stability in the RTI with tilt switches scenario (hmin = H = 1).

and stability is affected only by the nodes in the one-hop neighbourhood, we
simulate a network of maximum 100 nodes that are attached to different mobile
objects or people, and where there is a wireless link between any two nodes. The
cluster stability is directly influenced by the number of nodes in the group and
by the number of groups: the more nodes in one group and the more groups,
the less stable are the clusters. We focus on a mobile scenario with clustered
nodes moving around and passing each other, and thus we analyse how the
cluster stability changes when we vary the number of groups. We have 10 nodes
in each group moving together and interacting with other groups, and we vary
the number of groups between 2 and 10 and also the time history. We recall
from Section 5.2 that the cluster stability is the probability that the cluster is in
the Correct state. The graphs from Figures 4-8 represent the cluster stability in
percentage, for the following cases: (1) average simulation results, (2) estimation
of the worst case, derived from Eq. 6, (3) estimation of the average case, derived
from Eq. 7, and (4) estimation of the best case, derived from Eq. 6.

For each point on the simulation plots we run up to 10 simulations of 104−105

time steps. In order to study the influence of the history size, we take H =
2hmin − 1 and we vary hmin from 1 to 4.

6.1 RTI with tilt switches scenario.

Figure 4 shows the cluster stability depending on the number of groups present
in the network, given that the time history is hmin = 1. The error bars represent
the absolute minimum and maximum stability recorded during the simulations.
We notice that the results respect the upper and lower bounds calculated the-
oretically. The estimation of the average case is close to the simulations for a
small number of groups. However, increasing the number of groups decreases
the precision of the approximation, due to the minimization of the transition
probabilities to get in the Correct state (see Section 5.2).

Figure 5 shows the cluster stability depending on the time history, for a
network composed of 10 groups. We notice that increasing the time history
considerably improves the cluster stability and the theoretical approximation.
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Fig. 5. Cluster stability depending on the time history in the RTI with tilt switches
scenario (10 groups).

For a time history hmin = 4 (H = 7), a stability of 99.92 is achieved, while
the lower bound is 99.89. Therefore, for achieving a stability close to 100%, the
necessary delay is H × 16 = 112 seconds (the size of the data sequence is 16
seconds [9]).

6.2 RTI with accelerometers scenario.

The solution in using accelerometers is more reliable, resulting in higher proba-
bilities for the correct detection of the context (see Table 2) and consequently,
higher cluster stability. Figure 6 shows the cluster stability depending on the
number of groups present in the network, given that the time history is hmin = 1.
We also represent the error bars for the absolute minimum and maximum val-
ues. We notice the high stability obtained even for large number of groups (99.5
for 10 groups). Due to the fact that the clusters stay in the Correct state for
most of the time, the approximations are close to the simulation results. For
this scenario, a high cluster stability can be achieved even considering the time
history 1, reaching a responsiveness of only 16 seconds.

6.3 BAN scenario.

Figure 7 shows the cluster stability in the BAN scenario, depending on the
number of groups, given that the time history is hmin = 1. Similarly with the
two scenarios presented above, we notice that the results respect the upper and
lower bounds calculated theoretically. The average stability is lower than in
the previous cases, with a maximum of 67% and less than 50% for a network
composed of more than 6 groups.

Figure 8 shows the cluster stability depending on the time history, for a
network composed of 10 groups. The time history significantly improves the
cluster stability: for the time history hmin = 4 (H = 7), the stability is 99.84
and the lower bound is 99.74. For achieving this, the delay is H×8 = 56 seconds
(the window size is 8 seconds [6]).
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Fig. 6. Cluster stability in the RTI with accelerometers scenario (hmin = H = 1).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2  4  6  8  10

C
lu

st
er

 s
ta

bi
lit

y 
[%

]

Number of groups

Simulation
Estimation - worst case

Estimation - average case
Estimation - best case

Fig. 7. Cluster stability in the BAN scenario (hmin = H = 1).
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Fig. 8. Cluster stability depending on the time history in the BAN scenario (10 groups).
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Fig. 9. Average number of SetRoot messages sent per node in 100 steps.

6.4 Communication overhead.

The communication overhead is induced by the SetRoot message, sent by every
node when the current root node changes. In case the lower networking layers
use a periodic message in order to maintain for example the synchronization (e.g.
in case of a TDMA MAC protocol), Tandem can use this heartbeat to piggyback
the small piece of information present in the SetRoot message (root address and
priority number). Assuming that there is no such periodic message, we count the
average number of SetRoot messages sent by each node in one step of simulation
on average.

Figure 9(a) shows the number of messages on a logarithmic scale, depending
on the number of groups. The results correspond to each of the three scenarios,
where the time history is 1. We notice that the more stable the structure is,
the less communication overhead is needed. For the RTI with accelerometers
scenario, less than 1 message is sent per node in 100 time steps, even for a large
number of groups. The overhead is increasing as the number of groups increases,
due to the diminishing cluster stability.

Figure 9(b) shows the number of messages depending on the time history,
for the RTI with tilt switches and BAN scenarios. Increasing the time history
improves the stability and thus reduces the communication overhead. For the
time history 4, the overhead is less than 10−3 messages per node.

7 Discussion and conclusions

We presented Tandem, a context-aware method for spontaneous clustering of
wireless sensor nodes. The algorithm allows reclustering in case of topological
or contextual changes. By analysing the similarity of the context over a time
history, Tandem tries to achieve stable clusters. We approximate the behaviour
of the algorithm using a Markov chain model and we analyse the cluster stability
theoretically and through simulations, using experimental data reported from
real field tests. The analysis gives the possibility to theoretically estimate the
stability of the structure and the responsiveness of the algorithm. Computing



the worse case stability via the Markov chain approximation, we can deduce the
time history necessary to achieve stable clusters.

In what follows, we discuss the main advantages and limitations of the pro-
posed clustering method.

Advantages

– Responsiveness. The clustering structure reacts quickly to topological and
contextual changes: nodes decide based only on the current situation of their
neighbourhood, without the need of any negotiation with other parties.

– Small-scale experiment required. For computing the probabilities p and q that
can be used to estimate the cluster stability, only a small-scale reproducible
experiment is required. For example, two nodes moving together and another
two moving separately are enough to generate the statistical distributions of
the confidence values.

– Delay estimation. By deducing the time history required to achieve a certain
stability, the delay in accommodating the topological or contextual changes
can be easily estimated.

Limitations

– Rough approximation for many groups. As we notice from Figures 4 and 7,
the difference between the approximation that we derive using Markov chains
and the real situation is increasing with the number of groups. However,
the model offers a good approximation in case of highly accurate context
detection methods (see Figure 6). Therefore, the approximation can be suc-
cessfully used for deducing the minimum time history for a cluster stability
close to 100%.

– Multihop clusters. The method that we propose is valid only for one-hop
clusters, which is justified taking into account the scenarios from Section 2.
Nevertheless, other applications may require multihop clusters, even several
layers of clustering. For example, groups of people skiing together, forming
multihop clusters, where each person is wearing a BAN that is a one-hop
cluster. The algorithm can be easily extended to accommodate multihop
clusters: instead of choosing directly the clusterhead node, every node selects
a parent and thus joins the cluster associated with the parent node.

For future work, we intend to extend the algorithm for multihop clusters
and to investigate the cluster stability in this case. We also plan a series of
experiments involving clustering of nodes on body area networks. Subsequent to
clustering, a task allocation mechanism distributes various tasks to the nodes
which are part of the cluster, depending on their capabilities. The final goal is
to have a distributed activity recognition algorithm running on the BAN, which
allows dynamically entering and leaving of nodes to/from the context-aware
cluster.
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